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Preface

Changing frequencies is one of the most primitive sensations since we are sur-
rounded by light of changing color, by sounds of varying pitch, and by many other
phenomena whose periodicities change in time. A sunset is dramatic because of the
colors and the change in colors. The aim of time-frequency analysis is to describe
how the frequency or spectral content of a signal evolves and to develop the phys-
ical and mathematical ideas needed to understand what a time-varying spectrum
is. The attempt to represent a signal simultaneously in time and frequency is full
of challenges, both physical and mathematical, and I hope this book conveys the
fascination and elegance the subject holds for me.

My aim is to give a simple exposition of the physical ideas and origins, motiva-
tions, methods, underpinnings, and scaffolding of the field. I have attempted to be
clear on questions of what is known, what is not known, what is speculation, and
the limitations of our current knowledge.

I never understood or learned unless I saw simple examples illustrating the ideas
introduced. Naturally, I assume everyone else is like me. So, whenever possible, I
illustrate each point with examples.

The basic ideas and methods that have been developed are readily understood
by the uninitiated; the book is self-contained. The mathematicsis elementary, with
the possible exception of the last few chapters. There is an attitude these days that
one should use from the beginning the most "sophisticated" mathematics. The rea-
son generally given is that the sophisticated mathematics has to be learned even-
tually. I have attempted to do everything with the simplest of mathematics and
only use sophisticated methods when absolutely needed or when there is an over-
whelming advantage, either from a manipulative point of view or a simplification
of the physical ideas.

Time-frequency analysis spans many fields, including engineering, physics, as-
tronomy, chemistry, geophysics, biology, medicine, and mathematics. I have strived
for a minimum of jargon so that the book may be understandable to a wide audi-
ence.

I wish to express my appreciation to Carol Frishberg, Pat Loughlin, Jim Pitton,
and Ted Posch for reading the manuscript and making many valuable suggestions.

Leon Cohen

New York
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Notation in Brief
The main notational conventions we use are as follows:

1. Integrals. All integrals without limits imply integration from minus -oo to oc,

f t
2. Fourier Transform Pairs. We use s(t) to denote a signal and S(w) its Fourier
transform and normalize symmetrically:

S(w) 2=r 1 s(t) e-2-tdt
; s(t) = = f S(w) e'-tdwvf2- 7r

For other quantities there will be exceptions in regard to the factor of 2n due to
historically accepted conventions. We consistently use angular frequency, w.

3. Magnitude and Phase. It is often advantageous to express a signal and its Fourier
transform in terms of their respective amplitudes and phases. The notation we use
is

s(t) = A(t)e.i'v(t) ; S(w) = B(w)do(w)

and we use "phase" and "spectral phase" to denote cp and O(w), respectively, and
"amplitude" and "spectral amplitude" to denote A(t) and B(w).

4. Functions. We often use the variable to denote a function. That is, f (x) and f (y)
may not necessarily be the same function, the individuality of the functions being
denoted by the variable, x or y. Where confusion may arise we will use different
notation to emphasize the distinction.

5. Averages. Global and conditional averages are denoted by the following con-
ventions:

(w)

(w) h
0-2. (w2) - (w)2

Qwlh=(w2)h-(w)h

e.g., average weight

e.g., average weight for a given height
e.g., standard deviation of weight

e.g., standard deviation of weight for a given height

6. Operators. Symbols in calligraphic letters are operators. For example, the fre-
quency operator, W, and time operator, T, are

W=-3dt T=j d
&AJ

xv
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Chapter 1

The Time and Frequency
Description of Signals

1.1 INTRODUCTION

In this chapter we develop the basic ideas of time and frequency analysis from the
perspective that the standard treatments already contain the seeds and motivations
for the necessity of a combined time-frequency description. Signal analysis is the
study and characterization of the basic properties of signals and was historically
developed concurrently with the discovery of the fundamental signals in nature,
such as the electric field, sound wave, and electric currents. A signal is generally a
function of many variables. For example, the electric field varies in both space and
time. Our main emphasis will be the time variation, although the ideas developed
are easily extended to spatial and other variables, and we do so in the latter part of
the book

The time variation of a signal is fundamental because time is fundamental. How-
ever, if we want to gain more understanding, it is often advantageous to study
the signal in a different representation. This is done by expanding the signal in
a complete set of functions, and from a mathematical point of view there are an
infinite number of ways this can be done. What makes a particular representation
important is that the characteristics of the signal are understood better in that rep-
resentation because the representation is characterized by a physical quantity that
is important in nature or for the situation at hand. Besides time, the most important
representation is frequency. The mathematics of the frequency representation was
invented by Fourier, whose main motivation was to find the equation governing
the behavior of heat. The contributions of Fourier were milestones because indeed
he did find the fundamental equation governing heat, and, in addition, he invented
the remarkable mathematics to handle discontinuities (1807). He had to be able to

I



2 Chap. 1 The Time and Frequency Description of Signals

handle discontinuities because in one of the most basic problems regarding heat,
namely, when hot and cold objects are put in contact, a discontinuity in temper-
ature arises. Founer's idea, that a discontinuous function can be expressed as the
sum of continuous functions - an absurd idea on the face of it, which the great
scientists of that time, including Laplace and Lagrange, did not hesitate to call ab-
surd in nondiplomatic language - turned out to be one of the great innovations of
mathematics and science.' However, the reason spectral analysis is one of the most
powerful scientific methods ever discovered is due to the contributions of Bunsen
and Kirchhoff about sixty years after Fourier presented his ideas (1807) and about 35
years after his death in 1830. Spectral analysis turned out to be much more impor-
tant than anyone in Fourier's time could have envisioned. This came about with
the invention of the spectroscope2 and with the discovery that by spectrally ana-
lyzing light we can determine the nature of matter; that atoms and molecules are
fingerprinted by the frequency spectrum of the light they emit. This is the modern
usage of spectral analysis. Its discoverers, Bunsen and Kirchhoff, observed (around
1865) that light spectra can be used for recognition, detection, and classification of
substances because they are unique to each substance.

This idea, along with its extension to other waveforms and the invention of the
tools needed to carry out spectral decomposition, certainly ranks as one of the most
important discoveries in the history of mankind. It could certainly be argued that
the spectroscope and its variations are the most important scientific tools ever de-
vised. The analysis of spectra has led to the discovery of the basic laws of nature and
has allowed us to understand the composition and nature of substances on earth
and in stars millions of light years away. It would be appropriate to refer to spectral
analysis as Bunsen-Kirchhoff analysis.

1.2 TIME DESCRIPTION OF SIGNALS

Fundamental physical quantities such as the electromagnetic field, pressure, and
voltage change in time and are called time waveforms or signals. We shall denote a
signal by s (t) . In principle, a signal can have any functional form and it is possible to
produce signals, such as sound waves, with extraordinary richness and complexity.
Fortunately, simple signals exist, hence the motivation to study and characterize
the simple cases first in order to build up one's understanding before tackling the
more complicated ones.

'Laplace and Lagrange weren't thrilled about Founer's theory of heat either. However, his ideas
were eventually widely accepted in his own lifetime and he succeeded toLagrange's chair. Fourier was
heavily involved in politics and had his ups and downs in that realm also At one time he accompanied
Napoleon to Egypt and had a major impact in establishing the field of Egyptology

The spectroscope was invented by Fraunhofer around 1815 for the measurement of the index of
refraction of glasses. Fraunhofer was one of the great telescope makers and realized that the accurate
determination of the index of refraction is essential for building optical instruments of high quality. In
using the spectroscope for that purpose Fraunhofer discovered and catalogued spectral lines which have
come to be known as the Fraunhofer lines. However, the full significance of spectral analysis as a finger
print of elements and molecules was first understood by Bunsen and Kirchhoff some fifty years after the

invention of the spectroscope



Sec. 2 Time Description of Signals 3

The simplest time-varying signal is the sinusoid. It is a solution to many of the
fundamental equations, such as Maxwell equations, and is common in nature. It is
characterized by a constant amplitude, a, and constant frequency, wo,

s(t) = acoswot (1.1)

We say that such a signal is of constant amplitude. This does not mean that the
signal is of constant value, but that the maxima and minima of the oscillations are
constant. The frequency, wo, has a clear physical interpretation, namely the number
of oscillations, or ups and downs, per unit time.

One attempts to generalize the simplicity of the sinusoid by hoping that a gen-
eral signal can be written in the form

s(t) = a(t) cost9(t) (1.2)

where the amplitude, a(t), and phase, i9(t), are now arbitrary functions of time. To
emphasize that they generally change in time, the phrases amplitude modulation
and phase modulation are often used, since the word modulation means change.

Difficulties arise immediately. Nature does not break up a signal for us in terms
of amplitude and phase. Nature only gives us the left-hand side, s(t). Even if the
signal were generated by a human by way of Eq. (1.2) with specific amplitude and
phase functions, that particular a(t) and t9(t) would not be special since there are
an infinite number of ways of choosing different pairs of amplitudes and phases
that generate the same signal. Is there one pair that is special?

Also, it is often advantageous to write a signal in complex form

s(t) = A(t) ejw(t) = s,. + js, (1.3)

and we want to take the actual signal at hand to be the real part of the complex sig-
nal. How do we choose A and cp or, equivalently, how do we choose the imaginary
part, s;? It is important to realize that the phase and amplitude of the real signal
are not generally the same as the phase and amplitude of the complex signal. We
have emphasized this by using different symbols for the phases and amplitudes in
Eqs. (1.2) and (1.3).

How to unambiguously define amplitude and phase and how to define a com-
plex signal corresponding to a real signal will be the subject of the next chapter.
From the ideas and mathematics developed in this chapter we will see why defin-
ing a complex signal is advantageous and we will lay the groundwork to see how
to do it. In this chapter we consider complex signals but make no assumptions re-
garding the amplitude and phase.

Energy Density or Instantaneous Power. How much energy a signal has and specif-
ically how much energy it takes to produce it is a central idea. In the case of elec-
tromagnetic theory, the electric energy density is the absolute square of the elec-
tric field and similarly for the magnetic field. This was derived by Poynting using
Maxwell's equations and is known as Poynting's theorem. In circuits, the energy
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density is proportional to the voltage squared. For a sound wave it is the pressure
squared. Therefore, the energy or intensity of a signal is generally I s(t) 12. That is,
in a small interval of time, At, it takes I s(t) J2ot amount of energy to produce the
signal at that time. Since I s(t) I2 is the energy per unit time it may be appropriately
called the energy density or the instantaneous power since power is the amount of
work per unit time. Therefore

1 s(t) 12 = energy or intensity per unit time at time t

(energy density or instantaneous power)

I s(t) I2 At = the fractional energy in the time interval At at time t

Signal analysis has been extended to many diverse types of data, including eco-
nomical and sociological. It is certainly not obvious that in those cases we can mean-
ingfully talk about the energy density per unit time and take I s(t) I2 to be its value.
However, that is what is done by "analogy", which is appropriate if the results are
fruitful.

Total Energy. If I s(t) I 2 is the energy per unit time, then the total energy is obtained
by summing or integrating over all time,

E _ f I s(t) I2 dt (1.4)

For signals with finite energy we can take, without loss of generality, the total en-
ergy to be equal to one. For many signals the total energy is infinite. For example, a
pure sine wave has infinite total energy, which is reasonable since to keep on pro-
ducing it, work must be expended continually. Such cases can usually be handled
without much difficulty by a limiting process.

Characterization of Time Wave Forms: Averages, Mean Time, and Duration. If we
consider I s(t) 12 as a density in time, the average time can be defined in the usual
way any average is defined:

(t) = f (1.5)

The reasons for defining an average are that it may give a gross characterization
of the density and it may give an indication of where the density is concentrated.
Many measures can be used to ascertain whether the density is concentrated around
the average, the most common being the standard deviation, art, given by

T2 = of =
f

f(t- (t) )2 18(t) I2 dt (1.6)

= (t2) _ (t)2 (1.7)
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where (t2) is defined similarly to (t). The standard deviation is an indication of
the duration of the signal: In a time 20 most of the signal will have gone by. If
the standard deviation is small then most of the signal is concentrated around the
mean time and it will go by quickly, which is an indication that we have a signal
of short duration; similarly for long duration. It should be pointed out that there
are signals for which the standard deviation is infinite, although they may be finite
energy signals. That usually indicates that the signal is very long lasting.

The average of any function of time, g(t), is obtained by

(9(t) ) = f 9(t) I s(t) I2 dt (1.8)

Note that for a complex signal, time averages depend only on the amplitude.

Example 1.1: Gaussian Envelope.

Consider the following signal where the phase is arbitrary

s(t) = (a/7r) 114 e-'(t-to)2/2+iw(t) (1.9)

The mean time and duration are calculated to be

(t) _ V -.(t-t0)2 dt = to
7r

2 a 2- 2

( )

(1.10)

dt = 2a
+ to (1.11)(t) = V;- / t e " o

Hence

a2 = (t2)-(t)2=2a (1.12)

Example 1.2: Rectangular Amplitude.

A signal with constant amplitude from time t1 to t2 and zero otherwise is

s(t) _ ej°(t) tl < t < t2 (1.13)V7t2- tl
The mean time and duration are

P2
( t ) = +.. 1 . [ tdt = z (t2 +tl )

/rI

t2 - tl Jtl
which gives

t dt

(1.14)

= 3 (t2 + t2t1 + ti) (1.15)

at = (t2 - t1) (1.16)

For this case the signal unambiguously lasts (t2 - tj ). However, 2ot is pretty close to
the true duration and has the advantage that it applies to any signal.

2



6 Chap. 1 The Time and Frequency Description of Signals

1.3 FREQUENCY DESCRIPTION OF SIGNALS

There are four main reasons for frequency analysis or spectral analysis. First, by
spectrally analyzing a waveform we learn something about the source. That is how
we have learned about the composition of the stars, paper, blood, and almost ev-
erything else.

Second, the propagation of waves through a medium generally depends on fre-
quenc}. That is why visible light goes through glass but not through aluminum,
while X-rays go through aluminum but not so readily through glass. The propa-
gation of a wave through a medium is quite complicated but the basic effect is that
waves of different frequencies propagate with different velocities. This is called
dispersion because the earliest discovered manifestation was that a prism can "dis-
perse" white light into different colors. The other important effect in propagation is
the attenuation, the dying out or absorption of a wave. The amount of attenuation
depends on the medium and the frequency. In the case of sound in normal condi-
tions there is almost no attenuation, which is why we are able to hear from far away.
In contrast, high frequency electromagnetic waves are damped within a short dis-
tance of entering the surface of a conductor. To study the propagation through fre-
quency dependent mediums, we decompose the signal into its different frequency
components, do the analysis for each frequency component, and then reconstruct
the signal to obtain the resulting wave form. Hence, the need to decompose a signal
into individual frequencies, which is what Fourier analysis does.

The third reason for spectral decomposition is that it often simplifies our un-
derstanding of the waveform. Simple sinusoids are common in nature which is
consistent with the fact that for some of the fundamental equations of motion si-
nusoids are possible solutions. So are sums of sinusoids if the equation governing
the physical quantity is linear. In general, a signal is messy, but often the mess is
really the simple superposition of sine waves, which is simpler to understand and
characterize.

Finally, Fourier analysis is a powerful mathematical tool for the solution of or-
dinary and partial differential equations.

Fourier Expansion. The signal is expanded in terms of sinusoids of different fre-
quencies

s(t)
2-

J S(w) e'"tdw (1.17)

The waveform is made up of the addition (linear superposition) of the simple wave-
forms, ej"t, each characterized by the frequency, w, and contributing a relative
amount indicated by the coefficient, S(w). S(w) is obtained from the signal by

S(w) = ; :
J s(t) a-2"t dt (1.18)

and is called the spectrum or the Fourier transform. Since S(w) and s(t) are uniquely
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related we may think of the spectrum as the signal in the frequency domain or fre-
quency space or frequency representation.

Spectral Amplitude and Phase. As with the signal, it is often advantageous to write
the spectrum in terms of its amplitude and phase,

S(w) = B(w) e.i+G(") (1.19)

We call B(w) the spectral amplitude and 7&(w) the spectral phase to differentiate them
from the phase and amplitude of the signal.

Energy Density Spectrum. In analogy with the time waveform we can take I S(w) 12
to be the energy density per unit frequency:

S(w) 12 = energy or intensity per unit frequency at frequency w

(energy density spectrum)

S(w) 12 Ow = the fractional energy in the frequency interval &w

at frequency w

That I S(w) 12 is the energy density can be seen by considering the simple case of
one component, s(t) = S(wo) e310t, characterized by the frequency, wo. Since the
signal energy is I s(t)12, then for this case the energy density is I S(wo)12. Since all
the energy is in one frequency, I S(wo) 12 must then be the energy for that frequency.
In Chapter 15 we consider arbitrary representations and discuss this issue in greater
detail. Also, the fact that the total energy of the signal is given by the integration of
I S(w) 12 over all frequencies, as discussed below, is another indication that it is the
density in frequency.

The total energy of the signal should be independent of the method used to
calculate it. Hence, if the energy density per unit frequency is I S(w) 12, the total
energy should be the integral of I S(w) 12 over all frequencies and should equal the
total energy of the signal calculated directly from the time waveform

E =
J

I s(t),2 dt = J I S(w) I2 d<L (1.20)

This identity is commonly called Parceval's or Rayleigh's theorem.3 To prove it con-
sider

3The concept of the expansion of a function in a set of orthogonal functions started around the time
of Laplace, Legendre, and Fourier. However, the full importance and development of the theory of
orthogonal functions is due to Rayleigh some one hundred years later, around 1890.
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E =
J

s(t) 12 it = (1.21)27r fff S-(w') S(w) ej("-" )t dw dw' dt

= ff S* (w') S(w) 6(w - w') dw dw' (1.22)

J (1.23)

where in going from Eq. (1.21) to (1.22) we have used

1
ej("-"')t dt = 6(w - w') (1.24)

27r

Mean Frequency, Bandwidth, and Frequency Averages. If I S(w) 12 represents the
density in frequency then we can use it to calculate averages, the motivation be-
ing the same as in the time domain, namely that it gives a rough idea of the main
characteristics of the spectral density. The average frequency, (w ), and its standard
deviation, v" (commonly called the root mean square bandwidth and signified by
B), are given by

(w) =
J

I (1.25)

B2=c,22 = J(w_(w))2 IS(w)I2dw (1.26)

(w2) - (w)2

and the average of any frequency function, g(w), is

(1.27)

(g(w)) = Jg(w)IS(w)12dw (1.28)

What Does the Energy Density Spectrum Tell Us? The energy density spectrum
tells us which frequencies existed during the total duration of the signal. It gives us
no indication as to when these frequencies existed. The mathematical and physical
ideas needed to understand and describe how the frequencies are changing in time
is the subject of this book.

1.4 SIMPLE CALCULATION TRICKS

Suppose we want to calculate the average frequency. From the definition, Eq. (1.25),
it appears that we first have to obtain the spectrum. But that is not so. There is an
important method or "trick" that avoids the calculation of the spectrum, simplifies
the algebra immensely, and moreover will be central to our development in the later
chapters for deriving time-frequency representations. In this chapter we merely



Sec. 4 Simple Calculation Tricks 9

discuss the method in the context of its significant calculational merit: To calculate
averages of frequency functions we do not have to calculate the Fourier transform,
S(w). It can be done directly from the signal and done simply. We first state the
result for average frequency and average square frequency, give a few examples to
display the power of the method, and then discuss the general case.

The average frequency and average square frequency are given by

(w) = fw I S(w) Iz dw = fs*(t) d s(t) dt (1.29)

z

(w2) = fw2 I S(w) Iz dw = Js*(t)
(j dt) s(t) dt (1.30)

J
s* (t) dZt s(t) dt (1.31)

dt s(t) Idt (1.32)

That is, to calculate the average frequency, we differentiate the waveform and carry
out the integration as per Eq. (1.29). For the average square frequency we have a
choice. We can calculate the second derivative and use Eq. (1.31) or calculate just
the first derivative and use Eq. (1.32). Either way we get the same answer. The
bandwidth is given by

Qz
w f(w - (w))2 I S(w) 12dw (1.33)

r

(-_
lz

J
s*(t) - (w )J s(t) dt1d2j

dt
- (w )) s(t) dt

(1.34)

(1.35)

These results are far from obvious, although they are easy to prove and we will do
so shortly. First, a few examples.

Example 1.3: Quadratic Phase with Gaussian Envelope.

Take

Now

3(t) = (a/,n.)1/4 e-ct2/2+jOt2/2+3 0t

dt
s(t) _ { jat +,at + wo J '9(t)

3
(1.37)

and therefore



10 Chap. 1 The Time and Frequency Description of Signals

2
s` (t) { jut +,3t + wo } s(t) dt =

J
{ jat + fit + wo } e-°t dt = wo

(1.38)

Also,

which gives

a. =
2 a2 + q2

2a
(1.40)

For this case the spectrum and energy density spectrum may be obtained without
difficulty,

S(w) _ a e-
(_-_0)2/2(&-j#)

(1.41)
7( - jQ)

S(w) I2 = /(Q2+9')
7r(a2 + Q2))

and the averages may be calculated directly as a check

(1.42)

Example 1.4: Sinusoidal Modulation.

This example is chosen to impress the reader with the simplicity and power of the
method. Suppose we have the signal

s(t) =

and we want to calculate the average frequency and bandwidth.

(1.43)

The hard way: The reader is welcome to try to calculate the Fourier transform of s(t)
and then use it to calculate the average frequency and bandwidth.

The easy way: Taking the derivative of the signal we have

j dts(t) = Ljat+Qt+rnwmCOSwmt+wo]s(t) (1.44)

and therefore, using Eq. (1.29)

(w) =
J

s' (t) dt s (t) dt (1.45)

_ f{jat+Qt+ 'rnwmCOSwmt+wo}e_Q22dt (1.46)

mwm e-W,2^/(4°) + wo (1.47)



Sec. 4 Simple Calculation Tricks

For the average square frequency we immediately get, using Eq. (1.32),

11

z
at + j,3t + jMW",, COsW..t + jwo 12 a-«, dt (1.48)(w2) =

7

This integral is easy to evaluate since all the terms in the integrand that are linear in
time drop out due to symmetry. All complex terms drop out also since we know that
the answer has to be real; therefore the complex terms must add up to zero and do not
have to be calculated. The remaining terms are simple integrals. Evaluation leads to

2 2

(w2)
a 2a3

+wp 2
m

(1+
e-W'J

which gives

(1.49)

2 2 2 2 2

012 = a
2

Q + M
2

' ` (1 - e--'/2«) (1.50)

The Frequency Operator and the General Case. For convenience one defines the
frequency operator by

1d
3 dt

(1.51)

and it is understood that repeated use, denoted by Wn, is to mean repeated differ-
entiation,

Wns(t) _
(1)7' n

dtn
3(t) (1.52)

We are now in a position to state and prove the general result that the average of a
frequency function can be calculated directly from the signal by way of

(9(w)) = fg(w)S(w)i2dw (1.53)

f s*(t) g(W) s(t) dt (1.54)

fs*(t)g(4_) s(t) dt (1.55)

In words: Take the function g(w) and replace the ordinaryvariable w by the operator
dt; operate on the signal, multiply by the complex conjugate signal, and integrate.

Before we prove this we must face a side issue and discuss the meaning of g(W) for
an arbitrary function. If g is wn, then the procedure is dear, as indicated by Eq. (1.52).
If g is the sum of powers, then it is also dear. For a general function we first expand
the function in a Taylor series and then substitute the operator W for w. That is,

if g(w) = E 97lwn then g(W) = E gnW" (1.56)
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To prove the general result, Eq. (1.54), we first prove it for the case of the average
frequency:

(w) = J = 2 JJ J ws` (t) s(t') ejdw dt' dt (1.57)

2 -- JJJ s'(t) s(t')at ej(t-t') & dt' dt (1.58)

f f s' (t) 6(t - t') s(t') dt' dt (1.59)

Jsl(t).s(t)dt (1.60)

These steps can be repeated as often as necessary to prove it for g = w'. Hence

w s t
()fl

s(t dt= f ?tW st dt (1.61)

Having proved the general result for functions of the form g = w', we now
prove it for an arbitrary function, g(w), by expanding the function in a Taylor series

(9(w)) = Jg(w)S(J)2dw = f I (1.62)

E gn f s' (t) W' s(t) dt (1.63)

fs(t)(W')s(t)dt (1.64)

Manipulation Rules. The frequency operator is a Hermitian operator, which means
that for any two signals, s1(t) and s2(t),

f si (t) W s2(t) dt = f s2(t) {W sl(t)}* dt (1.65)

This is readily proved by integrating by parts. Also, a real function, g(w), of a Her-
mitian operator, g(W), is also Hermitian. That is,

I si(t)9(W) s2(t) = f s2(t) {9 (W) si(t)}* if g(w) is real ] (1.66)
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An important property of Hermitian operators is that their average value as de-
fined by Eq. (1.64) must be real, so in the manipulation of averages we can simply
discard the imaginary terms since we are assured that they add up to zero.

We now derive the second simplification, Eq. (1.32), for the average square of
frequency. We have

(w2) = fs*(t)W2s(t)dt = fs'(t)WWs(t)dt (1.67)

J
W s(t) {Ws(t)}* dt (1.68)

J
I W s(t) 12 dt (1.69)

This is an immense simplification since not only do we not have to find the spec-
trum, we also avoid a double differentiation.

The Time Operator. In the above discussion we emphasized that we can avoid the
necessity of calculating the spectrum for the calculation of averages of frequency
functions. Similarly, if we have a spectrum and want to calculate time averages, we
can avoid the calculation of the signal. The time operator is defined by

(1.70)T = -i
du)

and the same arguments and proofs as above lead to

(9(t)) = f g(t) s(t)12 dt = f S* (w) g(T) S(w) dw (1.71)

In particular,

(t) = f

(t2) = J t2 I s(t) 12 dt

= f S. (w) (-1 d
) S(w) dw (1.72)

I d 2

dw
S(w) dw

(1.73)

(1.74)

2

S(w) dwf S* (w) I ) &A)2

S * S dw

(1.75)
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Example 1.5: Mean Time and Duration from the Spectrum.

Consider the normalized spectrum

a2n+1S(w) =
(2n)!

wn e-°"12-jtow w > 0 (1.76)

We want to calculate the mean time and duration directly from the spectrum. We have

TS(w) = - S(w) _ [to - ja/2 + jn/w ] S(w) (1.77)

and therefore

1 [ to - ja/2 + jn/w ] I S(w)
12 dw = to (1.78)

In evaluating this we don't have to do any algebra. The complex terms must be zero
and hence need no evaluation. Also, since the spectrum is normalized, the real part
integrates to to. Similarly

(t2) = J to - ja/2 + jn/w 121 S(w)12 dw = to + 1 a2 (1.79)
0

42n-1
which gives

T2 = (t2) - (t)2 = 1 a2

4 2n - 1
The signal corresponding to this spectrum is

a2n+1 1

s(t) = n!
27r(2n)! [ a/2 - j(t - to) ]n+1

and the above average may be checked directly. Also, for this signal

(w) - 2n + 1
a

(2n+2)(2n+1) 2 2n+12
(w ) = a2 + B - a2

(1.80)

(1.81)

(1.82)

The Translation Operator. Many results in signal analysis are easily derived by the
use of the translation operator, e?TN', where -r is a constant. Its effect on a function
of time is

e'Twf(t) = f(t+T) (1.83)

That is, the translation operator translates functions by z. Note that it is not Hermi-
tian. To prove Eq. (1.83) consider

00e'TWf (t) _ (jT)E f (t) = E n! d f (t) (1.84)
n=0 n=0

But this is precisely the Taylor expansion of f (t + T) and hence Eq. (1.83) follows.
Similarly, the operator a-,j9T translates frequency functions,

e-i9T S(w) = S(w + 0) (1.85)
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The Operator Method. We have shown how the properties of the time and fre-
quency operators can be used to simplify calculations. Indeed, it is a powerful
method for that purpose of which, hopefully by now, the reader is convinced. How-

ever, the operator method is not only a calculational tool but one of fundamen-
tal significance which will be developed and discussed in the later chapters of this

book

1.5 BANDWIDTH EQUATION

We now aim at expressing the mean frequency and bandwidth in terms of the time
waveform.111,131.3531 The results obtained will give a strong motivation for time-

frequency analysis and for the introduction of the complex signal.

Mean Frequency. Consider first

Ws(t) = WA(t) e'`°(t) _ . A(t) e'w(t) (1.86)

j A(t)
s(t) (1.87)( A(t)

(w) = fw jS(w) j2 dw = fs*(t) d s(t) dt (1.88)

r (cp'(t) - j '(t) ) A2(t) dt (1.89)

The second term is zero. This can be seen in two ways. First, since that term is
purely imaginary it must be zero for (w) to be real. Alternatively, we note that the
integrand of the second term is a perfect differential that integrates to zero. Hence

(w) = fcd(t) s(t) 2 dt = I p'(t) A2(t) dt (1.90)

This is an interesting and important result because it says that the average fre-
quency may be obtained by integrating "something" with the density over all time.
This something must be the instantaneous value of the quantity for which we are
calculating the average. In this case the something is the derivative of the phase,
which may be appropriately called the frequency at each time or the instantaneous
frequency, wz(t),

wt(t) _ P (t) (1.91)

Instantaneous frequency, as an empirical phenomenon, is experienced daily as
changing colors, changing pitch, etc. Whether or not the derivative of the phase
meets our intuitive concept of instantaneous frequency is a central issue and is ad-
dressed in subsequent chapters. In addition, this brings up the question that if
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instantaneous frequency is the derivative of the phase, what phase are we to use?
According to this definition the instantaneous frequency of a real signal is zero,
which is clearly an absurd result. The means to get around these difficulties are
developed in the next chapter with the introduction of the complex signal which
corresponds to the real signal.

Bandwidth Equation. 1114,'411 Now consider the bandwidth

B 2 0-z
U) f (w-(w))z IS(w)I2dw (1.92)

or

fs*(t)
z

(- dt - (w) s(t) dt (1.93)

r ld 2

J \ j dt - (w 8(t) dt (1.94)

I 1

A(t) + 0'(t) - (w )
2

A2(t) dt (1.95)

r(:?
B2

= J )

z

A2(t) dt +
J

(cp'(t) -(w})z A2(t)dt (1.%)

While A2(t) can be canceled in the first term, the expression as written is prefer-
able because it explicitly shows that the bandwidth is the average of two terms, one
depending on the amplitude and the other depending only on the phase. What is
the meaning of this formula? What is the significance of the two terms? The expla-
nation will come with the ideas of describing a signal jointly in time and frequency,
which is the topic of this book The same steps lead to

(wz) = fw2 I S(w) 12 dw (1.97)

= f (A(t)\2 A2(t) dt + f cp12(t) A2(t) dt (1.98)
)

Calculation Techniques. These equations, besides being inherently interesting and
offering a challenge for their interpretation, are very useful for practical calcula-
tions, as the following example shows.

Example 1.6: Cubic and Quadratic Phase Modulation.

Consider
s(t) = ((Y/7r)1/4

e-,,t2/2+.7t3/3+j8t'/2+j.ot
(1.99)



Sec. 6 AM and FM Contributions to the Bandwidth 17

The denvative of the phase is given by gyp' = wo + (3t + -yt2 and hence

(w) = f p'(t) I s(t)12 dt = f(wo + pt + yt2) I s(t)12 dt = 2a + wo (1.100)

For the average square frequency we note that A'/A = -at and therefore

= f(_t)2 I s(t)12 + f(wo + Qt + yt2)2 I s(t)12 (1.101)

23

z + w°
2

3,Y2

+ 4a2 + yao2a
from which we obtain

2U2 =
a2+o2

72
2a + 2a2

(1.102)

(1.103)

1.6 AM AND FM CONTRIBUTIONS TO THE BANDWIDTH[135, 145]

What contributes to the bandwidth? The bandwidth is an indication of the spread
in frequencies for the duration of the signal. If a sound is produced at 1000 Hz and
increased in frequencies to 1200 Hz at more or less constant amplitude, we expect
that the spread in frequencies will be about 200 Hz, and that is indeed the case.
However, if we have a signal of constant frequency at 1000 Hz, then we can also
achieve the same bandwidth by making it a short duration signal or by varying the
amplitude rapidly. Therefore the bandwidth does not give us a good indication of
whether the spread of frequencies is due to deviations from the average frequency
or to fast amplitude change or a to combination of both. We now develop a measure
of these two qualitatively different contributions. But first we illustrate with an
example. Examine the set of signals shown in Fig. 1.1. They all have the same
bandwidth but they are qualitatively different. In (a) the variation in frequency
from the mean is zero while the variation in amplitude is large. For the signal (d)
the variation in frequency is high but has low amplitude variation. The signals
(a) - (d) are progressions from one extreme to the other. These two contributions
to the bandwidth are apparent in the bandwidth equation, Eq. (1.96). Since the
first term averages an amplitude term over all time and the second term averages a
phase dependent term, it is natural to define the AM and FM contributions by

BAM = JA12 (t) dt ; BFM = f (t) dt (1.104)

with
B2 = BA2 2

M + BFM (1.105)
We also define the fractional contributions and the ratio of the two contributions by

rFM = BB rAM = BB (1.106)

To gain some insight we consider a few examples.
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(a)

Or \- 0-

-,. .,.
0 5 0

(c`

O

D1-0 -at

5

50 0 50

Fig. 1.1 The real part of the signal s(t) = (a/7r)1/a e-ate/2+jat2/2 for various val-
ues of a and 0. All signals have the same bandwidth. There is a large amplitude
modulation in (a) and a small amplitude modulation in (d) but large frequency de-
viations from the mean frequency. The AM and FM contributions as defined by Eq.
(1.104) are a measure of the two qualitatively different effects that are contributing
to the bandwidth. The AM contributions are 71, 18, 1.3 and 0.4 % respectively, as
we progress from (a) to (d). The values for a,,3 are (16,16 ), (1, 5.56), (0.005, 0.4), and
(0.0005, 0.127) and each pair gives a bandwidth of 4.

Example 1.7: Arbitrary Amplitude with Constant Frequency.

Consider the signal
s(t) = A(t) ej"ot (1.107)

where the amplitude, A(t), is arbitrary. Since the instantaneous frequency is a constant
we immediately see that BFM is zero and all the contributions to the bandwidth come
from the amplitude modulation,

TAM = 1 i rFM = 0 (1.108)

This is reasonable because a constant frequency does not contribute to the bandwidth,
since the bandwidth indicates the spread in frequency.

Example 1.8: Linear Frequency Modulation.

Take
s(t) = (a/9r)1/4 e-ate/2+jOt2/2tjwOt (1.109)

Direct calculation yields that

0
=B B 110)(1FMAM =

2
.

=
a p _

= 111)(1TAM
_

a2 +
N2

rFM
2a2 + F'

.
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A "large" bandwidth can be achieved in two qualitatively different ways. Since the
instantaneous frequency is w: = wo + fit, we can get a large spread by waiting long
enough. We achieve this by making the duration long, which is accomplished by tak-
ing a small a. However, we can also get a large bandwidth by making the duration
very small, that is by taking a large a.

Example 1.9: Sinusoidal FM.

As a further example consider a sinusoidal modulated frequency with a Gaussian am-
plitude modulation,

8(t) = (a/it)1/4e-,t2/2+jmlmwmt+3wot

The amplitude and frequency modulation contributions are

BAM
2

R.., = m (1 - C-w,12n'- (1.113)

The instantaneous frequency is mw,,, cosw,,,t + wo and we see that we can indeed
achieve a large bandwidth if we have a large modulation index, m, or large w,,,, since
by making either one large we get a large instantaneous frequency change if we wait
long enough. As with the previous example we can achieve the same bandwidth by
making the duration small. Qualitatively we have two very different effects and the
AM and FM expressions measure these two effects.

1.7 DURATION AND MEAN TIME IN TERMS OF THE SPECTRUM

We have written the bandwidth and mean frequency in terms of the phase and am-
plitude of the signal. The identical derivations can be used to write the mean time
and duration in terms of the amplitude and phase of the spectrum. In particular,

(t) = - f VY(w) I S(w) I2 d) (1.114)

and

T2 = Ut =
J

(Bp))2
B2(w) Caw + f (,O,(w) + (t))2 B2(w) dw

B(w) (1.115)

Examine Eq. (1.114). It says that if we average -0'(w) over all frequencies we
will get the average time. Therefore we may consider -i'(w) to be the average
time for a particular frequency. This is called the group delay and we shall use the
following notation for it

t9(w) = - "(w) (1.116)

In Section 1.6 we showed how amplitude and frequency modulation contribute
to the bandwidth. Similarly, the amplitude and phase variations of the spectrum
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contribute to the duration. We define the spectral amplitude modulation (SAM)
and spectral phase modulation (SPM) contributions to the duration by

TSAM = fB2()dw TSPM = f(h'(w)+ (t))2 B2(w) dw (1.117)

with
T 2 = TSAM + TSPM (1.118)

Example 1.10: Linear Frequency Modulation.

Consider the spectrum of the signal

3(t) = (a/7r)1/4 e-'t2 /2+7At2/2+7-ot (1.119)

which we have given in Eq. (1.41) and which we rewrite here in terms of the spectral
phase and amplitude,

S(w) = (a/7r)1/4
expp

- Wo)2 i3(- )2 1
1 120( )va - 2(a2 +,32) 2(a2 + 02) j

.

Therefore,

t 1 121= (a w - WO) (g . )a2 p2

Also,
2 a 2 $2

(1 122)TSAM = T = .SPM 2a(a2 + $2)2(a2 + 02)

1.8 THE COVARIANCE OF A SIGNAL

If we want to determine, in a crude way, whether there is a relationship between
height and weight of a population, we do it by calculating the covariance or the cor-
relation coefficient. In the same way, we want a measure of how time and instan-
taneous frequency are related. To see this we introduce the concept of covariance
or correlation for signals. Consider the quantity

(t (P'(t)) = fto'(t) 18(t) 12 dt (1.123)

which may be thought of as the average of time multiplied by the instantaneous
frequency. Now if time and frequency have nothing to do with each other then
we would expect (t cp'(t)) to equal (t) (¢'(t)) = (t) (w ). Therefore the excess of
(t p'(t)) over (t) (w) is a good measure of how time is correlated with instanta-
neous frequency. This is precisely what is called the covariance for variables such
as height and weight, and we similarly define the covariance of a signal by
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Covtw = (tcp'(t)) - (t)(w) (1.124)

The correlation coefficient is the normalized covariance

r =
Covtw

(1.125)
QtO,w

The reason for defining the correlation coefficient in the standard considerations
such as for height and weight is that it ranges from minus one to one and hence
gives an absolute measure. That is not the case here, but nonetheless it does give a
good indication of the relationship between time and frequency.

Covariance in Terms of the Spectrum. Suppose we place ourselves in the frequency
domain so that time is t9 and frequency is w. It is reasonable to define the covariance
by

Covtw = (t9w) - (t)(w) (1.126)

with

(t9w) _ f wO'(w)I S(w)I2dw (1.127)

Are these two definitions, Eq. (1.124) and Eq. (1.127), identical? For them to be
identical we must have

f t cp'(t) I s(t) l2 dt = - Jw '(w) I S(w) 12 dW (1.128)

In fact, this equation is true but not obvious. It can be proven by brute force, but
a very simple proof is given in Section 15.4. It is an interesting identity because it
connects the phases and amplitudes of the signal and spectrum.

When Is the Covariance Equal to Zero? If the covariance is to be an indication of
how instantaneous frequency and time are related, then when the instantaneous
frequency does not change the covariance should be zero. That is indeed the case.
Consider

s(t) = A(t) e'--t (1.129)

where the amplitude modulation is arbitrary. Now

(tW'(t)) =

But since (w) = wo, we have

f twoIA(t)I2dt = wo(t) (1.130)

(t)(w)(t) = w 1 131o ( . )

and therefore the covariance and correlation coefficient are equal to zero. Similarly,
if we have a spectrum of the form S(w) = B(w)eiwto, then there is no correlation
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between time and frequency. In general,

Covt,,, = 0 ; r = 0 for s(t) = A(t) & of

or

(1.132)

S(w) = B(w) e3`''to (1.133)

Covariance of a Real Signal or Spectrum. Since the phase of a real signal is zero, the
derivative is zero and hence the covariance of a real signal is always zero. This result
misrepresents the physical situation and is another reason for defining a complex
signal as we discuss in the next chapter. Similarly, signals that are symmetric in time
have real spectra and their covariance is zero.

Example 1.11: Chirp.

For the signal

s(t) = (a/a)1/4 e-°t'/2+Jpt2/2+,jwot (1.134)

the average time is zero and therefore the covariance is

cove- _ (t cp'(t)) = ft ()3t + WO) a(t) 12 dt = p 1 t21 s(t) 12 dt (1.135)

This is readily evaluated to give

Cove,,, = 2 ; r = A
2

(1.136)
a _+02

When p --' 0 the correlation coefficient goes to zero, in conformity with our discussion
that for a constant frequency signal, time and frequency are not correlated. As a -+ 0
the correlation coefficient goes to ±1, depending on the sign of Q. That is, for constant
amplitude we have total correlation. If f3 is positive, the instantaneous frequency in-
creases with increasing time and that is what the value of +1 for r tells us. There is
high positive correlation in the sense that when time is large, the value of the instan-
taneous frequency is also large. For Q negative we have negative correlation, which is
also reasonable, since as time is increasing the instantaneous frequency is decreasing.
For a - oo we have the correlation coefficient going to zero, which is also reason-
able because for that case we have a short duration signal and the frequencies bear no
relation to the chirping but are simply due to the short duration.

1.9 THE FOURIER TRANSFORM OF THE TIME
AND FREQUENCY DENSITIES

Both I s(t) I2 and S(w) I 2 are densities. The Fourier transform of a density is called
the characteristic function. It is a powerful method for studying densities, as we
will see in the later chapters. Here we present a simple way to calculate the charac-
teristic function of I s(t) I2 and I S(w) 12 and show the relationship to the translation
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operator. The characteristic function for the energy density spectrum is

R(T) = J I S(w) 12
ejTw dw = r si(t) ejTws(t) dt (1.137)

But we know from Section 1.4 that ej'w is the translation operator and therefore

R(,r) = fs*(t)s(t+r)dt (1.138)

Since this function compares or correlates the signal at two different times it is com-
monly called the (deterministic) autocorrelation function. Inversely, we have

I S(w) 12 = 1 f R(r)
a-jwr d-r (1.139)

2a

The generalization of this result to random signals is the Wiener-Khinchin theorem.
Similarly, the characteristic function in the frequency domain is

R(9) = f I s(t)12
ejet dt = f S*(w) e,oTS(w) dc, = f S"(w) S(w-e) dw (1.140)

and hence f R(O) Cite d9 (1.141)I s(t) 12 =
27r

1.10 NONADDITIVITY OF SPECTRAL PROPERTIES

Many of the conceptual difficulties associated with time-frequency analysis are a
reflection of the basic properties of signals and spectra. If these properties are un-
derstood in their basic form, then the curiosities encountered later will not be so
paradoxical. The fundamental idea to appreciate and always keep in mind is that
the frequency content is not additive. Suppose we have a signal composed of two
parts, the spectrum will be the sum of the corresponding spectrum of each part of
the signal,

S = S1 + S2 (1.142)

However, the energy density is not the sum of the energy densities of each part

1 S 12 = I S1 + 5212 = 15112 + 15212 + 2 Re { Si S2 }

0 IS112+IS212

Thus the frequency content is not the sum of the frequency content of each signal.
One cannot think of frequency content of signals as somethingwe have in a bucket
that we add to the frequency content or bucket of another signal. The physical
reason is that when we add two signals, the waveforms may add and interfere in
all sort of ways to give different weights to the original frequencies. Mathematically
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Fig. 1.2 The energy density spectrum for the sum of two signals, each localized in
time. The signal is given by Eq. (1.145), where a, = ctiz, W1,2 = 5, 10, ar 1 t1 = 5.
The values for t2 are 5, 7, 9, and 11 in (a)-(d). Even for large time separations as in
(c) and (d) the energy density spectrum is affected. The density of frequency is not
just the sum of the frequencies of each part. The implications for time-frequency
analysis are explained in the next figure.
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this is reflected by the fact that the energy density spectrum is the absolute square
of the sum of the spectra, which results in nonlinear effects. How the intensities
change is taken into account by Eq. (1.143).

Even if the signals are well localized and greatly separated in time we still cannot
add frequency content. For example, consider two signals each lasting a second but
one happening today and the other a million years from now. Suppose we add the
two signals. Because of the large separation in time we have the intuitive sense that
physical properties should somehow also be separable and simply add, but that is
not the case. Even though the two signals have in some sense nothing to do with
each other since they are greatly separated in time, nonetheless the sum of the two
signals produces an energy density spectrum that is not simply the sum of the two
energy density spectra. Let us take a particular example:

s(t) = Al e-01(t-tl)2/2+jwi(t-tl) + A2 e-Q2(t-t2 )2 /2+,7W2(t-t2) (1.145)

If we take eel and a2 to be large in relation to It2 - tt I the two parts will be well
separated in time. A few typical situations are illustrated in Fig. 1.2, where the en-
ergy density spectrum is also shown. The energy density spectrum changes with
signal separation even when the separation is large. This is an important consider-
ation since it leads to seemingly paradoxical results in the distribution of intensity
in the time-frequency plane. Even though we have not begun our discussion of
time-frequency distributions it is important to understand this nonadditivity prop-
erty. Suppose we have two signals, each concentrated around the time-frequency
points w1, tl and w2i t2 and where these two points are well separated in both time
and frequency. If we add these signals we may think that since they are well sepa-
rated in time and frequency the resulting time-frequency density would be the sum
of the same two dumps. However, that cannot be the case since it does not take into
account the term Si S2 + S1 S2 in the energy density spectrum. This is illustrated in
Fig. 1.3.

13

N
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(t2,w2)

(tz, w2)

(ti, wi)

0 (c)

Fig. 1.3 In (a) we have a signal that is localized at the time-frequency point (t2, w2)
and in (b) we have another signal localized at (tl,wl). Since (ti, wi) and (t2, W2)
are separated and the densities localized, a seemingly plausible representation of
the energy density in the time-frequency plane for the sum of the two signals of (a)
and (b) is shown in (c). However, this cannot be correct because that would imply
that the energy density spectrum is the sum of the density spectra of each signal,
which is not the case, as discussed in the previous figure.

1.11 CLASSIFICATION OF SIGNALS

25

The types of signals found in nature vary greatly and a rich terminology has arisen
to characterize them in broad terms. If a signal does not change in some sense then
one says it is stationary; otherwise it is nonstationary. If a signal lasts a short time
it is generally called a transient, burst, or wave packet. Short is a relative term that
may mean a million years for astronomical signals or a billionth of a second in the
case of atomic physics.

If the signal is explicitly known, we say we have a deterministic signal. Very
often, because of our ignorance or because the physical process producing the sig-
nal is governed by random events, we have many possible signals, in which case
we say we have a collection or ensemble of signals, a random signal, or a stochastic
signal. A particular signal of the collection is said to be a realization. For example, if
we produce sinusoids where the frequency is determined by some random event,
then we would have a random signal.

The spectral content is sometimes used to classify signals. Signals whose spec-
tra are concentrated in a small band relative to the mean frequency are called nar-
row band; otherwise they are called broadband. However, these classifications are
crude. For signals whose spectrum is changing, they do not give a true sense of
what is going on and can be misleading. We have already seen, for example, that
the bandwidth can be caused by two physically different mechanisms. For exam-
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ple, if a signal varies from 100 to 5000 Hz in 10 seconds in a pure and steady way,
then to classify it as broadband does not present a complete picture, since at each
time there may have been only one frequency. On the other hand we can produce
a signal that has the same bandwidth where indeed at each time there is a broad
range of frequencies. Time-frequency analysis enables us to classify signals with a
considerably greater reflection of the physical situation than can be achieved by the
spectrum alone.



Chapter 2

Instantaneous Frequency
and the Complex Signal

2.1 INTRODUCTION

Signals in nature are real. Nevertheless, it is often advantageous to define a complex
signal that in some sense or other corresponds to the real signal. In this chapter we
describe the motivations for seeking a complex signal representation and its relation
to the concept of instantaneous frequency. We have seen in Chapter 1 that it is
natural to define instantaneous frequency as the derivative of the phase because its
average over time is the average frequency. Thus far we have left open the question
of how to get the phase. One of the motives for defining the complex signal is that
it will allow us to define the phase, from which we can obtain the instantaneous
frequency.

We seek a complex signal, z(t), whose real part is the "real signal", sr(t), and
whose imaginary part, sli(t), is our choice, chosen to achieve a sensible physical
and mathematical description,

z(t) = Sr + jsi = A(t) ea'v(t) (2.1)

If we can fix the imaginary part we can then unambiguously define the amplitude
and phase by

A(t) = sr + s? ap(t) = arctansr/si (2.2)

which gives

(sisr - srsi) /A2 (2.3)

27
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for the instantaneous frequency.
The issue is then how to define the imaginary part. Interest in the proper defini-

tion of instantaneous frequency first arose with the advent of frequency modulation
for radio transmission in the 1920s. Historically there have been two methods, the
quadrature method and the analytic signal method. Before the introduction of the
analytic signal by Gabor, the main idea for forming a complex signal was the sense
that for a signal of the form s(t) = A(t) cos co(t), the complex counterpart should
simply be A(t) &p(t). That begs the question because it requires first writing the
signal in the form A(t) cos co(t) and there are an infinite number of ways that can
be done, although in some situations it is intuitively obvious. This idea is called
the quadrature procedure and is discussed in Section 2.6. In 1946 the fundamental
issues were crystallized by Gabor with the introduction of the analytic Signal. [210]

As we will see, the "analytic signal procedure" devised by Gabor results in a
complex signal that has a spectrum identical to that of the real signal for positive
frequencies and zero for the negative frequencies. Because of this fact there has
been a tendency in the recent past to introduce the analytic signal by merely saying
that the negative frequencies do not exist anyway so let's get rid of them. However,
"lets drop the negative frequencies", is neither the historical nor the physical rea-
son for seeking a complex signal. The reasons for doing so are that a complex signal
offers a way to overcome difficulties that arise when considering only real signals.
Similarly, there has been a tendency lately to define instantaneous frequency as the
derivative of the phase of the analytic signal. However, instantaneous frequency is
a primitive concept and not a question of mere mathematical definition. The issue is
whether any particular idea or definition does indeed match our intuitive sense and
adequately represents that concept, and whether it leads to further fruitful ideas. As
we will see, the derivative of the phase of the analytic signal does meet our intuitive
sense of instantaneous frequency for many cases but also produces many counter-
intuitive consequences. That is all right because it is the counterintuitive situations
that test the ideas. Alternatively, if an idea works well in some cases but apparently
not in others, then perhaps it is our interpretation of these apparently curious cases
that is wanting. In fact it will turn out that time-frequency analysis offers a frame-
work which explains many of the curiosities and difficulties. We point out some of
the difficulties with instantaneous frequency in this chapter. One should keep an
open mind regarding the proper definition of the complex signal, that is, the ap-
propriate way to define phase, amplitude, and instantaneous frequency. Probably
the last word on the subject has not yet been said.

2.2 REASONS FOR THE COMPLEX SIGNAL

First and most importantly, for a real signal the spectrum satisfies S(-w) = S` (w)
and therefore the energy density spectrum I S(w) 12 is always symmetric about the
origin. Fig. 2.1 symbolically draws such a density, which is a perfectly good density.
Because of the symmetry, the average frequency will always come out to be zero!
That is not what we want because it does not give us a sense of what is really going
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2 vw 2 or,,

(b)
IS(w)I2

w--4 (w)l
0

Fig. 2.1 A real signal has a symmetrical density in frequency, as illustrated in (a).
Therefore, the average frequency is zero and the spread in frequency is roughly the
distance between the two bumps, as illustrated in (a). Neither of these results is in-
dicative of the physical situation. The analytic signal is defined to give the identical
spectrum for the positive frequencies and zero for the negative frequencies, as in
(b). This results in an average frequency and bandwidth, which better reflect the
physical situation in that the average frequency falls somewhere in the middle of
the bump and the bandwidth is the spread of the bump.

on. We want the answer to come out to be somewhere in the middle of the right-
hand bump. Also, the spread in frequencies will be roughly the distance between
the two bumps, while what we want is the spread of one bump. What can we do to
obtain a value for average frequency that is roughly centered in the middle of the
right hand bump? We can achieve this by simply neglecting the left bump in the
averaging,

(w) = f00 wIS(w)12dw (2.4)

There are now two approaches we can take. First, we can continue to consider real
signals and when taking spectral averages integrate from zero to infinity rather than
-oo to oo. Or, we can define a new signal that has the same spectrum for the pos-
itive frequencies and a zero spectrum for the negative frequencies. The advantage
of the second approach is that we can calculate frequency averages directly from
the signal and therefore it is advantageous to have the signal once and for all. In
particular, the new signal, z(t), as yet unknown, will assure that

(w) = f = fz*(t)4_z(t)dt
[ z(t) = ? ) (2.5)

The second reason for wanting to form a complex signal is that it will allow us
to obtain the phase and amplitude of a signal unambiguously, and that allows us to
obtain an expression for instantaneous frequency.
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2.3 THE ANALYTIC SIGNAL'

If the real signal, s(t), has the spectrum, S(w), then the complex signal, z(t), whose
spectrum is composed of the positive frequencies of S(w) only, is given by the in-
verse transform of S(w), where the integration goes only over the positive frequen-
cies,

z(t) = 2 1 f S(w) ei t dt
27r o

jz(t) = 2 ,I s(t') a"' e'"t d' dw

The factor of 2 is inserted so that the real part of the analytic signal will be s(t);
otherwise it would be one half of that. We now obtain the explicit form for z(t) in
terms of the real signal s(t). Since

00

S(w) = 2
J

s(t) e_j"t
dt

r

0

we have

= 1 r r s(t') dt' dw
o f

and using

we obtain

yielding

(2.6)

(2.10)

z(t) _ 1. 18(t1) 17r 6(t - t') + t t, ] dt' (2.11)

A[s] = z(t) = s(t) + 2 J t(t') dt' (2.12)

We use the notation A[s] to denote the analytic signal corresponding to the signal s.
The reason for the name analytic is that these types of complex functions satisfy the
Cauchy-Riemann conditions for differentiability and have been traditionally called
analytic functions. The second part of Eq. (2.12) is the Hilbert transform of the signal
and there are two conventions to denote the Hilbert transform of a function, s(t)
and H[s(t) ]

IIn a series of seminal papers Vakman 1W, 549, 5511 has addressed the concepts of instantaneous fre-
quency and the analytic signal and has brought forth the fundamental issues regarding these subjects.
The classical review article on the subject is by Vakman and Vainshtein.15501
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H[s(t) ] = s(t) _ fsct'_dt' (2.13)

The integration in the integral implies taking the principle part.

The Analytic Signal of a Complex Signal. We have emphasized the physical mo-
tivation for defining a complex signal that corresponds to a real signal. However,
there is no reason why s(t) in Eq. (2.12) cannot be any function, real or complex.
For manipulative purposes it is important to allow for that possibility.

Energy of the Analytic Signal. Because we have insisted that the real part of the
complex signal be the original signal, normalization is not preserved. Recall that
the spectrum of the original real signal satisfies I S(w) I _ I S(-w) I and therefore
the energy of the original signal is

E. = f I S(w) I2 dw = 2 f I S(w) I2 dw = 1
J

12S(w) I2 dw = 2Ez (2.14)
0 2 0

That is, the energy of the analytic signal is twice the energy of the original signal.
In addition, the energy of the real part is equal to the energy of the imaginary part

Ea = EHfa] (2.15)

which can be seen by considering I z(t) 12 = I s(t) +jH[s] 12. When this is expanded
the middle term is

s` (t) s(t') + s(t)
87 (t') dt' dt = 0ff t - t'

since the integrand is a two dimensional odd function.

2.4 CALCULATING THE ANALYTIC SIGNAL

(2.16)

It might seem reasonable to now study the properties of the Hilbert transform so
that we may better understand the properties of the analytic signal. However, that
is not the case. It is easier to study the analytic signal directly than to first develop
theorems and results for the Hilbert transform. The main point to keep in mind is
that the analytic signal is formed from the positive part of the spectrum of the real
signal and multiplied by two. This will carry us fax

Consider ej"t whose spectrum is a delta function at w. If w is negative then
there is no positive frequency to retain and the answer is zero. If it is positive then
we just multiply by two. Therefore

A[ e3"t] 0 if w < 0
2 ei"t if > 0 (2.17)
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This simple result is very important because if we can express the signal in terms of
exponentials then all we have to do to form the analytic signal is drop the terms with
negative frequency and multiply the positive frequency terms in the expansion by
two. A few examples will make this clear.

Example 2.1: The Analytic Signal of cos I w I t.

Write cos Iwt in terms of exponentials and then use Eq. (2.17),

ZA[ e.i IWl t + e-ilWlt [

5A[ e'IWIt j + ZA[e-j1

"A[ e'IWlt I

e;1-1t

Similarly,

A[sin IwItj = 2,j A[e'IWlt -e-.iHWltj = -je;IWlt

Example 2.2: The Analytic Signal of s(t) = coswlt coswlt.

For definiteness we take 0 < wl < w2. Rewrite s(t) in terms of exponentials,

s(t) coswlt cos w2t

4
(e)W2t

+
e-jW2t) (e)Wlt

+
e-jWlt)

4
(e)(W2+W1)t + e9(W2-Wl)t + e-9(W2+W1)t + e-)(W2-Wl)t)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

The last two terms have negative frequencies and hence only the first two terms re-
main, giving

\\11z(t) = 24 (ei(W2+W1)t + e3(W2-W1)t)
= 2

(eyWlt + e-7"lt) e7"2t (2.26)

= coswlte) 2t (2.27)

Notice that the analytic signal procedure chooses the higher frequency for the in-
stantaneous frequency.

The Analytic Signal of an Analytic Signal. If we start with an analytic signal then
its spectrum is nonzero only on the positive frequency axis and hence there is noth-
ing to drop. Therefore we get back the same signal except for the factor of two,

.Al z(t) i = 2z(t) [ if z(t) is analytic] (2.28)

Analytic Signal of the Derivative. Suppose we want the analytic signal of the
derivative of a function. If we have the analytic signal of the function then all we
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have to do is differentiate it, because the analytic signal of the derivative of a func-
tion is the derivative of the analytic signal. More generally, the analytic signal of
the nth derivative of a function is the nth derivative of its analytic signal. To see this
consider

d'tis
A dtn (2.29)

AL1 J (jw)n S(w) e)"t dw

J

(2.30)_
0027r

= 2 1 f(jwr S(w) (2.31)
2

A S(w) e'"tdo 1

TO,dtn 271 0

'" 2 1

S(w) ejwt &'J
dtn 27r fOC'Q

But this is just the nth derivative of the analytic signal of s(t). Therefore

1dns do

A dtn ] dtn
-A[s]

(2.32)

(2.33)

We note that in going from Eq. (2.30) to Eq. (2.31) we have used the fact the ana-
lytic signal operator is linear and hence can be taken inside the integration because
integration is a sum.

Convolution. Suppose we have a signal, s(t), whose spectrum is S(w) and we form
a new signal by way of

z(t) = 2 1 J F(w) S(w) e,"t do (2.34)
27r o

where F(w) is any function. It is dear that z(t) is analytic since we have made it so
by construction. By specializing the function F(w) many important results can be
obtained. In particular, if we consider F(w) to be the spectrum of a function, f (t),
and recall that the product of two spectra is the convolution of the two signals, then
we have in general that

f Af s(t') ] f (t - t') dt' is analytic for arbitrary .s and f (2.35)

That is, the convolution of an analytic signal with an arbitrary function results in
an analytic signal.

Imposed Modulation. If we have a signal that is bandlimited between two frequen-
cies, it is often necessary to shift the frequencies to higher values for the purpose
of transmission. For example, a speech signal, which is limited to a few thousand
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hertz, is raised to the megahertz range because we can build transmitters and re-
ceivers at those frequencies and because electromagnetic waves propagate well in
our atmosphere at those frequencies. What is done is to multiply the original wave-
form by e)

"0'
with wo positive to form a new signal,

snew(t) = 3(t) e'--t [ wo > 0 ] (2.36)

In such a case one says that e3"°t is the imposed modulation and wo is the carrier
frequency. The spectrum of the new signal is the spectrum of the old signal shifted
by an amount wo

Snew(w) = S(w - wo) (2.37)

When will the resulting signal be analytic? If the spectrum of the original signal
extends from minus infinity to infinity then the spectrum Sne,,, will likewise extend
from minus infinity to infinity and not be analytic. But suppose the spectrum S(w)
is single sided, which means that it is zero below a certain value. Then if wo is greater
than that value, the spectrum of the new signal will be shifted to the positive part
of the frequency axis and the signal will be analytic. Therefore

s(t) e3"0t is analytic if the spectrum of s(t) is zero for w < -WO (2.38)

Note that we have not specified whether s(t), the original signal, is real or complex.
It can be complex. If it is real then this result implies that it must be bandlimited to
the interval (-wo,wo).

Analytic Signal of the Sum of Two Signals. Suppose we have a signal and want to
add to it another signal so that the resulting sum will be analytic. All we have to do
is choose a signal whose spectrum for negative frequencies is identical to the first
signal but differs in sign. That way, the spectrum of the resulting signal will be zero
for negative frequencies. Therefore

s = s1 + 82 is analytic if Sl (w) = -S2(w) for w < 0 (2.39)

Factorization Theorem. An important situation is when we want to find the an-
alytic signal of the product of two signals. Let us first address when one of the
functions can be factored out. That is, when does A[ s1 S21 = s1A[ s21? If the spec-
trum of sl is nonzero for all frequencies, then there is nothing we can do to raise its
spectrum to be only positive. The only possibility for a factorization theorem is if
the spectrum of s1 is zero below some frequency. Let us say that frequency is -w1.
Therefore, A[ S21 must raise the spectrum of s1 so that it is on the positive side of
the frequency axis. Think of the spectrum of s1 as a sum of exponentials. The worst
case is the lowest frequency, e-3"1'. Now A[ S21 is analytic and again think of it as
a sum of exponentials. If there is a frequency below wl, then the product of this
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exponential with the worst case of si will result in a negative frequency. Therefore
s2 cannot have any frequencies below wl and hence

A[ 81821 = s1A[ 821 if the spectrum of s1 is zero below the value -w1 and s2 is

any signal whose analytic function has a spectrum that

is zero below w1. (2.40)

Notice that the spectrum of s2 does not have to be zero below w1; it is the spectrum
of A[ 521 that has to be zero below w1. If 52 is real, then the condition is that the
spectrum of s2 must be zero outside the range (-wi, wi). These results are due to
Bedrosianl641 and Nuttall.1402]

Product of Two Analytic Signals. If si and 82 are both analytic, then they are both
single sided and we have

A[81521 = s1A[ s2 ] = 2s132 sl and 82 analytic (2.41)

Real Signals. Suppose si and 82 are real. Their spectra are then symmetric. Since
the spectrum of Si vanishes below -wl it must vanish above wi. Therefore the
spectrum of s1 must be zero for Iw > wl. Similarly, the spectrum of s2 must vanish
for [ w i < wi. Hence

A[ sis2 ] = s1A[ s2 ] for real signal if spectrum of si is zero for jwj > wi (2.42)

and the spectrum of 82 is zero for jw1 < w1

2.5 PHYSICAL INTERPRETATION OF THE ANALYTIC SIGNAL

Since the analytic signal is complex it can always be put into polar form

A[ s(t) ] = A(t) e.iw(t) (2.43)

We now ask what the analytic signal procedure has done in terms of choosing the
particular amplitude and phase, that is, what is special about the amplitude and
phase to make it an analytic signal? Generally speaking, the answer is that the
spectral content of the amplitude is lower than the spectral content of e.iw(t). We
illustrate this first with a simple case where

s(t) = A(t) c3--t (2.44)

Call the spectrum of the amplitude SA(w),

SA(W) =
27r

r A(t) e-i"'t dt (2.45)
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The spectrum of s(t) is then SA(W - wo). For SA(W - wo) to be analytic, that is, zero
for negative frequencies, SA (w), it must be zero w < wo. Therefore

A(t) e3 0t is analytic

if the spectrum of A(t) is contained within (-wo, w0) (2.46)

Hence all the low frequencies are in the amplitude, and the high frequency is in the
cosine. One can generalize this result in the following way. Call S,e (w) the spectrum
of ej`e(t),

S,(W) = 1 eaw(t) (2.47)
27r

The spectrum of A(t) ej`e(t) is then

S(W)= 1
2=
f SA(w-w')Sw(w')dw' (2.48)vlr-

We can consider this the sum of shifted spectra of A(t) with coefficients S,(w').
Now suppose SA(w) is bandlimited in the interval (-w1, wi). A sufficient condition
to shift S(w) to the positive axis is if the lowest value of the range of w' is greater
than wl. That is, S, (w') is zero for values less than wl,

A(t) e7S°(t) is analytic

if the spectrum of A(t) is contained in (-wl, wl )

and the spectrum of e3`e(t) is zero for w < wl (2.49)

Therefore what the analytic procedure does, at least for signals that result in the
above forms, is to put the low frequency content in the amplitude and the high
frequency content in the term ej`e(t).

2.6 THE QUADRATURE APPROXIMATION

It seems natural that if we write a signal in the form s(t) = A(t) cos cp(t), the com-
plex signal ought to be

sq(t) = A(t) e?`'(') for s(t) = A(t) coscp(t) (2.50)

at least for some situations. The sq(t) thus formed is called the quadrature model
signal. This idea was used before the introduction of the analytic signal. As we
mentioned in the introduction, it begs the question since the procedure does not
tell us how to write the signal in the form A(t) cos W (t) to start with. Nonetheless,
in many situations we may think we know the phase and amplitude. Or we may
have an A(t) and ap(t) and want to construct a signal and ask whether or not it is
analytic. More importantly, since calculating the analytic signal is difficult, if we
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can approximate it with the quadrature model a considerable simplification would
be achieved.

We therefore want to know when the quadrature model will agree with the
analytic signal. If the spectrum of the quadrature model is on the positive frequency
axis only, then we have total agreement. In general, that will not be the case and
we want a measure of the error.

Energy Criteria. The less of the spectrum of the quadrature signal there is on the
negative frequency axis, the better is the agreement. To examine this question more
precisely we define the following three signals:

s(t) = A(t) cos cp(t) real signal (2.51)

sq(t) = A(t) e2m(t) quadrature model (2.52)

sa(t) = 2 f S(w) e'"'t dw analytic signal (2.53)
27r o

where S(w) is the spectrum of the real signal

S(w) = = J A(t) cos ap(t) a-3"t dt (2.54)

Using cos W + j sin cp, the spectrum of the quadrature signal is seen to be

Sq(w) = S(w) + 2 J A(t) sin p(t) a-?'"t dt (2.55)

Take the complex conjugate of this equation, let w -w, and add, to obtain

2 S(w) = Sq(w) + SQ (-w) (2.56)

where we have used the fact that S(w) = S*(-w), since s(t) is real. Also, the spec-
trum of the analytic signal is

Sa(w) 0 ifw<0
2 S(w) = Sq (w) + Sq (-w) if w > 0

(2.57)

As a criterion on closeness between the quadrature signal and analytic signal,
Nuttall(''02) considered the energy of the difference between the two signals,

of = f
I (2.58)

f o 10-Sq(w)12dw+ f ISa(w)-Sq(w)12dw (2.59)
00 0

fpsq(w)2th+j!S;(_w)i2tho

100

(2.60)
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The two terms are equal and therefore
0

DE=2J
00

1Sq(w)12d<. (2.61)

which is twice the energy of the quadrature model in the negative part of the spec-
trum.

Point by Point Comparison. A stronger condition, which compares sq and S. at
each time, was given by Vakman and Vainshtein.[550] Using Eq. (2.57), consider

sa(t) - sq(t) = 1 f Sa(w)ed"t dw - f Sq(w) ej"t dw (2.62)
27r

- 1
J

0 Sq(w) e& "t dw + 1 1-
00

S(-) eJ"t dw (2.63)
27r 27r00

= 1
r°

2qr J-cc [ Sq (w)
a-j"t - Sq (w) "t I dw (2.64)

This compares the signal at every time. If we take absolute values, then

°
I sa (t) - sq (t) I =

1

I 2qr f [ Sq (w)
a-j"t - Sq (w) &"t ] dw

00

1 °

(2.65)

7 , . 00 I Sq (w)

e_,"t - Sq (w) e3" I dw (2.66)
2

and therefore

sa(t) - sq(t) 2 f ° Sq(w) I (2.67)
27r

This gives the absolute possible deviation for any time.

Imposed Amplitude and Phase Modulation. Often we have a carrier and impose
an amplitude and phase, A(t) and cp(t), to produce the complex signal

s(t) = A(t) ej"°t+.iw(t) (2.68)

The spectrum of A(t) ejw(t) is shifted upward by an amount w0 and therefore, using
Eq. (2.61),

r0
DE = 2 J 1 Sq (w - w0) 1 2 dw (2.69)

00

2-ISq(w)12dwf
(2.70)

Note that Sq(w) is still the spectrum of A(t) ej`e(t).
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Example 2.3: Chirp.

Take the real signal

The quadrature model is

39

s(t) = e-at2/2 cos(wot f3t2/2) (2.71)

39(t) = (a/7r)1/4 e-.0/2 ej)ot+9Rt2/2
(2.72)

How does this compare with the analytic signal of s(t)? Using Eq. (1.42) for the spec-
trum of sq we have

o
a]2

/

AE=2J IS(w)12dw=1-. a+A
a-12dx (2.73)

00 fo

This will be close to zero when the upper limit is close to infinity and therefore

Sa ' Sq when
a2 +Q2

WO w/0 is large (2.74)
V 2_aW

where QW is the bandwidth of sq(t) as per Eq. (1.40). This is reasonable because for
a given wo, the energy density spectrum will not spill over much into the negative
frequency region if it is relatively narrow.

2.7 INSTANTANEOUS FREQUENCY

Instantaneous frequency is one of the most intuitive concepts, since we are sur-
rounded by light of changing color, by sounds of varying pitch, and by many other
phenomena whose periodicity changes. The exact mathematical description and
understanding of the concept of changing frequency is far from obvious and it is
fair to say that it is not a settled question. In Chapter 1 we discussed a fundamen-
tal reason why a good definition of instantaneous frequency is the derivative of
the phase: If we do define instantaneous frequency that way, then its time average
with the energy density gives the average frequency. Note, however, that this result
does not depend on a specific method of getting the phase; it is true for any com-
plex signal. We have in the previous sections given some plausibility arguments
for why the phase should be determined by way of the analytic signal. In fact, in-
stantaneous frequency is often defined as the derivative of the phase of the analytic
signaL This is a bad idea because we should keep an open mind as to whether that
is indeed the most suitable definition of the intuitive concept. The issue is whether
the derivative of the phase of the analytic signal does indeed satisfy our intuition
regarding instantaneous frequency. Although in many cases it does, in other cases
it produces results that at first sight seem paradoxical. Of course, it is the paradoxes
and unusual results that lead to abandonment of ideas, adjustment of our intuition,
or the discovery of new ideas.
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Paradoxes Regarding the Analytic Signal. There are five paradoxes or difficulties
regarding the notion of instantaneous frequency if it is defined as the derivative
of the phase of the analytic signal. To some extent we will be able to understand
and resolve some of these paradoxes when we study the concept of instantaneous
bandwidth in Section 13.2 and with the introduction of the idea that instantaneous
frequency is a conditional average frequency. It is important to understand these
difficulties in the most basic terms because in more complicated situations their re-
flection may cause difficulties in interpretation.

First, instantaneous frequency may not be one of the frequencies in the spec-
trum. That is strange because if instantaneous frequency is an indication of the
frequencies that exist at each time, how can it not exist when we do the final book-
keeping by way of the spectrum? Second, if we have a line spectrum consisting of
only a few sharp frequencies, then the instantaneous frequency may be continuous
and range over an infinite number of values. Third, although the spectrum of the
analytic signal is zero for negative frequencies, the instantaneous frequency may
be negative. Fourth, for a bandlimited signal the instantaneous frequency may go
outside the band. All these points are illustrated by the following simple example.

Example 2.4: Instantaneous Frequency for the Sum of Two Sinusoids.

Consider

s(t) = 81(t) +s2(t) (2.75)

= Al ej"'t + A2 ejw2t (2.76)

A(t) e" °(t) (2.77)

where the amplitudes Al and A2 are taken to be constants and wi and W2 are positive.
The spectrum of this signal consists of two delta functions at wi and w2,

S(w) = A16(w -- wi) -f A26(w - w2) (2.78)

Since we take wi and w2 to be positive, the signal is analytic. Solving for the phase and
amplitude,

Al sin wit + A2 sinw2t
ap(t) = arctan

Ai cos wit + A2 cos wet
(2.79)

A2 (t) = A2 +A
z

+ 2A1 A2 cos(w2 - wi )t (2.80)

and taking the derivative of the phase we obtain

A2 A2
(2.81)wt = cps (t) = 2 (W2 + wl) + 2 (W2 - wi) A2 (t)

1

By taking different values of the amplitudes and frequency we can illustrate the points
above. This is done in Fig. 2.2.



Sec. 8 Density of Instantaneous Frequency 41

0 t 2 3 4 0 1 2 3 4t --
Fig. 2.2 The instantaneous frequency for the signal s(t) = Ai e3lot + A2 &20t

The spectrum consists of two frequencies, at w = 10 and w = 20. In (a) Al = .2
and A2 = 1. The instantaneous frequency is continuous and ranges outside the
bandwidth. In (b) A, = -1.2 and A2 = 1. Although the signal is analytic the
instantaneous frequency may become negative.

One last paradox regarding the analytic signal. If instantaneous frequency is
an indication of the frequencies that exist at time t, one would presume that what
the signal did a long time ago and is going to do in the future should be of no con-
cern; only the present should count. However, to calculate the analytic signal at
time t we have to know the signal for all time. This paradox has been analyzed by
Vakman[M91 who makes the following analogy. Before Maxwell's equations, light
was considered localized rays. We now know that light is electromagnetic waves
which are highly nonlocal. This discovery forced a fruitful enlargement of the un-
derstanding of what light is. Moreover, from Maxwell's equations we can actually
understand in which circumstances light behaves as rays. In the same sense, then,
while we started out thinking of instantaneous frequency as a local concept, it may
be the case that for a full explanation of the phenomenon we must enlarge the idea
and context and accept its nonlocal nature.

2.8 DENSITY OF INSTANTANEOUS FREQUENCY[13'I

We now ask for the density of instantaneous frequency in contrast to the density of
frequency, that is, the energy density spectrum, I S(w) 12. The method for finding
densities is described in detail in Chapter 4, but we use the method here and make
it plausible for the case of instantaneous frequency. The density of instantaneous
frequency, P(wi), is given by

P(wt) = f b(wi - p'(t)) I s(t) I2 dt (2.82)

This says that for a given w2, choose only the values for which wi = cp'(t). If there
is only one such value then this simplifies to

P(wi)

=
I

S(t) )2

(2.83)
4-t,
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where t41 is a function of wi obtained by solving w; = cp' (tW) .

Instantaneous Frequency Spread. We already know that the average of instanta-
neous frequency is the mean frequency, that is, (wi) = (w). Therefore the spread
of instantaneous frequency is

QIF = f(d(t) - (wi) )2 s(t)
12 dt (2.84)

0'(t) -(w))2Is(t)12dt (2.85)

This is precisely the first term appearing in the bandwidth equation, Eq. (1.%), and
therefore we can write that equation as

B2 =
UIF + (A(t))

A'(t) 2

A2(t) dt (2.86)f
But the second term is positive and hence we conclude that the spread in instanta-
neous frequency is always smaller than the bandwidth,["']

aIF < B (2.87)

This may seem paradoxical since in the example above we showed that the spread
of instantaneous frequency can be outside the range of the frequencies that exist in
the spectrum. What this must mean is that while the instantaneous frequency can
range widely, the occurrences when it ranges outside the bandwidth of the signal
have small duration and hence do not contribute significantly to QIF. Note that the
spreads are equal when the amplitude of the signal is constant.

Example 2.5: Chirp.

We calculate the distribution of instantaneous frequency for the signal

s(t) = (a/ir)1/4eat2/2+j t2/2+j-ot
(2.88)

The instantaneous frequency is w, = wo +,3t and its derivative is simply Q. Hence

P(wi) =
s t

2 (2.89)'W"(t)
t=(W.-WO)/#

_ a 1 e-a(W;-W0)2/A2

V 7r Q

On the other hand the energy density spectrum is

i S(w) 12 =
a e-a(W-W0)2/(a2+)92)

C(a2± Q2)

(2.90)

(2.91)
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The spread of the spectrum, that is, the bandwidth, and the spread of the instanta-
neous frequency density are respectively

[a2 + Q2
Q- =

2c,
arF =

2
(2.92)

The distribution of instantaneous frequency is narrower than the distribution of fre-
quency in conformity with our discussion.



Chapter 3

The Uncertainty Principle

3.1 INTRODUCTION' 2

The time-bandwidth product theorem, or uncertainty principle, is a fundamental
statement regarding Fourier transform pairs. We are going to be particularly care-
ful in our discussion since the uncertainty principle has played a prominent role
in discussions, metaphysical and otherwise, of joint time-frequency analysis. The
discovery of the uncertainty principle in physics and chemistry is one of the great
achievements of the century. Unfortunately, it has generated many pseudo ideas,
which are rivaled only by the number of pseudo ideas generated by relativity, the
other great discovery of this century. The pseudo ideas in relativity are perhaps
characterized by "everything is relative ", and the uncertainty principle by "every-
thing is uncertain", neither view being remotely related to the physical or mathe-
matical truth.

'The uncertainty principle was first derived by W Heisenbergin the paper"Uber den anschhaufichen
Inhalt der quantentheoretichen Kinematic and Mechanik" ("On the Conceptual Content of Quantum
Theoretical Kinematics and Mechanics") in 1927. In that paper he derived the uncertainty relations on
the basis of a thought experiment involving resolution of an idealized microscope. In fact, Heisenberg
presented it as an equality rather than as an inequality. It was Weyl who subsequently saw that un-
certainty can be defined by the standard deviation and gave the proof commonly used today which
is based on the Schwarz inequality. The physicist C. G. Darwin (grandson of Charles Darwin) made
the connection between the uncertainty principle and Fourier transform pairs. E. U. Condon and H. P.
Robertson extended the uncertainty principle for arbitrary variables. In 1930 Schrbdinger grasped the
full generality of the uncertainty principle, derived it for arbitrary variables and saw the fundamental
connection with the commutator and anticommutator (see Eq. (15.87) ). While the mathematics of the
uncertainty principle was settled within five years of the discovery of quantum mechanics (1925-1926) by
Schrbdinger, Heisenberg, Born, and Dirac and within three years of Heisenberg's first paper on the sub-
ject, the interpretation and consequences of the uncertainty principle in quantum mechanics remains
a subject of great interest and activity and the number of papers written on it in the intervening sixty
years or so is truly phenomenal. After all, it is one of the most important discoveries of mankind.

2The uncertainty principle is discussed further in Sections 6.9 and 15.5.

44
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For signal analysis, the meaning of the uncertainty principle and its importance
have been clearly stated often enough, although a mystery still persists for some.
Right on the mark is the statement by Skolnik[514): "The use of the word 'uncer-
tainty' is a misnomer, for there is nothing uncertain about the 'uncertainty rela-
tion'.... It states the well-known mathematical fact that a narrow waveform yields
a wide spectrum and a wide waveform yields a narrow spectrum and both the time
waveform and frequency spectrum cannot be made arbitrarily small simultane-
ously." Equally clear is Lerneri331:: The uncertainty principle " ... has tempted
some individuals to draw unwarranted parallels to the uncertainty principle in
quantum mechanics.... The analogy is formal only." AckroydJ41 has emphasized
that "There is a misconception that it is not possible to measure the t - f energy
density of a given waveform and that this is a consequence of Gabor's uncertainty
relation. However, the uncertainty principle of waveform analysis is not concerned
with the measurement of t - f energy density distributions: instead it states that if
the effective bandwidth of a signal is W then the effective duration cannot be less
than about 1/W (and conversely) ... "

Although we can hardly improve on the above we try. Here is the point: The
density in time is I s(t) 12 and the density in frequency is IS(w) I2; but s(t) and S(w)
are related and hence we should not be surprised to find that there is a relation
between the densities. The relation is such that if one density is narrow then the
other is broad. That's it and no more. It is not that both time and frequency cannot
arbitrarily be made narrow, but that the densities of time and frequency cannot both
be made narrow.

If the interpretation is so straightforward in signal analysis, why is it one of the
most profound discoveries in physics? Here is why: In classical physics and in every
day life it seemed clear that we can choose the position and velocity of objects at
will. No one imagined that we cannot place a ball at a given spot with a given
velocity. However, present day physics, quantum mechanics, says precisely that
and it is one of the great discoveries regarding the behavior of matter.

Quantum mechanics is inherently probabilistic. When we speak of densities in
quantum mechanics we mean probability densities and the word "uncertainty" is
appropriate because we are dealing with probability. In signal analysis the word
"uncertainty" is highly misleading.

Let us be very clear that in both physics and signal analysis the uncertainty prin-
ciple never applies to a single variable. It is always a statement about two variables.
Furthermore, it does not apply to any two variables, but only to variables whose
associated operators do not commute. In this chapter we deal with the uncertainty
principle for time and frequency and in Section 15.5 we consider its generalization
to other variables. There is a very elegant and simple way to derive the uncertainty
principle for arbitrary quantities and this is done in Section 15.5. Here we use a
simple brute force approach.

One of the reasons that there has been considerable confusion about the uncer-
tainty principle in signal analysis is that one very often modifies a signal, e.g. filters
it, windows it, etc. Once that is done we have two different signals, the original and
the modified one. Therefore we have two uncertainty principles, one relating to the
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original signal and the other to the modified signal. Very often these are confused.
In Section 3.4 we will be particularly careful in making this distinction by deriving
the uncertainty principle for modified signals.

3.2 THE UNCERTAINTY PRINCIPLE

The proof of the uncertainty principle is easy, but it is important to understand
what goes into the derivation. We have defined duration, at, and bandwidth, a,,
and have shown that they are good measures of the broadness of a signal in time
and frequency. For convenience we repeat the definitions here:

T2 = 0,i = - (t))2 I s(t)
2f(t dt (3.1)

B2 = a2 = f(w_(w))2IS()l2dw (3.2)

We emphasize that T and B are standard deviations defined in the usual manner
and no more. The uncertainty principle is

TB > z (3.3)

Therefore one cannot have or construct a signal for which both T and B are arbi-
trarily small.

A More General Uncertainty Principle. A stronger version of the uncertainty prin-
ciple is

at or, > 2 1 + 4 Covt2,,, (3.4)

where Covt,, is the covariance as defined by Eq. (1.124).

What Does the Proof of the Uncertainty Principle Depend On? It is important to
have a clear picture of what the proof depends on so that no misleading interpre-
tations creep in. The proof depends on only four things: first, on I s(t) 12 being

the density in time; second, on taking I S(w) 12 as the density in frequency; third
that .9 (t) and S(w) are Fourier pairs; and fourth, on defining T and B as standard
deviations of time and frequency.

Notation. Very often the notation used to write the uncertainty principle is OtEw >
1. There is nothing wrong with this notation as long we understand that A means
standard deviation and nothing more. However, because A is typically used for the
differential element of the calculus or to signify "error" there is a tendency to think
of the uncertainty principle as having something to do with differential elements,
smallness, measurement, or resolution. The A of the uncertainty principle means
only one thing: the standard deviation. If this is kept in mind then no difficulties
arise in interpretation or philosophy.
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3.3 PROOF OF THE UNCERTAINTY PRINCIPLE

First, let us note that no loss of generality occurs if we take signals that have zero
mean time and zero mean frequency. The reason is that the standard deviation does
not depend on the mean because it is defined as the broadness about the mean. If
we have a signal sold, then a new signal defined by

snew(t) = e-7(-)(t+(t))sold(t+(t)) (3.5)

has the same shape both in time and frequency as sold except that it has been trans-
lated in time and frequency so that the means are zero.3 Conversely, if we have
a signal s,, ,,,(t) that has zero mean time and zero mean frequency and we want a
signal of the same shape but with particular mean time and frequency, then

sold(t) = &('O)t snew(t - (t))

The bandwidth expressed in terms of the signal is as per Eq. (1.35):

07W
= f = f 13'(t) I2 dt

The duration is
at! = ft2s(t)I2dt (3.8)

and therefore

Qt QW = f t s(t) I2 dt x f I W(t) I2 dt (3.9)

Equation (3.9) is it; no other assumptions or ideas are used. The fact that s and S
are Fourier transform pairs is reflected in Eq. (3.7).

Now, for any two functions (not only Fourier transform pairs)

z

I f(x) I2 dx f dx > ff*(x)g(x)dx
If - (3.10)

which is commonly known as the Schwarz inequality.4 Taking f = is and g = a'
gives

z 2QUat f t s`(t)s'(t) dt
2

(3.11)

'The constant phase factor e< w) ( t) is irrelevant andcan be left out or in for the sake of symmetry.
4There are many proofs of the inequality. A simple one is to note that for any two functions

f f(.) 12 dx f ff*(z)9(x)dx z
fff(z)g(y)_f(y)g(x)I2dxdy

which is readily verified by direct expansion of the right hand side. Since the right hand side is manifestly
positive, we have Eq. (3.10).
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The integrand, written in terms of amplitude and phase, is

is*(t)s'(t) = tA'A+jtcp'A2 (3.12)

= 2 d tA2 - 'A2 + j t 01 (t) (3.13)

The first term is a perfect differential and integrates to zero. The second term gives
one half since we assume the signal is normalized and the third term gives j times
the covariance of the signal. Hence

O_t2
Or2 f ts`(t)s'(t)dt = I - 2 + j Covt' 12 = 4 + Covt2,,, (3.14)

2

Therefore we have the uncertainty principle as given by Eq. (3.4). Since Cov W is
always positive, it can, if we so choose, be dropped to obtain the more usual form,
Eq. (3.3).

Minimum Uncertainty Product Signals. Since the minimum value for the uncer-
tainty product is one half, we can ask what signals have that minimum value. The
Schwarz inequality becomes an equality when the two functions are proportional
to each other. Hence, we take g = -cf, where c is a constant and the -1 has been
inserted for convenience. We therefore have

- c t s(t) = s' (t) (3.15)

This is a necessary condition for the uncertainty product to be the minimum. But
it is not sufficient since we must also have the covariance equal to zero, because by
Eq. (3.4) we see that is the only way we can actually get the value of 1/2. Since c is
arbitrary we can write it in terms of its real and complex parts, c = c,. + jcc. The
solution of Eq. (3.15) is hence

s(t) a-ct2/2 = e-(a,+ic:)t2/2 (3.16)

The covariance is the average value of t multiplied by the derivative of the phase.
The derivative of the phase is -c,t and, remembering that we are considering a
signal whose time and frequency means are zero, we have

r
ft cit1s(t)12dt-(w)(t)_-ctJ tee-°'t2 (3.17)

The only way this can be zero is if c, is equal to zero and hence c must be a real
number. If we take c = a/2 we then have

s(t) = (a/7x)1/4 e-at2/2 (3.18)

where we have included the appropriate normalization. Reinstating the arbitrary
mean time and frequency by way of Eq. (3.6) we have

s(t) = (a/7r)1/4 e-a(t-(t))'/2+.i(w)t (3.19)

This is the most general signal that has a time-bandwidth product equal to one half.
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Example 3.1: Chirp.

The standard deviations of time and frequency for the signal

8(t) = (a/7r) 1/4
e-at2/2+jot2/2+jmot

are given by Eq. (1.12) and (1.40). Using those values gives

a2ni 1

at Qw = 2 a22p2

= 2 + 2 = 1 + 4CovtW (3.21)

For this case the stronger version of the uncertainty principle yields an equality.

Example 3.2: Sinusoid Modulation.

Using the results of Eq. (1.12) and (1.50) we have for

s(t) = (a/7r)1/4e-at2/2+jm emwmt+jwOt

that

(3.20)

(3.22)

2 2
"'m/(2a)QtQW = A/')- -+m'm (1-e

2 2 (3.23)

2 v1 + ram (1 - e-Wm/(2a))2

Example 3.3: Damped Exponential.

For the signal

.9(t) _
a2n+1 to e-c'
(2n)!

the spectrum is

and

(t)- 2n+1
a

(3.24)

t>0, n>1 (3.25)

1

27r(2n)! [-a/2+j(w - wo) ]n+1
(3.26)

(t2) = (2n + 2)(2n + 1) 0'2 = 2n + 1 (3.27)a2 t a2

z az
2 az

(w) = wo ;
(wz) = wo+2n-1 "' 2n-1

Therefore
1 2n + 1

at ow=
2 2n-1

(3.28)

(3.29)
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3.4 THE UNCERTAINTY PRINCIPLE FOR THE SHORT-TIME
FOURIER TRANSFORM

There are many things one can do to signals to study them. However, if we do
something to a signal that modifies it in some way, one should not confuse the un-
certainty principle applied to the modified signal with the uncertainty principle as
applied to the original signal. One of the methods used to estimate properties of
a signal is to take only a small piece of the signal around the time of interest and
study that piece while neglecting the rest of the signal. In particular, we can take
the Fourier transform of the small piece of the signal to estimate the frequencies at
that time. If we make the time interval around the time t small, we will have a very
high bandwidth. This statement applies to the modified signal, that is, to the short
interval that we have artificially constructed for the purpose of analysis. What does
the uncertainty principle as applied to a small time interval have to do with the un-
certainty principle of the original signal? Very often nothing and statements about
the chopped up signal should not be applied to the original signal. The process
of chopping up a signal for the purpose of analysis is called the short-time Fourier
transform procedure. Although we will be studying the short-time Fourier trans-
form in Chapter 7, this is an appropriate place to consider the uncertainty principle
for it.

From the original signal s(t) one defines a short duration signal around the time
of interest, t, by multiplying it by a window function that is peaked around the
time, t, and falls off rapidly. This has the effect of emphasizing the signal at time,
t, and suppressing it for times far away from that time. In particular, we define the
normalized short duration signal at time, t, by

nt(T) =
s(r) h(r - t)

(3.30)

18(T) h(T - t) I2 dT

where h(t) is the window function, t is the fixed time for which we are interested,
and ,r is now the running time. This normalization ensures that

f I7)t(T) 12 dr = 1 (3.31)

for any t. Now 77i (T) as a function of the timer is of short duration since presumably
we have chosen a window function to make it so. The time, t, acts as a parameter.
The Fourier transform of the small piece of the signal, the modified signal, is5

Ft(w) = 1 e-j'T7)t(r)dT (3.32)
27r

51f the denominator in Eq. (3.30) is omitted then Ft(w) would become what is traditionally called
the short-time Fourier transform. In calculating quantities such as conditional averages, the normal-
ization must come in at some point and it is a matter of convenience as to when to take it into
account In Chapter 7 we use the more conventional definition and omit it from the definition.
There we use St (w) to denote the short-time Fourier transform and the relation between the two is
St (w) = Ft(w)I f 18(T) h(T - t) I2 dT}1/2.
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Ft(w) gives us an indication of the spectral content at the time t. For the modified
signal we can define all the relevant quantities such as mean time, duration, and
bandwidth in the standard way, but they will be time dependent. The mean time
and duration for the modified signal are

'd
frls(T)h(r-t)I2dr

(3 33)T =(T )t = Tl77t(T)If f Is(T)h(T-t)I2dT
.

2 2
f (T

2 d
h( )2

)I2

dT

7T -
(3 34)T =

J
(T -

(T
)) r =77t(T)

I

f I

3( ) I2 dTh( t
.

Similarly, the mean frequency and bandwidth for the modified signal are

(w )t = f w I Ft (w) I2 dW = f nt (T) dT 17t (T) dT (3.35)

Bi = J(w_(w)t)2IFt(w)2dw (3.36)

Time-Dependent and Window-Dependent Uncertainty Principle. Since we have
used a normalized signal to calculate the duration and bandwidth, we can imme-
diately write that

BtTt>2 (3.37)

This is the uncertainty principle for the short-time Fourier transform. It is a function
of time, the signal, and the window. It should not be confused with the uncertainty
principle applied to the signal. It is important to understand this uncertainty prin-
ciple because it places limits on the technique of the short-time Fourier transform
procedure. However, it places no constraints on the original signal.

We know that for infinitely short duration signals the bandwidth becomes in-
finite. Hence we expect that Bt oo as we narrow the window, which is indeed
the case. This is shown in Chapter 7 where we obtain explicit expressions for the
above quantities in terms of the amplitude and phases of the signal and window.
The point that we are making here is that we must be very clear with regard to the
uncertainty principle for the original signal and modified signal. It is true that if
we modify the signal by the technique of the short-time Fourier transform we limit
our abilities in terms of resolution and so forth. This is a limitation of the technique.
The uncertainty principle of the original signal does not change because we have
decided to modify it by windowing.

Example 3.4: Chirp with a Gaussian Window.

Consider a chirp and use a Gaussian window,

s(t) _ (a/7x)1/4 e-,t2/2+j$t2/2+)wot
; h(t) = (a/7x)1/4 a-ate/2 (3.38)
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We first find the normalization factor, the denominator in Eq. (3.30),

1/2

J 1 a(r) h(7- - t) 12 d7- =
as

f exp I-a+a t2 (3.39)a(s+a)

and therefore the modified signal is

77, (T) _
/a+al1/4 exp _!(a+a)T2+aTt+jWor+jpT2/2- az t2
1\ a /1 a+a ,
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from which we get

a
(T)` = ta + a

=T -T?
1

2(a + a)

(3.40)

(3.41)

z

a a
at + WO Bt =

z
(a + a) + 2 a+ a (3.42)

and therefore
z

Bt Tt = 2 1 + (a ± )2 (3.43)

For this case the local duration and bandwidth are time independent and so is the
uncertainty product. This is a peculiarity of the Gaussian window and will not be the
case with another window and/or signal. Now notice that as we narrow the window,
that is, as a -# oo, the bandwidth of the modified signal, Bt, goes to infinity. Of course,
this has nothing to do with the bandwidth of the original signal.

Example 3.5: Example : Quadratic FM Signal.

Consider a signal whose phase is cubic in time with a Gaussian envelope,

s(t) = (a/7r)114 i7t3/3 h(t) _ (a/n)114 e-at3 2
(3.44)

The mean time and durations are the same as in the preceding Example. The mean
frequency and bandwidth of the modified signal are

z

M t 2 (a + a) + (a + a)2 t2
(3.45)

^f
2 2-y

2

BL = z (a + a) + 2(a + a)2 + (a + a)3
t2 (3.46)

The uncertainty principle is then

Bt Tc
2
1 + (a

+2

a)2 + (a + a)4 t2 (3.47)

For large times and short windows, the time dependent bandwidth goes as Bt
t2/a2; hence for large times or small windows we get a very large bandwidth. Again,
this has nothing to do with the original signal. The bandwidth of the original signal is
fixed.



Chapter 4

Densities and Characteristic
Functions

4.1 INTRODUCTION

Densities are the basic quantities we deal with, since we seek the energy density of
a signal at a particular time and frequency. We have already encountered densities
in the previous chapters, namely, the absolute square of the signal is the energy
density in time and the square magnitude of the Fourier transform is the energy
density per unit frequency. In this chapter we develop the basic methods and con-
cepts used to study and construct densities. We present the ideas in a manner that
is useful in studying energy densities in time, frequency, and joint time-frequency
densities.

By density we mean nothing more than the common usage, such as the density
of mass or the density of trees. Many of the ideas such as "standard deviation" will
have a probabilistic ring to them since they are usually associated with probability
densities. However, we emphasize that the methods presented in this chapter ap-
ply to any density. For the one dimensional case we should simply think of a wire
that may stretch from minus infinity to infinity and where the mass density varies
with location. Similarly, for the two dimensional case one should think of a sheet
where again the density varies with location on the sheet.

4.2 ONE DIMENSIONAL DENSITIES

A one dimensional density is the amount of something per unit something else.
For example, the number of people per unit height, the amount of mass per unit
length, the intensity per unit frequency, or the intensity per unit time. We use P(x)

53
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to denote a one dimensional density of the quantity x:

P(x) Ox = the amount in the interval Ax at x (4.1)

Since P(x)Ax is the amount in the interval Ax, the total amount is the sum,

Total amount = f P(x) dx = 1 (4.2)

Densities are often normalized so that the total amount is equal to one. The effect
of doing that, is, for example, if P(x) represents the actual number of people of a
certain height, then by normalizing it to one it represents the fraction of people at
that height.

Densities have to be single valued and positive. The positive requirement comes
from the fact that a density is the amount of something per unit something else
and both quantities are positive. It should be emphasized that the numerator is
the amount of something and while that something can be negative, the amount is
still positive. For example, while charge can be positive or negative the amount of
positive or negative charge is positive.

Terminology. Density function is universally understood; in some fields "distribu-
tion" is used interchangeably with density because P(x) indicates how something
is distributed. In mathematics, however, distribution usually denotes the amount
up to a certain value, that is, the integral of the density from -oo to x,

F(x) = f P(x) dx (4.3)
00x

which is also called the cumulative distribution function because it accumulates
the density up to x. We will use density and distribution interchangeably and will
have no occasion to use the concept of cumulative distribution function. Inciden-
tally, the advantage of defining the cumulative distribution function is that often
densities do not exist in the strict mathematical sense but cumulative distributions
always do. Note that the density is related to the cumulative distribution function
by P(x) = F'(x) when indeed the derivative exists. Another reason for introduc-
ing a cumulative distribution function is that it allows one to handle in a mathe-
matically smooth manner both continuous and discrete distributions. However if
we are not particularly interested in mathematical sophistication the delta function
provides a very effective way to do this.

Averages. From the density simpler quantities are obtained which sometimes give
a gross indication of the basic characteristics of the density. The average, (x), is

(x) =
J

x P(x) dx (4.4)
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The average of any function, f (x) can be obtained in two different ways: Either
from the density of x or from the density of u, P(u), where u = f (x),

Mx)) = J
f (x) P(x) dx = fuP(n)du (4.5)

How to obtain the density P(u) from P(x) is described in Section 4.7. Two general
properties of averages should be noted. First, the average of the sum of two func-
tions is the sum of the average of each function, (f (x) + g(x)) = (f (x) ) + (g(x) ).
Second, the average of a constant times a function is the constant times the average
of the function, ( cf (x) ) = c( f (x) ).

Standard Deviation. While the average gives the place where things are balanced,
it gives no indication as to whether the density is concentrated there or not. A
measure of that is the variance, which is the average of (x - (x ))2. Variance is
a good measure of concentration because if the density is concentrated near (x)
then (x - (x ) )2 will be relatively small. The weighting of that particular value is, of
course, taken with the density. The standard deviation, am, is defined as the square
root of the variance and given by

Qx = J(x - (x) )2 P(x) dx (4.6)

(x2)-(x)2 (4.7)

Similar considerations apply to functions of x,

0,
2 =f f(f(x) - (f (x) ))2 P(x) dx

(f2(x)) - (f(x))2

Some general properties of the standard deviation are that the standard deviation
of a constant is zero, v, = 0, and the standard deviation of cx is given by o = cam

Moments. The moment of order n is the average of x",

(x") = f x" P(x) dx (4.10)

The significance of the moments are many fold. First, the first few moments give
an indication of the general properties of the distribution. Second, in some sense,
the more moments we know, the more we know about the distribution. Third,
for well behaved distributions the moments uniquely determine the distribution.
The procedure for constructing the distribution from the moments is presented in
the next section. In Chapter 10 we see how these methods can be used for the
construction of time-frequency distributions.
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4.3 ONE DIMENSIONAL CHARACTERISTIC FUNCTIONS

The characteristic function is a powerful tool for the study and construction of den-
sities. It is the Fourier transform of the density

M(9) = f eiexP(x) dx = (&9x) (4.11)

The characteristic function is the average of 08', where 9 is a parameter. By ex-
panding the exponential we have

M(9) = f e-7BxP(x) dx = f (7 nx)" P(x) dx =
n1n

(xfz) (4.12)

which is a Taylor series in 9 with coefficients j" (x" ). Since the coefficients of a
Taylor series are given by the nth derivative of the function evaluated at zero, we
have

1 8"M(9)
(x") = in 59n

B=o
(4.13)

The fact that moments can be calculated by differentiation rather than by integra-
tion is one of the advantages of the characteristic function, since differentiation is
always easier than integration. Of course, one has to first obtain the characteristic
function and that may be hard.

Fourier transform pairs are uniquely related and hence the characteristic func-
tion determines the distribution,

P(x) = 2 J M(O) e-Jex d9 (4.14)

Some general properties that a function must posses if it is a proper characteris-
tic function are easily obtained. By proper we mean a characteristic function that
comes from a normalized positive density. First, taking 9 = 0 we see that

M(O) = f P(x) dx = 1 (4.15)

Taking the complex conjugate of Eq. (4.11) and using the fact that densities are real,
we have

or

M. (9) = f e-iGxP* (x) dx = M(-9) (4.16)

M-(-O) = M(O) (4.17)

The absolute value of the characteristic function is always less than or equal to one,

M(9) I < 1 (4.18)
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This follows from

I M(e) I = f dx

We know that the characteristic function at the origin is equal to one and therefore

I M(9) 1:5 M(0)

Example 4.1: Gaussian Distribution.

For the Gaussian

( -a20 + jxo) M(B)

the characteristic function is

M(9) =
2 vz J

exp [ -(x - x0,)2/20,21 hex dx = e-0,282/z+3x08

The first and second moments can be obtained by differentiation,

1 8M(9)
(x) _ 89

(xz) _
z
1 82M (()

P(x) = /-2 exp [ -(x - xo)z/2oz (4.21)

< f I ejex I I P(x) I dx = J P(x) dx = 1 (4.19)

9=0 9=0

=
z

[ (-a29 + jxo)
z - Qz ] M(8)

9=0

(4.22)

= x0, (4.23)

8=0

= xg+Qz

(4.24)
Note that the advantage of pulling out M(B) is that it is always equal to one for 8 = 0.

Example 4.2: Exponential Density.

For the exponential density

P(x) = A e-az 0 < x < 00, (4.25)

the characteristic function is

A e-e29x = AM(O) = fo"o
A - jO

which by differentiation gives, for the first and second moments,

(x)
1 8M(8)

j 88

(xz) = 1 82M(8)
jz 802

(4.20)

(4.26)

1 JA= = 1/A (4.27)
9=0 i (A-j6)z

9=0

z

= 1
2A

= 2/A2 (4.28)
9=o jz (A-jO)9 a=0
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Relation of Moments to Density. Generally speaking, the knowledge of all the
moments determines the distribution. This can be seen in the following way. From
the moments we can calculate the characteristic function as per Eq. (4.12). Once
the characteristic function is obtained the density is obtained by Fourier inversion.
There are cases where the moments do not determine a unique characteristic func-
tion or density, but these exceptions will not concern us.

Example 4.3: Distribution from the Moments.

Suppose we have the set of moments

(n + 1)!n( fi ) -
We construct the characteristic function

an (4.29)

M(8) _ 7"B" (Xn)
= jne'n (n + 1)! j"9n(n + 1) = a

n! n! an an ( a - j9

Therefore the density is

)
2

(4.30)

2

P(x) = 2 M(9) e-jaw dO = 2 f ( a a 8) e-i@x d8 (4.31)j
sa2x a-ax "if 0 < a < oo]

and zero otherwise.

(4.32)

When Is a Function a Characteristic Function? A characteristic function is a com-
plex function, but not every complex function is a characteristic function, since
the function must be the Fourier transform of a density. The conditions just de-
rived, Eqs. (4.15), (4.17), and (4.20), are necessary but not sufficient. The reason
is that nowhere have we used the fact that the density is positive. A necessary
and sufficient condition for a function to be a characteristic function was given by
Khinchin.ii A function M(9), is a characteristic function if and only if there exists
another function g(O) such that

f
M(9) = J g`(B')g(0' + 9) d9' (4.33)

The function g is to be normalized to one,

f I g(9) 12 dB = 1 (4.34)

This is a very basic result, and will be important to our considerations since the g's,
will turn out to be "signals".

We show the sufficiency here because it produces a result that is revealing. As-
suming that M(9) is a proper characteristic function, the density is given by
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P(x) = 2_ f M(O)
a-jax

dO = 2- ff g'(B')g(9' + 9) a-jex d8' dO (4.35)

Making a change of variables 9" = 0' + 9 ; dB" = d9, we have

P(x) =
27r f g(9) e-jex dO

2

(4.36)

which shows that P(x) is a proper density since it is positive. By Parceval's theorem
we know that P(x) is normalized to one if g is normalized to one as per Eq. (4.34).
Note that while there is a one-to-one relationship of the density to the character-
istic function, that is not the case with the function g. Many g's produce the same
characteristic function and hence the same density.

4.4 TWO DIMENSIONAL DENSITIES

Consideration of two dimensional densities, that is, densities that depend on two
variables, forces the introduction of a number of new concepts not encountered
with one dimensional densities. These new ideas, such as conditional average and
correlation remain intact for densities of more than two variables.

A two dimensional density P(x, y) is the amount of something per unit x and
per unit y at the point x, y. The total amount is

Total amount = ffP(xy)dydx = 1 (4.37)

Again we normalize to one so that, for example, if P(x, y) is the number of people of
a certain weight and height, then when normalized to one it becomes the fraction
of people of that weight and height.

Marginals. If we have a joint density we may want the density of just one of the
variables irrespective of the value of the other variable. This is achieved by inte-
grating out the other variable,

P(x) = f P(x, y) dy ; P(y) _ J P(x, y) dx (4.38)

These densities are called marginal densities or marginals. The origins of the word
"marginal" came about as follows. When the basic concepts of probability and
statistics were being developed, joint densities were written on a piece of paper
in columns and rows, in the fashion of the modem spreadsheet. For example, if
we wanted to make a table indicating how many individuals there are of a certain
height and weight (the joint density), the weight axis would be on top of the page
and the height axis would run down the page as in a typical spreadsheet. At the
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intersection of each row and column one would write the number of people of that
weight and height. Now suppose one wanted the number of people of a certain
weight irrespective of height (the weight marginal) and the number of people of a
certain height, irrespective of weight (the height marginal). Then one adds up the
columns and rows. A natural place to put the sums is in the margins of the paper,
that is on the right margin and the bottom of the page - hence the terminology
marginals.

Global Averages. For a function g(x, y), the global average is

(g(x, y)) = JJg(xy) P(x, y) dy dx (4.39)

Two Dimensional Characteristic Functions and Moments. The two dimensional
characteristic function M(9, -r), is the average of ejex+, 7*y,

M(9, T) = (efex+iT") =
ff eiex+.iTYP(x, y) d x dy (4.40)

and the distribution function may be obtained from M(9, T) by Fourier inversion,

P(x, y) =
4x2

Jf M(9, T) e-rex-hhv d9 d7- (4.41)

Similar to the one dimensional case, expanding the exponential in Eq. (4.40) re-
sults in a two dimensional Taylor series,

_ (7e)n(.7 r)m
(xnym) (4.42)M(9, r) _ [ [

00 00I- nim!n=0 m=0

and therefore

(xnym)
1

jnjm
an+m

80"(97-
M(9, T)

9,T = 0
(4.43)

Relation Between the Joint Characteristic Function and the Characteristic Func-
tion of the Marginals. The characteristic function of the marginal for x is

M(0) = J
e'BxP(x) dx = r e)BxP(x, y) dx dy = M(9, 0) (4.44)

Similarly, the characteristic function for y is

M(T) = f e''T'P(y) dy = f e2T1P(x, y) dx dy = M(O, T) (4.45)
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Therefore if we know the characteristic function of the joint distribution we can
trivially obtain the characteristic functions of the marginals by taking zero for one
of the variables.

Example 4.4: Two Dimensional Gaussian.

The standard form for a two dimensional Gaussian is

P(x, y) =
1

27ro oy 1 - r2

exp {- 1
2

[
(x -Za)2 + (y

-2b)2
- 2r (x - a)(y - b) (4.46)l 2(1 __r ) Qs ay Q:orv

with Irl < 1. The characteristic function, calculated by way of Eq. (4.40), is

M(O, r) = exp [ jaB + jbr -
2

(a'9' + 2rixvyOr + a 2T2) ] (4.47)

The characteristic function of the marginal in x is therefore

M(9) = M(9, 0) = exp [jaO - o 9 2 / 2 ] (4.48)

This is the same form as the characteristic function of a one dimensional Gaussian, Eq.
(4.22), and hence the marginal is Gaussian with mean a and standard deviation a..

Example 4.5: Non-Gaussian Joint Density with Gaussian Marginals.

The distribution given by Eq. (4.46) is the standard joint Gaussian distribution. As
we just showed, it has Gaussian marginals. However, an infinite number of two di-
mensional non Gaussian distributions have Gaussian marginals. A method for readily
constructing such distributions is discussed in Section 14.2.

Example 4.6: Characteristic Function of the Sum.

One of the main uses of characteristic functions is that they allow us to obtain new
densities in an easy way. This is discussed in subsequent sections, but a simple example
is appropriate here. Suppose we want to obtain the density of the sum of two variables,

x = x + y (4.49)

The characteristic function of z is

M=(9) _ M(0,0) (4.50)

from which the distribution of x may be obtained by inversion. For example, for the
two dimensional Gaussian discussed above

M,,(0) = M(O,0) = exp [j(a+b)O-B2 (o +2rv,vy+a) /2] (4.51)

This is recognized to be the characteristic function of a Gaussian, Eq. (4.22), with mean
a + b and standard deviation ay + 2ro- o + Qy.
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Independence. If fixing a particular variable has no effect on the density of the
other variable, then one says that the joint distribution is independent. That is the
case if the joint distribution is factorable and the factors are the marginals,

P(x, Y) = P(x) P(y) (4.52)

For this situation the characteristic function and the joint moments are also fac-
torable,

M(9,T) = M=(9)MY(T) (x"ym) = (x')(ym) (4.53)

However, one should be careful because sometimes a density may appear factorable
without being independent. For independence the factors must be the marginals.
The examples below illustrate this point.

Example 4.7: Rectangular and Circular Two Dimensional Uniform Distributions.

Consider first

The marginals are

y = 2
Q2 xIQP(x) = 4

a4
xy d

474xy if0< x,y <a

0 otherwise

fQ
P (3l) =

4
Q4 xy =

2
Q2 y

(4.54)

(4.55)

Thus P(x, y) = P(x)P(y) and hence the distribution is an independent one. Now
consider

We have

4
xy if x2 + y2 < a2 ; 0 C X, y

P(x, y) =
T4

(4.56)

0 otherwise

2-y2

P(x) =
a4 x J y dy = Q4 x (a2 - x2)I0 (4.57)

V,.2-y2

8 y J x dx = 4 y (a2 - y2) (4.58)P(y) = a4
o

a

We see that even though the joint density is a product in some sense it is not inde-
pendent because the product is not the product of the marginals. In fact, this joint
distribution is not really factorable for all values of x and y. Examples like these have
historically been presented as a warning to use caution. In reality it is just a failure of

notation. If we rewrite the joint density as

4
-x y E(a2 - x2 - y2) E(x) E(Y)P(x, y) = W, (4.59)

where c(x) is the step function, then it is clear that P(x, y) is not factorable and the
issue never arises.
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Covariance and Correlation. Suppose we want to know how strongly one variable
depends on the other. This is what a joint distribution tells us in precise terms.
However, if we want a gross measure that reflects in a simple way the strength of
the dependence, we can consider the expected value of the first mixed moment,
(x y). If the joint distribution is independent, the first mixed moment will equal
the product of the moments,

(x y) = (x) (y) [ x, y independent ] (4.60)

The dependency can be measured by the excess of the first mixed moment over
(x) ( y ). That is the covariance

Covxy = (X Y) - (X) (Y) (4.61)

The covariance is a number that can be positive or negative and of any magnitude.
To standardize the correlation coefficient is defined by

r =
COVxy

QxQy
(4.62)

where Qx and ay are the standard deviations of x and y. The correlation coefficient
ranges from -1 to +1 for all densities and hence standardizes the strength of the
correlation between x and y. The variables x and y are said to be uncorrelated if the
correlation coefficient is zero, strongly correlated at r = + 1, and strongly oppositely
correlated when r = -1. However, one should be cautious in applying these ideas
because they do not necessarily reflect the intuitive notion as to whether the two
variables have something to do with each other. One must not confuse dependence
with correlation. In fact, we can have a distribution where it is dear that the two
variables are strongly dependent and yet the correlation coefficient is zero. The
correlation coefficient is a single number and we cannot expect too much from just
one number. Nonetheless, the correlation coefficient is often a good gross indicator
of the dependence of two variables. The simplest way to calculate the first mixed
moment is from the characteristic function

(x y)
492M(9, T)

a00T

if it is available.

9,r = 0

(4.63)

4.5 LOCAL QUANTITIES

Suppose we have the density of height and weight of a population and want to
study the weight of people who are 6 ft. tall. The density of weight for that sub-
population is the joint density, but we fix the height at 6 ft. Specifically, if we have
two variables then we use the notation P(y I x) to mean the density of y for a fixed
x. Such a density is called a conditional density since it depends on the value of x
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chosen. It can be thought of as a one dimensional density with x as a parameter. If
we insist, as we should, that the conditional densities be normalized, then they are

P(y I X) =
P(x, Y)

P(x I Y) =
P(x, y) (4.64)

P(x) P(y)

where P(x) and P(x) are the marginals. If P(y I x) does not depend on x, then this
is exactly what we would want to mean by independence. And if that is the case,
then P(y I x) = P(y), which implies that P(y, x) = P(y)P(x), in conformity with
our previous discussion of an independent distribution.

Conditional Averages and Their Standard Deviation. Suppose we want the aver-
age of y for a given x, for example, the average weight of those people who are 6
ft. tall. That is called the conditional average and is denoted by (y),,. Since the
density of y for a given x is P(x I y), we have

Y )X = f yP(y I x) dy = p(x) fyP(x, y) dy (4.65)

More generally, the conditional average of any function (the local average) is

(9(y) )z = p(x) f 9(y) P(x, y) dy (4.66)

Conditional Standard Deviation. Suppose a person weighs 250 lb. Is he over-
weight? If he compares himself to the mean of the total population he may be ex-
ceptional. But he should be comparing himself with individuals of the same height.
Therefore, one defines the conditional standard deviation by the deviations from
the conditional mean,

a2
y1x

1

P(x) f(- (Y). )2 P(x, y) dy (4.67)

(y2)r-(y)2 (4.68)

4.6 RELATION BETWEEN LOCAL AND GLOBAL AVERAGES

If we integrate the conditional average, (y )x, over all values of x, we expect to
obtain the global average of y and indeed that is the case since

(y) = ffvP(xY)ddx = ffP(Yix)P(x) dy dx (4.69)

The inner integration is precisely the conditional average and therefore

(y) = f (y).P(x) dx (4.70)
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This equation shows that the global average is the average of the conditional aver-
age.

We now seek the relationship between the global standard deviation and the
conditional standard deviation. The global standard deviation is the not average of
the local standard deviation, but rather

Q2 = f vy21x P(x) dx + J (Y). - (y ) )2 P(x) dx (4.71)

To prove this we average er ,

f7JP(x)dx = Jf(y_(Y)x)2 P(x, y) dy dx (4.72)

(y2) - f(y)P(x)dx (4.73)

Now subtract and add (y ) 2 to the right hand side of Eq. (4.73),

f QY1x P(x) dx = (y2)-(y)2 - f(() - (y)2) P(x)dx (4.74)

= r12-f (Y). (y ) )2 P(x)dx (4.75)

which is Eq. (4.71).
We see that there are always two contributions to the global standard deviation.

One is the average of the local standard deviation and the other the deviations of the
conditional mean about the global mean. This equation is particularly important in
our considerations of time-frequency analysis. The reader is invited now to com-
pare this equation with the bandwidth equation derived in Chapter 1, Eq. (1.96),
and to draw his own conclusions.

4.7 DISTRIBUTION OF A NEW VARIABLE

One Dimensional Case. Suppose we have a density, P(x), and want the density of
a new variable, say u, which is a function of x,

u = f(x) (4.76)

If we knew the characteristic function of it, Mu (0), we could obtain the distribution
by

p(u) =
2 .

f e-jGuMu(O) d8 (4.77)

But the characteristic function of u is the average value of ejef (x) and therefore can
be obtained from P(x) by

Mu(O) = (e.ief(x)) = fe9'(')P(x)cix (4.78)
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This solves the problem because from P(x) we obtain Mu(O) and then P(u) by
Eq. (4.77). We can actually carry out the procedure explicitly and obtain an interest-
ing form for P(u). Substitute Eq. (4.78) into Eq. (4.77), to obtain

P(u) = 2_ ff eief(x) e-2euP(x) d9 dx (4.79)

or

P(u) = J 6(u - f (x)) P(x) dx (4.80)

The physical interpretation is dear. The delta function picks up from P(x) only the
values for which u = f (x). This form avoids the calculation of the characteris-
tic function. Further simplification is possible. One of the properties of the delta
function is

6(g(x)) =
Ig'(xi)'

6(x - xi) (4.81)

where xi's are the solutions to g(Ti) = 0, that is, the zeros of g. In our case we have
g(x) = f (x) - u and since the derivative of g is the derivative of f we have

6(f (x) - u) _ 6(x - xi) f'(x1

i)
(4.82)

where now the xi values run over the solutions of f (xi) = u. Therefore,

P(u) = J 6(u - f (x)) P(x) dx (4.83)

_ 1 P(x) dx (4.84)6(x - xi)
I f'(xi)

or

P(u) _ f'(xi) (4.85)
f'(xi)

[ where xi's are the solutions of f (xi) = u

Suppose there is only one solution to f (xi) = u, which we might as well call x.
Then

_ P(x)

P(u) I P(x) x = f (u)
(4.86)

where x = f - (u) signifies that we must solve for x in terms of u by solving f (x) =
u. Equivalently, we note that for this case P(u) du = P(x) dx, which is the easiest
way to do it.
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Example 4.8: One Zero.

As a specific example consider

P(x) = 0 < x < it
ir

(4.87)

We wish to find the density of u where

u = f (x) = A cos x (4.88)

Since for the range considered the function is single valued, we have f' (x) = -A sin x
and therefore

P(u) = 1 1

7r A sin x j

1 1 if -A<u<A (4.89)
x=arccoe(u/A) 7r .J42 - u

Example 4.9: Quadratic Transformation.

In the particular case where we transform u = x2 we have two solutions

xl = U, x2 = -u (4.90)

and the derivative of u is 2x. Therefore

P(u) = 2u[Px(-u)+Px(u)) 0<u<oo (4.91)

Example 4.10: Scaled and Translated Densities.

Suppose we wish to scale a variable and also translate it. We take u = ax + b. The
characteristic function of u is

Mu (8) = (eJ'(ax+b)) = Jf ee(ax+b)P(x) dr = eJ'bM(aO) (4.92)

where M(aO) is the characteristic function of x. The distribution for u is therefore

P(u) =
I f e-jauMU(0) dO =

a1

a P. (u a b) (4.93)
T7r

Alternatively, we can use Eq. (4.86). Solving for the zerowe have x = (u - b)/a and
hence

= 1 = 1p, (u- b)
(4.94)P(u) aP(x)

x=(u-b)/a ax a
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Two Dimensional to One. Suppose we have a two dimensional density P(x, y) and
wish to find the density of a single variable which is a function of x and y,

u = f(x,y) (4.95)

The characteristic function for u is

MU (B) = (e3ef (x,v)) = fJ &et(x,v) p(x, y) dx dy (4.96)

Taking the inverse transform leads directly to

P(u) = (4.97)

Example 4.11: Sum of Two Variables.

Consider the case where
u = x + y (4.98)

The density u is then

P(u) = ff d(u - (x + y)) P(x, y) dx dy (4.99)

= JP(xtL_x)dx (4.100)

Two Dimensional to Two Dimensional. In the most general case we start with a
density of two variables and wish to find the density of two new variables function-
ally related by

u = f(x,y) ; v = g(x,y) (4.101)

Using the characteristic function approach we have, for the characteristic function
for the variable u and v,

M., (e, T) _ Jf eJef (x,v)+j'rg(x,v) P(x, y) d x dy (4.102)

The density for u, v is then

P(u, v) = 47r2
ff Muv (9, T) e-jOu-3-rv d9 dT (4.103)

_ 41 ffff je[u-f ("v)]+i'r[v-g(x,v)] P(x, y) dx dy dO dT (4.104)

The 0 and T integrations give delta functions and hence

P(u, v) = if b(u - y(x, y) ) b(v - g(x, y) ) P(x, y) dx dy (4.105)
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4.8 NEGATIVE DENSITIES

Densities by definition are positive. However, it is of interest to examine which
ideas and results regarding positive densities still hold true if we relax the positiv-
ity requirement. The reason we concern ourselves with this issue is that some of
the densities we will be dealing with will not be manifestly positive. Perhaps they
should not be called densities but nonetheless they will be treated and manipulated
as densities. As specific cases arise we will examine the consequences of not having
a manifestly positive density, but we make some general remarks now.

Most of the concepts of the characteristic function and moments present no dif-
ficulty. Specifically, the necessary requirements for a function to be a characteristic
function obtained in Section 4.3 remain valid. However, they will not have the
physical interpretation commonly associated with densities. For example the stan-
dard deviation may turn out to be negative. In addition, the correlation coefficient
may not be bound by (-1, 1).

The results that do not go through are those pertaining to conditions on the
characteristic function to assure that it came from a manifestly positive density. The
only time we have addressed that issue thus far is in Khinchin's theorem in Section
4.3. Hence, questions that address the positivity issue must be reexamined, and we
will do so as the occasions arise.



Chapter 5

The Need for Time-Frequency
Analysis

5.1 INTRODUCTION

The aim of this chapter is to show, by way of examples, the need for a combined
time-frequency representation and to clarify why time analysis and frequency anal-
ysis by themselves do not fully describe the nature of signals. We also describe some
of the physical reasons why spectra change in time.

Suppose we have the individual densities of height and weight of a particu-
lar type of animal. These individual densities tell us everything we want to know
about the distribution of height and the distribution of weight. From these distri-
butions can one determine how height and weight are related? Can one determine
whether the tall individuals are the heavy ones? The answer is no. Can one de-
termine whether an individual with weight of 250 lb. is exceptional? The answer
is yes. But can one determine whether he is exceptional for his height? The an-
swer is no. The individual densities of height and weight are not a full description
of the situation because from these densities we cannot ascertain how height and
weight are related. What is needed is the joint density of height and weight. In
the same way, the time energy density and the frequency energy density are not
sufficient to describe the physical situation because they do not fully describe what
is happening. In particular, from the spectrum we know which frequencies were
present in the signal but we do not know when those frequencies existed, hence the
need to describe how the spectral content is changing in time and to develop the
physical and mathematical ideas to understand what a time-varying spectrum is.
We wish to devise a distribution that represents the energy or intensity of a signal
simultaneously in time and frequency.

Time varying spectra are common in ordinary life. During a sunset, the fre-
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quency composition of the light changes quickly and dramatically. In saying that
the sky is getting redder we are conveying a time-frequency description because we
are describing how the frequencies are changing in time. The pitch, which is the
common word for frequency of human speech, changes as we speak and produces
the richness of language. Similarly the pitch of animal sounds changes during vo-
calization. Standard musical notation is a time-frequency representation since it
shows the player what notes, or frequency, should be played as time progresses.

In this chapter we give a number of simple analytic and real examples of time
varying spectra so that we may become familiar with the need for a time-frequency
description, the variety of applications, and the language involved. We leave aside
the methods used to construct the joint time-frequency representations. That will
be the subject of the subsequent chapters. The reader should think of these repre-
sentations as no different from a joint density of height and weight of a population
that gives the relative concentration of people at particular heights and weights.
Similarly we should think of a time-frequency distribution as telling us the inten-
sity or energy concentration at particular times and frequencies.

We first take a real example to illustrate the basic idea before embarking on a
more systematic discussion. Using a whale sound, Fig. 5.1 shows three plots. Run-
ning up the page is the sound (the air pressure) as a function of time. By examining
it visually we cannot tell much, although we can clearly tell how the intensity or
loudness varies with time. Below the main figure is the energy density spectrum,
that is, the absolute square of the Fourier transform. It indicates which frequencies
existed and what their relative strengths were. For this sound the spectrum tells us
that the frequencies ranged from about 175 to about 325 cycles per second. This in-
formation is interesting and important, but does not fully describe what happened,
because from the spectrum we cannot know when these frequencies existed. For
example, we cannot know just by looking at the spectrum when the 300 Hz sound
was made, or whether it was made for the total duration of the sound or just at
certain times. The main figure is a time versus frequency plot, that is, a joint time-
frequency distribution. From it we can determine the frequencies and their relative
intensities as time progresses. It allows us to understand what is going on: At the
start the frequency was about 175 Hz and increased more or less linearly to about
325 Hz in about half a second, stayed there for about a tenth of a second, and so
forth. In answer to the question of when the 300 Hz sound occurred, we can now
see the answer. It occurred twice, at 0.6 and 1.3 seconds.

The difference between the spectrum and a joint time-frequency representation
is that the spectrum allows us to determine which frequencies existed, but a com-
bined time-frequency analysis allows us to determine which frequencies existed at
a particular time.

5.2 SIMPLE ANALYTIC EXAMPLES

We now examine some simple analytic examples which will progressively develop
the main ideas.
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1.4 H
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150 175 200 225 250 275 300 325 350

FREQUENCY (Hz.)

Fig. 5.1 A time-frequency plot of a sound made by a Bowhead whale. The wave
form is on the left plot with time increasing upwards. The energy density spec-
trum is below the main figure and indicates which frequencies existed for the dura-
tion. The main figure is a joint time-frequency plot and shows how the frequencies
change with time. (From the work of C. Rosenthal and L. Cohen.)

Finite Duration Sine Waves. In Fig. 5.2 we show examples of signals composed of
finite duration sine waves at three frequencies. All three examples have basically
the same spectrum, which is reasonable since for all cases we had three frequencies.
The cases are different in regard to when the frequencies existed and this can be
easily ascertained from the time-frequency plots.

Chirp. Consider the signal

s(t) = 1 e'At2/2+jwot
vT

0 < t < T (5.1)

From our discussion in Chapter 2 the instantaneous frequency is wo +,3t. Here it
ranges from wo to wo + QT. In Fig. 5.3 (a) we have plotted the energy spectrum
and the time-frequency plot. The spectrum is basically flat, telling us that these
frequencies existed with equal intensity. The time-frequency plot tells us precisely
when they existed.
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Fig. 5.2 Signals composed of finite
duration sine waves. The energy
spectrum of each is essentially the
same indicating that three frequen-
cies existed. The time frequency plot
shows when they occurred.

Sinusoidal Modulation. Take

s(t) = (a/it)1/4 e-atz/2+i,t2/2+jmsinw,,,t+jwot

where m, w,,,,, and wo are constants. The spectrum is given by

c'oS(w) = 47r (7r/a) 1/4 E Jn(3) e-(w-nw,.,-Wo)s/2a

n=-oo

where Jn is the nth-order Bessel function. Fig. 5.3(b) plots the signal energy density
spectrum and the time-frequency plot. There is a considerable difference between
what we learn from the two.

Other Examples. The cases of a cubic phase and a log phase are shown in Figs. 5.3
(c) and (d).

Multicomponent Signals. One of the significant advantages of time-frequency
analysis is that it allows us to determine whether a signal is multicomponent or
not. A multicomponent signal is one that has well delineated regions in the time-
frequency plane. A few examples are illustrated in Fig. 5.4. Multicomponent signals
are common in nature as will be seen from some of the examples shown subse-
quently.
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(a)

0

(b)

0

(d)

so

0 4

10

W
E 10

Fig. 5.3 The time-frequency plots for various signals. In (a) we have a chirp, s(t) =
eipt2/2+,wot.

The instantaneous frequency, m, = .o +$t, is increasing linearly. The
energy density spectrum is more or less flat, indicating that each frequency existed,
but gives no indication of when it existed. The time-frequency plot does. In (b)
we have a sinusoidal modulation, e'Ot2/2+,m sin Wmt+ikJot, and the energy spectrum
shows a concentration at certain frequencies but gives no indication of the times.
The reason that there is concentration at those frequencies is that those frequencies
last longer, as can be clearly seen from the time-frequency plot In (c) we have a
signal with a cubic phase, s(t) =

i,yt3/3+Ot2/2+iwot.
In (d) we have a hyperbolic

signal,s(t) = e1 In(t-to) which gives an instantaneous frequency ofwt = 1/(t-to),
which is a hyperbola in the time-frequency plane.

Mn
1I`

Fig. 5.4 Examples of multicompo-
nent signals.
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5.3 REAL SIGNALS

We now give some examples of real signals.
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Human speech. The analysis of human speech was the main reason for the practical
development in the 1940s of time-frequency analysis. The main method was and
still is the short-time Fourier transform, which we will study in Chapter 7. This
approach gave dramatic new understanding of the production and classification of
speech. An example is shown in Fig. 5.5.

Time

Whale Sounds. In Fig. 5.6 we show a number of whale sounds.

plus one

3.2 sec.

equals zero

Fig. 5.5 Tune-fregency plot of a speech signal. The utterance is: e`A i 1 = 0

1

08

06

04

02

0

0

O L

150

50 100

e to the i pi

150 200

Bowhead Whale

200 250
FREOUENCY (I ft)

300

0

Fig. 5.6 Time-frequency plots of
whale sounds. (From the work of C.
Rosenthal and L. Cohen.)
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Propeller Sounds. When a propeller or fan turns it pushes the air at a repetitive
rate depending on the rotation. If the propeller has, for example, three symmetrical
blades, then the frequency of repetition will be three times the number of revolu-
tions per unit time. For a constant revolution rate this will show up as an acoustic
pressure wave of constant frequency. However, if the ship decreases or increases
its speed by changing the revolution rate this will result in changing frequencies.

Inelastic Acoustic Scattering. When a rigid object is hit with a sound wave, the
wave gets reflected, producing an echo. The characteristics of the reflected wave
depend on the shape of the object, its surface properties, the medium of propa-
gation, and location. This reflection is called specular reflection. However, if the
object is deformable, then the initial wave that hits the object produces waves in
the object no differently than if the object had been hit with a hammer. The waves
travel within the object and get reradiated. Hence for an elastic object hit by a wave
not only do we get the usual echo, but we get additional waves due to the elastic
response. Fig. 5.7 gives an example of a toy submarine which is a thin metallic shell
with internal supporting structures. The submerged submarine was irradiated with
an acoustic wave (sonar). The first part of the returned signal is the specular reflec-
tions. The rest of the signal is due to the reradiated acoustic elastic response. The
advantage of a time-frequency plot is that we can immediately see at what times
the reradiation occurred and what frequencies were radiated out.

W

T ---i t

Fig. 5.7 A time-frequency plot of the
pressure wave at a particular point in
space coming from a model subma-
rine after it was irradiated by a sonar
pulse. The first return is the spec-
ular reflection (not shown) and the
other returns are due to the reradi-
ation of waves induced in the struc-
ture by the impeding wave. (From
the work of C. Rosenthal and L. Co-
hen.)

Windshield Wipers. The sounds that windshield wipers make are often annoying.
Fig. 5.8 shows a time-frequency plot of a good blade and an annoying one. In the
annoying case a web-like structure is seen at higher frequencies. The frequency
band appearing in both is due to the motor sound.



Sec. 3 Real Signals

Fig. 5.8 Time frequency plots of windshield blades of two different models of cars.
The first (a) is judged to be annoying, the second (b) is not. (Courtesy of J. Feng,
Ford Motor Co.)

77

Car Door Slams. The slamming of a car door has historically been a major concern
for many reasons, Madison Avenue notwithstanding. We have all experienced the
rich sounding door with its solid thump and the tinny door that does not engen-
der room for confidence in the rest of the construction. The sound produced by a
slamming car door is quite involved because there are a number of diverse events
occurring including the coupling with the latch, the hinging, and the seals around
the frame. Fig. 5.9 shows a time-frequency plot for a good sounding car door (a) and
a tinny one (b). Note that in the poor sounding door there is considerable acoustic
energy at a wide spread in frequencies immediately after the contact of door with
latch. It has been found that this acoustic energy, which lasts for about a twentieth
of a second, is the main reason people say a door sounds tinny and hence poor. The
main frequency concentration is the vibration of the automobile as a whole caused
by the slamming of the door.

(a) (b)

-* t
Fig. 5.9 Time-frequency plots of two car door slams. The one in (a) is characterized
by a tinny sound and the one in (b) by a rich sound. The tinny sound is caused by
the generation of a wide spectrum of frequencies in the initial contact of the door
with the latch. (Courtesy of J. Feng, Ford Motor Co.)
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Fault Analysis. It is important to have methods for the earliest possible detection
of when a machine is starting to go bad. This is particularly important for machines
such as in airplanes and ships whose failure may lead to critical situations. It is also
critical in manufacturing since a bad manufacturing machine may produce defec-
tive products. We illustrate such situations in Figs. 5.10 and 5.11.

(a)

W

(a)
71

I!: i .c,19A

..... ., nil-I w.. ..4J.
f

(b)

(c)

Fig. 5.10 A time-frequency plot of a
region near a spectral line of a ma-
chine that is about to go bad (a) and
one that has gone bad (b). (Courtesy
of R. A. Rohrbaugh.)

Fig. 5.11 Drilling of certain metal
parts often requires the resulting
hole to be of high precision. There-
fore it is of importance to have an ef-
fective means for the determination
as to when a drill is beginning to get
dull. In (a) we a have sharp drill, in
(b) the drill is somewhat dull and in
(c) the drill is very dull. The data is
obtained from an accelerometer on
the spindle. (Courtesy of P Lough-
lin, J. Pitton, L. Atlas and G. Bernard.
Data courtesy of Boeing Commerical
Airplane Group.)
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Trumpet. In Fig. 5.12 we show a time-frequency plot of the first half second of a
trumpeter initiating a note. The ridges in the frequency direction are the harmonics
of the fundamental. To achieve the steady state desired the trumpeter has to adjust
in a split second. The frequency of each harmonic gets adjusted in the same way,
that is, the percentage change is the same. While the absolute change is insignificant
for the lower frequencies, it is significant at the higher frequencies.

l:'00 1100 4800 4800 5000 5200

Fig. 5.12 Time-frequency plots of a trumpet sound at its initiation. (Courtesy of W
J. Pielemeier and G. H. Wakefield.)

Bottlenose Dolphin. Fig. 5.13 shows the time-frequency plot of a dolphin sound.

10

Fig. 5.13 Bottlenose Dolphin. The
time-frequency plot shows that the
sound consists of linearly increas-
ing frequency and periodic clicks.
(Courtesy of Williams and Tyack.)

I I f r 1
Time (sec.) .4
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Heart Sound. While the metaphysical importance of the heart has been recognized
since ancient times, the notion that the heart is responsible for the heart sound was
not accepted until the 1700s. There was considerable debate as to whether the heart
produces a sound at all. Indeed, the invention of signal analysis can be traced to
Hook' :"I have been able to hear very plainly the beating of a Man's heart... Who
knows, I say, but that it may be possible to discover the Motions of the Internal Parts
of Bodies... by the sound they make, that one may discover the Works performed
in the several Offices and Shops of a Man's Body, and thereby discover what In-
struments or Engine is out of order". 16181 Fig. 12.4 shows a time-frequency plot of a
heart sound.

5.4 WHY SPECTRA CHANGE

There are many causes for time-varying spectra, but two broad physical mecha-
nisms encompass most situations. The primary reason is that the production of
particular frequencies depends on physical parameters that may change in time.
For example, a string of a fixed length and tension produces a particular frequency
if disturbed. The mechanical oscillation of the string beats the air at the mechani-
cal vibration rate. If the length or tension changes with time, different frequencies
will be produced in time because the string will vibrate with different frequencies
and beat the air accordingly. When violinists play, for example, they continually
change the length of strings to produce different vibrations of the strings, which
in turn produce different vibrations in the air. If a ship is going at constant speed
by turning the propeller at a constant speed, then the sound of the propeller is at a
constant frequency, namely the number of times it turns per minute times the num-
ber of blades. If the ship accelerates, then the propeller will change the revolution
rate, beating the water at a changing rate. That shows up as increasing frequency.
Related to this question of changing the properties of the parameters that are caus-
ing the vibration is the possible changing of the immediate physical surroundings.
Suppose we produce sound waves at the end of a pipe. If the length of the pipe is
constant then the frequency spectrum of the output will be constant in time. But if

the shape and length of the pipe change with time, then the output will also vary
with time. That is the case with human speech. As we speak we are continually
changing the physical shape of our tongue, mouth, nose, etc.

The other broad reason for changing spectra is that the propagation of waves
in a medium is generally frequency dependent. That is why we can see through
glass but not through wood, while if our eyes where sensitive to X-rays we would
be able to see through wood but not so well through glass. The propagation of
waves is governed by a wave equation. If the velocity of propagation, v, does not

'in textbooks Robert Hook is remembered for Hook's law. However, he was one of the greatest
scientists of his century Hook discovered that plants were made up of cells, the red spot of Jupiter, the
wave nature of light, and Boyle's law of gases (Boyle published this law in a book on the subject and
gave full credit to Hook, but Boyle's name stuck), among many other discoveries. He was about ten
years older than Newton and their lives were intertwined both positively and negatively.
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depend on frequency, for example, electromagnetic waves in a vacuum, then the
disturbance obeys v' a'U(x, t)/axe = a'u(x, t)/at', where u is the physical quantity
that is changing (pressure, electric field, etc.), and x, t are the position and time. The
unique feature of this wave equation is that if we start with a signal at t = 0 given
by u(x, 0), then at a later time the wave will be the same function but displaced
according to u(x - vt, 0). The shape remains the same and so does the frequency
content. That is why a person 5 feet away sees and hears pretty much the same
as a person 50 feet away from the source. It is because light and sound propagate
in air without any substantial change in the frequencies that our ears and eyes can
detect.

However, it is generally the case that the propagation of waves in a medium is a
frequency dependent phenomenon. This is reflected in the wave equation by addi-
tional terms that do not admit solutions of the form u(x - vt). The functional form
changes in time and we have distortion or filtering. This phenomenon, that waves
of different frequencies propagate with different velocities, is called dispersion. The
reason for the name is that a prism "disperses" light and that was the earliest dis-
covered manifestation of the effect. The velocity may decrease or increase with
frequency, depending on the materials, and the two situations are described by the
phrase "normal" and "anomalous" dispersion, the former being the most common.
In addition, absorption, dying out, and attenuation, all meaning the same thing,
are also generally frequency dependent. In normal conditions here on earth there
is almost no attenuation of sound waves at the frequencies we hear and that is why
we can hear from far away. On the other hand, light gets attenuated when passing
though water and the attenuation is dependent on frequency. Similarly, high fre-
quency electromagnetic waves are damped within a short distance when entering
the surface of a conductor. Also, as a wave propagates from one medium to another,
part of it gets reflected and part of it is transmitted, which is generally frequency
dependent.

The above situations are generally described by "filtering", which usually means
filtering of frequencies. Thus glass allows the visible portion of the spectrum to go
through but is a pretty good filter of the X-rays. Paper, on the other hand, filters
visible light out but lets through X-rays. The sun's maximum output is at frequen-
cies we call the visible spectrum, which may seem to be the reason why evolution
gave us the ability to see at those frequencies. But what is important for evolution
is not what the sun produces, but what gets through our atmosphere. It is a re-
markable coincidence that our atmosphere lets through the visible part. If we lived
on a planet whose atmosphere filtered everything but the X-rays, we might have
developed X-ray vision, assuming that a good fraction of the light coming from the
star was in the X-ray region.



Chapter 6

Time-Frequency Distributions:
Fundamental Ideas

6.1 INTRODUCTION

The basic objective of time-frequency analysis is to devise a function that will de-
scribe the energy density of a signal simultaneously in time and frequency, and that
can be used and manipulated in the same manner as any density. If we had such a
distribution we could ask for the fraction of the energy in a certain frequency and
time range, we could calculate the density of frequency at a particular time, we
could calculate the global and local moments of the distribution such as the mean
conditional frequency and its local spread, and so on. We now begin our study of
how to construct such distributions and in this chapter we describe the main ideas.
To crystalize our aim we recall that the instantaneous power or intensity in time is

I s(t) I2 = intensity per unit time at time t, or

I s(t) I2 At = the fractional energy in the time interval At at time t

and the density in frequency, the energy density spectrum, is

S(w) 12 = intensity per unit frequency at w, or

S(w) I2 Ow = the fractional energy in the frequency interval AU;

at frequency w

What we seek is a joint density, P(t, w), so that

P(t, w) = the intensity at time t and frequency w, or

P(t, w) At Aw = the fractional energy in the time-frequency cell At Aw

at t, w

82
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Do there exist joint time-frequency distributions that satisfy our intuitive ideas
of a time-varying spectrum? How can they be constructed? Can they be interpreted

as true densities? Do they represent the correlations between time and frequency?
What reasonable conditions can be imposed to obtain such densities? The hope is
that they do exist, but if they don't in the full sense of true densities, what is the
best we can do? Are there inherent limitations to such a development? This is the
scope of time-frequency analysis.

Marginals. Summing up the energy distribution for all frequencies at a particular
time should give the instantaneous energy, and summing up over all times at a
particular frequency should give the energy density spectrum. Therefore, ideally,
a joint density in time and frequency should satisfy

f P(t, w) d w = I s(t) 12 (6.1)

f P(t, w) dt = I S(w)
l2

which are called the time and frequency marginal conditions.

(6.2)

Total Energy. The total energy of the distribution should be the total energy of the
signal

E = Jf P(t, w) dw dt = f I s(t)12 dt = f I S(w)12 dw (6.3)

Note that if the joint density satisfies the marginals, it automatically satisfies the
total energy requirement, but the converse is not true. It is possible that a joint
density can satisfy the total energy requirement without satisfying the marginals.
The spectrogram that we study in the next section is one such example. The total
energy requirement is a weak one and that is why many distributions that do not
satisfy it may nonetheless give a good representation of the time-frequency struc-
ture.

Characteristic Functions. We have seen in Chapter 4 that characteristic functions
are a powerful way to study distributions. The joint characteristic function of a
time-frequency density is

M(8,'r) = (eat+?TW) = ffP(tw)ei9t+.7Tdtdw (6.4)

However, many of the distributions that we will be studying are not proper. By
proper we mean a well-defined manifestly positive density function. Hence, for a
particular distribution, the characteristic function may not satisfy all the standard
attributes of characteristic functions that we discussed in Chapter 4.
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6.2 GLOBAL AVERAGES

Global Averages. The average value of any function of time and frequency is to be
calculated in the standard way

(9(t, w)) = ff g(t, w) P(t, w) dw dt (6.5)

and of course the answers should be meaningful and reasonable. If the marginals
are satisfied then we are guaranteed that averages of the form

(91(t) + 92(w)) = ff{91(t) +92(w)}P(t,w)dwdt (6.6)

fi(t)l s(t)
I2 dt + f 92 (w) I S(w)

I2 dw (6.7)

will be correctly calculated since the calculation requires only the satisfaction of the
marginals.

But what about averages that are mixed, that is, average values of arbitrary time-
frequency functions? An example is the covariance which involves the calculation
of ( t w ). For mixed averages we do not know what we want and can only be guided
by intuition and by the plausibility of possible guesses. That is not surprising. Math-
ematics cannot answer what is essentially an issue of science. Consider, for example,
the question of height and weight of an unknown species and suppose we knew the
distribution of height and weight, that is, the marginals. Can we know how height
and weight are related, how the correlation coefficient behaves? No. Similarly from
knowing the time-frequency marginals we cannot know how time and frequency
should be related and mathematics cannot help since mathematics allows all pos-
sibilities. In Chapter 1 we discussed the covariance of a signal and showed how
that is related to the first mixed moment (t w ). We argued that a plausible guess to
(t w) is the average of t gyp' (t) and we showed that this quantity behaves reasonably
well in the sense that it meets our intuition for the cases considered. Therefore, a
plausible requirement of a joint distribution is

(t w) = JftwP(tLi..)dwdt = f t cp'(t) I s(t) 12 dt (6.8)

However, for other mixed moments we have nothing to guide us.

6.3 LOCAL AVERAGES

Treating a joint time-frequency density as any other density, we can immediately
argue, as was done in Chapter 4, that the density of frequency for a given time and
the density of time for a given frequency are respectively given by

P(w It) = P(t, W) P(t I W) = P(t, W)
P(t) P(w)



Sec. 4 Time and Frequency Shift Invariance

where P(t) and P(w) are the marginal distributions

85

P(t) = fP(tw)dw P(w) = fP(tw)dt (6.10)

Notice that we have used P(t) and P(w) rather than I s(t) 12 and S(w) 12 to allow
for the possibility that the marginals are not satisfied, as will be the case with the
spectrogram discussed in the next chapter.

The conditional average value of a function at a given time or frequency is

= ) P(t
w)

dwf 11)(6(g(w) )t ,g(w
p( t)

.

t ) dt(t) P(tf 12)(6(g( ) ). = , w9
P(w)

.

In Chapter 2 we saw that a good candidate for the average frequency at a given time
is the derivative of the phase, the instantaneous frequency. Similarly, we argued
that the average time for a given frequency should be the derivative of the spectral
phase. If we accept these results, then a joint time-frequency density should satisfy

(w )t P(t) J
w P(t, w) dw = cP'(t) (6.13)

(t). =
P(W)

ft P(t, w) dt = -ii'(w) (6.14)

From this point of view instantaneous frequency is an average, the average fre-
quency at a particular time. We should also be able to define the spread of fre-
quencies at a given time and the spread of time for a given frequency, that is, the
conditional standard deviations. These are

2 1
( 2 P t d 15it P(t) w - (w) ) ( , w) w (6. )

2 1
2at1w P(w)

P(t, w) dt(t - (t) ) (6.16)

What should these quantities be? These quantities will play a crucial role in the
development of the basic theory, so we hope they turn out to be sensible. For some
signals we know what the answer should be. For example, for a pure sinusoid we
should get v,,It = 0, since a pure sinusoid has one definite frequency for all time.

6.4 TIME AND FREQUENCY SHIFT INVARIANCE

Suppose we have a signal s (t) and another signal that is identical to it but translated
in time by to. We want the distribution corresponding to each signal to be identical
in form, but that the one corresponding to the time shifted signal be translated by
to. That is
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if s(t) --f s(t - to) then P(t, w) -+ P(t - to, w) (6.17)

Similarly, if we shift the spectrum by a constant frequency we expect the distribu-
tion to be shifted by that frequency,

if S(w) --+ S(w - wo) then P(t, w) --+ P(t, w - wo) (6.18)

Both of these cases can be handled together. If s(t) is the signal, then a sig-
nal that is translated in time by to and translated in frequency by wo is given by
e&"Ots(t - to). Accordingly, we expect the distribution to be shifted in time and
frequency in the same way,

if s(t) - e"0ts(t - to) then P(t,w) -. P(t - to,w - wo) (6.19)

6.5 LINEAR SCALING

For a signal s(t), the signal given by sc(t) = ,,//as(at) is a scaled version of s(t). The
new signal is blown up or reduced, depending on whether a is less or greater than
one. The square root factor keeps the normalization the same as the original signal.
The spectrum of the scaled signal is

S. (W) = I S(w/a) if ssc(t) = f s(at) (6.20)
Vfa_

We see that if the signal is compressed then the spectrum is expanded, and con-
versely. If we want these relations to hold for the joint distribution, then we must
have

P. (t, w) = P(at, w/a)

The scaled distribution satisfies the marginals of the scaled signal

(6.21)

f 1 sc(t, w) dw = Isec(t) I2 = a Js(at) J2 (6.22)

J Psc(t, w) dt = J Ssc(w)
J2

= a
1 S(w/a) 12 (6.23)

6.6 WEAK AND STRONG FINITE SUPPORT

Suppose a signal doesn't start until t1. We want the joint distribution also to not
start until t1. Similarly, if the signal stops after time t2 we expect the distribution
to be zero after that time. If that is the case we say the distribution has weak finite
time support. The reason for the word weak will be apparent shortly. Similarly, if



Sec. 7 Uncertainty Principle 87

the spectrum is zero outside a frequency band, then the distribution should also be
zero outside the band. In such a case we say that the distribution has weak finite
spectral support. We can express these requirements mathematically as

P(t, w) = 0 fort outside (tl, t2) if s(t) is zero outside (tl, t2) (6.24)

P(t, w) = 0 for w outside (wl, w2) if S(w) is zero outside (wl, w2) (6.25)

Now suppose we have a signal that stops for a half hour and then starts again.
We would expect the distribution to be zero for that half hour. Similarly, if we have
a gap in the spectrum, then we expect the distribution to be zero in that gap. If a
distribution satisfies these requirements, namely that it is zero whenever the signal
is zero or is zero whenever the spectrum is zero, then we say the distribution has
strong finite support:

P(t, w) = 0 if s(t) = 0 for a particular time (6.26)

P(t, w) = 0 if S(w) = 0 for a particular frequency (6.27)

Strong finite support implies weak finite support, but not conversely.

Distributions Concentrated in a Finite Region. A signal cannot be both of finite
duration and bandlimited in frequency. Therefore if a distribution satisfies the weak
finite support property it cannot be limited to a finite region of the time-frequency
plane. If it were, it would be both time and frequency limited, which is impossible.
If it turns out that a distribution is limited in a finite region, then it does not satisfy
the finite support properties and/or the marginals.

6.7 UNCERTAINTY PRINCIPLE

In Chapter 3 we emphasized that the uncertainty principle depends on only three
statements. First and second are that the time and frequency standard deviations
are calculated using I s(t) 12 and I S(w) I2 as the respective densities,

T2 = J (t - (t) )21 s(t) 12 dt (6.28)

B2 = f(w_(w))21S(w)12dw (6.29)

and the third is that s(t) and S(w) are Fourier transform pairs. From a joint distri-
bution the standard deviations are obtained by

at = - (t) )2 P(t, w) dt dw = f (t - (t) )2 P(t) dt (6.30)

0 = Jf(w_(w))2P(t,w)dtdw = f(_(w))2P(w)dw (6.31)
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When do we get the correct uncertainty principle? When the standard deviations
calculated using the joint distribution give the same answer as when calculated by
Eqs. (6.28) - (6.29). This will be the case when the marginals are correctly given,

P(t) = I s(t) 12 and P(w) = I S(w) 12 for uncertainty principle (6.32)

Therefore, any joint distribution that yields the correct marginals will yield, and is
totally consistent with, the uncertainty principle.

6.8 THE UNCERTAINTY PRINCIPLE AND JOINT DISTRIBUTIONS

We have emphasized that the uncertainty principle depends only on the time and
frequency marginals, that is, on 1 s (t)12 and I S(w)12 being the density in time and fre-
quency. Any joint distribution that has these marginals will satisfy the uncertainty
principle. For any two marginals there are an infinite number of joint distributions,
but the fact that the marginals are related imposes certain constraints on the possi-
ble joint distributions. For example, since the marginals are the absolute square of
Fourier transform pairs and since we know that Fourier transform pairs cannot both
be of finite extent, we cannot possibly have a joint distribution that is confined to
a finite region in the time-frequency plane. We now examine how the uncertainty
principle constrains the possible time-frequency distributions.

Let us crystalize the essence of the issue in the following way. Suppose that
someone has arranged the world so that no matter what marginals the two variables
x and y have, they are rigged so that the standard deviations of the marginals satisfy

Qyox > r) (6.33)

where r/ is a universal constant.'
This type of situation is easy to set up. So as not to get too abstract let us con-

centrate on the following example. Suppose x and y have the following densities

P
r _ z

(x ) (6 34)(x) = expL _ /
J

.

P

1277

z-
5)(6(y) =

27r77(12 + k2 )/1
exp 1 2 77(12 + k2)/l

.

where l and k are any two positive numbers at our disposal. The universal constant
rl is fixed and not at our disposal.

These two marginals are perfectly good densities. But no matter what we do or
try to do we have the uncertainty principle, ayQx > rl. That is the case since

'The more general case is where is a functional of the signal. In the case of time-frequency it is a
constant equal to half. For time and scale, for example, it is functional of the signal. See Section 15.5. To
keep things simple we taken as a constant here but our discussions apply generally
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Qx = r)/l cry = 7)(12 + k2)/1 (6.36)

and therefore

oyQy = rl 1 + l2/k2 ? rl (6.37)

No matter how we choose l and k we will always have ri.

Related Marginals, Independence, and Joint Distributions. The reason we have an
uncertainty principle is that the marginals are functionally related. In this case that
appears by way of the parameters l and k, which occur in both distributions. Be-
cause the marginals are functionally related, if we change one marginal we change
the other. However, one must not conclude from this that the variables are de-
pendent, or that there is any correlation between them. Functional relationship
between the marginals does not mean that the variables are dependent. That can
be decided only by the joint distribution and not the marginals.

In Section 14.2 we show how to construct, for any two marginals, an infinite
number of joint distributions. Here we want to examine what constraints marginals
that satisfy the uncertainty principle put on the possible joint representations. Or,
phrasing the question another way, what are the properties of joint distributions
that produce marginals that satisfy the uncertainty principle? Let us first consider
some examples of joint densities that satisfy the above marginals.

Example 1. Consider the following perfectly well behaved joint distribution which
satisfies the marginal and hence the uncertainty principle,

P(x, y) =
1 exp - (x - a)2 _ (y - b)2

=
P(x) P(y) (6.38)27r77 .V/1 + 12/k2 [ 2r7/1 21](12 + k2)/l ]

This distribution is the independent joint distribution. Even though the marginals
are related, the variables are not correlated. For any value of x the density of y is
the same.

Example 2. Another joint density, which satisfies the same marginals and has cor-
relations, is

1
) =P(x '

y 2ir771 +_12/k2_,/"1 - r2 (6.39)

1 (x - a)2 r(x - a)(y - b) (y - b)2
ex - - 2 + 6 40p

2(1 - r2) 77 1 + l2/k2rl/l 77(l2 + k2)/l
. )(

where r is any number between -1 and 1. For this case there is correlation be-
tween the variables. The correlation is positive or negative, depending on the sign
of r. There is a rich variety of possibilities, but the marginals are always satisfied
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Fig. 6.1 The uncertainty principle depends only on the marginals. It constrains the
type of joint distribution that is possible. A joint distribution cannot be narrow in
both variables, but this still leaves an infinite number of possibilities. The marginals
give no indication as to whether, or how, two variables may be correlated.

and so is the uncertainty principle. In particular, when one marginal is broad, the
other is narrow. A proper joint distribution has no difficulty accommodating such
marginals and although we have just demonstrated two of them, there are an infi-
nite number of them. 11771 Lest the reader think this is an artificial example, we point
out that it is precisely the Wigner distribution for a chirp with a Gaussian envelope.
Also, constructing other joint distributions is very easy and we do so in Section 14.2.

In Fig. 6.1 we plot the distribution for two different sets of marginals and dif-
ferent values of l and k. For a given set of marginals, one can always find an infi-
nite number of joint distributions with various correlations between the variables.
From the marginals, nothing can be concluded about the correlation between the
variables.

6.9 UNCERTAINTY PRINCIPLE AND CONDITIONAL
STANDARD DEVIATION

What general and specific statements can be made regarding joint distributions
having marginals that satisfy the uncertainty principle? Basically, the only general
property is that the joint distribution cannot be concentrated in both directions. If
it was, then it would produce narrow marginals, which would be a violation, since
both marginals cannot be narrow. The fact that both marginals cannot be narrow
eliminates a number of possible joint distributions but still leaves an infinite number
to choose from. We can fix this idea somewhat better by considering the conditional
standard deviations of a joint distribution. First, let us recall that the uncertainty
principle relates the global standard deviations. But we know from Section 4.6 that
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there is a relationship between the global standard deviation and the conditional
standard deviation and the conditional average. In particular, writing Eq. (4.3) for
both x and y we have

0,2 = JP(x)dx + J
(Y). - (y) )2 P(x) dx (6.41)

a= = f °2Iv P(y) dy + f ((x )v - (x) )2 P(y) dy (6.42)

Note that for each variable there are two ways to control the standard deviation and
hence when we multiply ci by o we will have four terms, the sum of which must
be greater than r72. We can satisfy the uncertainty principle by making any one of
those terms greater than ,772 and have freedom with the rest of them. Or, in general,
we can choose any value for each term as long as the sum adds up to greater than
77 2. These four terms are a gross characterization of a joint distribution. Because
they are not individually constrained we can have a wide variety of qualitatively
different joint distributions and still satisfy the uncertainty principle.

Signal Analysis. The case of signal analysis is no different, although historically the
uncertainty principle was viewed as presenting unsurmountable difficulty for the
construction of joint distributions. Quite the contrary, it is trivially easy to construct
joint distributions consistent with the uncertainty principle, as the above consider-
ations have shown. All we have to do is satisfy the marginals. In fact, the real
problem is that there are an infinite number of such joint distributions and we do
not fully understand what other considerations besides the uncertainty principle
are required to construct a sensible and comprehensive theory. Satisfying the un-
certainty principle is easy; the rest is challenging.

6.10 THE BASIC PROBLEMS AND BRIEF HISTORICAL
PERSPECTIVE

The fundamental issue is how to construct joint distributions that satisfy the rather
mild conditions we have set forth. From a mathematical point of view there are
an infinite number of joint distributions satisfying these requirements. However,
writing them down explicitly is not easy and which ones out of the infinite number
are "right" is not obvious. Mathematics cannot solve the problem, although it can
guide us in constraining what is possible and what is not. The basic issue is not one
of mathematics, since the conditions do not define the problem uniquely. The issue
is one of science, engineering, and desire to achieve particular goals. The methods
that have been developed to obtain distributions are not strict mathematical deriva-
tions but are based on physical considerations, mathematical suggestiveness, and
the time honored scientific method of guessing, intelligent and otherwise. As of
this writing the method of characteristic function operators, which is discussed in
the later chapters, is the only consistent method for deriving distributions.
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The current state of affairs is that we do not have a complete theory. Nonethe-
less, the ideas and techniques that have been developed thus far are powerful, give
us considerable insight into the nature of signals, meet our intuition to a very large
extent, and have been applied with immense success to practical problems. This is
demonstrated in the subsequent chapters. Often some of the predicted results are
clearly not plausible and that is what makes the subject challenging and fascinat-
ing. Because we do not have a complete and comprehensive theory, it is important
to understand what is known with certainty, what is speculation, and what hidden
assumptions go into any particular proof.

Since we have not yet studied any distributions it would not be appropriate at
this juncture to discuss the mathematical or physical issues in any great detail. To
appreciate these issues fully, we should first see how they arise. We do mention one
idea that has a checkered history. Because many distributions have been proposed
over the last fifty years, something that should be considered in a positive light,
there have been attempts to prove that a particular one is best. This has been done
by listing a set of desirable conditions and trying to prove that only one distribution,
usually the writer's favorite, fits them. Typically, however, the list presented is not
complete with the obvious requirements, because the author knows the added de-
sirable properties would not be satisfied by the distribution he or she is advocating.
Also these lists very often contain conditions that are taken out of thin air and are
obviously put in to force a particular result. Moreover, there are usually hidden as-
sumptions in the proofs that are glossed over or hidden in the methodologies of the
proofs. However, there is one benefit to these impossibility and uniqueness proofs.
The searching of the errors and hidden assumptions sometimes leads to a reexam-
ination of the basic ideas. There are time-varying spectra in nature and therefore
their description and properties can be described and understood. Someone will
eventually come up with the right theory and when that happens we will not have
to prove it mathematically correct; it will be obviously correct.

Terminology. For the type of distributions we will be studying, a rich variety of ter-
minology has arisen. We first address the general usage of density and distribution.
When we say that a function represents the number of things per unit something,
that is called a density and hence density function. In certain fields density func-
tions are called distributions because they indicate how things are distributed. For
example, one says the "Maxwell distribution of velocities." As discussed in Chapter
4, we shall use the words density and distribution interchangeably. These types
of distributions first arose in quantum mechanics where the term "probability den-
sity" or "distribution" is properly applied, since quantum mechanics is inherently
probabilistic. For deterministic signals where no probabilistic considerations enter,
the reader should think of distributions as "intensities" or "densities" in the com-
mon usage of the words, or simply as how the energy is "distributed" over the
time-frequency plane. As we will see, many of the known distributions may be-
come negative or even complex. Hence they are sometimes called quasi or pseudo
distributions. Also, a joint time-frequency distribution is, of course, dependent on
the signal and can be said to represent the signal in time and frequency; hence the
phrase "time-frequency representation."



Chapter 7

The Short-Time Fourier
Transform

7.1 INTRODUCTION

The short-time Fourier transform is the most widely used method for studying non-
stationary signals. The concept behind it is simple and powerful. Suppose we listen
to a piece of music that lasts an hour where in the beginning there are violins and
at the end drums. If we Fourier analyze the whole hour, the energy spectrum will
show peaks at the frequencies corresponding to the violins and drums. That will tell
us that there were violins and drums but will not give us any indication of when the
violins and drums were played. The most straightforward thing to do is to break
up the hour into five minute segments and Fourier analyze each interval. Upon
examining the spectrum of each segment we will see in which five minute intervals
the violins and drums occurred. If we want to localize even better, we break up the
hour into one minute segments or even smaller time intervals and Fourier analyze
each segment. That is the basic idea of the short-time Fourier transform: break
up the signal into small time segments and Fourier analyze each time segment to
ascertain the frequencies that existed in that segment. The totality of such spectra
indicates how the spectrum is varying in time.

Can this process be continued to achieve finer and finer time localization? Can
we make the time intervals as short as we want? The answer is no, because after
a certain narrowing the answers we get for the spectrum become meaningless and
show no relation to the spectrum of the original signal. The reason is that we have
taken a perfectly good signal and broken it up into short duration signals. But short
duration signals have inherently large bandwidths, and the spectra of such short
duration signals have very little to do with the properties of the original signal. This
should be attributed not to any fundamental limitation, but rather to a limitation
of the technique which makes short duration signals for the purpose of estimating

93
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the spectrum. Sometimes this technique works well and sometimes it does not. It is
not the uncertainty principle as applied to the signal that is the limiting factor; it is
the uncertainty principle as applied to the small time intervals that we have created
for the purpose of analysis. The distinction between the uncertainty principle for
the small time intervals created for analysis and the uncertainty principle for the
original signal should be clearly kept in mind and the two should not be confused.

We should always keep in mind that in the short-time Fourier transform the
properties of the signal are scrambled with the properties of the window function,
the window function being the means of chopping up the signal. Unscrambling is
required for proper interpretation and estimation of the original signal.

The above difficulties notwithstanding, the short-time Fourier transform method
is ideal in many respects. It is well defined, based on reasonable physical principles,
and for many signals and situations it gives an excellent time-frequency structure
consistent with our intuition. However, for certain situations it may not be the best
method available in the sense that it does not always give us the clearest possible
picture of what is going on. Thus other methods have been developed, which are
discussed in subsequent chapters.

7.2 THE SHORT-TIME FOURIER TRANSFORM
AND SPECTROGRAM

To study the properties of the signal at time t, one emphasizes the signal at that time
and suppresses the signal at other times. This is achieved by multiplying the signal
by a window function, h(t), centered at t, to produce a modified signal,

st(T) = s(r) h(T - t) (7.1)

The modified signal is a function of two times, the fixed time we are interested in,
t, and the running time, T. The window function is chosen to leave the signal more
or less unaltered around the time t but to suppress the signal for times distant from
the time of interest. That is,

st(T) -
s(r) for 7- near t
0 for T far away from t

The term "window" comes from the idea that we are seeking to look at only a small
piece of the signal as when we look out of a real window and see only a relatively
small portion of the scenery. In this case we want to see only a small portion.

Since the modified signal emphasizes the signal around the time t, the Fourier
transform will reflect the distribution of frequency around that time,

St(w) = 7st(T) dT

1

727
a-CWT s(T) h(T - t) d7- (7.4)
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The energy density spectrum at time t is therefore

2

Psp(t,
U))

= I St(w)
I2 =

2n
J e-?"Ts(r) h(r - t) d7- (7.5)

For each different time we get a different spectrum and the totality of these spectra
is the time-frequency distribution, Psp. It goes under many names, depending on
the field; we shall use the most common phraseology, "spectrogram."

Since we are interested in analyzing the signal around the time t, we presumably
have chosen a window function that is peaked around t. Hence the modified signal
is short and its Fourier transform, Eq. (7.4), is called the short-time Fourier trans-
form. However, it should be emphasized that often we will not be taking narrow
windows - which is done when we want to estimate time properties for a particular
frequency. When we want to estimate time properties for a given frequency we do
not take short times but long ones, in which case the short-time Fourier transform
may be appropriately called the long-time Fourier transform or the short-frequency
time transform.

The Short-Frequency Time Transform. In motivating the short-time Fourier trans-
form we emphasized the desire to study frequency properties at time t. Conversely,
we may wish to study time properties at a particular frequency. We then window
the spectrum, S(w), with a frequency window function, H(w), and take the time
transform, which, of course, is the inverse Fourier transform. In particular, we de-
fine the short-frequency time transform by

s" (t)
2rr

f e3"'t S(w') H(w - w') dcu' (7.6)

If we relate the window function in time h(t) with the window function in fre-
quency H(w) by

H(w)
27r J

h(t) e-3"t dt (7.7)Vr-
then

St (w) = e-j"t
Sw(t) (7.8)

The short-time Fourier transform is the same as the short-frequency time transform
except for the phase factor e-j"t. Since the distribution is the absolute square, the
phase factor e-i"t does not enter into it and either the short-time Fourier transform
or short-frequency time transform can be used to define the joint distribution,

P(t, W) = I St(w) I2 = I
S. (t) 12

(7.9)

This shows that the spectrogram can be used to study the behavior of time proper-
ties at a particular frequency. This is done by choosing an H(w) that is narrow, or
equivalently by taking an h(t) that is broad.

Narrowband and Wideband Spectrogram. As just discussed, if the time window
is of short duration the frequency window, H(w), is broad; in that case the spec-
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trogram is called a broadband spectrogram. If the window is of long duration then
H(w) is narrow, and we say we have a narrowband spectrogram.

Characteristic Function. The characteristic function of the spectrogram is straight-
forwardly obtained,

MsP(B,T) = ff I St(w) I2 ejet+.iT,.,dtdw (7.10)

= A8(O, T) Ah(-6, r) (7.11)

where

A.(0,T) = fs*(t_ 2r) s(t + 2T) e3et dt (7.12)

is the ambiguity function of the signal, and Ah is the ambiguity function of the
window defined in the identical manner, except that we use h(t) instead of s(t).
Note that A(-O, T) = A (0, -r), a relation we will use later.

Notation. The results we will obtain are revealing when expressed in terms of the
phases and amplitudes of the signal and window and their transforms. The nota-
tion we use is

s(t) = A(t) Ow(t) h(t) = Ah(t) eawn(t) (7.13)

S(w) = B(w) H(w) = BH(w) erLX(W) (7.14)

In the calculation of global averages (e.g., mean frequency, bandwidth) we will
have to indicate which density function is being used. We will use the superscript
(e), for example, to indicate that the signal is being used. In particular, the mean of
frequency with respect to the spectrogram, signal, and window will be indicated
respectively by

(w)(SP) _ f(7.15)

(w)(8) =
J

w I S(w) I2 dw (7.16)

(w) (h) = J w H(w) I2 dw (7.17)

and similar notation will be used for other quantities. When it is clear from the
context which density is being used the superscript notation will be omitted.

7.3 GENERAL PROPERTIES

Total Energy. The total energy is obtained by integrating over all time and fre-
quency. However, we know that it is given by the characteristic function evaluated
at zero. Using Eqs. (7.11) and (7.12) we have
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Esp
=

JfPs(tw)dtdw = Msp(O, 0) (7.18)

= A,, (0, 0) Ah (0, 0) (7.19)

= r I s(t) 12 dt x f I h(t) I2 dt (7.20)

Therefore, we see that if the energy of thelwindow is taken to be one, then the
energy of the spectrogram is equal to the energy of the signal.

Marginals. The time marginal is obtained by integrating over frequency,

P(t) = f I St(w)
I2 dw (7.21)

=
-
f s(r) h(T - t)9*(r') h*(r' - t) e-jc(T_T')drdr'

dw (7.22)
2

f 3(T) h(T - t)s*(T') h*(T' - t) 6(r - r') dT dT' (7.23)

fs(r)2Ih(r_t)I2dr (7.24)

fA2(r)A2h(r_t)dr (7.25)

Similarly, the frequency marginal is

P(w) = B22.I(w - w') dw' (7.26)

As can be seen from these equations, the marginals of the spectrogram generally do
not satisfy the correct marginals, namely I s(t) I2 and I S(w) 12,

P(t) # A2(t) = I s(t) 12 (7.27)

P(w) 0 B2(w) = I S(w) I2 (7.28)

The reason is that the spectrogram scrambles the energy distributions of the win-
dow with those of the signal. This introduces effects unrelated to the properties of
the original signal.

Notice that the time marginal of the spectrogram depends only on the magni-
tude of the signal and window and not on their phases. Similarly, the frequency
marginal depends only on the amplitudes of the Fourier transforms.

Averages of Time and Frequency Functions. Since the marginals are not satisfied,
averages of time and frequency functions will never be correctly given,
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(91(t) + 92(w)) = if {91(t) +92(w) }Psp(t,w)dwdt (7.29)

fgi(t)s(t)I2dt + fg2(w)S(2dJ (7.30)

never correctly given

This is in contrast to other distributions we will be studying where these types of
averages are always correctly given.

Finite Support. Recall from our discussion in Chapter 6 that for a finite duration
signal we expect the distribution to be zero before the signal starts and after it ends.
This property was called the finite support property. Let us see whether the spectro-
gram satisfies this property. Suppose one chooses a time t before the signal starts.
Will the spectrogram be zero for that time? Generally, no, because the modified
signal as a function of t will not necessarily be zero since the window may pick up
some of the signal. That is, even though s(t) may be zero for a time t, s(r) h(r - t)
may not be zero for that time. This will always be the case for windows that are not
time limited. But even if a window is time limited we will still have this effect for
time values that are close to the beginning or end of the signal. Similar considera-
tions apply to the frequency domain. Therefore the spectrogram does not possess
the finite support property in either time or frequency.

Localization Trade-off. If we want good time localization we have to pick a narrow
window in the time domain, h(t), and if we want good frequency localization we
have to pick a narrow window, H(w), in the frequency domain. But both h(t) and
H(w) cannot be made arbitrarily narrow; hence there is an inherent trade-off be-
tween time and frequency localization in the spectrogram for a particular window.
The degree of trade-off depends on the window, signal, time, and frequency. The
uncertainty principle for the spectrogram quantifies these trade off dependencies,
as we discussed in Section 3.4.

One Window or Many? We have just seen that one window, in general, cannot
give good time and frequency localization. That should not cause any problem of
principle as long as we look at the spectrogram as a tool at our disposal that has
many options including the choice of window. There is no reason why we cannot
change the window depending on what we want to study. That can sometimes be
done effectively, but not always. Sometimes a compromise window does very well.
One of the advantages of other distributions that we will be studying is that both
time and frequency localization can be done concurrently.

Entanglement and Symmetry Between Window and Signal. The results obtained
using the spectrogram generally do not give results regarding the signal solely, be-
cause the short-time Fourier transform entangles the signal and window. Therefore
we must be cautious in interpreting the results and we must attempt to disentan-
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gle the window. That is not always easy. In fact, because of the basic symmetry
in the definition of the short-time Fourier transform between the window and sig-
nal, we have to be careful that we are not using the signal to study the window.
The mathematics makes no distinction. The distinction must come only from a ju-
dicious choice of window, which is totally under our control. The basic symmetry
between the window and signal does have a mathematical advantage in that results
obtained should show a symmetry and therefore act as a mathematical check.

7.4 GLOBAL QUANTITIES

The mean time and frequency in the spectrogram are given by

(t)(SP) =
J(W)= f f St(w)12dtdu (7.31)

Direct evaluation leads to

(t)(SP) = (t)(8) , (t)(h) (W )(SP) _ (W)(a) + (
W )(h) (7.32)

If the window is chosen so that its mean time and frequency are zero, which can be
done by choosing a window symmetrical in time and whose spectrum is symmetri-
cal in frequency, then the mean time and frequency of the spectrogram will be that
of the signal.

The second conditional moments are calculated to be

(W2)(SP) _ (W2 ) (a) + (W2 )(h) + 2 (W )(e) (W )(h)
(7.33)

( t 2 ) (SP) = (t2 ) (8) + (t2 ) (h) - 2 ( t ) (8) ( t ) ' ) (7.34)

By combining these with Eqs. (7.32) we find that the duration and bandwidths are
related by

Tsp=Ta +Th ; B2P=B8 +Bh (7.35)

which indicates how the duration of the windowed signal is related to the durations
of the signal and window.

Covariance and Correlation Coefficient For the first mixed moment

(t U) )(SP) _ fftwSt(w)2dtdd

(t )(a)
-(t)(h) + (t)(g) ((Ph

)(h)

(7.36)

(7.37)
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Subtracting (t ) (SP) ( w) (SP), as given by Eqs. (7.32), from both sides we have that
the covariance of the spectrogram is

Cov " = (t w) (SP) - ( t ) (SP) ( w) (5P) = Cove) - CovtW) (7.38)

We know from Chapter 1 that the covariance of a real signal is zero and hence if we
take real windows, the covariance of the spectrogram will be the covariance of the
signal

CovtWP) = Covtw for real windows (7.39)

7.5 LOCAL AVERAGES

Method of Calculation. Much of the analysis and calculations using the spectro-
gram is simplified significantly if we keep in mind that the modified signal, sh, and
the short-time Fourier transform, St (w), form a Fourier pair with respect to the run-
ning time, T,

s(T) h(T - t) b St(w) f Fourier pair between r, w ] (7.40)

The real time, t, is considered a parameter. The modified signal expressed in terms
of the phases and amplitudes is

st(T) = s(r) h(T - t) = A(r) Ah(T - t) ei[w(T)+cph(T-t)] (7.41)

A fruitful way to look at the situation is that we are dealing with a signal in the
variable ,r whose amplitude is A(T) Ah(T - t) and whose phase is W(T) +Y'h(T - t).
However, st(T) is not normalized in the variable T and therefore we define, as in
Section 3.4, the normalized modified signal by

77t (.0
- S(T) h(r - t) - s(T) h(r - t)

(7.42)
f s(T) h(T - t) j2 dT P(t)

Everything we have done in Chapter 1 can be translated to the calculation of condi-
tional values for the spectrogram by replacing the signal s with 7) and considering
r as the time. In particular, the conditional average of any function is

(9(w) )t = pI f 9(w) I St(w)
12

= f
17, .(7_) 9(j

d7-/ nt(T) d7- (7.43)

Local Frequency: Estimate of Instantaneous Frequency. Look at Eq. (1.90) and
simply let A2 -- b A2 (T )Ah (T - t) and W cp' (T) + ch (T - t) to obtain

fw St(w) 12 dw = f'i(r)'it(T)dT (7.44)(w )t = P(t)

1 JA(T) Ah(T - t) {9'(r) + p' (r - t)} dr (7.45)
P(t)
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Local Square Frequency. Similarly, transcribing Eq. (1.98) yields

(w2)t = f1i(T) (- -)2rt(r)dr = I 1
dTiit(T)12dT

/ 12
= P1 l A(T) Ah(T - t)) dr

(T) dr

101

(7.46)

+ P1 IA'(,r)A'(,r-t)fw'(r)+wh(7--t)l'd7- (7.47)

The Conditional or Instantaneous Bandwidth. Using a = (w2 )t - (w )t with
(w2) t and (w) t as given by Eqs. (7.45) and (7.47) we can obtain the conditional
or instantaneous bandwidth. However, the resulting expression does not explicitly
show the manifestly positive nature of the standard deviation. A way to obtain an
alternative but manifestly positive expression is to use Eq. (1.96), the bandwidth
equation, and do the appropriate replacement as above,

Bt =QWIt - P(t) J(w-(w)t)2(St(w)l2dw

P(t) I (dT A(r) Ah(r - t) dT

(7.48)

I (t)
If A2(rl) A2(r2) Ah(r1 - t) Ah(7-2 - t)+ 2P2

X dr1 dr2 (7.49)

For convenience we define

z

(w2
)0 =

P1 1
(dd7-

A(r) Ah(T - t)) dT (7.50)

7.6 NARROWING AND BROADENING THE WINDOW

All the above results show that the physical quantities obtained using the spectro-
gram result in an entanglement of signal and window. We can view these quantities
as estimates which unfortunately depend on the window function chosen. How-
ever, one would hope that in some sense or other the basic results are window
independent and that when the window is narrowed we will get better and bet-
ter estimates. Let us first consider the conditional frequency and suppose that we



102

narrow the window so that A' (t) approaches a delta function,

A2 (t) -, 5(t)

Chap. 7 The Short-Time Fourier Transform

(7.51)

Also, we consider real windows so as not to introduce phase due to the window. In
this limit, Eq. (7.45) goes as

(w )t
f A2(7-)Ah(r-t)cp'(T)dr

f A2(T) Ah (r - t) dr

f A2(r) 6(T - t) co'(r) dT A2(t) cp'(t)
f A2 (r) 6(T - t) dr A2(t)

(7.52)

(7.53)

or

(w)t-'cp'(t) (7.54)

That is, if the window is narrowed to get increasing time resolution, the limiting
value of the estimated instantaneous frequency is the derivative of the phase, which
is the instantaneous frequency. This a very pleasing and important result, but there
is a penalty to pay. As we narrow the window we broaden the standard deviation
and, therefore, as the estimate goes to the right answer it becomes harder to see and
determine. The reason for this can be seen by direct mathematical substitution of
the delta function in Eq. (7.49), which results in

Qwit -4 00 [ for Ah(t) -- 5(t) ] (7.55)

A simple explanation is available: we have taken a signal and made it of narrow
duration at time t; in fact, we have made it infinitely narrow by letting the magni-
tude square of the window go to a delta function. The standard deviation of the
modified signal must therefore go to infinity because of the time-bandwidth prod-
uct theorem. Even though the average is correctly predicted, it is hard to discern.
A compromise is discussed in Section 7.11.

7.7 GROUP DELAY

We now give the average time for a given frequency. Because of the symmetry we
can immediately write

(t P(w)
f B2(w) Bh(w - w) [ ?P'(w) - Oh' (w - w) ] dw (7.56)

where P(w) is the marginal in frequency given by Eq. (7.26). If the window is nar-
rowed in the frequency domain then a similar argument as before shows that the
estimated group delay goes as

(t), -' [ for H2(w) 6(w) ] (7.57)
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The second moment and conditional standard deviation are given by

(t2)W

2

P(w)
f (dw B(w) B, (w - w)) dw

+ P(w) f B2(w) Bh(w - w) [ ii'(w) - 0 (w - w) ]2 dw (7.58)

2

Q
j" (w)

f(_B(w)Bh()_w))dw

+ 2P2(w)
ffB2(wi) B2(w2) Bh2.(w - wl) B2(w - W2)

x [ Y''(wl) - IP'(w2) - ?4 (W - wl) + Oh' (w - W2) ] 2 dwl dw2 (7.59)

The standard deviation of time at a given frequency may be interpreted as the
duration of the signal for that frequency. The physical significance can be thought of
in the following way. We envision a signal as composed of many frequencies, each
frequency having an envelope. The duration at each frequency is the time width of
the envelope for that frequency. Equation (7.59) is an estimate of that squared dura-
tion. All the remarks we made about the estimated instantaneous frequency apply
to the group delay, except we now have to narrow the window in the frequency
domain.

7.8 EXAMPLES

Example 7.1: Sinusoid.

As a first example we consider a sinusoid and use a Gaussian window

s(t) = e'Wot h(t) = (a/x)114 e-at2/2 (7.60)

The short-time Fourier transform is

2

St(w) = (Q
jl/4 e-.i(W-WO)t exp

_
- (" 2ao)

J
(7.61)

which yields the following time-frequency distribution

PSP(t+w) = I Se(w) I2 = (d )l/2 eXp [
(w a 0)2

Using it we have

(7.62)

M t = Wo ; o e = ia (7.63)

The average value of frequency for a given time is always wo, but the width about that
frequency is dependent on the window width.
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Example 7.2: Impulse.

For an impulse at t = to, with the same window as above

s(t) = 27r 6(t - to) h(t) = (a/7r)1/4 a-at2/2

we have
St(w) = (a/7r) 1/4 a-)wt° e-'(t-to)2/2

PsP(t,w) = I St(w) I2 = (a/7r)1/2e-a(t-t0)2

(7.64)

(7.65)

(7.66)

Example 7.3: Sinusoid Plus Impulse.

Now consider the sum of a sinusoid and impulse,

s(t) = e'-0t + 27x6(t - to) h(t) = (a/7r) 1/4 e-at2/2 (7.67)

We have

St (W) = (a 11/4 e-)(W-w°)t
eXp [-

(w
2a

o)2

1 + (a/7r)
1/4 a-i&to e-a(t-to)2/2

/l J (7.68)

and

PsP(t, W) = I St(w) I2 = (a 11/2 e-(w-w0)2/a + (a/7r) 1/2 e-a(t-t°)2

+
2

e-(W-wo)2/a-a(t-to)2 cos[w(t - to) - wot] (7.69)
7r

This example illustrates one of the fundamental difficulties with the spectrogram. For
one window we cannot have high resolution in time and frequency. The broadness
of the self terms, the first two terms of Eq. (7.69), depends on the window size in an
inverse relation. If we try to make one narrow, then the other must be broad. That
will not be the case with other distributions. In Fig. 7.1 we plot the spectrogram for
different window sizes. The cosine term is an example of the so called cross terms. We
discuss these in greater detail later. Note that they essentially fall on the self terms in
the spectrogram.

Example 7.4: Linear FM.

Consider a chirp with a Gaussian envelope and a Gaussian window,

s(t) = (Q/7x)1/4 e-et2/2+j$t2/2+jwot h(t) _ (a/7r) 1/4 a-ate (7.70)

A straightforward but lengthy calculation gives

P(t)
2PsP((-,w) = I St(w) I = [_'

(w )t)ex

p
JI

(7.71)

P(w) exp [-
t - (2

)w)2

(7.72)
;7 0,21w 2ortlw
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Fig. 7.1 Spectrograms of a signal composed of a constant frequency plus an im-
pulse, s(t) = ej1ot + 6(t - 10). In (a) we use a short duration window, which gives a
good indication of when the impulse occurred but gives a broad localization for the
frequency. In (b) we use a long duration window, which gives the opposite effect.
In (c) a compromise window is used. For a comparison with the Wigner distribution
see Fig. 8.5.

where P(t) and P(w) are the marginal distributions

P(t) -
V 7r(a a)

exp f - as t2 (7.73)

and

as/ _ as 21
P(W) = ex p

J

(7.74)
aa2 + a(a2 + 02) p

aa2 + a(a2 +,32)

a 2

(w )t _ a + a
pt + wo Uwlt = 2 (a + a) + 1 ap

a
(7.75)

(t)om = aR
T2

w (7.76)
aa2 + a(a2 +

2 1 (a + a)2 + Q2
(7t" 2 aa2 + a(a2 + N2)

The concentration of energy for a given time is along the estimated instantaneous fre-
quency, and for a given frequency it is along the estimated time delay. As the window
becomes narrow, that is, as a -+ oo, the estimate for the instantaneous frequency ap-
proaches pt + wo. However, in this limit the estimated group delay approaches zero,
which is a very bad estimate. In fact, this answer is just the average time for the sig-
nal. It is an understandable answer because in that limit we have a flat window in the
frequency domain. Conversely, if we want to focus in on time properties for a given
frequency we must take a broad window in the time domain, which is achieved by
taking a - oo. In that case (t )" _ 0/(a2 + p2), which is the correct answer (see Eq.
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(1.121)). On the other hand, at this limit the estimate of the instantaneous frequency
approaches wo, which is not the instantaneous frequency at all but just the average
frequency. Again, the reason is in that limit the window in the time domain is flat for
all time. This example shows that for the spectrogram one window cannot give good
localization in both time and frequency. In contrast, other distributions will allow us
to do that. We also note that for this case, the local bandwidth is a constant in time.
That would not be the case if a different window were chosen.

Example 7S: Single Sided Sinusoid with Rectangular Window.

Take

s(t) = e'"0' t > 0 h(t) _ - T/2 < t < T/2 (7.78)
VfT

A straightforward calculation yields

7
(e-i(W-wo)(t+T/2) - I) -T/2 < t < T/2

t 27r (w - wo) 1 2e-j("-"o)t sin[(w - wo)T/2] T/2 < t
M, (U))

(7.79)

and

n

(w - wo)(t + T/2)] -T/2 < t < T/2sin2[2
St(w) 12 =

2
(w 1

)2
(7.80)

- w° sin2[(w - wo)T/2] T/2 < t

Even though the signal is zero before t = 0, the spectrogram indicates that there is a
value in the range -T/2 < t < T/2. The reason is that for that range the window
is picking up values from times greater than zero. The longer we make the window,
the sharper the spectrogram will be around w = wo, but then we will have poor lo-
calization in time. If we take a small window then the spectrum will be broad. This
is illustrated Fig. 7.2. This example shows that the spectrogram does not satisfy the
finite support property.

Example 7.6: Chirp With Rectangular Window.

For the signal of Eq. (7.70), if a rectangular window is used instead of a Gaussian, we
obtain

P(t) = ZT {erf[ /(t-4- ZT)) -erf[ (t- IT))} (7.81)

( wt) = P(t) [a
T

e-°(t'+T'/4) sinh atT (7.82)

where erf(x) is the error function. It can be readily verified that (wt) - w; as the
window size becomes small. If we now attempt to calculate the second conditional
moment and the standard deviation, infinity is obtained. This is due to the sharp
cutoff of the rectangular window. Hence a new measure of spread is needed for some
windows or the window has to be modified to avoid divergences.
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Fig. 7.2 Spectrograms of a sine wave
that starts at t = 5. In (b) a very
broad window is used to get good
frequency localization. This spectro-
gram does not give a good indication
of where the signal is zero. In (c) a
very narrow window is used. The
spectrum is very broad because it is
the spectrum of a short duration sig-
nal, the modified signal, Eq. (7.1).

Example 7.7: Sinusoidal FM Signal/Chirp with a Gaussian Window.

Consider

s(t) = (ce/7r)1/4 e-ate/2+jOt'/2+jwot+jmsinwmt h(t) = (a/7r)1/4 a-at2/2

(7.83)
The instantaneous frequency is

wii = m wm COS wmt + (3t + wp (7.84)

which indicates that the frequency oscillates sinusoidally around the straight line given
by (3t+wo. To calculate the estimated instantaneous frequency we use Eq. (7.45) to ob-
tain

(w)t a s
(3t+wo+mwme 4(a + acos ' a u ' - \ t (7.85)

(eCOS__)(t+11 (7.86)

The standard deviation is calculated from atjw = (w2 )t - (W )l
. In the limit as

a -p 0, (w )t --p wi, as expected. The short-time Fourier transform can be done
exactly. Substituting the signal and window in the definition we have

ackSt(w) =
()1/4 a-at'/2 (7.87)

ejmsin(wmr) _ E Jn(m) ejnwmr
(7.88)

n=-oo

2w

2
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where J are the Bessel functions. Substituting this into Eq. (7.87) and evaluating the
Gaussian integral we have

1/4
1 ) e-ate/2St(w) _ ; ir2 (a + a

as
- jp)2

7.9 INVERSION

00

X A(m) exp f l at j(w - WO - rudm) 2 (7.89)
L - 2(a+a-j/)n00

Can the signal be recovered from the spectrogram? Since the spectrogram is the
absolute square frequency of the short-time Fourier transform it is often stated that
we have lost the phase and hence the signal cannot be recovered. This argument
is not correct, because the phase we have lost is the phase of the short-time Fourier
transform, not the signal. In fact, the phase and amplitude of the signal appear in
both the phase and amplitude of the short-time Fourier transform. Therefore, hav-
ing the amplitude of the short-time Fourier transform may be sufficient to recover
the signal. We now see under what conditions this is the case. From Eq. (7.11) the
ambiguity function of the signal is

A8(9,r) = MsP(0, (7.90)
Ah(-B,

Ah( 19) I st
p) I2ejet+iT4, dt dw (7.91)-, T

But the ambiguity function determines the signal. To see this, we Fourier invert the
ambiguity function of the signal, Eq. (7.12), to obtain

s8(t - 2T) s(t + 2T) = 21 J A.(0,T) a-'Bt d9 (7.92)

and taking a particular value, t = T/2, we have

88 (0) s(t)
2a J

A8 (0, t) a-3et/2 dg (7.93)

where s' (0) is a number. Therefore

s(t) = 1 MsP(B, t) e_jet/2
d9 (7.94)

27rs (0)
f

Ah (-0, t)

which shows that the signal can be recovered from the spectrogram. However,
there is an important caveat. The division by the ambiguity function of the window
must be possible and that will be the case if it has no finite regions where it is zero
in the 0, T plane. That depends on the window function.



Sec. 10 Expansion In Instantaneous Frequency 109

7.10 EXPANSION IN INSTANTANEOUS FREQUENCY

We now show that the local quantities have interesting expansions in terms of the
instantaneous frequency and its derivatives. For simplicity we consider real win-
dows.

Local Mean Frequency. We rewrite Eq. (7.45) as

(w)t = fA2fA2()+t)A()d
t)dT

Expanding go'(T + t) as a power series in r

(T + t) = W(n+1) (t) L.
n.n=0

and substituting into Eq. (7.95), we have

(w
)t = M7' t) g(n+l)

(t)
n=0

where

Mn(t) =
ffA(( + t) Ah(r) dr

(7.95)

(7.%)

(7.97)

(7.98)

For n = 0 the denominator and numerator are equal, and hence Mo(t) is always
equal to one. Writing out the first few terms for (w )t we have

(w)t -go'+MI(t)Wit +21 M2(t)go" (7.99)

Similar considerations lead to the following expansions for the mean square and
conditional standard deviation,

00 n
(w2

)t
(w2 )t + E E

n=o k=0

(n-k+1) go (k+1)

(n - k)! k! Mn(t)

(w2 )0 + go/2 + 2 gol go// M1 + [ go/ Writ + go/r2

(7.100)

] M2 (7.101)

-1

+

00 n

1: --i 1 go(n-k+1) go(k+l) Mn - Mn-k!k
(7.102)or

21t = (U)2)0 - k!
n=2 k=1

(n k)!

ti (w2 )t + (M2-M12)go112 +
(M3-M2M1)Wit

g" (7.103)
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Note that the derivative of the phase of the signal is absent from the expansion of
o ,t. Also, M2 - M1 is the local duration as defined by Eq. (3.34),

2 2Tt =M2-Ml

Example 7.8: Arbitrary Frequency with Gaussian Window.

We take an arbitrary phase but impose a Gaussian amplitude modulation

s(t) _ (a/7r)'14 e-Qt2/2+9w(t) A2 (t) = (a/x)1/2 a-ate

(7.104)

(7.105)

in which case the integrals can be readily done to obtain

2

(W )t = 4P - a + aV +() (-2+ a
+ a)

(pi

rr
(7.106)

2 1 1 112 _ at it Ill 1 1 a2t2 rr rrrrIt 2(a+a) + 2(a+a) (a+a)2 +2(a+a) 2 + a+a
(7.107)

7.11 OPTIMAL WINDOW

To obtain the finest resolution of the instantaneous frequency, we minimize the
spread about the estimated instantaneous frequency. That is, a window should
be chosen so that the local standard deviation, Q,,It, is a minimum. Since the local
standard deviation depends on the signal, the optimal window will also depend on
the signal. How the dependence comes in may be seen in rough terms as follows.
As an approximation we drop all terms higher than the second in the expansion of
Q.It in Eq. (7.102),

Q.21t ^' (w2 )t + T2 2(t) (7.108)

Now, roughly, by the time dependent uncertainty principle we have that

(w2) c T2 i
t t ' 4

and therefore
1

c I

t
N

4T2
+ T2 lp1,2(t)

The minimum is achieved at

TtzlII"

t' N 2 cp" (t)

At that value the local standard deviation is

(7.109)

(7.110)

rr" I t ^' 'P"(t) (7.112)
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We emphasize that 7 is not the width of the window. It is the width of the
modified signal at time t, which involves both the window and the signal. However,
if the signal is purely frequency modulated then T2 is the width of the window, in
which case we have

Optimal width of window N 1 (7.113)
21 V11(t)

[ for purely frequency modulated signals ]

Example 7.9: Exactly Solvable.

Equation (7.75) gives the exact answer for a. It and it is revealing to do the minimiza-
tion exactly. To minimize Quit we set the derivative with respect to a to zero

da2
WIt

da

which gives

I I = 02 2 (a +a) 2 (7.114)

amm = 101 -a (7.115)

Note that am,,, does not have to be positive. If it is negative the window will not be
normalizable but nonetheless the STFT will be normalizable as long as ao,m + a is pos-
itive. Hence divergent windows may be used and indeed are desirable and necessary
to obtain a high resolution. The standard deviation of the window is o,w = 1/(2a)
and we have that the optimal window is

O'w
2am,,, 2(1,61 -a)

(7.116)

If we have a constant amplitude signal ( a = 0) then, ao,i,, = 1,3 1 in accordance with
Eq. (7.113).

Example 7.10: Gaussian Envelope with Arbitrary Phase.

Let

s(t) = (a/7r) 1/4 e-at2/2+3w(t)

and suppose we use the window

We obtain

where

amm =

2 -t2/(2.,2
Ah(t) 2ittrw

e

1
2C16"2 + 3c26"N

2Qw a + ,p"4 + 6c1cp" + 12c2

(7.117)

(7.118)

(7.119)

Cl =
4 c "i + 8 "2 - at 40 will (7.120)

C2 = 1 a2t2 [ Wit "i + 112
2

1 (7.121)
J

For a chirp where WP = pt, c1 and c2 are both zero and we have that am. = I R - a,
which agrees with Eq. (7.115).

Q2
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Example 7.11: Cubic Phase.

For the cubic case where the phase is 0(t) = ryt3/3, we get the following approxima-
tion,

dun N
(272)1/3 - a + 2cx2 -

'S

_r2)1/3 + 3 (. )1/3

J

t1

2ryt-3a-47t+(4-b )t t-_ 00

t-0

(7.122)



Chapter 8

The Wigner Distribution

8.1 INTRODUCTION

The Wigner distribution' is the prototype of distributions that are qualitatively dif-
ferent from the spectrogram. The discovery of its strengths and shortcomings has
been a major thrust in the development of the field. Although it has often been
studied in contrast to the spectrogram, we will see in Chapter 9 that both are mem-
bers of a general class of representations.

Wigner was aware that there were other joint densities but chose what has now
become the Wigner distribution "because it seems to be the simplest". Nonetheless,
Kirkwood,[30'] a year later, and Terletsky,15411 a few years after, came up with a sim-
pler candidate that is commonly called the Rihaczek or Margenau-HiU distribution.

The Wigner distribution was introduced into signal analysis by Ville,[16'1 some
15 years after Wigner's paper. Vile gave a plausibility argument for it and "de-
rived" it by a method based on characteristic functions. Remarkably, the same type
of derivation was used by Moyal[390l at about the same time. These derivations
appeared to be from first principles; however, they contained an ambiguity and

' Wigner's original motivation for introducing it was to be able to calculate the quantum correction to
the second virial coefficient of a gas, which indicates how it deviates from the ideal gas law. Classically,
to calculate the second virial coefficient one needs a joint distribution of position and momentum. So
Wigner devised a joint distribution that gave, as marginals, the quantum mechanical distributions of
position and momentum. The quantum mechanics came in the distribution, but the distribution was
used in the classical manner. It was a hybrid method. We discuss the analogy of quantum mechanics to
signal analysis in Section 13.13. Also, Wigner was motivated in part by the work of Kirkwood and Mar-
genau who had previously calculated this quantity but Wigner improved on it. Kirkwood subsequently
developed what is now the standard theory for nonequilibrium statistical mechanics, the BBGKY Hier-
archy (the theory was developed independently by Bogoliubov, Born and Green, Kirkwood, and Yvon).
Kirkwood attempted to extend the classical theory to the quantum case and devised the distribution
commonly called the Rihaczek or Margenau-Hill distribution to do that. Many years later Margenau
and Hill derived the Margenau-Hill distribution. The importance of the Margenau-Hill work is not the
distribution but the derivation. They were also the first to consider joint distributions involving spin.

113
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the generalization of the method, which we shall call the characteristic operator
method, can be used to derive all distributions. This is discussed in Chapters 10
and 17. In a comprehensive study, Mark[J pointed out the cross term issue of
the Wigner distribution and also showed the relation of the Wigner distribution
to the spectrogram. In 1980, in an important set of papers, Claasen and Meck-
lenbraukeri11e,119,1201 developed a comprehensive approach and originated many
new ideas and procedures uniquely suited to the time-frequency situation.

Calculating properties of the Wigner distribution is fairly straightforward. How-
ever, they can be easily determined by the methods we will develop to study the
general class of distributions in Chapter 9. Hence in this chapter we do not delve
into detailed proofs for every property, but emphasize the interpretation of the re-
sults.

8.2 THE WIGNER DISTRIBUTION

The Wigner distribution in terms of the signal, s(t) or its spectrum, S(W), is

W (t' w) = 2'
J

s' (t -
2
rr) s(t + 2 r) a-jr" dr (8.1)

1
S' (w + 10) S(w -

29)
a-j'8 dB (8.2)

21r

The equivalence of the two expressions is easily checked by writing the signal in
terms of the spectrum and substituting into Eq. (8.1). The Wigner distribution is
said to be bilinear in the signal because the signal enters twice in its calculation.

Notice that to obtain the Wigner distribution at a particular time we add up
pieces made up of the product of the signal at a past time multiplied by the signal
at a future time, the time into the past being equal to the time into the future. There-
fore, to determine the properties of the Wigner distribution at a time t we mentally
fold the left part of the signal over to the right to see if there is any overlap. If there
is, then those properties will be present now, at time t. If this simple point is kept
in mind, many issues and results regarding the Wigner distribution become clear.
For example, suppose we have a finite duration signal with noise appearing only
for a small part of the time. (We use noise only for the purpose of illustration and
our remarks hold for any other property of the signal.) Now let us pick a time and
ask whether noise will appear at that time. Fold the signal at that time and if in
the folding the noise is overlapped then noise will appear at the present time even
though there is no noise in the signal at this time. This is illustrated in Fig. 8.1.

Everything we have said for the time domain holds for the frequency domain
because the Wigner distribution is basically identical in form in both domains. An-
other important point is that the Wigner distribution weighs the far away times
equally to the near times. Hence the Wigner distribution is highly nonlocal.

Range of the Wigner Distribution. The above argument shows that for an infinite
duration signal, the Wigner distribution will be nonzero for all time, since no matter
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w
ta tb

Fig. 8.1 An easy way to ascertain the behavior of the Wigner distribution is to men-
tally fold over the signal about the time being considered and determine whether
the overlap includes properties of interest. We have illustrated a finite duration sig-
nal where noise appears for a small time interval. At time to no noise will appear
in the Wigner distribution because if we fold over the signal about to there is no
noise in the overlap. Now consider time tb. Folding over does result in overlap
with the noise and thus noise will apear at time tb even though there is no noise at
that time. Although we have used noise for illustration, the same arguments apply
to any other property.

tl t2 to t3

Fig. 8.2 The Wigner distribution is not generally zero when the signal is zero and
similarly it is not zero for values of frequency at places where the spectrum is zero.
To see this, consider the signal illustrated, which is zero for the interval (t2, t3). Now
focus at t = ta. Mentally fold over the signal and note that we have an overlap.
Hence the Wigner distribution will not be zero at to even though the signal is zero
then.

115

what time we choose, the folding of the right with the left parts will result in a
nonzero answer. Now let us consider a signal that has a beginning in time and
calculate the Wigner distribution for a time before the signal starts. Mentally folding
over the right with the left we will get zero, since there is nothing to the left to fold.
Hence the Wigner distribution will be zero for times before the signal starts. Also,
for a signal that stops, the Wigner distribution will be zero after that time. For a
finite duration signal the Wigner distribution will be zero before the start of the
signal and after the end. The same arguments in the spectral domain show that for
a bandlimited signal the Wigner distribution will be zero for frequencies outside
the band. Therefore, the Wigner distribution satisfies the finite support properties
in time and frequency,

W(t, w) = 0 fort outside (t1, t2) if s(t) is zero outside (t1, t2) (8.3)

W(t, w) = 0 for w outside (w1i w2) if S(w) is zero outside (w1i w2) (8.4)
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Now consider a signal that is turned off for a finite time and then turned on and
let us focus on a time for which the signal is zero, as illustrated in Fig. 8.2. Will
the Wigner distribution be zero? No, because if we fold over the right side with
the left side we do not obtain zero. Similar consideration applies to the spectrum.
Therefore, generally, the Wigner distribution is not necessarily zero at times when
the signal is zero and it is not necessarily zero for frequencies that do not exist in the
spectrum. Manifestations of this phenomenon have sometimes been called inter-
ference or cross terms and the cause for this behavior has very often been attributed
to the fact that the Wigner distribution is bilinear in the signal. It is not bilinearity as
such that is doing it since there are other joint distributions that are bilinear, satisfy
the marginals, but are always zero when the signal is zero. Particular illustrations of
this effect are presented in the examples and also when we discuss multicomponent
signals.

The Characteristic Function of the Wigner Distribution. We have

M(O, T) = if ejot+.7T'd W (t, w) dt dw (8.5)

2zr fff 2r)s(t+ (8.6)

Jf e'ot8(r - T')s'(t - 2T') s(t + 2T) dT' dt (8.7)

J
s' (t - 2T) s(t + 2T) e'ot dt (8.8)

= A(B, T) (8.9)

This function and variants of it have played a major role in signal analysis. This
particular form is called the symmetric ambiguity function. It was first derived by
Vile and Moyal and its relation to matched filters was developed by Woodward.
We have previously discussed it in the calculation of the characteristic function of
the spectrogram, Eq. (7.12). In terms of the spectrum the characteristic function is

M(9, T) = f S (w +
2e)

S(w -
Z9)

e3" dw (8.10)

Nonpositivity. We mentioned in Chapter 6 that a bilinear distribution that satis-
fies the marginals cannot be positive throughout the time-frequency plane; it must
go negative somewhere. As we will see, the Wigner distribution does satisfy the
marginals and hence we expect it to always have regions of negative values for
any signal. That is indeed the case, with one glaring exception, the signal given by
Eq. (8.43). How is it possible that there can be an exception? The reason is that the
Wigner distribution for that signal is not really bilinear and it belongs to the class
of positive distributions that are not bilinear. These distributions are considered in
Section 14.2.
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8.3 GENERAL PROPERTIES

We now discuss the basic properties of the Wigner distribution.

Reality. The Wigner distribution is always real, even if the signal is complex. This
can be verified by considering the complex conjugate of W (t, w),

W*(t,w) =
2_'r

J s(t-ZT)s*(t+2T)e"'dr (8.11)

_ 1 -OO

1
. s(t+2T)s*(t _ 2T)a-jT"dT (8.12)

1 °O

27r
f s(t+ -IT) s*(t - 2T) a-'T" dr (8.13)

W(t, w) (8.14)

The fact that the Wigner distribution is real for any signal can also be seen from the
characteristic function. Recall that M* (-0, -T) = M(0, T) is the condition for a
distribution to be real. But the characteristic function of the Wigner distribution is
the ambiguity function, A(0, T), Eq. (8.8), which does satisfy this property.

Symmetry. Substituting -w for w into the Wigner distribution we see that we ob-
tain the identical form back if the signal is real. But real signals have symmetrical
spectra. Therefore, for symmetric spectra the Wigner distribution is symmetrical in
the frequency domain. Similarly for real spectra the time waveform is symmetrical
and the Wigner distribution is symmetric in time. Therefore,

W(t, w) = W(t, -w) for real signals - symmetrical spectra, S(w) = S(-w) (8.15)

W (t, w) = W(-t, w) for real spectra - symmetrical signals, s(t) = s(-t) (8.16)

Marginals. The Wigner distribution satisfies the time-frequency marginals

fW(t,w) dw = I s(t) I2 (8.17)

f W (t, w) dt = I S(w) I2 (8.18)

Both of these equations can be readily verified by examining M(8, 0) and M(0, T).
By inspection of Eq. (8.8) and Eq. (8.10) we have

M(0, 0) = f (8.19)
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But these are the characteristic functions of the marginals and hence the marginals
are satisfied. To do it directly,

P(t) =
J

W(t, w) dw = 21113* (t - 2r)s(t+2r)e-j'r"drdw (8.20)

fs*(t_T)s(t+r)6(r)dr (8.21)

I s(t) 12 (8.22)

and similarly for the marginal in frequency. Since the marginals are satisfied, the
total energy condition is also automatically satisfied,

E = fW (t, w) dw dt = f I s(t) 12 dr = 1 (8.23)

Tune and Frequency Shifts. If we time shift the signal by to and/or shift the spec-
trum by wo, then the Wigner distribution is shifted accordingly,

if s(t) - eJ"ots(t - to) then W (t, w) - W (t - to, w - wo) (8.24)

To see this we replace the signal by ejwot s(t - to) in the Wigner distribution and
call Wah the shifted distribution,

= 1 e-io(t-r/2) s*(t - to - 2r)Wsh(t,w
21r J

x e wo(t+r/2) s(t - to + 2r) a-Jr" dr (8.25)

1 1 1 -7r("-"o)
27r

s (t - to - 2r) s(t - to + 2r) a d7- (8.26)

W(t - to,w - wo) (8.27)

8.4 GLOBAL AVERAGES

The global average of a function g is

if(g(t,w)) = W (t, w) dw dt (8.28)

Since the Wigner distribution satisfies the marginals it will give the correct answer
for averages that are only functions of time or frequency or the sum of two such
functions

(91(t) + 92(w)) = fJ{91(t) + g2(w)}W(t,w)dwdt (8.29)
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= f91(t) I s(t) I2 dt + J 92(w) I S(w) 12 dw (8.30)

always correctly given since averages

are calculated with correct marginals

Mean Time, Mean Frequency, Duration, Bandwidth, and the Uncertainty Princi-
ple. All these quantities are automatically satisfied since all these quantities depend
on the marginals only, which are correctly given by the Wigner distribution.

Correlation and Covariance. The first mixed moment of the Wigner distribution
is

(tw) = fftwW(tw)dtdi. = Jtw'(t) I s(t)12dt (8.31)

Therefore the Wigner distribution gives the covariance of a signal as defined by Eq.
(1.124).

8.5 LOCAL AVERAGES

The first conditional moments of time and frequency are

(w )t = l s(t) 12 Jw W (t, w) dw ; (t), = S(w) I2 ftW(tw)dt (8.32)

When these are evaluated we obtain,

(w )t = WV) ; (t). = -0'(w) (8.33)

where 0 and 0 are the phase and spectral phase of the signal. But W'(t) and -0'(W)
are the instantaneous frequency and group delay. These are important results be-
cause they are always true for any signal. Recall that for the spectrogram they were
never correctly given, although we could approximate one or the other. Further-
more, if we tried to make one of the two relations approximately true by narrowing
the window, the other relation would become very poor.

Local Spread. The result just obtained shows that instantaneous frequency is an
average, the conditional average for a particular time. We now consider the spread
about that average, the conditional standard deviation. First consider the second
conditional moment in frequency,

( w2 )t = s(t)
12

fw2 W (t' w) dw (8.34)

1

CAI (t) /
2 - A"(t) + 2(t)

(8.35)
2 A(t) A(t)
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where A is the amplitude of the signal. The conditional spread in frequency is

O
2 It

(w2)t - (w)i

(A'(t) )2 - A"(t)
2 A(t)) A(t)

(8.36)

(8.37)

This expression for o may go negative and hence cannot be properly interpreted.
In fact, for such a case °wIt is imaginary. Therefore, while the Wigner distribution
gives an excellent result for the average conditional frequency, it gives a very poor
one for the spread of those frequencies. Are there distributions that give a plausible
answer? The answer is yes and we consider this question in Section 13.2.

8.6 EXAMPLES

Before proceeding with the general properties of the Wigner distribution we con-
sider some examples.

Example 8.1: Sinusoid and Impulse.

For the sinusoid and impulse the Wigner distribution gives an answer totally consis-
tent with intuition,

8(t) = ejWOt W(t, w) = 6(w - wo) (8.38)

s(t) = 2a6(t - to) W (t, w) = 6(t - to) (8.39)

For a sinusoid the Wigner distribution is totally concentrated along the frequency of
the sinusoid, and for the impulse it is totally concentrated at the time of occurrence.

Example 8.2: Sinusoid with Gaussian Amplitude.

If we modulate a pure sinusoid with a Gaussian envelope then

s(t) = (a/7r) 1/4 e_at2/2+jI.+ot W(t,w) = 1/Ire-ate-(W-WO)'/a (8.40)

We see that the Wigner distribution is still concentrated around the single frequency
of the sinusoid but now there is spreading. In addition, for any particular value of
frequency it falls off as the squared amplitude of the signal. To calculate the conditional
spread, Eq. (8.37), we have

A'/A = -at ; A"/A = a2t2 - a QW ,t = a/2 (8.41)

Note that this expression for the conditional spread as given by the Wigner distribu-
tion is always the case for a Gaussian envelope since the conditional spread does not
depend on the phase of the signal. However, other distributions will give different
answers. See Section 13.2.
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Example 8.3: Pure Chirp.

For the chirp with no amplitude modulation

3(t) = e29t2/2+jWot

121

W(t,w) = 6(w -,3t - wo) (8.42)

The instantaneous frequency is w, = pt + wo and therefore, for this case, the Wigner
distribution is totally concentrated along the instantaneous frequency.

Example 8.4: Chirp With Gaussian Amplitude.

Now place a Gaussian envelope on the chirp. The Wigner distribution is

s(t) = (a/7r) 1/4 e-at'/2+j9t2/2+jWOt W(t,w) = 1 e-ate-(W-9t-WO)'/a (8.43)
7r

This is the most general case for which the Wigner distribution is positive and this case
encompasses all previous examples. If a is small, then the distribution is concentrated
along the w = wo + ,Ot, which is the instantaneous frequency. In Fig. 8.3 we plot the
Wigner distribution.

5 -5

Fig. 8.3 The Wigner distribution for the signal s(t) = (a/7r) 1/4 e-at2 /2+j8t2 /2+jwot

This is the most general signal for which the Wigner distribution is positive through-
out the time-frequency plane. As the envelope becomes more and more flat the
Wigner distribution gets more and more concentrated along the instantaneous fre-
quency, as shown in (b). In (a) and (b) a = 1 and a = 0.001 respectively. In both
figures wo=8andf=1.

Example 8.5: The Signal: t e-at'/2+jat2/2+j(Ot.

Now take the signal considered above and multiply it by time,

s(t) = (4a3/7r)1/4te-at'/2+j9t2/2+jWot

where we have also normalized it. The Wigner distribution is

W(t, w) = a [at2 + (w - Qt - wo)2/a - z
e-at'-(W-9t-WO)'/a

(8.44)

(8.45)
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and is plotted in Fig. 8.4. It is negative whenever

at2 + (w - pt - w0)21tY < (8.46)

This is the typical situation. The Wigner distribution goes negative somewhere for
every signal, with the exception of the signal given by Eq. (8.43).

5 -5

Fig. 8.4 The Wigner distribution for the signal s(t) = t Ev-

erything below the plane is negative.

Example 8.6: Cubic Phase.

i lor t e s gnaF h

s(t) = eiw(t) i V(t) = 'y3t3/3 + 0t2 /2 + wot (8.47)

we have

2r) + p(t + 17-) = yr3/12 + ('yt2 + pt + wo)r (8.48)

= -/,r'/12 + Wp (t)r (8.49)

ner distribution isd therefore the Wigan

w) = 1
e2-,r3/12+7(w'(t)-w)rdT

W(t (8.50),
2zr

2

(4) 1/3 f
r J

dt
2-7r

(8.51)

r/
\1/3

Ai ( (4/-y)l
1/3 [,P1 (t) (8.52)

where Ai(x) is the Airy function
00

cos(u3/3 + xu) duAi(x) = 1 (8.53)J
7

o
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Unlike the quadratic case, this distribution is not a delta function of w-cp' (t). However,
it is concentrated along w = cp' (t).

Example 8.7: Finite Duration Chirp.

For the finite duration chirp

s(t) = ejat2/2+awot - T/2 < t < T/2 (8.54)

the Wigner distribution is calculated to be

sin[(w - /jt - wo)(t + T/2)] -T/2 < t < 0

W(t,w) = l sin[(w -,3t - wo)(T/2 - t)] 0 < t < T/2
7r(w-Qt-wo)

0 otherwise

Note that the Wigner distribution goes to zero at the end points.

Example 8.8: Sinusoidal Frequency Modulation.

The signal

9(t) = (D/7r)1/4 e-at2/2+jOt2/2+3msmwmt+7wot

(8.55)

(8.56)

has an instantaneous frequency given by w; = /3t + wo + mwm cos w,t. The Wigner
distribution can be obtained analytically. Substituting the signal into the definition of
the Wiper distribution we obtain

W (t, w)
tar (Ct ) 1/2

CIO f e-are/a+2am cos(wmt) sin(wmr/2)-7r(w-wo-pt) dr

Now
(8.57)

00
e2jmcos(wmt) sm(wmr/2) _ E Jn(2m cos(wmt)) ejnw-r/2 (8.58)

n=-m
where J. is the Bessel function of order n. Substituting this into equation Eq. (8.57)
and integrating we have

W (t, w) = 1 e-ate
7r

00

1: Jn(2mcos(wmt)) -(w-w0-Ot-nwm/2)2/a
n=-oo

(8.59)

This can be interpreted as the Wigner distribution of the sum of Gaussians each with
instantaneous frequency w, = wo + n'.&m /2 +,3t.

Complex Signals and Real Signals. The reader may have noticed that all the ex-
amples presented thus far have been for complex signals. The reason is that there
is an effective way to think of the Wigner distribution for the sum of two signals. A
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real signal can always be thought of as the sum of a complex signal plus its complex
conjugate. We therefore leave the consideration of real signals until we develop
some simple results regarding the Wigner distribution for the sum of two signals.

8.7 THE WIGNER DISTRIBUTION OF THE SUM
OF TWO SIGNALS

The Cross Wigner Distribution. Suppose we express a signal as the sum of two
pieces,

8(t) = 81(t) + 82(t) (8.60)

Substituting this into the definition, we have

W(t,w) = Wli(t,w) +W22(t,w) +W12(t,w) + W21(t,w)

where

(8.61)

W12(t,w) = 2- fs(t_ 2T)82(t+ 2T)e--77"dr (8.62)

This is called the cross Wigner distribution. In terms of the spectrum it is

W12 (t, w) = 2 - fSi(+ z 9) S2 (w - z 0) a-'te d9 (8.63)

The cross Wigner distribution is complex. However, W12 = Wzi, and therefore
W12 (t, w) + W21 (t, w) is real. Hence

W(t,w) = W11(t,w)+W2Z(t,w)+2Re {W12(t,w)} (8.64)

We see that the Wigner distribution of the sum of two signals is not the sum of
the Wigner distribution of each signal but has the additional term 2 Re { W12 (t, w) }.
This term is often called the interference term or the cross term and it is often said to
give rise to artifacts. However, one has to be cautious with the images these words
evoke, because any signal can be broken up into an arbitrary number of parts and
the so-called cross terms are therefore not generally unique and do not characterize
anything but our own division of a signal into parts. Sometimes there is a natural
decomposition where the self terms and cross terms take on special meaning. This
question is addressed in the next section and in Section 13.3.

Example 8.9: Sum of Two Sinusoids.

We take
s(t) = Ai e'W,t + A2 ejm2t

(8.65)

The Wigner distribution is

W(t,w) = Ai6(w-wi)+AZ6(w-w2)+2A1A26(w-z(wi+W2)) cos(w2-wi)t (8.66)

The three terms correspond to the ones just discussed for Eq. (8.64). Besides the con-
centration at wi and w2, we also have nonzero values at the frequency

z
(wi + W2).
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This is an illustration of the cross term. It is sharp at w = 1 (wi + w2) because that is
the only value for which there is an overlap, since the signal is sharp at both wi and
W2.

Example 8.10: Cosine.

For a cosine wave, s(t) = cos wot, we specialize Example 8.9 by taking A2 = Al = 1/2
and wi = -w2 = wo, which gives

W (t, w) = 6(w - wo) + 6(w + wo) + 2 6(w) cos 2wot [ s(t) = cos wot ] (8.67)

Example 8.11: Sinusoid Plus Impulse.

Now consider the sum of a sinusoid and impulse,

s(t) = e'-O' + 27r6(t - to)

Straightforwardly we obtain

(8.68)

W (t' w) = 6(w - wo) + 6(t - to) +
2=

cos[2(w - wo)(t - to) - woto] (8.69)
Vr7r

Comparing this equation to the spectrogram, Eq. (7.69), we see that the self terms
are infinitely sharp - something the spectrogram cannot achieve. However, the cross
terms in the Wigner distribution are not hidden by the self terms as is the case in the
spectrogram, as per the discussion after Eq. (7.69). In Fig. 8.5 we plot this distribution.
We also give the ambiguity function for this case,

A(O, r) = 27re"0"6(0) + 27re'Bt06(r) + 2a e-i-o(to-T)+.ie(to-T/2) + c.c. (8.70)

where c.c. stands for the complex conjugate of the preceding terms.

10

10

Fig. 8.5 The Wigner dis-
tribution of s(t) = e'lot +
6(t - 10). It is infinitely
peaked in time and fre-
quency at the indicated val-
ues. The ripples are the
cross terms. Compare this
with the spectrogram, Fig.
7.1. Note the spectrogram
also has cross terms but
they are mostly hidden un-
der the self terms.

0 0
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Example 8.12: Sum of Two Tones with Amplitude Modulation.

Now if we put amplitude modulation on each part

8(t) = Al (a1/7r)1/4 e-alt2/2+7w1t + A2 (Q2 /7r)1/4
E

a22/2+IW2t
(8.71)

where the modulation extends over all time, the cross terms will extend over all times
and frequencies. The Wigner distribution can be calculated exactly,

W(t,w) - A
C

alt'-(W-Wl)'/al + A! C-a'2t2 -(W-W2)2 /a2
7r It

A1A2 2(alaa)1/2 r 2t 1
+ 2 a a1 + a2

cos
L a1 + az

(w + w2a1 - W 1 0 2 )

x exp - 2 {al a2t2 + [w - j (w1 + W2)}2 } (8.72)
C11 + a2

Cross Terms, Interference Terms, Ghosts, Artifacts, Multicomponent Signals.
From the examples we have just considered we see that the Wigner distribution
sometimes places values in the middle of the two signals both in time and in fre-
quency. Sometimes these values are in places in the time frequency plane at odds
with what is expected. A typical case is illustrated in Fig. 8.6. Because of this a
language has arisen regarding the cross terms and very often phrases like artifacts,
ghosts, and interference terms are used, words chosen to describe something ap-
parently undesirable. The implication is that since these effects are due to the cross
terms, the cross terms themselves are undesirable.

It is important to clarify these issues. First let us make clear that it is not generally
true that the cross terms produce undesirable effects. Any signal can be broken up
into parts, in an infinite number of ways. If we have a signal for which we are
pleased with the answer the Wigner distribution gives and someone comes along
and expresses the signal in terms of two parts, will the cross terms be undesirable?
Quite the contrary, they are highly desirable, for without them we would not get
the pleasing answer. In fact, since any signal can be broken up into a sum of parts
in an arbitrary way, the cross terms can be neither bad nor good since they are
not uniquely defined; they are different for different decompositions. The Wigner
distribution does not know about cross terms, since the breaking up of a signal into
parts is not unique.

There are decompositions for which we think the parts are special in the sense
that we think they should be concentrated in certain regions of the time-frequency
plane, hence if we have two such signals we also sense that they should be well
delineated in the time-frequency plane and that no other terms should appear. If
a signal is indeed well delineated in a region we shall call it monocomponent, and
if there is more than one well delineated region we shall call it a multicomponent
signal. Very often, in the literature, a signal has been called multicomponent when
it is expressed as the sum of two parts. This is not appropriate, since a signal can be
broken up into parts in an infinite number of arbitrary ways. We shall reserve the
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phrase "multicomponent signal" to mean a signal that in the time-frequency plane
is well delineated into regions and not simply to mean that it has been expressed as
the sum of parts. One of the strengths of the Wigner distribution is that it indeed
does indicate when a signal is multicomponent. We emphasize that when we feed
a signal into the Wigner distribution (and others) we do not tell it that it is multi-
component - it tells us, and that is one of the accomplishments of time-frequency
analysis. However, these considerations do not answer the question as to what
type of signals produce well delineated regions in the time-frequency plane. This
is a fundamental question which is addressed in Section 13.3.

Fig. 8.6 The Wigner dis-
tribution of the sum of two
chirps illustrating the cross
terms.

8.8 ADDITIONAL PROPERTIES

Inversion and Uniqueness. The Wigner distribution is the Fourier transform of
s' (t - ar) s(t + zr) with respect to r. Inverting

s`(t-2r) 8(t+2r) = fW(t,w)eTL)di., (8.73)

and taking the specific value, t = 7-/2, letting k = 1/s` (0), and then setting r = t,
we have

s(t) = k f W (t/2, w) eat`'' dw (8.74)

which shows that the signal can be recovered from the Wigner distribution up to a
constant. The constant can be obtained from the normalization condition up to an
arbitrary constant phase factor. A constant phase factor in the signal clearly drops
out when we calculate the Wigner distribution, since we are multiplying the signal
times its complex conjugate. Therefore it can never be recovered.

Representability. Not every function of time and frequency is a proper Wigner dis-
tribution because there may not exist a signal that will generate it. If a two dimen-
sional time-frequency function is generated from some signal, we shall say that it is
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representable or realizable. It is not always easy to ascertain whether a function is
representable or not, although sometimes it is. For example, any manifestly positive
two dimensional function is not a representable Wigner function unless it happens
to be of the form given by Eq. (8.43). This is because the Wigner distribution always
goes negative somewhere, the only exception being Eq. (8.43). Generally, a way to
ascertain whether a two dimensional function is a Wigner distribution is to assume
that it is, use the inversion formula to find the signal, and then calculate the Wigner
distribution from the derived signal. If we recover the same function then it is a
representable Wigner function.

Example 8.13: Representability of the Wigner Distribution.

Take the two dimensional function

G(t w) = e-t'/a-W2/s+2 )t (8.75)

For what values of a, 0,,y can this be a Wigner distribution? Assume that it is and
obtain the signal using the inversion formula, Eq. (8.74),

s(t) = k
J

G(t/2, w) eitW dw - e-[1/a-6'(T+i))t2/4 (8.76)

Now calculate the Wigner distribution of this signal to obtain

W(t,w)" exp[-(c+/i2_y2/c)t2-w2/c+2rypwt] (c= 2(1/a+Q-Ary2)]

When does W (t, w) = G(t, w)? Only when c = /i or
(8.77)

1 = 1 + ry2

aQ
(8.78)/

Therefore the three constants must be chosen according to Eq. (8.78) if G(t, w) is to be
a Wigner distribution.

Example 8.14: Wigner Nonrepresentability.

Now consider the function

G(t,w) = t2w2e-at2_ 2+2ywt
(8.79)

If the above calculation is repeated we see that there is no way to choose the constants
appropriately. There is a much easier way to ascertain that. Note that this G is always
nonnegative. We know that cannot be unless the distribution is given by Eq. (8.42),
and this G is not of that form. Hence it is not a representable Wigner function.

Overlap of Two Signals - Moyal Formula. In many problems the overlap of two
signals enters. It can be expressed as the overlap of their respective Wigner distri-
butions,

fsi(t) s (t) dt
2

= 27r f f W1 (t, W) W2 (t, w) dt dw (8.80)
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This is easily verified and was first shown by Moyal.13901 Of course, if we have two
signals it would make no sense to calculate their overlap by first calculating their
respective Wigner distributions and then doing the integrals indicated. However,
this expression is of theoretical interest and also has been applied to problems of
detection by Flandrin.11911

Range of the Cross Terms. We discussed the range of the Wigner distribution in
Section 8.2. Similar considerations establish the range of the cross Wigner distribu-
tion. In particular, for two functions, Si (t) and 32 (t) , which are respectively zero
outside the intervals (t1, t2) and (t3, t4), the cross Wigner distribution satisfies the
followingl2531

W12(t,w)=0 fort outside (2(t1+t3),2(t2+t4)) (8.81)

if s1(t) is zero outside (t1, t2) and s2(t) is zero outside (t3, t4)

In the frequency domain, for two bandlimited functions, Sl (w) and S2 (u)), which
are zero outside the intervals (wl, w2) and (w3i w4), respectively, we have

W12(t, w) =0 for w outside (2 (w1 +W3), z (w2 +W4)) (8.82)

if Sl (w) is zero outside (w1, w2) and S2 (u;) is zero outside (w3, w4)

Product of Two Signals and Product of TWo Spectra. The Wigner distribution of
the product of two signals s(t) = si (t) s2(t) can be written in terms of the Wigner
distribution of each signal. The way to do it is to substitute S1 (t) 82 (t) into the defi-
nition of the Wigner distribution and then use the inversion formula for each signal.
This results in

W (t, w) = J Wl (t, w') W2 (t, w - w') dw' [for s(t) = 81(032W1 (8.83)

Similarly, if we have a spectrum that is the product of two spectra (in which case
the signal is the convolution of the two signals), then

W(t,w) =
J

W1(t',w)W2(t' - t, w) dt' [for S(w) = Sl(w)S2(w) ] (8.84)

Analytic Signal. Since the analytic signal eliminates the negative frequencies, the
Wigner distribution of an analytic signal will be zero for the negative frequencies.
Also, use of the analytic signal will eliminate the cross terms between the negative
and positive parts of the spectrum.

Relation to the Spectrogram. If we convolve, in time and frequency, the Wigner
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distribution of the signal with the Wigner distribution of a window, we get the spec-
trogram

PSP (t, w) = JfWa(t'w')Wh(t' - t, w - w')dt' dw' (8.85)

1 e-3Wrs(r) h(r - t) dr-
2

(8.86)

This relation is interesting, but no particular significance should be attached to the
fact that we are convolving the Wigner distributions, because all time-frequency dis-
tributions satisfy a similar relation. Indeed, the best way to prove this result will be
from our general considerations in the next chapter.

Noise. The Wigner distribution is very noisy and even places noise at times where
there was no noise in the signal. To understand this, consider an infinite duration
signal where there was noise for only five minutes. Take any particular time and,
using our usual argument, fold the future with the past. The five minutes of noise,
no matter when it occurred, will contribute and therefore noise will appear even
though there was no noise at the time being considered. This will hold true for any
time. For a finite duration signal it will appear at those times when the folding over
procedure includes the noise.

Fig. 8.7 illustrates these effects. An analysis of additive white noise and the
Wigner distribution has been done by Nuttall.I4°3]

t1

W1 w2

FREQLENCY ---

8.9 PSEUDO WIGNER DISTRIBUTION

Fig. 8.7 The Wigner distribution is
"noisy" because we have cross terms
between the noise and between the
noise and signal. Note that noise ap-
pears at times when there is no noise
in the signal.

Windowing the Lag. For a given time the Wigner distribution weighs equally all
times of the future and past. Similarly, for a given frequency it weighs equally all
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frequencies below and above that frequency. There are two reasons for wanting
to modify this basic property of the Wigner distribution. First, in practice we may
not be able to integrate from minus to plus infinity and so one should study the
effects of limiting the range. Second, in calculating the distribution for a time t, we
may want to emphasize the properties near the time of interest compared to the
far away times. To achieve this, note that for a given time the Wigner distribution
is the Fourier transform with respect to r of the quantity s* (t - 1 r) s(t + 2 r). The
variable r is called the lag variable. Therefore if we want to emphasize the signal
around time t, we multiply this product by a function that is peaked around r = 0,
h(r) say, to define the pseudo Wigner distribution

WPS(t,w) =
J

h(r)s*(t- 2r)s(t+1r)a-j"T dr (8.87)

The Wigner distribution is highly nonlocal and the effect of the windowing is to
make it less so. One of the consequences of this is that the pseudo Wigner distribu-
tion suppresses, to some extent, the cross terms for multicomponent signals. This
is because we have made the Wigner distribution local. While windowing the lag
does suppress the cross terms, it also destroys many of the desirable properties of
the Wigner distribution. For example the marginals and instantaneous frequency
properties no longer hold.

Example 8.15: Pseudo Wigner Distribution for a Sine Wave.

Take as an example a pure sine wave and a Gaussian, h(t),

s(t) = e'WOt h(t) = e-at2/2 (8.88)

The pseudo Wigner distribution can be calculated analytically,

Wps(t,w) = 1 e-("-"o)/(2a) (8.89)
v'r2_7_r_a

In the non windowed version, Eq. (8.36), the Wigner distribution was totally concen-
trated at w = wo. It was W(t,w) = 6(w - wo). That is no longer the case and the
broadness depends on the window size.

Example 8.16: Windowed Wigner for the Sum of TWo Sine Waves.

For the sum of two sine waves

s(t) = Alej"lt + A2ejw2t (8.90)

with the same h(t) as above we have

W(t w = 1 [A2 )/(2a) + A2
27ra 1

2

+ 2AiA2
cos[(w2 - wl)t] e-('-("1+-2)/2)2/(2a) (8.91)

27ra

If we choose a small a the cross terms can be made small. However, note that the self
terms get spread out.
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8.10 MODIFIED WIGNER DISTRIBUTIONS AND POSITIVITY

Historically the main motive for modifying the Wigner distribution was the attempt
to achieve a positive distribution. One way to approach this problem is to attempt to
smooth it by convolving it with a smoothing function L(t, w) to obtain the smoothed
Wigner distribution

WSM (t, w) = fL(t - t', w - w') W (t', w') dt'dw' (8.92)

The first example of a smoothing function was devised by Cartwright,11091

L(t,w) = e-t2/°-W2/R

(8.93)

Substituting this L and the definition of the Wigner distribution into Eq. (8.92) and
integrating over w' results in

WSM(t,w)
27r ff e-(t'-t)/a-)9T2 2Tr) s(t' + 2rr)dt'dr (8.94)

Making the change of variables y = t' - 1-r - t; x = t' +
i
r - t, we obtain

WSM (t, w) _ f f e(A-1/.).y/2f-(Y) 1(x) dxdy [1(x) = e-(8+110)x'/4-iwxj

(8.95)

Expanding e(0-1/0)xy/2 in a Taylor series we have

WSM (t, w) = Y V'
_ 2n

(0 - 1/a)n
27r n!

n=0 f
f(x)xn dx

2

(8.%)

If each term is positive then the sum will be positive. To assure that we must take
- 1/a > 0 or equivalently

aQ> 1 (8.97)

Notice that if af3 = 1, then only the first term survives. But with this condition L
is a Wigner distribution, as we showed in Eq. (8.78). In that case, we know from
Eq. (8.85) that the resulting distribution is the spectrogram. In the general case, Eq.
(8.96) is a sum of spectrograms.

Nuttall1403, 404] has generalized this by considering the smoothing function

L(t,w) =
e-t2/°-W2/A-2ywt

(8.98)

The resulting distribution is positive if a/3 > (1 + y2)-1.

Smoothing, Transforming, and Convolution. Smoothing or blurring is sometimes
desirable, as, for example to eliminate the wrinkles of a portrait. More often, though,
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it is undesirable, as exemplified by the blurring of celestial objects by the atmo-
sphere. Since these phenomena are so common there is a vast methodology on the
subject. One way to study blurring is to model it as a convolution of the original
function with a blurring function. Generally, convolution is not reversible, which
can be interpreted as our inability to unblur an image that has been blurred. How-
ever, convolution may be reversible. We mention this here because it will turn out
that all bilinear distributions may be obtained from the Wigner distribution by a
convolution. No significance should be attached to this, since all other distribu-
tions may be obtained by convolving with any distribution, not only the Wigner. A
distribution that we will be studying is the Choi-Williams distribution which can be
obtained by convolving the Wigner distribution with a certain function. It would be
wrong to think of the Choi-Williams as a smoothed Wigner distribution because it
is also true that the Wigner distribution can be obtained from the Choi-Williams by
a convolution. Hence one could argue that the Wigner is a smoothed version of the
Choi-Williams. It is better in such situations to think of the process as a reversible
transformation. See section 9.7.

8.11 COMPARISON OF THE WIGNER DISTRIBUTION
WITH THE SPECTROGRAM

It has often been said that one of the advantages of the Wigner distribution over
the spectrogram is that we do not have to bother with choosing the window. This
viewpoint misses the essence of the issue. The spectrogram is not one distribution,
it is an infinite class of distributions and to say that an advantage is that one does
not have to choose makes as much sense as saying one book is better than a library
because we don't have to choose which book to read. Here is the point: The Wigner
distribution in some respects is better than any spectrogram. It is not that we do not
have to bother about choosing a window, it is that even if we bothered we wouldn't
find one that produces a spectrogram that is better than the Wigner. In particular,
the Wigner distribution gives a clear picture of the instantaneous frequency and
group delay. In fact, the conditional averages are exactly the instantaneous fre-
quency and group delay. This is always true for the Wigner distribution; it is never
true for the spectrogram. We could search forever and never find a window that
will produce a spectrogram that will give the instantaneous frequency and group
delay, although sometimes a good approximation is achieved.

One of the advantages of the spectrogram is that it is a proper distribution in the
sense that it is positive. Because it is manifestly positive, the results obtained from it
can be interpreted, although they may be wrong or poor. The Wigner distribution
is (with one exception) never manifestly positive, which sometimes leads to results
that cannot be interpreted and indeed go against our sensibilities. For example, the
conditional standard deviation may be negative.

Finally, the Wigner distribution and spectrograms allow us to ascertain, in most
cases, whether a signal is multicomponent. But the Wigner distribution suffers from
the fact that for multicomponent signals we get confusing artifacts. On the other
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hand, the spectrogram often cannot resolve the components effectively. We men-
tion here that other distributions we will consider keep the desirable properties of
the Wigner distribution and have considerably better behavior with regard to the
undesirable properties. In Figs. 8.8, 8.9, and 8.10 we give a few examples contrast-
ing the Wigner distribution and spectrogram.

Contrast Regarding Global Averages and the Uncertainty Principle. Since the
Wigner distribution satisfies the marginals, it always gives the correct answers for
averages of functions of frequency or time and always satisfies the uncertainty prin-
ciple of the signal. On the other hand, the spectrogram never gives the correct an-
swers for these averages and never satisfies the uncertainty principle of the signal.

T

W

Fig. 8.8 Comparison of the Wigner distribution (bottom) with the spectrogram (top)
for two multicomponent signals.
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Fig. 8.9 When muscles contract they make a sound. In (a) and (b) we have the
Wigner distribution and spectrogram of a typical case. (Courtesy of J. Wood, N. M.
Cole and D. I Barry)
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Fig. 8.10 Aneurysm signal. About 5% of the population has a small spherical en-
largement of the wall of the cerebral artery (aneurysm). Some aneurysms emit a
sound. In the above figure are the Wigner distribution (a) and spectrogram (b) of
such a sound. (Courtesy of M. Sun and R. J. Sclabassi.)



Chapter 9

General Approach
and the Kernel Method

9.1 INTRODUCTION

The Wigner distribution, as considered in signal analysis, was the first example of
a joint time-frequency distribution that was qualitatively different form the spec-
trogram. The idea of the spectrogram crystallized in the 1940s. Independent of
that development, there was considerable activity in the 1940s, 1950s, and 1960s,
devising distributions which were similar in spirit to the Wigner distribution in the
sense that they satisfied the marginals, the instantaneous frequency condition, and
other desirable properties. Among the distributions proposed then (in signal analy-
sis and quantum mechanics) were the Rihaczek, Page, and Margenau-Hill. In 1966
a method was devised that could generate in a simple manner an infinite number of
new ones. 1' ) The approach characterizes time-frequency distributions by an aux-
iliary function, the kernel function. The properties of a distribution are reflected by
simple constraints on the kernel, and by examining the kernel one readily can as-
certain the properties of the distribution. This allows one to pick and choose those
kernels that produce distributions with prescribed, desirable properties. This gen-
eral class can be derived by the method of characteristic functions. In this chapter
we explain the method and the general ideas associated with it and give the deriva-
tion in the next chapter.

9.2 GENERAL CLASS

All time-frequency representations can be obtained from

C(t, w) = 471 JJJ s* (u - 2 r) s(u 2 r) 0(9, r) e-yet-jTw+jeu du dr dB (9.1)

where q5(0, r) is a two dimensional function called the kernel, a term coined by

136
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Claasen and Mecklenbraukerl1201 and whom, with Janssenl2761, made many impor-
tant contributions to the general understanding of the general class, particularly in
the signal analysis context.

The kernel determines the distribution and its properties. In Table 9.1 we list
some distributions and their corresponding kernels. For the Wigner distribution
the kernel is one; however, no particular significance should be attached to that
since it is possible to write the general form so that the kernel of any distribution is
one, in which case the kernel of the Wigner distribution would be something else.

Spectrum. In terms

fff

ofthe spectrum the general class is

C(t, w) S` (u + 29) S(u -
2

B) 0(9, T) +iTU dB dr du (9.2)

as may be verified by expressing the signal in terms of the spectrum and substituting
in Eq. (9.1).

Alternate Forms. There are a number of alternative ways of writing the general class
of time-frequency distributions that are convenient and add considerable physical
insight.

Characteristic Function Formulation. Recall that the characteristic function is the
double Fourier transform of the distribution. By inspection of Eq. (9.1), we see that

C(t, w)
47x2

ff M(B' T) e-iet-jT-dB dT (9.3)

where

M(O"r) = 00, T) J s* (u - 2 T) s(u + 2'r) a ou du (9.4)

= 0(9, r) A(0, -r) (9.5)

and where A(O, T) is the symmetrical ambiguity function. The characteristic func-
tion may be appropriately called the generalized ambiguity function.

Time Dependent Autocorrelation Function. In Chapter 1 we showed that the en-
ergy density can be written as the Fourier transform of the (deterministic) autocor-
relation function. Now we generalize this idea by thinking of the time-frequency
energy distribution as the Fourier transform of a local autocorrelation function, 11171
Rt (7),

C(t, W)
= Z _

f R, (-r) e-2-- dr

By comparing with Eq. (9.1) we have

Rt(T) _ JJ 8*(u - 2T) s(u + 2T) 0(9, r) e'e("-t0 d9 du (9.7)

We shall call Rt (T) the deterministic generalized local autocorrelation function.
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Table 9.1. Some Distributions and Their Kernels

Name

General class

(Cohen[125] )

Wigner[584]

Margenau-Hill[358]

Kirkwood [305]

Rihaczek[4"]

Born-Jordan'

(Cohen[1251 )

Page[4191

Choi-Williams[117]

Spectrogram

Zhao-Atlas-Marks [626]

Kernel: d(B, T)

0(B,r)

1

cos
Z

BT

,j&-r/2

sin .1Or

20r

e7elrl

e-B2r2/°

f h* (u - 1r) e-'eu

,J h(u + T) du2

9(T)ITI aB
8r

e-Set-fir"+jeu
0(0"r)

a'(u- 2T)s(u+ 2T)dudrd9

1

27r

e-""Ws'(t - 1r)s(t+ 1r)dr2 2

Re
27<

---s(t)S(w)e"

1 - t"
27r

/t+lr[/V 1 -)r"!2IrI a

1_ITI/2
s'(u- 1r)s(u+1r)dudr2 2

8
at

47x3/2 f T2/Q
a' (u- 2T)s(u.+2T)dudr

if e- '",r s(T)h(T - t) dT

1_ f g(r)e-)r"

47ra

2

s'(u- Zr)s(u+ 2r)dudr

Positive2
(Cohen, Posch,
Zaparovanny[127' 128] )

see Chapter 14 I S(w)12 8(1)12 c1(u, v)

i

1 Derived in reference [125] using the ordering rule of Born and Jordan. The derivation is repeated in
Section 10.6.

2 These distributions and the spectrogram are manifestly positive, but only the 'Positive' ones satisfy the

margin's.

Distribution: C(t, w)

s(t)S (w) e '

22
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Fourier Transform of the Kernel. Notice that in the general form 9 does not appear
in the signal. Hence if we define

r(t, T) = 1 0(9, r) a-.it9 d9 (9.8)
27r

the general class can be written as

C(t, w) = 1
JJ

r(t - u, r) s* (u - 2T) s(u + 1T) a-j" du dT (9.9)

The local autocorrelation becomes

Rt(T) fr(t_u,T)s*(u_T)s(u+r)du (9.10)2

Bilinear Transformation. f585. 137] If in Eq. (9.1) we make the transformation

x'=u- 2T ; x=u+ZT or u= 2(x+x') ; T=x - x' (9.11)

then we have

C(t, W) = Jf K(t, w; x', x) s` (x) s(x) dx dx' (9.12)

with

K(t, w; x', x) = 2 r(t -
2

(x + x'), - x) e-jw(x'-x) (9.13)

As we discuss in the subsequent sections, properties of the distribution are reflected
in the kernel. These constraints may be imposed on 0 or K but are generally sim-
pler when expressed in terms of 0. This is a bilinear form only when K is signal
independent.

Sum of Two Signals. For

s(t) = sl(t) + s2(t) (9.14)

the distribution is

C(t, W) = C11(t, W) + C22 (t, W) + C12 (t, w) + C21 (t, w) (9.15)

where the cross distribution between two signals is

Ck!(t, w) = j p JfJ 0(0, T) sk(u - 2T) sL(u + 1T) e-9Bt-9Tw-4-JBu du dT d8 (9.16)
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9.3 THE KERNEL METHOD

There are three basic advantages for characterizing time-frequency distributions by
the kernel function. First, we can obtain and study the distributions with certain
properties by constraining the kernel. For example, suppose we want all distribu-
tions that satisfy the marginals. We will see that to assure the satisfaction of the
marginals the kernel must have the simple property ¢(0, r) = ¢(9, 0) = 1. There-
fore, if we want to study the distributions that satisfy the marginals then we con-
sider only kernels that satisfy these conditions. This still leaves an infinite number
of choices but we are assured that the marginals are satisfied.

Second, the properties of a distribution can be readily ascertained by a simple
examination of the kernel. For example, if the kernel satisfies the condition just
discussed, then we know the distribution satisfies the marginals and we do not
have to do any further calculations.

Third, given a kernel, a distribution is easy to generate. Before we discuss the
conditions on the kernel that guarantee that a distribution will have particular prop-
erties, it is worthwhile to classify and discuss the various possibilities and depen-
dence of the kernel.

Functional Dependence of the Kernel. The kernel can be a functional of frequency
and time and explicitly of the signal. If we were to be notationally explicit we would
write the kernel as 4(9, r, t, w; s) to signify the possible dependencies. However, we
write it as a function of 9 and r and discern from the context whether it depends
on other variables.

'Types of Kernels. An important subclass are those distributions for which the ker-
nel is a function of the product Or,

0(0,'r) = cbpR(Br) = O(9r) product kernels (9.17)

For notational clarity, we will drop the subscript PR since we can tell whether we
are talking about the general case or product case by the number of variables at-
tributed to 0(0,,r). Kernels that are a product of a function of each variable

0(0,'r) = ¢1(9) t2(r) separable kernels (9.18)

are called separable kernels.

Bilinearity. If the kernel does not explicitly depend on the signal then the signal
enters into the general form twice, hence one says that the distribution is bilinear, a
phrase used by WigneL All the distributions listed in Table 9.1 are bilinear since the
kernel does not depend on the signal explicitly. Distributions obtained by taking
the kernel to be signal dependent are discussed in Sections 13.5 and Chapter 14.
In this chapter we will assume that the kernel is bilinear and time and frequency
independent. However, the methods developed for the bilinear case often apply
directly to the nonbilinear case. We point that out when appropriate. Notice that



Sec. 4 Basic Properties Related to the Kernel 141

the marginals are bilinear in the signal. However, that in no way reflects on the
functional dependence of the joint distribution. Having bilinear marginals does
not imply that the joint distribution must be bilinear

Determination of the Kernel. If a distribution is given we can usually pick out the
kernel by putting the distribution in one of the standard forms. If that is not readily
doable, we can calculate it by finding the characteristic function of the distribution
and using Eq. (9.5). Explicitly,

(t' w) ejet+j1 W dt dwC
M(9, T) ff
A(6,T)

I s* (u - 2T) s(u + 2,r) ejeu du
(9.19)

Example 9.1: The Spectrogram.

In Section 7.2 we derived the characteristic function for the spectrogram, Eq. (7.10).
We showed that Msp(B,-r) = Ah(-9,T)A(9,T). Therefore

OSP(B,T) = Msp(9,T) = Ah(-9, r) A(9,T) = Ah(-0, T) (9.20)A(0,7-) A(8, T)

We see that the kernel for the spectrogram is the ambiguity function of the window
with 9 replaced by -9.

9.4 BASIC PROPERTIES RELATED TO THE KERNEL

We now discuss some of the basic properties of distributions that have been deemed
desirable and show how they get reflected as constraints on the kernel. Two im-
portant properties are left for consideration in other chapters, the conditions for
positivity and the condition on the kernel to minimize the cross terms for multi-
component signals.

Marginals: Instantaneous Energy and Energy Density Spectrum. Integrating the
basic form, Eq. (9.1), with respect to frequency gives 21r6(T) and therefore

J
C(t, w) dw = 2

- fff b(r) s' (u - 2 T) s(u + 2T) 0(9, T) eJ8(u-t) d9 du d7- (9.21)

ff 0(e, 0) 1 s(u) 12 &9(u-t) dO du (9.22)=
27r

If we want this to equal I s(t) 12 then the 9 integration must be made to give

1 B(u-t)
27r

¢(B, 0) e' dB = b(t - u) (9.23)
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and the only way we can do that is to insist that

0(9, 0) = 1 [ for time marginal ] (9.24)

This is the condition for the time marginal to be satisfied. Similarly, for the fre-
quency marginal to be satisfied

f C(t, w) dt = S(w) (9.25)

we must take
0(0,7-) = 1 [ for frequency marginal 1 (9.26)

Total Energy. If the marginals are correctly given, then of course the total energy
will be the energy of the signal. However, we can retain total energy conservation
(normalization to one) without insisting on the marginals. Integrating the general
form with respect to time and frequency shows that for the total energy to be pre-
served,

Jf C(t, w) dw dt = 1 [ for total energy ] (9.27)

the kernel must satisfy

0(0, 0) = 1 [ for total energy ] (9.28)

Uncertainty Principle. As we have discussed in Section 6.9, any joint distribution
that yields the marginals will yield the uncertainty principle of the signal. Thus
the condition for the satisfaction of the uncertainty principle is that both marginals
must be correctly given. In terms of the kernel this is

0(0, 0) = 1 and 0(0, r) = 1 [ for uncertainty principle ] (9.29)

Reality. For a distribution to be real the characteristic function must satisfy M(8, T) =
M*(-0, --r). Look at Eq. (9.5) for the characteristic function and note that the
ambiguity function satisfies A(9,T) = A*(-9, -T). Therefore the only way that
M(9, T) = M* (-0, -T) is for the kernel to also satisfy the identical condition,

0(8,T) = 0`(-e, -T) (9.30)

Time and Frequency Shifts. A signal that is shifted by a time to and frequency
wo is sah = ei(0ts(t - to), where to is the amount of time translation, and wo is
the translation in the frequency domain. Substituting this into the general form we
have, using Cah for the translated distribution,
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C'ah(t,w) = 1 / //
ejwo(u+r/2-to)

T7-r2

f 1 1 -yet-2r(vr-a+0) +19(u+to)= 1

4' ffJ oo,r)s
(u -

2r)s(u+ ZT)a dBdrdu (9.32)

fJf ¢(o, r)s'(u - 2T) s(u + 2T) e-jB(t-to)-jr("-"o) +ie+' do d-r du (9.33)47r2

= C(t - to, w - wo) (9.34)

In going from step (9.31) to step (9.32) we assumed that the kernel is not a function
of time and frequency. Therefore

C(t, w) is time shift invariant if 0 is independent of t (9.35)

C(t, w) is frequency shift invariant if 0 is independent of w (9.36)

Note that the kernel can be signal dependent.

Scaling Invariance. In Section 6.5 we showed that if a signal is linearly scaled then
the spectrum is inversely scaled and we argued that a plausible requirement on the
joint distribution is that it scale the same way in time and frequency. In particular,
if C., (t, w) is the distribution of the scaled signal, s,,,, then the requirement is

C,c(t, w) = C(at, w/a) for s.,, (t) = f s(at) (9.37)

For the scaled function

C°`(t' w)
4a2

N sf (a(u - 2r)) s(a(u + 2-r)) 0(0, rr) e-set-3rw +,9u do d7- du

(9.38)
fransforming by u -+ u/a, T -+ T/a, and o -- ao, we have

+jOu do dT duC,C(t, w)
47r2

fJf sf (u - 7) a(u + 2r) O(ao, 7-/a)

We see that
(9.39)

C,c(t, w) = C(at, w/a) if 0(0, -r/a) = 0(0, z) (9.40)

The only way that a function of two variables can satisfy 0(a9, z/a) = 0(0, r) is if it
is a function of the product of the two variables. Therefore, for scale invariance the
kernel must be a product kernel,

0(0,,r) = O(orr) [ for scale invariance ] (9.41)
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Note that we have implicitly assumed that the kernel is signal independent.

Weak Finite Support Recall from Section 6.6 that weak finite time support means
that for a finite duration signal we want the distribution to be zero before the signal
starts and after the signal ends. The condition for that to be the case is

J
O(0,r)a-jetdO = 0 fori7I < 21tj (9.42)

[ for weak finite time support ]

Similarly for a bandlimited signal we want the distribution to be zero outside the
band. Then condition for that to be so is

J 0(0, T) e--7" d r= 0 forJOI < 2 1 w l (9.43)

[ for weak finite frequency support ]

Strong Finite Support Strong finite support means that the distribution is zero
whenever the signal or spectrum is zero. The conditions for this to be the case were
derived by Loughlin, Pitton, and Atlas(] for the case of bilinear distributions. The
conditions are

f ¢(9, T) e-jet dO = 0

f 0(9,
7-)e-jT" dT = 0

Example 9.2: Choi-Williams Kernel.

for 17-1 # 21t1 (9.44)

[ for strong finite time support ]

forIBI # 21wl (9.45)

[ for strong finite frequency support ]

To see how the above results can be used to quickly ascertain the behavior of a partic-
ular distribution, consider the Choi-Williams kernel,

Ocw(0, r) = e-92_2/0, (9.46)

where v is a constant. It is clear that for either 0 or -r being zero the kernel is one and
hence the Choi-Williams distribution satisfies the marginals. Also, since it is time and
frequency independent it satisfies the shift properties. For the finite support property
we have

/'J 0(0, r) a-jet dO = T exp [-:;] (9.47)

Therefore it does not satisfy the weak finite support properties but does so approxi-
mately for v sufficiently large.
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Example 9.3: Wigner Distribution.

Since the kernel for the Wigner distribution is one, it satisfies the marginals. Also, since
it is signal independent it satisfies the shift properties. The finite support property is

f ¢(B, T) e-'B° d9 = 27r6(t) (9.48)

and this dearly satisfies the weak finite support property, Eq. (9.42).

Example 9.4: Spectrogram.

In the kernel for the spectrogram, Eq. (9.20) set 9 = 0 giving

osP(0, r) = J jh(t) 12 a-'B dt 0 1 (9.49)

which cannot be equal to one unless we take a delta function for I h 12. Therefore the
spectrogram cannot satisfy the marginals.

Example 9.5: Sinc.

The smc kernel is

O(O,T) =
since T)

(9.50)

This kernel satisfies the marginals, since sin 0/0 = 1. Consider now the weak finite
support property. Using Eq. (9.42) we have

sin(a9T)
a-'Bt dtf aBT

I
aT

0

ti < or

otherwise
(9.51)

Comparing to the condition for weak finite support, Eq. (9.42), we see that the condi-
tion is satisfied only if a < i .

Inversion. From Eq. (9.5) we have

M(O, T )A(0,T) = O(e,T) = fs*(u T) s(u + T) eB" du (9.52

and taking the Fourier inverse yields

1 M(0,T)
2ir

f
cb(9,T)

Lettingt =u+ ZTandt' =u - 1r gives

e-j0" d9 (9.53)

8* (t') s(t) =
1 /' M(9, t - t') e-ie(t+t')/2

d9 (9.54)27r f 0(0't - t')
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and taking the specific value t' = 0 we have

s(t) = 1
M(t7, t) e-,jOt/2 d9

27rs*(0) f 0(0, t)

1 C(t', w) ejtw+je(t'-t/2) dt' &.0 d9
27rs (0) N ¢(B, t)

(9.55)

(9.56)

Hence the signal can be recovered from the distribution if the division by the kernel
is uniquely defined for all values of 0,,r. If the kernel is zero in regions, we cannot
recover the signal uniquely. For the spectrogram this will depend on the window.

Example 9.6: Wigner.

For the Wigner distribution

fffs(t ) =
1(

W(t', w) eat+'B(t'-t/2) dt' dw dO (9.57)
2as* 0)

W (t/2, w) e't" dw (9.59)

which agrees with the answer obtained in Eq. (8.74).

9.5 GLOBAL AVERAGES

For a function, g(t, w), the global average is

(g(t, w)) = fJ g(t, w) C(t, w) dw dt (9.60)

If the marginals are satisfied, then averages of the form g(t) = g1(t) + 92 (w) will be
automatically satisfied,

(91(t) +92(w)) = f f{91(t) +g2(w)}C(t,w)dwdt (9.61)

f 91(t) I s(t)12 dt + J 92(w) 18(w) 12 dw (9.62)

correctly given if 0(9, 0) = 0(0, T) = 1

Correlation Coefficient and Covariance. Let us now consider the first mixed mo-
ment,

(wt) =
82M(0,T)

00197- 0,,r =0
(9.63)
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02
0(0, rr) A2(t) dt + t 0'(t) A2(t) dt (9.64)f J

9,T - o

If we want the covariance to be equal to the form given in Section 1.8 then we
must have that (tw) = (t cp'(t)), which can be achieved by taking the mixed partial
derivative of the kernel to be zero at the origin,

=(t w) = f t 01(t)IS(t) 12 dt if 80(9, -r) 0 (9.65)
89&r B T-o

Example 9.7: Choi-Williams.

For the Choi Williams kernel,

a0(9,r)

=
(403r3/o2 - 407-/u)e_02T2b0

= 0 (9.66)
aOa-r

e,T = 0 9,T = o

and we see that the Choi-Williams distribution gives the proper expression for the
covariance.

9.6 LOCAL AVERAGES

The density of frequency for a given time, C(u) I t), and the density of time for a
given frequency, C(t I w), are

C(w It) = C(t, )
C(t I w) =

C(t,) (9.67)

where P(t) and P(w) are the marginal distributions. Thus the expectation value of
a function g at a given time or frequency is

(g(w) )t = p(t) f(w) C(t, w) dw (9.68)

(g(t) ),., = P(w) f(t) C(t, w) dt (9.69)

Instantaneous Frequency and Its Spread. For the average frequency at a given time
we calculate

(w)t = p(t) f wC(t,w) dw (9.70)

1 2 1aO(e, T) a u-t)27rP(t)ff A (u) [(e , 0) (u) -
(O

d0 du (9.71)
T

1
p(t) [ 0(0) A2(t) (t) + 2 0'(0) A(t) A'(t) ] [ product kernel ] (9.72)
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Suppose we satisfy the time marginal in which case P(t) = A2 (t). Then

(w )t = (t) - i Pit) 2 f f A2(u)
190(0, T)

r=0

&6(u-t) de du (9.73)

If we want this local average to be equal to the derivative of the phase we must take
the integrand to be zero. Therefore

(w )t = W'(t)

(w2 )t

Second Conditional Moment of Frequency. For simplicity we give the result for
product kernels:

(w2 )tP(t) =
z

[ 0(0) + 4¢"
(0) ] A'2 (t) - 2 [ 0(0) - 40" (0) 1 A(t) A" (t)

+ 0(0) A2(t) 2(t) + 2¢'(0) [ 2 A(t) A'(t) p'(t) + A2(t) (P11 (t) ] (9.76)

If we impose the conditions to obtain the derivative of the phase for the first con-
ditional moment, that is, the marginal conditions and 0'(0) = 0, this becomes

(N(t) \2
1

A11(t) '2(w2 )t =
2

[ 1 + 40"(0) ] A(t) 1 - Z [ - A(t) +'P (t) (9.77)

'It = (w2 )t -Standard Deviation. The local standard deviation is obtained from a'2
(w )2.. From Eqs. (9.77) and (9.74) we have

Q2 = a [ 1 + 40"(0) ] A(t) J 2 - Z [ 1 - 40"(0) ] A' (t)
O (t)

Positive Spread. In general, the conditional second moment and standard devia-
tion become negative and cannot be interpreted. However, for the choice

(0) = 4 (9.79)

we obtain

80(6, T)
(9.74)if

8z
= 0

T=0

if 0'(0) = 0 [ product kernel ] (9.75)

CA(t) )2+cp2(t) (9.80)

2
(A,(t)

fl

\2

GO A(t)
(9.81)
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which are manifestly positive. Are these plausible results? We discuss this issue in
detail in Section 13.3 where we develop the idea of instantaneous bandwidth and
connect it to the nature of multicomponent signals.

Example 9.8: Wigner Distribution.

For the Wigner distribution 0'(0) = 0 and hence

2 = 1 A'(t) 2 A"(t) (9.82)Q ,1t
2 A(t)) A(t)

which agrees with the expression given in Section 8.5.

Group Delay. If we want the conditional moment of time for a given frequency to
be the derivative of the spectral phase then the identical approach as above gives

9.83)(0111 _ -i,'(w) if a0(e' T) Lo = 0 (

where i (w) is the spectral phase.

9.7 TRANSFORMATION BETWEEN DISTRIBUTIONSI' ''2'1

We now address the relationship between distributions. First let us discuss whether
indeed there should be a procedure that allows us to transform one distribution into
another. In Section 9.4 we showed that a signal can be recovered from a particular
distribution if the kernel is not zero in a finite region. Given a distribution for which
the signal can be recovered, we may take the recovered signal and calculate any
other distribution, so in these cases we do expect a relationship to exist between
them. To obtain that relationship suppose we have two distributions, C1 and C2,
with corresponding kernels, 01 and 02. Their characteristic functions are

M1(9,T) = O1 (6,T)
J

s* (u - 2T) s(u + 2T) ejeu du (9.84)

M2(0,T) = 02(0,T) J s* (u - 2T) s(u + ZT) e3eu du (9.85)

Divide one equation by the other to obtain

M,(0,,r) _ 01 (0"r)
M2(9,T)

02(e,T)
(9.86)

This is an important relationship because it connects the characteristic functions.
Note that we have a division by the kernel. For the division to be proper the kernel
cannot be zero in regions which is consistent with our discussion above.
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To obtain the relationship between the distributions take the double Fourier
transform of both sides and use Eq. (9.3) to obtain

-jet -.7 d8 dC M 0 ,1(t w) 1f 9 87l , r) a r2 (4 2 J' (0, T)0
.( )

Now express M2 in terms of C2 to obtain

f jB(t'-t)+jr(W'-W)dBdC dt'd 'P
w)

= ti- C(t I 0,
9 88

)e
1 r w,w2(2'

( . )7 r4 r)J ,JJ 02(

This relationship can be written as

C1 (t, w) = 912(t'-t,w'-w)C2(t',w')dt'dw' (9.89)

with

(t, w) = 1 r 01(9, r)
912

bet+2TW dB dr (9.90)
J 2 (0, r)

Relation of the Spectrogram to Other Bilinear Representations. We now specialize
to the case where we transform from an arbitrary representation to the spectrogram.
In Eq. (9.89) we want Ct to be the spectrogram and C2 to be arbitrary. To simplify
notation we set qsp = 41 and r4 = 02 and gsp = 912 and write

CsP(t, w) = JJ gsp(t' - t, w' - w) C(t', w') dt' dw' (9.91)

The kernel for the spectrogram with window, h(t), is Ah (-8, r) and therefore

9sp(t, w)
_ 1 Ah(-8, r) e3et+fr d8 dr (9.92)

47r2 f f 0(0,7-)

JJJ (9 r) h-(u - 2r) h(u+ 2r) dudrdB (9.93)

47r2
ffJh(u_ 2r)h(u+ 2r)

X
0(0,,r) e-Set+.iTW+f eu du dr d0 (9.94)

0(0"r) 0(-0, r)

If we take kernels for which 0(-9, r) 0(0,,r) = 1, we see that gsp(t, w) is just the

distribution of the window function, except that it is evaluated at -w. Therefore

9sP (t, w) = Ch (t, -w) (9.95)

for kernels that satisfy t(-B, r) '(B, r) = 1
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and

CsP(t, w) _ JJCa(t'w')Ch(t' - t, w - w') dt' dw' (9.96)

for kernels that satisfy 0(-9, r) 0(9, r) = 1

This was first shown by Janssen.12761 For the case where 0(-9, r) 0(9, r) does not
equal one, then

+ t' - t, -w" + w - w') dt' dt" dw' dwlfCsP (t, w) = JfffG(t"w")Cs(t")')Ch(t"
(9.97)

where

dB dr (9.98)G(t, w)
4a2 If 0( 9 r) 0(0,,r)

Positive Bilinear Distributions. In Section 8.10 we saw that if the Wigner distribu-
tion is convolved with certain functions a positive distribution is obtained. We have
also just seen that when the general class is convolved with certain g's the spectro-
gram is obtained. The general question as to when one obtains a positive bilinear
distribution b convolving the general class has been comprehensively addressed
by Janssen[Jwho derived a number of important results relating to this question.



Chapter 10

Characteristic Function
Operator Method

10.1 INTRODUCTION

In the last chapter we showed that an infinite number of joint time-frequency dis-
tributions can be generated. We now describe a method for deriving them from first
principles. In this chapter we develop the ideas for time and frequency; in Chapter
17 we generalize to arbitrary variables and subsequently specialize to the physical
variable "scale".

10.2 CHARACTERISTIC FUNCTION METHOD

Recall that a distribution and its characteristic function are connected by

M(9, T) - ff P(t,w) eiOt+iTw dt dw = (e3ea+ir)) (10.1)

and

C(t, w) fJ M(8, T) dO dT (10.2)

The aim is to find the distribution. If it were possible to find the characteristic func-
tion without first knowing the distribution, our problem would be solved because
we would then obtain the distribution by way of Eq. (10.2).

Correspondence Rules. In Chapter 1 we showed that the average of a function of
frequency can be directly obtained from the signal. In particular, the average of

152
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g(w) can be calculated by

(g(w)) = I g(W) I S(w) i2 dw = f si(t) g(W) s(t) dt (10.3)

where W is the frequency operator. We generalize this by assuming that we can
find the average of any function of time and frequency, G(t, w), by

(G(t, w)) = J s' (t) 9 (T, W) s(t) dt (10.4)

where G (T, W) is an operator, as yet unknown, that corresponds to the ordinary
function G. A rule that associates an ordinary function with an operator is called a
correspondence rule, a rule of association, or ordering rule.

Characteristic Function Operator. The characteristic function is an average, the
average of ejet+jr, and hence it seems plausible that we can find an operator
M (0,,r; T, W) so that

M(8, r) = (M (8, r; T, W)) = Js*(t)M(8,r;T,W) s(t) dt (10.5)

We shall call M the characteristic function operator. What can we take for M? One
possible choice is to substitute the time and frequency operators in the expression
ejet+jT" for the time and frequency variables,

east+jrw ...., Mw = e2BT+jrW [ Weyli501 ] (10.6)

This is called the Weyl correspondence. Equally plausible is

e,et+jT" --* MN = e OT ejrW [ Normal ] (10.7)

which is called the normal correspondence. Now, for ordinary variables ejst+jrw _
ejet ejr", but for operators it is not true that ejsT+jrW equals e'OT ejrw because the
operators do not commute. Since these two choices are not equal they will give
different answers for the characteristic function and therefore produce different
distributions. In addition to the above two choices the following are also equally
plausible,

ejOt+jr" _, elrw ejOT

-4
2

[ e3OT e3rW + eJrW eyOT 1

sin 0-r/2 e3rW+joT J

8r/2

As we will show, we can generalize these rules by

e?et+jr" -, 0(0,,r) &0T+,TW

[ Antinormal 1 (10.8)

[ Symmetrization ] (10.9)

[ Cohen[1J ] (10.10)

[ Coheni1211 1 (10.11)
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There is one basic reason why all these correspondence rules are plausible and
equally correct in some sense. Recall from Eqs. (4.44)-(4.45) that the joint characteris-
tic function of two variables, x, y, is related to the individual characteristic functions,
M.(9), M. (,r), by

M.(9) = M(9,0) ; My(7-) = M(0,T) (10.12)

and therefore the characteristic function operator is constrained by

M (0, 0; T, W) _ ejOT (10.13)

M (0,,r; T, W) _ ej,rw (10.14)

if we are to be assured of the right marginals. Moreover, this assures that averages
of functions of time or frequency only are correctly given. All the correspondences
given above satisfy these constraining equations.

To obtain a distribution we choose a characteristic function operator, calculate
the characteristic function by way of Eq. (10.5), and then find the distribution via
Eq. (10.2). These equations can be combined. Substituting Eq. (10.5) into Eq.. (10.2)
we have

C(t,w) 412 fff s-(u)M(9,'r;Tu,Wu)
s(u)e-yet-i""dOd'r du (10.15)

where Tu and Wu signify the time and frequency operators operating on functions
of u. We now address the evaluation of expressions like Eq. (10.5) for the various
choices of the characteristic function operator.

10.3 EVALUATION OF THE CHARACTERISTIC FUNCTION

First let us note that the evaluation of the characteristic function can be done using
the signal or spectrum,

M(9, -r) = (M) = fs*(t)M(O,r;T,W) s(t) dt (10.16)

= f S*(w)M(0,7-;T,W)S(w)dw (10.17)

If we are using the signal we will say that we are in the time domain, and if we are
using the spectrum we will say we are in the frequency domain. We recall from
Section 1.4 that the explicit forms of the time and frequency operators are

T = t , W = 4 dt in the time domain (10.18)

T = j , W = w in the frequency domain (10.19)
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The fundamental relationship between these operators is

TW-WT=j
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(10.20)

which is discussed and derived in Section 15.3.
Three important results are helpful for the simplification and evaluation of char-

acteristic function operators. Two of them, already discussed in Chapter 1, are

a(t+T) ej9? S(w) = S(w - 9) (10.21)

The third is an important result of operator theory, which is well known but far
from trivial,

ejOT+jrW = e-jO7-/2 e;OT

= ejer/2 e,OT ejrW

(10.22)

(10.23)

We will not prove this here because we return to it in our considerations of a more
general case in Chapter 17.

In general,

e?9r/2 ejOT ejrWS(t) = &9rl2 e'°ts(t +'r) (10.24)

We are now ready to see, by way of examples, how to derive distributions using the
characteristic function approach.

Example 10.1: The Wigner Distribution.

For the characteristic function operator take the Weyl ordering, in which case

M(9, r) = r s (t) e'rw+i8Ts(t) dt (10.25)

_ fs*(t)e9n/2e8TeJ1Ws(t)dt (10.26)

f s (t) e,01/2 eiOts(t + r) dt (10.27)

fa*(u_ 1 r) ejesss(u + 1r) du (10.28)2 2

The distribution for this ordering is

P(t' w) 42 ff M(8, r) a-jet -jr- d9 dr (10.29)

4jr2
JJJ s' (u - 2 r) e2Ous(u + a r) a-let -'r°' d9 dr du (10.30)
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T7r ff ?(u - z 6(u - t) 8(u + 2 r) dr du (10.31)=
I

= 1 J s'(t- 1r)e-" s(t + Zr)dr (10.32)

which is the Wigner distribution.

Example 10.2: Margenau - Hill Distribution.

Using the ordering given by Eq. (10.7) we have for the characteristic function

M(9, T) = Js*(t) eisT e.v W 8(t) = fs(t)eJ9ts(t+r)dt (10.33)

The distribution is

CIO' -'T'" d9 dP(t ) r f ' ( jeu d, 10 34' w J s u) e s(u + r ur)
47r2

( . )

1 't'S
* t 10 35)e( (w)

27r
s ( . )

If the correspondence of Eq. (10.8) is used, the complex conjugate of Eq. (10.35) is ob-
tained and if the symmetrization rule is used, Eq. (10.9), we obtain the real part.

10.4 THE GENERAL CLASS

All possible distributions are obtained if we consider all possible correspondence
rules. A way to approach this problem is to start with any one, say the Weyl rule,
and any other correspondence is expressible as

MG (T, W) _ 0(0,.r) ejOT+u1W (10.36)

For Eqs. (10.13) and (10.14) to be satisfied we must have

0(0, r) = ¢(9, 0) = 1 (10.37)

The general characteristic function is the average of the characteristic function op-
erator

Mc(9, r) _ (Mc) _ 0 ( 0, - r ) dt (10.38)

0(0"r) J
s* (t - 17-) e3ets(t + 2r) dt (10.39)
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and the distribution is

C(t, w)
41

(10.40)

r r
+ Bt-T8u= JJ s (u - T) s(u + r) (B, r) e- du dr dB (10.41)

which is the general class of time-frequency distributions developed in Chapter 9.

10.5 AVERAGES

If we have a function of time and frequency, g(t, w), its average can be calculated
using the time-frequency distribution or directly from the signal,

(g(t,w)) = ff g(t,w)C(t,w)dtdw (10.42)

_

f
s' (t) 9 (T, W) s(t) dt (10.43)

where Q is the operator corresponding to the ordinary function g. The relation
between g and 9 is

r r
9(T, W) = JJ 7(9,r)4(8,r)ej9T+jTw dOdr (10.44)

where

7(0,
r)

= 47r2 f f g (t' w)
e-jet-jT dt &,, (10.45)

Or, equivalently,

9(T' W) 412 JfJJ g(t, w) 0(9, r) eJe(T-t)+ jT(w-w) dO dr dt dw (10.46)

To prove the equivalence of the two methods of calculating averages, Eqs. (10.42)
and (10.43), consider

(g(t, w)) = s(t) dt (10.47)

= 1118* (t) -y(0, r) 0(9, r) e'OT+3T4s(t) dO dr dt (10.48)

= JJJ s* (u - 1r) y(9, r) 0(0, r) ejeus(u+ ar) d9drdu (10.49)

47r2 fJJJJ g (t, w)
e-jet-j` 0(e, r) eu

7-)s(u+ 1r)d9drdtdudw (10.50)2 2

ff(tw)C(tw)dtdw

x s`(u - 1

(10.51)
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10.6 THE MOMENT METHOD

The moment method is another way to construct distributions. It is equivalent to
the characteristic function method just described but presents a number of new
features both conceptually and mathematically. In Section 4.3 we showed how the
characteristic function can be constructed from the moments by way of

M(9, T) = V- (.7e)"(.7T)"` (t.,wm)
(10.52)

n=0 m= n!!
If we had the moments we could calculate the characteristic function and the distri-
bution. Moments are average values and hence should be calculable directly from
the signal by an operator that corresponds to the moments. We symbolically write

tnwm _ Cnm(T,W) (10.53)

where Cnm (T, W) indicates a correspondence. We expect to be able to calcul
moments from

ate the

(tnwm) = J s* (t) Cnm(T, W) s(t) dt

For the nonmixed moments to be correct, we want to assure that

(10.54)

to -

Some obvio

-4 Cn

us a

o(T, 0)

nd not

= Tn and wm -+ Co n(0,

so obvious choices for the corresp

W) = Wm

ondences are'

(10.55)

tnwm -+ TnWm [ Normal ] (10.56)

- WmTn [ Antinormal ] (10.57)

{TnWm + WmT`} [ Symmetrization ] (10.58)

2n E In
B)T n-tW-Tt (10.59)

t=o J

= 2m E C )W
m-tvwl [ Weyll 8] ] (10.60)

t-o

'In manipulating these types of expressions the following relations are useful:

mm(m,n)

Wn'T"' = L -7)t ) (1) (7) T`-[ Wm-[I t
1=0

mm(m,n)

T"Wm = E 7l t! \ p) (e) Wm-[ ?-n-t
1=0

They were given, in the quantum mechanical context, by Born and Jordan. 1911.
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1 . T"_lWm i
n+1

1=0

(10.61)

= 1 Wm-tT"W' [ Born-Jordant911] (10.62)m+1
t=0

1 an+m
n m m 0(9, T)

ej9T+jTW [ Cohen[125i ] (10.63)j Fn-8T 19,r=0

Making a correspondence to the exponential, ej9t+jTw, as we have done in Section
10.3, is equivalent to making a correspondence to the mixed moments. This is why
we have given the same name to the correspondences although we have not yet
proven that they are equivalent. To see this we start with

00 CO (7e)rn r
ej9t+jTW = ` )m

tnWn (10.64)
n=0mLL.=0

and take the correspondence of each side

c'O "0e39t+jTw -' M = L (je)n(jT)m C
nn (T W) (10.65)

n=0 m=0

and take average value

M(9,T) = (M) =
1:

(jo)n(j r)m (Cnm(T, W) )C'O "0 n!m'n=0 m=0

If we consider Eq. (10.65) as a Taylor series, the coefficients are

Cnm(T, W)
an+m

7jm
aenOTm

M(9,7-)
1

1 an+m
eJ9T ejTW

jn jm ognaTm
Or = 0

(10.66)

(10.67)

(10.68)

However, we know that the most general characteristic function operator can be
expressed in terms of the kernel, Eq. (10.36), and therefore

Cnm(T, W) = 1 an+m

jn
jm aenarm O(O, T)

9,r = 0

(10.69)

1 an+m 0(0,7-) &8n/2 p39T eTW 10,-r=O (10.70)jnjm 90n8Tm

To see how the procedure indicated by Eq. (10.70) is carried out in practice we con-
sider a few examples.
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M 00

Example 10.3: Normal Ordering.

Take 0(9,T) = e-j0T/2, which gives

1 an+m
Cnm(T, W) = jnjm aenaTm

= TnWm

Example 10.4: Weyl Ordering.

EE

(10.71)

(10.72)

We show that indeed Eq. (10.6) and Eq. (10.60) are equivalent. This was shown by
McCoy.! For the Weyl rule the kernel is 1 and

Cnn,(T, W) =

n=0 m=0

1 an+m ej8r/2 )BT eyrWT7
a9na .m

Chap. 10 Characteristic Function Operator Method

1
an+m

e39T+jrW
BBn&r"

drW

8,T = 0

9.T=0

0,r = 0

(10.73)

(10.74)

=
2m

( M Wm-tmw (10.75)

l=0

The step from Eq. (10.74) to Eq. (10.75) is not trivial but can be shown by using the
relations in the footnote of Section 10.6.

Let us now consider an example where we calculate the characteristic function
directly from the moments.

Example 10.5: Born-Jordan Distribution (Cohen!12,51).

We consider the rule of Born-Jordan, Eq. (10.62), and calculate the characteristic func-
tion,

M(9, T) (78)im!)m
(C.". (T' W)) (10.76)n!!

00 00 n

Y- E E (n + 1)n!m!
fs.(t)T11_twmrs(t)dt (10.77)

n=0 m=0 t=0

m n (,8)n
fsi(t)t_te2TWts(t)dt (10.78)

m+ 1n=0

1=0

(1B)n / s* (t) to-I (t + r)1 s(t + T) dt
(n + 1)n! J

n=0 1=0
(10.79)
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where in the last step we have used the fact that e'rw is the translation operator. Now

n
[ [ _ (1 + r/t)"+' 1

E
t=o

and further
° to (je)n (1 +'r/t)n+1 _ 1 eiet(l+r/t) _ e Ot

a (n + 1)n! r/t j0

eJBr/2+1Bt sin Or/2
Or/2

(10.80)

(10.81)

(10.82)

Hence

M(B, r) s nO 22 ever/2
J s(t)Cets(t+r)dt (10.83)

Therefore the kernel is

sin Br/2
8 (u - 2 r) eje's(u + 2 r) duBr/2

sin Br/2
8r/2

For a further discussion of this distribution see Section 12.4.

(10.84)

(10.85)



Chapter 11

Kernel Design for Reduced
Interference

11.1 INTRODUCTION

In our study of the Wigner distribution we saw that it sometimes gives values in
the time-frequency plane that do not correspond to our intuitive sense of how the
energy should be distributed. This is particularly the case when the signal is mul-
ticomponent. These spurious values are sometimes called interference terms be-
cause they happen whenever we have two or more components that "interfere."
It must be understood that the word interference as used in optics is a real effect,
but its usage here connotes something artificial and undesirable. A major develop-
ment in the field occurred when the conditions on the kernel that minimized these
spurious values were understood and implemented by Choi and Williams,1117) and
Zhao, Atlas, and Marks,11211 Loughlin, Pitton and L. Atlas,f4°) Jeong and Williams,11]
and Cunningham and Williams.!"" In this chapter we use a simple but general ap-
proach to see what those conditions are and also describe how this has led to the
concept of kernel design.

11.2 REDUCED INTERFERENCE DISTRIBUTIONS

We now derive the conditions on the kernel so that the cross terms for multicompo-
nent signals are small in some sense. These kernels produce "reduced interference
distributions", a term coined by Williams. Williams, Jeong, and Cunningham in-
troduced the concept of kernel design and formulated the general methodology to
produce reduced interference distributions.

We shall approach the problem by first considering a simple case and subse-
quently show that the result is general. Consider the simplest multicomponent
signal,

s(t) = A,ejW,t + A2 eiW2t (11.1)

162
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where Al and A2 are constants. We calculate the general time-frequency distribu-
tion, leaving the kernel totally arbitrary. The generalized characteristic function,
Eq. (9.4), expressed in terms of the self and cross terms is

M(9,T) = M11+M22+M12+M21 (11.2)

with

M11(0,r) = 27rJA1J2O(O,T)e" '6(0) (11.3)

M12(0,7-) = 27rAiA2 0(0, r)e'T"" 6(0 - wl + w2) (11.4)

and

)12 = 2(wl + w2) (11.5)

The terms M22 and M21 are obtained from the above by interchanging the sub-
scripts 1 and 2. The distribution is

C(t, w)
412

fJM(o,r)e_i9t_)dodr= Cl1 + C22 + C12 + C21 (11.6)

where

C11 = I Al
I2

21r
(11.7)

C12 = A'A2 e-.1(W1--2)tK(w) (11.8)

with

K(w) = 2n f O(wl - W2,7-) e-jT(W-rV12) d7- (11.9)

To make the cross term small we must make K small. But K is a Fourier trans-
form with respect to r and to make a Fourier transform relatively flat the integrand
mustbe a peaked function. Therefore, as a function of r we must take 0(0, r) highly
peaked.

Everything we have said for the sum of two sine waves applies to the case of a
signal composed of two impulses,

s(t) = A, 6(t - t1) + A2 6(t - t2) (11.10)

because there is total symmetry in the general equation with regard to the signal
and spectrum. The effects discussed will be the same except that now we focus on
the 0 variable. Therefore if we don't want cross terms for the case of two impulses
then the kernel must be peaked as a function of 0. For the general case, when we
have two components that are not necessarily parallel to the time or frequency axis,
the kernel must be peaked in both 9 and r. We also know that the characteristic
function is given by M(8, r) = 0(9, 7-)A(9, r) and that the maximum is at the origin.

0(0 T) e-.7T(w-wl) dr
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Hence the maximum of the kernel is also at the origin and we may take it to be one
at the origin since that is the requirement for the preservation of total energy. If we
also want the marginals to be satisfied, the kernel must be one along the 0 and -r
axes.

Therefore we seek kernels whose values away from either the 0 or r axis are
small relative to the value at the 0 and r axes. A way to describe this region is
to observe that the product O r is large when we are away_from either axis. We
conclude that for cross term minimization

0(0,rr) << 1 for Or > > 0 (11.11)

Product Kernels. Product kernels are characterized by functions of one variable. If
we let x = BT then the condition for cross time minimization becomes

O(x) << 1 for x >> 0 (11.12)

For this case

=
1 1 j O(X)

a-jxv dxK I w2 _
wl

I

27r

W-GJ12
(11.13)

Let us now see how some of the distributions we have considered thus far behave
with regard to the cross term property derived above.

Example 11.1: Wigner Distribution.

For the Wigner distribution the kernel is one throughout the B, r plane and hence it
does not satisfy the cross term minimization property.

Example 11.2: Spectrogram.

For the spectrogram the kernel depends on the window, h(t). For a Gaussian window
we have using Eq. (9.20)

0(0, r) =
e-c,r2/4-e2/(4a) h(t) = (a/ .)1/4 e-c.t2/2 1

(11.14)

We see that the kernel is peaked at the origin and furthermore for reasonable values
of a it falls off appropriately. That is the one of the reasons the spectrogram some-
times has good cross term behavior. Note that the kernel is not one along the axes and
therefore does not satisfy the marginals.

Example 11.3: Choi-Williams Distribution.

For the Choi-William distribution, which we will be studying in detail later, the kernel

is
a-8212 /° We can control the relative fall off by varying the parameter If o, is very

large, the function is relatively flat and cross term suppression is not achieved. For
small values of a the function is peaked at the origin, is one along the axis, and falls off
rapidly away from the axis. Therefore this kernel satisfies the cross term minimization
property.
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Example 11.4: Further Generalization of Choi-Williams kernel.

Once the basic conditions for cross term minimization are understood it is easy to
find kernels that satisfy the basic properties and give finer control for certain signals.
One extension has been introduced by Diethorn,11751 and Papandreou and Boudreaux-
Bartels,l1

t(9, r)
= e-(8/a)'(T/6)m

This gives individual control in the 0, T directions.

11.3 KERNEL DESIGN FOR PRODUCT KERNELS

An effective means for designing product kernels has been formulated by Williams
et. all.['] The constraints on product kernels transcribe themselves as very simple
constraints on the Fourier transform of the kernel. In addition, since product ker-
nels treat time and frequency on an equal footing, the two constraints, one for each
domain, collapse into one. For example, to satisfy the time and frequency marginals
for an arbitrary kernel we must have that 0(0, rr) = 1 and 0(0, 0) = 1. However, for
product kernels both of these constraints are met by simply requiring that 0(0) = 1.

The Fourier transform of a product kernel is defined by

h(t) = - f O(x) ei-t dx 0(07) = fh(t)e_i9tdt (11.16)

In Table 11.1 we list the constraints for obtaining desirable properties on 0 and h(t).

Table 11.1. Conditions on the kernel and h(t)
Condition 0(0, r) h(t)

Reality of distribution 0: real h(t) = h(-t)
Finite support See Eq. (9.42) h(t) = 0 for I t I > 2
Cross term minimization 0(x) << 1 for x >> 0 Smooth tapering at ±2
Marginals 0(0) = 1 f h(t) dt = 1

The main advantage of formulating kernel design in h(t) is that we have been
able to collapse a number of diverse conditions into a few rather simple ones. In
addition, many methods that have been developed for filter design can be used to
produce such functions.
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11.4 PROJECTION ONTO CONVEX SETS

Finding a kernel with all the properties we have enumerated may not be straight-
forward, indeed as the number of constraints increases the problem becomes that
much harder. There is a method that automatically finds a kernel that satisfies a list
of properties if those properties are "convex functions". A collection of functions is
said to be a convex set if for any two functions, f and g, and a real number, a, a new
function, h, constructed by way of

h = of + (1 - a)g for O < a < 1 (11.17)

is also a member of the collection.
For the case of kernels, suppose that 01(9, r) and ¢2 (0,,r) are kernels that satisfy

a particular constraint. Forming a new kernel by

43(9,T) = a0,(9,T)+(1-a)02(9,T) (11.18)

we ask whether, for any a between zero and one, 03 (0,,r) also satisfies that con-
straint? If it does, then the set of kernels satisfying this constraint form a convex
set. For example, consider the time marginal constraint, which is 0(0, 0) = 1. For
any two functions that satisfy this constraint, will 03 satisfy it? Consider

03(9, 0) = a'1(9, 0) + (1- a) 02(9, 0) = a + (1- a) = 1 (11.19)

and we see that 03 (9, 0) satisfies the time marginal constraint. Hence such functions
form a convex set. The other constraints we have considered also form convex sets.

The method called "projection onto convex sets" automatically picks out the
functions, if they exist, that satisfy all the conditions. Furthermore, if such a function
does not exist then the method picks out the best function in the mean square sense.
This method was devised by Oh, Marks II, Atlas, and Pitton.l'i

11.5 BARANIUK-JONES OPTIMAL KERNEL DESIGN

In Chapter 9 we mentioned that the kernel can be signal dependent and most of
the constraints on the kernel we have derived apply to signal dependent kernels.
Once we choose a signal dependent kernel we are no longer dealing with bilinear
distributions. Signal dependent kernels are important for many reasons. We shall
see in Section 14.2 how manifestly positive distributions may be obtained by choos-
ing signal dependent kernels. In Section 11.2 we have seen how to choose kernels
that minimize the cross terms, the criterion being that the kernel must be peaked
near the origin. However, it must be peaked in such a way it that encompasses the
self terms, which is clearly a signal dependent condition. A method to obtain ker-
nels that do that effectively by adapting the kernel to the particular signal at hand
has been devised by Baraniuk and Jones. 1481 First the ambiguity function, A(0. T), is
calculated, and from it we form the generalized ambiguity function, M(0, r), and
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define a functional of the kernel by

f r
f [ ¢ ] = ff I M(9, r)12 dr dB = JJ A(0, r) qi(9, r) I2 dr d9 (11.20)

Since the self terms are concentrated around the origin we want this functional
of the kernel to be maximized. The maximum of the characteristic function is at
the origin and therefore one imposes in the maximization the constraint that the
kernel never increases in any radial direction. Furthermore, we want to control how
concentrated around the origin the kernel should be. This is achieved by controlling

ff O(9, r) 2 dr db a(11.21)
One chooses aand constrains the maximization of the functional f with this con-
straint. The bigger a, the more concentrated the kernel will be. In addition to the
above, we may also want to constrain the solution to give the correct marginals and
other quantities. An illustration is given in Fig. 11.1.

0
Time (msec.) 2.5

Fig. 11.1 An example of the effect of the pa-
rameter a. in the Baraniuk-Jones approach.
The signal is a bat sound. In (a) a, is very large
and hence we basically have the Wigner distri-
bution. For (b) and (c), a = 20 and 4, respec-
tively. (Courtesy of R. Baraniuk and D. Jones.
Data of C. Condon, K White, and A. Feng.)



Chapter 12

Some Distributions

12.1 INTRODUCTION

We have already discussed in detail the Wigner distribution and the spectrogram.
In this chapter we study additional distributions (some new, some old), and de-
scribe their properties and the physical and mathematical reasons for their intro-
duction.

12.2 CHOI-WILLIAMS METHOD

As discussed in the last chapter, Choi, Jeong, Cunningham, and Williamst117, 2s4, 1651
developed the theory of reduced interference distributions and the ideas that allow
one to design kernels to accomplish that. Their first example was the distribution
determined by the kernel

0e+T) = e_02
la

(12.1)

where a is a parameter. We have already used this kernel in a number of examples
for illustrative purposes. It is a product kernel and 0(0, T) = 1(8, 0) = 1, which
shows that both marginals are satisfied. Furthermore, it is straightforward to see
that it satisfies the instantaneous frequency and group delay properties. If we take
a to be large then the Choi-Williams distribution approaches the Wigner distribu-
tion since the kernel then approaches one. For small a it satisfies the reduced inter-
ference criteria, as discussed in the previous chapter. Substituting the kernel into
the general lass and integrating over 0, we obtain

1

Pcw (t, U.') = 47r3

1

/2 jf T7 /v
exp

[ - (4T2/ )2 - jT
J

(12.2)

x s*(u - 2T) s(u+ 2T)dudr (12.3)

To better understand the behavior of this distribution we consider a number of ex-
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amples. For the sum of two sine waves

s(t) = Al e3Wlt + A2 e3W,t (12.4)

the distribution can be calculated exactly,

Ccw(t, w) = A'6(u) - w ) + A26(W - w2) + 2A1A2 cos[(w2 - wl) t] 77(w, w1, W2, a)
(12.5)

where

r!(w, w1, w2, a) =

For large or

1 ex
[_(w- 2(wi+w2)21 (12.6)

47r(wl - W2 )2/a p
4(wl - W2 )2/a J

lim ll(w,W1,W2,a) = 6(w - 2(wl +w2)) (12.7)o-00
and therefore the distribution will be infinitely peaked at w = 2 (wl + W2), which is
precisely the Wigner distribution. As long as a is kept finite, the cross terms will be
finite and not concentrated at one point. They spread out with a lower maximum
intensity. In Fig. 12.1 we illustrate the effect of different choices of a where the
delta functions are symbolically represented. Notice that the self terms are still delta
functions along the frequencies wl and w2. In general, this will not be true for other
signals and it is not generally true of the Wigner distribution either. It is true for the
Wigner distribution of a chirp only. For a chirp the Choi-Williams distribution is

Ccw(t,w) = 27r f e-p2T4/v e-3T(W-pt) dT [s(t) = ept2/2) ] (12.8)

The concentration is along the instantaneous frequency and the width depends on
both ,3 and a. Figs. 12.1-12.6 illustrate the Choi-Williams distribution for a number
of analytic and real signals and in some cases we compare it to the spectrogram
and/or Wigner distribution.

WI

FREQUENCY -+

Fig. 12.1 The Wigner distribution (a) and Choi-WdUams distribution (b) and (c),
for the sum of two sine waves. Both distributions are infinitely peaked at the fre-
quencies of the two sine waves. In the Wigner distribution the cross terms also
go to infinity. In the Choi-Williams distribution their intensity is a function of the
parameter Q. In (b) we have used a large a, while in (c) a small a is used. The
Choi-Williams distribution becomes the Wigner distribution for a -* oo.
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Fig. 12.2 A comparison of the Wigner (left) and Choi-Williams (right) distribution

for the sum of two chirps. (Courtesy of W Williams.)

w

Fig. 12.3 Comparison of the Wigner
distribution (a), Choi-Williams distri-
bution (b), and the spectrogram (c),
for a signal composed of a chirp and a
sinusoidal phase modulation signal.
(Courtesy of W. Williams.)
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Fig. 12.4 Comparison of the spectrogram and the binomial distributions for the
part of a heart sound due to the closing of the valve. The binomial distribution is
a reduced interference distribution devised by Jeong and Williams. (Courtesy of J.
Wood and D. I Barry)

(a)

I

3.8

kh
-; i

(c)

0
Time (ms) 70

Fig. 12.5 A comparison of the narrowband spectrogram (a), wideband spectro-
gram (b), and Choi-Williams distribution (c) for a dolphin sound. (Courtesy of W.
Williams and P Tyack.)
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Time

Fig. 12.6 In some individuals the jaw makes a click when speaking. These sounds
are called TMJ sounds. Because of their very short duration the spectrogram (left)
does not properly reveal the time-frequency structure. On the right is the Choi-
Williams distribution. (Courtesy of S. E. Widmalm, W J. Williams and C. Zheng.)

12.3 ZHAO-ATLAS-MARKS DISTRIBUTION16m]

In the Choi-Williams distribution the cross terms are spread out in the time fre-
quency plane with low intensity. There is something else we can do with them.
We can obscure them by placing them under the self terms, as shown by Loughlin,
Pitton, and Atlas.Eli

Consider the case of the sum of two sine waves as in Section 11.2. The intensity
of the cross terms are proportional to K(w) as given by Eq. (11.9). For a kernel of
the form

(t(9, r) = f (8, r) sin a8r (12.9)

where a is a constant, we have

K( ) = - f fw (Wl - w2i r)
4

)W-STEW-(a+ ) W-jT[W+(a- 1 -(a+' ) W+(a- 1)W I)2 l 2 I 22 -e 22
e

dr (12.10)

Therefore, the cross terms will be functions of w = (a + 2) w1 - (a - 2) w2 and
w = -(a - 2) w1 + (a + 2) w2. Something unique happens at a = 2. At that value
we have

f f(wi -W2,T) f _e-j'r(W-W2)1 dr (12.11)K(w) = 4n7
J

and we see that K(w) is a function of w - w1 and w - w2, which are the location of
the self terms. Loughlin, Pitton, and Atlas[M11 have shown that for K to fall exactly
on the self terms, the kernel f (8, r) must produce a distribution whose cross terms
lie exactly midway between the self terms.

Depending on the choice of f (0,,r) these kernels may or may not satisfy other
desirable properties, such as the marginals. But nonetheless they can give a good
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indication of the time-frequency structure of a signal. Note that for two impulses
cross terms will be produced. However, for multicomponent signals that are mostly
parallel in the frequency direction the cross terms will not be prominent because
they will be hidden under the self terms.

A distribution with this property is the Zhao, Atlas, and Marks distribution,["]

OZAM (0, 7) = 9('r) 1 T j s a9
OT

(12.12)

which gives

r rt+aIr,
C(t, 4a J g(T) e-ir"

J s' (u - .17-) s(u + 2T) du d'r (12.13)
t-airl

for the distribution. In the original work of Zhao, Atlas, and Marks, g was taken to
be equal to one and a to one half. This distribution has many interestin properties
and a comprehensive analysis of it has been given by Oh and Marks ] In Figs.
12.7 and 12.8 we show two examples.

(a)

(b)

(C)

(a)

(b)

(c)

(d)

Fig. 127 A comparison of the spec-
trogram (b) and ZAM distribution
(c) for a signal (a) that changes fre-
quency abruptly. (Courtesy of Y.
Zhao, L. Atlas, and R. Marks.)

Fig. 12.8 The signal (a) changes from
constant frequency to a higher fre-
quency linearly in a finite time. In
(b) is a narrowband spectrogram; in
(c) we have a wide band spectrogram
and in (d) we have the Zhao, Atlas,
Marks distribution. (Courtesy of P.
Loughlin, J. Pitton, and L. Atlas.)
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12.4 BORN-JORDAN DISTRIBUTION'

In Section 10.6 we derived the sinc distribution using the correspondence rule of
Born and Jordan. This distribution was first derived[m] in 1966, although itsprop-
erties were not understood until the work of Jeong and Williams,[M] who studied
its general properties and pointed out that it satisfies the properties of a reduced
interference distributions. Loughlin, Pitton, and Atlas[40] and Cohen and Leei134)
have also considered its properties.

For the kernel take
0(8, T) = sin(a9T)

aer
(12.14)

and the distribution is
r

C(t,w) = 1 J 1 e-jrw fs*(u - 2T) s(u+ zT)dudT (12.15)
47ra r, -alrl

For the case of two sine waves as per Eq. (11.1)

K(w) = 1 1 if (a + 2) wl - (a -
Z)

w2<w < -(a - 2) wl + (a + Z) w22a W2 - wl
(12.16)

and zero otherwise. In deriving this expression we have assumed that w2 > w1.
Thus the cross terms are uniformly spread in the region indicated. For the case
a= i we have

K(w) = 1 if w1 < w < w2 (12.17)
W2 - w1

in which case the cross terms are totally restricted between the two frequencies.

12.5 COMPLEX ENERGY SPECTRUM

In Section 10.3 we derived the Margenau-Hill distribution by specifying a particular
ordering of the characteristic function operator. Rihaczek[484] gave a plausibility
argument based on physical grounds. Suppose we have a time dependent voltage
and decompose it into its Fourier components,

V(t) =
= J

Y", e'"'t dw (12.18)
vr2 7r

We can think of Vwei"'t as the voltage at a particular frequency. If we assume a unit
resistance, the current for that frequency is iW = Vel"'t. Hence the total current in
the frequency band w to w + &. is

rW+n", 1 +o
i(t) = J iW (t) dw 2x / V", e'"'t dw (12.19)

1 Born and Jordan did not consider joint distributions. This distribution was derived in reference [125]
and called the Born-Jordan distribution because the derivation is based on the Born-Jordan rule. The
derivation is repeated in Section 10.6.
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Power is the product of voltage and current V (t) i* (t) and is the energy per unit
time. Hence the energy in the time interval At and frequency interval Aw is

f
t+t 1 r

J
rE(t,w)

= V(t)i(t)dt = VV(t)e"tdwdt (12.20)
27r Jt L

and therefore the energy density in time and frequency is

e(t, w) = ot,lim
o

Q(t, ) =
2_

VIV(t) a-i Jt (12.21)

= 2 s(t) S'(w) a-j`"t (12.22)

wherein the last step we have identified the signal with the voltage, s(t) = V (t),
in which case V,, = S(w). Equation (12.22) is the Margenau-Hill distribution de-
rived in Section 10.3, also called the Rihaczek distribution and complex energy spec-
trum. Although it does satisfy the marginals it does not have many other desirable
properties. In particular, it does not satisfy the instantaneous frequency condition,
although it does satisfy the strong finite support property.

12.6 RUNNING SPECTRUM

The running spectrum, introduced by Page,1419] is a method to define a time fre-
quency distribution. The Fourier transform of a signal considers the signal for all
time. Suppose we consider it only up to a time t,

St (w) = 1 rt s(t') a-.7"" dtt (12.23)
27r

This is the running Fourier transform defined by Page.
If the signal was indeed zero after time t, then the marginal in frequency is

St (w) I2. If a distribution,

f
P(t, w), satisfies this marginal, then
t

P-(tt,w) dt' = I St (w) I2 (12.24)

00

Differentiating with respect to time gives

2 ' (t) St (w) e;wt (12.25)P (t, w) _ a I St (w) I2 = 2 Re s

This is the Page distribution. Its kernel is 0(0,,r) = eiO I T I /2 . By inspection we see
that it satisfies the marginals. The main characteristic of this distribution is that the
future does not affect the past and hence the longer a frequency exists, the larger
the intensity of that frequency as time increases. Once the particular frequency
stops, the distribution at that frequency remains constant as time increases. The
Page distribution satisfies the weak and strong finite support properties.
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Fig. 12.9 A comparison of the Wigner distribution and Page distribution for a finite
duration sine wave. The Page distribution does not go to zero at the end of the
signal.

Example 12.1: Finite Sinusoid.

For the finite duration sinusoid,

s(t) = e'W0t 0:5 t < T

the running transform and distribution are

_ 1

St (w) 2 J e3wot' a-iwt' dt' _ .7
e- 1

o
(w - WO)

P`(t,w)- - sinc(w - wo)t 0 < t < T
0 otherwise

(12.26)

(12.27)

(12.28)

As time increases, the distribution becomes more and more peaked at wo. This is illus-
trated in Fig. 12.9.

Variations of the Page derivation were given by Turner 1M31 Levin,1332] and others.
Levin defined the future running transform by

1
oo

St
(w)

s(t') a-i"t' dt'
27r Jt

and using the same argument

00
P+ (t', w) dt' _ I St (w) 2

t

and

(12.29)

(12.30)

19

P+(t, w) _ - at
I Si (w) 12 = 2 Re 2-

s. (t) St
(w)

ej" (12.31)

Note that if the two distributions are averaged we get the Rihaczek distribution.
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Similar to the running Fourier transform, we can define the running signal trans-
form for frequencies up to w by

8w (t) 2- foo
S(w') -J-'t du)'

= 7_n
(12.32)

which gives the distribution

P (t, w) = --
I s, (t) 12 = 2 Re 2- s: (t) S' (w) a-,wt (12.33)

Fig. 12.10 compares the Wigner, Page, and Margenau-Hill distributions for a
finite duration signal that has been turned on and off as illustrated.

FREQUENCY

Fig. 12.10 A comparison of the Wigner (a), Margenau-Hill (b), and Page (c) distri-
bution for a finite duration signal that is turned off and on as illustrated.



Chapter 13

Further Developments

13.1 INTRODUCTION

In this chapter we address a number of topics that are central to the description of
signals in time and frequency.

13.2 INSTANTANEOUS BANDWIDTH [135,1451

In previous chapters we have given a number of arguments to indicate that in-
stantaneous frequency is the derivative of the phase. In Chapter 9 we showed that
many time-frequency distributions give the derivative of the phase for the first con-
ditional moment,

(w )t = V(t) (13.1)

From this point of view, instantaneous frequency is an average, the average of the
frequencies existing at a particular time. If instantaneous frequency is a conditional
average it is natural to then ask for the conditional standard deviation about that
average. Because it is the spread of frequencies at a particular time, we will call it
the instantaneous bandwidth and use Bt or a ,it to denote it. We now discuss a
number of arguments that point to taking

A,(t)Bt = °wlt = A(t) (13.2)

as a plausible expression for instantaneous bandwidth. This expression does not
depend on the phase, it depends only on the amplitude of the signal. This is rea-
sonable since standard deviation is the spread about the mean and therefore the
location of the mean is immaterial. We will present three arguments for its reason-
ableness.

178
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Bandwidth Equation. In Section 1.5 we expressed the bandwidth of a signal in
terms of its amplitude and phase,

B2 = f (:? A2(t) dt + f(/(t) - (w) )2 A2(t) dt (13.3)

The second term in this expression averages all the deviations of the instantaneous
frequency from the average frequency and certainly corresponds to our intuitive
understanding of spread. But what is the meaning and origin of the first term? In
Section 4.6 we showed that for any joint density, P(x, y), the global spread, Qi,, is
related to the conditional spread, oy x, in the following manner

Qb o22' P(x) dx + f ( (y )x - (y) )2 P(x) dx (13.4)

The similarity of this general result with the bandwidth equation, Eq. (13.3), is sug-
gestive. Associating x with time and y with frequency and comparing, we can im-
mediately infer Eq. (13.2) for the conditional standard deviation. Of course, one
cannot unambiguously equate quantities under the integral sign since we can al-
ways add a quantity that integrates to zero. However, if we added anything that
integrates to zero, the expression for the standard deviation would not remain man-
ifestly positive.

Joint Time-Frequency Representations. In Section 9.6 we showed that for distribu-
tions that satisfy the marginals and give the derivative of the phase for the instan-
taneous frequency, the standard deviation for a given time is

(0)]
(A" 2

z [ 1 + 4¢
A(t)

)
- 2 [ 1 - 40"(0) ]

AA
(t) (13.5)11

As mentioned in Section 9.6, the choice 46"(0) = a leads to a positive spread and in
particular to Eq. (13.2).

There are an infinite number of densities that satisfy the condition 0"(0) = 14
Furthermore, it is not surprising that there are an infinite number of distributions
that could produce a positive standard deviation. What is surprising is that they all
produce the same result. All possible distributions that always give a positive result
for the conditional standard deviation give the same result, namely, IA'(t)/A(t)I.

Instantaneous Bandwidth for the Spectrogram. In Chapter 7 we derived for the
spectrogram the conditional first moment of frequency, Eq. (7.45). That expression
depends on both the signal and window. We then showed that as we narrow the
window, the conditional moment approaches the instantaneous frequency of the
signal. We also obtained an exact expression for the instantaneous bandwidth for
the spectrogram, Eq. (7.48), and discussed that it is reasonable that the expression
goes to infinity as we narrow the window. The reason is that progressively nar-
rowing the window is tantamount to progressively making shorter duration signals
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with a corresponding increase in bandwidth. While the spectrogram can be used to
estimate the instantaneous frequency, it appears that it cannot be used to estimate
the instantaneous bandwidth. However, as the window gets narrower it can be
shown (1311 that the expression for the instantaneous bandwidth of the spectrogram,
Eq. (7.48), breaks up into a number of terms, one of them window independent and
the rest window dependent. In particular,

olt (As(t)
} + window-dependent terms [ spectrogram) (13.6)'

Thus we see that the window independent term is precisely the instantaneous
bandwidth of the signal.

Purely Frequency Modulated Signals. The above three plausibility derivations all
lead to A'(t)/A(t)I for the instantaneous bandwidth. An important consequence
is that for purely frequency modulated signals, that is, signals whose amplitude is
constant, the instantaneous bandwidth is zero,

Bt = aWit = 0 for s(t) = Ae'`0(t) if A = constant] (13.7)

Physically, what this means is that at each instant of time there is only one fre-
quency, the derivative of the phase. This is in conformity with our intuition that for
a purely frequency modulated signal the instantaneous frequency is known pre-
cisely. Notice also that for this case the global bandwidth is

B2 = f(d(t) - (w) )2 dt (13.8)

For purely frequency modulated signals the spread in frequencies comes from the
change in the instantaneous frequency only.

Constant Bandwidth. We now ask for what signals is the instantaneous bandwidth
constant? Solving for IA'(t) /A(t)I = p we immediately have

A(t) - a e-pt (13.9)

Therefore signals whose amplitudes are decaying exponentials have a constant in-
stantaneous bandwidth. For these signalsals the global bandwidth is

B2 = p2 +
J

(Wp (t) - (w) )2 dt (13.10)

Decay Rate Model and Formant Bandwidth.11491 For a decaying exponential the
broadness is proportional to the decay constant. This fact can be used to obtain a
sense of the broadness of an arbitrary signal at time t by fitting an exponential at
that time,

SF(t) = a e-pt cos(wt + coo) (13.11)
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where SF(t) signifies the fitted curve around time t. The adjustable numbers to
obtain the best fit are the three constants a, p, cpo. The fitting is done locally, that
is, we take a small piece of the function at that time and do the best possible fit
by obtaining the constants a, p, and W o. Since we are trying to fit locally, we must
decide on the interval of time around the time of interest. In the case of speech, 5
milliseconds is typically used. Once the curve is fitted, the broadness at that time is
then given by p. For different times we have different sets of "constants".

This idea has been utilized in speech where the p's thus obtained are called for-
mant bandwidth. However, speech is a multicomponent signal and the fitting is
done by a sum of decaying exponentials. In this way we obtain the spread of each
component at each time.

We now want to show the relation between this method of estimating a local
bandwidth and Eq. (13.2). For simplicity we consider one component. Suppose the
signal we are trying to fit is of the form

s(t) = A(t) cos(cp(t) ) (13.12)

Expanding the amplitude and phase separately in a Taylor series about some time
t = to, we have

s(t) _ I A(to) + A'(to)(t - to) . . . ] cos( o(to) + cP (to)(t - to) . . .) (13.13)

Similarly, we expand the presumed fitted curve,

SF - ae-P('-to) cos(w(t-to)+wo) ^' a (1-p(t-to) ... ) cos(w(t-to)+cpo) (13.14)

In the limit of t -* to we see that the best fit is when

a = A(to) -ap = A'(to) (13.15)

which gives
Ip A(A'(toto) )

(13.16)

We see that this method of obtaining the spread in frequencies approximates the
instantaneous bandwidth defined by Eq. (13.2).

Poletti Formulation. An interesting formulation of these concepts was devised by
PolettiE4'1 who defined a new signal by

Q(t) = at
logs(t)

=
Al (t)

+ jW,(t) (13.17)

This signal is called the dynamical signal. The relation between the dynamical sig-
nal and the real signal is s'(t) = 3(t) s(t). Now the instantaneous frequency and
instantaneous bandwidth are simply given by

wti = (U)) t = IM OM Bt = Re Q(t) (13.18)
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where Im and Re stand for the imaginary and real parts, respectively.

Group Delay and Its Spread. All the concepts and results developed for instan-
taneous frequency can be applied to group delay and its spread. The analogy is
both physical and mathematical. We can think of group delay as the average time
for a particular frequency. It is given by the negative of the derivative of the spec-
tral phase. In complete mathematical analogy with our consideration of the spread
about the instantaneous frequency we have the spread about the group delay,

Qt1w _ B(w) (13.19)

where B(w) is the spectral amplitude.

13.3 MULTICOMPONENT SIGNALS

We have frequently alluded to multicomponent signals and emphasized that a mul-
ticomponent signal is not just the sum of signals. We are now in a position to un-
derstand their nature and in particular to address the question of when a signal
is multicomponent. The concept of instantaneous frequency and instantaneous
bandwidth developed in the previous section will be central to the explanation.
The origin of the concept of multicomponent signals arose with the observation
that sometimes there are well delineated regions in the time-frequency plane. Per-
haps the earliest observation of this was in the study of speech. The delineated
regions are called formants. It is important to note that we get components with
almost any distribution although the particular details may be different.

Before we address the case of multicomponent signals let us characterize a mono
component signal. Generally speaking, a monocomponent signal will look like a
single mountain ridge, as illustrated in Fig. 13.1. At each time the ridge is charac-
terized by the peak. If it is well localized the peak is the instantaneous frequency.
The width of the ridge is the conditional standard deviation (actually about twice
that), which is the instantaneous bandwidth.

A typical multicomponent signal is illustrated in Fig. 13.2. It consists of two (or
more) ridges, each characterized by its own instantaneous frequency and instanta-
neous bandwidth. Why do we have two ridges instead of one? Because the width
of each one is small in comparison to the ridge separation. Therefore if we have a
signal of the form

3(t) = si(t) +32(t) = A1(t) dW1(t) + A2(t) e"2(t) (13.20)

we will have a multicomponent signal if the instantaneous bandwidths of each part
are small in comparison to the separation between the ridges. But the separation
between the ridges is given by the difference in instantaneous frequency and hence
the condition for a multicomponent signal is that

Al(t) I I A2(t) I C< 1 (P2 (t) - 'P'1 (t)
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Fig. 13.2 A multicomponent signal is characterized by the narrowness of both parts
in comparison to their separation.

Global or Local. There is a tendency to say that a signal is or is not multicomponent.
The preceding discussion shows that the condition is a local one; it applies for one
given time. Of course, it is possible that it will be the case for all time, but that
does not have to be so. Hence, a signal may be multicomponent at some times and
monocomponent at others.

Spectrum of a Multicomponent Signal. Generally, the spectrum gives no indica-
tion as to whether a signal is mono or multicomponent. This is reasonable since
the spectrum is just the projection of the time-frequency plot on the frequency axis.
An example is given in Fig. 13.3 (a) where the spectrum does not give any indica-
tion that we have a multicomponent signal. However, there are situations where
the spectrum may indicate components and this is illustrated in Fig. 13.3 (b). The
reason is the components are limited to mutually exclusive bands for all time.

Multicomponent in Time. The above discussion has used situations where the
components have a narrow spread in the frequency direction. Of course, we can
have a situation where components are narrow in the time direction or a combina-
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Fig. 13.3 Two examples of multicomponent signals and their energy density spec-
tra. Generally the spectrum cannot be used to determine whether a signal is multi-
component, as in (a). Sometimes it can, as in (b).

lion of the two. The spread along the time dimension of each part must be small
relative to the separation. The separation is the difference in the group delay and
so the condition for a multicomponent signal in time is

Bi(w)

B, (w)
< < 102(w) - V511 (w)I (13.22)

There are many situations where the components may not be well delineated
and this will depend on the amplitudes and phases. As with real mountain ridges
there are many hazy situations in which separate ridges cannot be distinguished.

13.4 SPATIAL /SPATIAL-FREQUENCY DISTRIBUTIONS

The intuitive concept of frequency is how often something repeats. Thus far we
have emphasized repetition in time, although we can have any other variable and
ask for the repetition. For example, an ordinary two dimensional picture is an ex-
ample of variation in density as a function of position in space. Now fix on a partic-
ular direction. The frequency is then the number of ups and downs in the density
per unit distance. Therefore, instead of time-frequency we can sensibly speak of
position/position-frequency or spatial/spatial-frequency distributions. Everything
we have previously done is immediately applicable to this case with the proper
transliteration. Signals are functions of space rather than time. Also, we can have
two dimensional situations and have frequencies in each direction, the distribu-
tions will then be four dimensional. Just as time-frequency analysis gives us the
local behavior in frequency, spatial/ spatial-analysis gives us the local behavior of
spatial variations. The advantage and use of this type of distribution have been
developed by a number of people and excellent discussions regarding them can
be found in the articles by Jacobson and (2731 and in the review article by
Cristobal, Gonzalo, and Bescos.[1611
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13.5 DELTA FUNCTION DISTRIBUTION FOR FM SIGNALS

We have seen in Section 13.2 that for constant amplitude signals the instantaneous
bandwidth is zero. Therefore for signals with constant amplitude one would like
the joint time-frequency distribution to be totally concentrated along the instanta-
neous frequency,

P(t, w) = 6(w - cp'(t) ) for s(t) = e?w(t) (13.23)

Given a distribution we know how to obtain the kernel. It is Eq. (9.19). Applying
that formula we have

0(9, T) =
f ejet+jrW'(t) dt

f eet+3l w(t+T/2)-w(t-T/2)i dt
(13.24)

This kernel insures that we get Eq. (13.23) for signals that are purely frequency mod-
ulated. Note that it is a functional of the signal.

Example 13.1: Quadratic Phase.

Take W(t) = (3t2 /2 + wot ;then

tp(t +
2

T) - cp(t - 2T) _ $tT + woT

and since cp' (t) = 3t + wo we have

(13.25)

f e,et+jrw'(t) dt
f ejet+ir($t+wo) dt = 1 (13.26)

which is the kernel of the Wigner distribution.

Example 13.2: Cubic phase.

We take w(t) = 27t3 and use Eq. (13.24) to obtain

f ejet+jryt2 dt
0(0, T-) = f jet+j7(t'r+r9/12) dt

(13.27)

Marginals. The condition for the frequency marginal is 0(9, 0) = 1. Taking -r = 0
in Eq. (13.24) we see that the time marginal is satisfied. Now consider the condition
for the frequency marginals

f ei' ' (t) dt
0(0, -0 =

f ealw(t+2T)-w(t-2r)1 dt (13.28)
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which shows that the marginal cannot be satisfied exactly for this kernel. However,
it is approximately satisfied. To see that, expand W(t+r/2) and cp(t+r/2) in a Taylor
series

cp(t + 2r) - cp(t - 2r) - r cp'(t) (13.29)

and

O r = f ei'w'(t) dt

-

f ei'rw'(t) dt
= 1 (13.30)Oe-7-P'(0 dtf ei(w(t+2T)-w(t-z1T)l dt f e-7-P'(0

These results are clearly unsatisfactory and argue that there should be another for-
mulation of the general class that takes this difficulty into account in an exact way.
However, that problem is unsolved as of this writing.

Concentration for Bilinear Distributions. In general we can not have a bilinear dis-
tribution satisfying the marginals that is a delta function along the instantaneous
frequency. The reason is that the delta function is positive and we know that we
cannot have positive bilinear distribution satisfying the marginals. The seeming
exception of the Wigner distribution for the signal given by Eq. (8.43) is readily ex-
plained because for that signal the Wigner distribution can be expressed in a form
which is a not bilinear, but of higher order. 1280, 1411 The fact that the bilinear distribu-
tions may go negative presents a problem in the definition of concentration, since
for example standard deviations may go native. Using the square of a distribu-
tion as a measure of concentration, janssen 2761 has considered this problem and
shown that for distributions characterized by kernels of the form 0(9, r) = ell',
the Wigner distribution (a = 0) is generally the most concentrated. However the
question for a general kernel remains open.

13.6 GABOR REPRESENTATION AND TIME-FREQUENCY
DISTRIBUTIONS

When a one dimensional signal is expanded in a complete set of functions, the co-
efficients give an indication of the relative weight of the particular expansion func-
tion. For example, in the Fourier case, expanding a signal in the complex exponen-
tial., the coefficients, that is, the Fourier spectrum, give an indication of the intensity
or relative dominance of a frequency for the particular signal being expanded.

Gabor[210' conceived of the possibility of expanding a one dimensional signal in
terms of two dimensional time-frequency functions. The time-frequency plane is
discretized into a lattice where the coordinates are

ti = nT wi = Trail - oc < n, m < oo (13.31)

and where T and Il are the time and frequency lattice intervals. Gabor proposed
that an arbitrary signal be expanded in the form

s(t) _ Cn,m hn,m (t) hn,m(t) = h(t - rnT) ejnstt n, m = -oo, oo (13.32)
n,m
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where h(t) is a one dimensional function as yet to be specified. If such an expansion
can be done the coefficients squared would give an indication of intensity at the
time frequency point ti, wi. Gabor suggested that an appropriate function for h
is the Gaussian because it is the function that is most compact in the sense of the
time-bandwidth product,

h(t) = (a/7r)'/4 e-at2/2 (13.33)

On the issue of whether such an expansion is possible in principle, it has been
shown to be possible when TO _< 1. However, the expansion coefficients are not
unique and for that reason a number of different approaches have been developed
for their calculation. We shall not delve into their calculation here because it is not
germane to our main point. Suffice it to say that they can be obtained for an arbi-
trary signal.

Qian and Morrisi411 showed that this type of expansion can be effectively used
to understand the cross terms in the Wigner distribution and in addition offers an
easy way for systematically adding them to the self terms. The method was further
developed by and Qian and Chen. [470) The approach can be applied to any of the
bilinear distributions. Notice that what appears in all bilinear distributions is the
factor s* (u - I r)s(u + 1T), which, when expanded using Eq. (13.32), is2 2

8*(u - 2T)8(u + 2T) _ Cn, m' C,,,,,, hn, m' (u - 2T) hn m(u + 2T) (13.34)
n',m' n,m

We find the generalized distribution to be

C(t, W) = E E Cn,,m, Cn,m Cn',m';n,m(t, W) (13.35)
n',m' n,m

where

Cn',m',n,m = 47r2
Jffhi,m(U - 2T) hn,m(u + 2T) 0(0,7-) e-j8'-jrw+jAu du d7- d9

(13.36)
Let us now specialize to the Wigner distribution, in which case the Cn',m';n,m can

be done analytically since the hnm's are Gaussians. If we break up the summation
as

W (t, w) = E I Cn,m I2Wn,m;n,m(t, w) + E Cn',m' Cn,m Wn',r';n,m(t, w)
n,m n' ,m' fin, rn

(13.37)
then the first summation is manifestly positive since the hnm is a Gaussian. If all
the terms of the second summation are added, then we get the exact Wigner distri-
bution. An effective way to add the terms of the second summation is to first add
nearest neighbor terms, then add second nearest neighbors, and so on. The motive
is to systematically add the relative importance of the cross terms.
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13.7 EXPANSION IN SPECTROGRAMS

From a calculation point of view, the spectrogram is particularly easy to compute
since the only calculation involved is a single Fourier transform of the windowed
signal. Furthermore, Fourier transforms are very efficiently calculated by way of
the fast Fourier transform technique. We now show that an arbitrary real time-
frequency distribution may be expressed as an infinite sum of spectrograms. This
decomposition offers an efficient method for the calculation ofa time-frequency dis-
tribution, because for many cases the time-frequency distribution can be approxi-
mated with a finite number of such terms. From a computational point of view
there may still be a considerable saving. This method was developed into an effec-
tive calculation scheme by Cunningham and Williams.[',,,,

We write here Eq. (9.12), one of the ways to express the general time-frequency
distribution,

C(t, w) = 2- Jf r(t -
2
(x + x'), x - x') e-i"(x-x") s (x') s(x) dx dx' (13.38)

Let us momentarily assume that we can express r in the following form,

00

r(t - a (x + x'), x - x') _ un(x - t) un(x' - t) (13.39)
n=1 n

where An's and un are constants and functions as yet to be determined. Substituting
this expansion in Eq. (13.38) we have

27r Ynn=1

1

27r J
8(x) un(x - t) a-3" dx

2

(13.40)

which is a sum of spectrograms with windows un. All this depends on whether
indeed we can decompose r as indicated by Eq. (13.39), which we now consider.

Hermitian Functions. If we have a two dimensional function, K(z, z'), that satisfies
the Hermitian property

K(z, z') = K* (z', z)

then solving the integral equation

(13.41)

u(z) = A J K(z, z') u(z') dz' (13.42)

results in eigenvalues and eigenfunctions, An's and un's, which form a complete
set. For this to be possible the kernel must be square integrable. Such functions are
called Hilbert-Schmidt kernels. The kernel, K, is then expressible in terms of the
eigenfunctions and eigenvalues,

00

K(z, z') = un(z) u* (z') (13.43)
n=1 '\n
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Now to specialize to our case. Let z = x - t and z' = x' - t and define

K(z, z') = r(-. (z + z'), z - z') (13.44)

As a function of z and z', r is Hermitian if the distribution is real. That is,

K(z, z') = K* (z', z) if r(u,T) = r* (u, -T) (13.45)

Hence the solution of
r

u(z) = a J r(-1(z + z'), z - z') u(z') dz (13.46)

will result in eigenvalues and eigenfunctions so that r may be expanded as indi-
cated by Eq. (13.39).

In practice, we usually have a signal in a discretized form and the eigenvalue
problem is formulated in terms of a matrix equation for which there are standard
routines for solving for the eigenvalues and eigenfunctions. This has to be done
only once. Once the eigenvalues and eigenvectors have been obtained for a specific
kernel, they may be used for any signal. The windows are not the usual windows
used in calculating spectrograms, but that is of no consequence since the main mo-
tive is for the purpose of numerical computation.

Complex Distributions. If r does not satisfy the Hermitian property then it is pos-
sible to expand it in the following form,

00

r 1 un(x-t)v,,(x' -t)
n_1 an

(13.47)

where now the un's and vn's are different complete sets. Such a decomposition is
achieved by a method known as singular value decomposition, which is discussed
in Section 13.9. Substituting into Eq. (13.38) we have

C(t, w) = 1
00

1

l \.
3(x) Vn(x - t) a-j"x dx I (13.48)

27r
f 8(x) un(x - t) a-'"x dx ] (_L

27r f
which is a sum consisting of products of short-time Fourier transforms. This ap-
proach was developed by O'Hair and Suter.i411i

13.8 SPECTROGRAM IN TERMS OF OTHER DISTRIBUTIONS

The concept of expanding a spectrogram in terms of other distributions was con-
sidered by Whiteiml) and Amini19i who made a singular value decomposition of the
kernel. We restrict ourselves to real distributions, which insures the kernel is Her-
mitian. White showed how the spectrogram can be expanded in terms of modified



190 Chap. 13 Further Developments

Wigner distributions. We shall consider the general case where we expand any dis-
tribution in terms of modified distributions. Recall from Section 9.7 that any two
distributions are related by

JfCi(t,W) = 912(t'-t,w'-w)C2(t',w')dt'dw' (13.49)

with

912(1,w) = 12 if
01(0"r) 9t+-7rw dB dTe?

47r 02(0,'r)
(13.50)

If the distributions are real, then 912 (t, w) is Hermitian and

912 (t, w) = F 1 ?7- (t) rl,*,(w)
n=1 en

where the en's and i 's are obtained by solving the integral equation,

(13.51)

'On (t) = En J 912(t,W)17n(w) dw (13.52)

Substituting this decomposition into Eq. (13.49) we have

1 C2(n) (t, w) (13.53)00C1(t, W) = E
n=1 En

where
C2(n) (t, W) = Jf rrn(t' - t) 17 (W - w) C2(t', w') dt' dw' (13.54)

This shows that an arbitrary distribution can be expanded as a sum of modified
distributions, C2(n) (t, w). The modification indicated by Eq. (13.54) is that each term
in the sum is the distribution smoothed independently in the time and frequency
directions.

13.9 SINGULAR VALUE DECOMPOSITION OF DISTRIBUTIONS

If we have a function of two variables, C(t, w), it is possible to expand it in terms of
a sum of product functions,

00

1C(t, w) _ un(t) V,*, (W) (13.55)
n=1 Qn

where the un's and v'n are complete sets obtained by solving the coupled integral
equations

un(t) = Qn f C(t, w) vn(w) dw i vn(w) = vn f C"(W, t) un(t) dt (13.56)
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The solution of these equations results in common eigenvalues but two complete
sets of functions, the u's and the v's. This decomposition of a two dimensional
function is called a singular value decomposition. Note that for the case C(t, w) _
C' (w, t) we have Hermiticity, in which case we can use the standard approach dis-
cussed in Section 13.9. Since in our case C(t, w) will be a joint time-frequency dis-
tribution, it is in general not Hermitian.

In the general case we need in principle an infinite number of terms to represent
the distribution exactly. However, in many situations the first four or five terms are
sufficient to achieve a very high accuracy. The concept of decomposing a distribu-
tion in this manner was first done by Marinovich and Eichmanni3631 for the Wigner
distribution.

There are two basic reasons for seeking such a decomposition. First, suppose
the signal is in a noisy environment. If we decompose the distribution and keep
only the first few terms we will reduce the noise significantly because the signal is
well represented by the first few terms but the noise is typically spread out over all
the terms. Therefore, by truncating the series after four or five terms we retain most
of the signal but lose most of the noise.

The second reason is for the purpose of classification. The basic idea is that the
a's contain unique characterizations of the time-frequency structure of a distribu-
tion and may be used for classification. Suppose, for example, we have ten signals
and do a singular value decomposition of each one. This will result in ten sets of
singular values and eigenfunctions, all different from each other. Suppose we keep
just the first five terms. For the eigenvalues we will have ten sets of five numbers.
Now suppose we have an unknown signal, one of the ten but in a noisy environ-
ment, and want to classify it. We do a singular value decomposition and compare
the first five singular values to our sets. Since we are comparing numbers the com-
parison is easy and fast. Any reasonable measure of comparison can be used, such
as the Euclidean distance. The closest distance is used to classify the signal.

13.10 SYNTHESIS

Suppose we want to design a signal that has a time-frequency structure of our
choosing. A way to accomplish this is to form the time-frequency distribution and
then calculate the signal that generates it. If the time-frequency distribution we
have constructed is a legitimate one, that is, a representable one, then the sim-
ple inversion formula, Eq. (9.56), yields the signal. However, in general, the time-
frequency distribution we construct will not be a representable one. For example,
suppose we want a Wigner distribution to have certain time frequency structure.
In general we will not be able to construct a representable Wigner distribution be-
cause we will not be able to properly construct the cross terms. We are simply
not that capable. What is done is to seek a signal that reproduces the given time-
frequency distribution as dose as possible, for example, in the least squares sense.
Obtaining a signal from a distribution is the synthesis problem. It was first con-
sidered by Boudreaux-Bartels and Parks[93, 9si for the Wigner distribution. For the
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Choi-Williams distribution, where the cross terms are less of a problem, Jeong and
Williams have devised an effective synthesis scheme. P13

Another important application of the synthesis problem arises in the following
circumstance. Suppose we have a time-frequency distribution of some signal that
is multicomponent, and we want the signal that produces only one of the compo-
nents. What we can do is to erase everything in the time-frequency plane but the
component of interest. Having erased parts of a legitimate distribution, the result-
ing distribution will not usually be a representable one because, for example, we
may have erased cross terms which are needed to have a representable distribu-
tion. Nonetheless, we want the signal that generates that component. The synthe-
sis problem will again have to be done in terms of the best signal that generates a
distribution close to the one we have at hand.

A further reason for the synthesis problem that is if we have a signal with noise
and calculate the time-frequency distribution, the noise will typically be spread
throughout the time-frequency plane. If we literally erase the noise but keep the
signal, the result will be the signal and noise only around the signal in time and fre-
quency. Finding the signal this produces this curtailed distribution will, hopefully,
result in a signal with less noise than the original.

13.11 RANDOM SIGNALS

The main consideration in this book has been deterministic signals. To apply the
ideas developed to random signals, one ensemble averages. Ensemble averaging
means averaging over all possible realizations of the signal, each one having a cer-
tain probability of occurrence. For deterministic signals we have used averaging
for many purposes, such as in the definition of global and local averages. These
two uses of averages must be differentiated. We shall use an overline to denote en-
semble averaging. Very often both averages are taken. For example, if we have a
random signal then (t) means that we are calculating the average time for a partic-
ular signal of the ensemble and then averaging over all possible signals. Sometimes
the order of averaging matters and sometimes not, but we will not address this issue
here.

We define a random time-frequency distribution, C(t, w), by ensemble averag-
ing the deterministic joint distribution over all possible signals. Using the general
time-frequency distribution, Eq. (9.1), we have

rr) e-iet-iTW+ieu du dr d8'r) 0(0C(t ) = * ( - 1 ) ( +
__ N (13 57),, w s u r s u
7r4 2 22

If we assume that hekernel is independent of the signal, then

.

r) du d7- d6r) 0(9(t *(u - 2 ) (u +) fff (13 58),, w s r s
2

.

r) du dr dO- 2 -) 6(9+ 1Jff R( (13 59)u r, u ,74 2 .
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where R(t, t') is the autocorrelation function of the random process

R(t, t') = s*(t) s(t') (13.60)

If we want to work with the form given by Eq. (9.9), then

C(t, w) = 2- ff r(t - u, r)R(u - Zr, u + 2T) du dr (13.61)

If in addition we assume that the random process is stationary, the autocorrelation
function is then a function of the difference of the times,

R(t, t') = R(t - t') (13.62)

in which case we have

C(t, w) = R(u - 2r, u + 2r) = R(r) (13.63)

C(t, w) = 2
-

Jf r(t - u, r)R(r) a-j"T du dT (13.64)

For the Wigner distribution, Martin13761 and Martin and Flandrin[3781 have devel-
oped the main ideas and Martin has coined the phrase "Wigner-Ville spectrum" to
indicate that we have ensemble averaged the Wigner distribution. White[' ) devel-
oped a comprehensive theory for the general case and devised specific methods for
obtaining the important parameters of a random process and the errors involved in
estimating the parameters. Amin's1201 early work on spectrum estimators is closely
related to the concept of kernal choice for the random case. Considerable work has
been done in this area recently by Amin,1261 Chaparro, El-Jaroudi and Kayhan,11101
Riedel and Sidorenko,14811 and Sayeed and JonesI5011 who have addressed the fun-
damental problems and specific applications.

Kernel Choice. Most of the ideas regarding the choice of kernel carry over to the
random case. For example, if we have a wide-sense stationary process, we expect
the marginal in frequency to be white noise. The condition for that, as Poschl45' has
shown, is that 0(0, 0) = 1, which is the condition to obtain the frequency marginal
for the deterministic case. The issue of which is the best kernel to use for estimating
the properties of the random process has been formulated by Amin,1261 who has
shown that the random case necessitates unique constraints on the kernel. He has
developed a comprehensive theory of kernel choice.

13.12 NUMERICAL COMPUTATION

The calculation of time-frequency distributions is fairly straightforward. However,
as is usual with numerical methods there are many tricks and procedures that have
been devised and that are best obtained from the original sources. We just give a
broad outline of the basic ideas and discuss some of the fundamental issues that
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have arisen. We assume that we have discrete samples and that the signal is suffi-
ciently bandlimited so that the Nyquist sampling theorem applies: For a bandlim-
ited signal, the signal can be reconstructed from discrete sampled values if the sam-
pling is done at a sampling rate w, > 2w where is the highest frequency in
the signal.

All distributions have at least one Fourier transform to be done. Historically
there have been a number of methods proposed to calculate integrals involving
sines and cosines, for example the method of Fillon. However, the advent of the
Fast Fourier Transform has over shadowed these methods because indeed it is fast.

The simplest distribution is the spectrogram, Eq. (7.5) One chooses a specific
time, t, calculates the modified signal, s(r) h(r - t), as a function of r, then takes
the Fourier transform with respect to T. This is repeated for each time desired. For
the Wigner distribution s*(t - 2T) 8(t + 2T) is calculated as a function of r, for a
fixed time t and the Fourier transform taken. That gives us the Wigner distribution
of frequencies at time t. The procedure is repeated for any other time. Note that
it appears because of the factor of one half we must have signal values at points
in between the sampled values. If we do have them then of course there is no
problem. But that requires that we over sample by a factor of two. If we do not,
one can, for example, interpolate to get them. Because of this it has been believed
that to construct the Wigner distribution from discrete samples one must sample
the signal at twice the Nyquist rate; otherwise aliasing will occur. That can not be
the case since in principle having a sampled signal at the Nyquist rate allows us to
construct the signal for any time. Having constructed the signal for an arbitrary time
one can then calculate the continuous Wigner distribution. Therefore we see that in
principle we should not have to over sample. For the Wigner distribution, Poletti11
and Nuttalll405) have shown that the Wigner distribution can be computed from a
signal sampled at the Nyquist rate without interpolation of the sampled values or
reconstitution of the continuous signal.

The same considerations apply to the calculation of any of other bilinear time-
frequency distributions. The basic issue is how to define the discrete version of
bilinear time-frequency distributions so that at the discrete time frequency points
they have the same value as the continuous version, and where the calculation can
be performed directly from the discrete version of the signal, sampled at the Nyquist
rate. In addition, the discrete version should satisfy the same general properties of
the continuous version, that is, the marginals and so forth. This is a fundamen-
tal problem that has recently been solved by Morris and Wu,11871 O'Hair and B. W.
Suter,1410', Jeong and Williams,1286) and Cunningham and Williams.J1671

For the general bilinear case three Fourier transforms have to be performed but
for many kernels one of the integrations can be done analytically resulting in the
form given by Eq. (9.9). This is the case, for example, with the Choi-Williams distri-
bution. For such distributions we have two integrals, only one of which is a Fourier
transform. To calculate such a distribution the inner integral, that is, Eq. (9.10) is ef-
fectively done by the rectangular rule. Subsequently the Fourier transform is taken.

We also mention that decomposition of a time-frequency distribution as a sum
of weighted spectrograms is a very effective calculational method. This is described
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in Section 13.7. Also the computational approaches for calculating the positive dis-
tributions are described in Section 14.2 and the calculation method for obtaining
optimum kernels is described in Section 11.5.

13.13 SIGNAL ANALYSIS AND QUANTUM MECHANICS

Historically, the origins of the mathematics and many of the ideas used in time-
frequency analysis originated and were guided by corresponding developments
in quantum mechanics. In fact, the original papers of Gabor and Ville continu-
ously evoked the quantum analogy. This parallel development will undoubtedly
continue because there is a very strong mathematical similarity between quantum
mechanics and signal analysis, and results can be mathematically transposed. How-
ever, the transposition cannot be carried over, necessarily, to the interpretation of
the ideas, because the physical interpretations are drastically different. The most
fundamental difference between the two subjects is that quantum mechanics is an
inherently probabilistic theory, while signal analysis is deterministic.' We empha-
size that the fundamental idea of modern physics is that we can only predict prob-
abilities for observables such as position and velocity and that this is not a reflection
of human ignorance but rather the way nature is. The probabilities are predicted
by solving Schrodinger's equation of motion.

The reason for the mathematical similarity is that in quantum mechanics the
fundamental quantity is the wave function. In the position representation the wave
function is b(q), where q is position. In the momentum representation it is O(p),
where p is the momentum. The main point is that the two wave functions are
Fourier transforms of each other:

2rrfi O(q)
a-.ill" dq 'P(q) = J

O(P) e gplh dp
O(p) =

,!
(13.65)

where h is Planck's constant divided by 2ir. Moreover, the probability distribution,
P(q), for finding the particle at a certain position is the absolute square of the wave
function and the probability of finding a particle with a certain momentum, P(p),
is the absolute square of the momentum wave function,

P(q) = I''(q) I2 P(q) = I O(p) 12 (13.66)

Therefore, mathematically and mathematically only, we can associate the signal
with the wave function, time with position, and frequency with momentum. The
marginal conditions are formally the same, although the variables are different and

1It should be kept in mind that in quantum mechanics and signal analysis there is another layer that
is probabilistic. In the case of quantum mechanics this comes about if we do not know the possible
wave functions and assign probabilities for obtaining them. Hence in calculating averages for such a
situation we have a double probability average, one due to the inherent probabilistic distribution, where
the absolute square of the wave function is the probability, and the other an ensemble average over the
possible wave functions. That aspect of the subject is called quantum statistical mechanics. In signal
analysis we start with a deterministic theory and if the possible signals are probabilistically determined
(random signal) then we have to ensemble average over the possible signals.
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the interpretation is certainly different. In quantum mechanics the marginals are
probability densities; in signal analysis they are deterministic intensities. In Table
13.1 we list some of the physical quantities in each field and the correspondence be-
tween them. We also point out that the operator method we describe in this book
is fundamental in quantum mechanics.

We now come to the issue of interpretation and address some of the fundamen-
tal distinctions. One must be particularly cautious in transposing ideas because
blind transpositions can lead to preposterous results. In quantum mechanics, phys-
ical quantities are represented by operators and it is the fundamental tenet that
what can be measured for an observable are the eigenvalues of the operator. (That
is the basis for the quantization of physical quantities.) From a classical point of
view this produces bizarre results, which are nonetheless true and have been veri-
fied experimentally.

For a dramatic example of the difference, consider the sum of two continuous
quantities. In quantum mechanics each quantity can be continuous and yet the sum
is not necessarily continuous! Specifically, consider the position, q, and momentum,
p, which are continuous in quantum mechanics because the eigenvalues of the po-
sition and momentum operators are continuous. Now consider the physical quan-
tity made up of position and momentum, q2 +p2 (appropriately dimensioned). It is
never continuous under any circumstances for any particle. It is always quantized,
that is, it can have only certain values. The reason is that the eigenvalues of the op-
erator, q2 + p2, are discrete. If we were to make a blind analogy, the corresponding
statement in signal analysis would be that time and frequency are continuous, but
that t2 + w2 (appropriately dimensioned) is never so and is always discrete. That
would be a ludicrous statement to make in signal analysis.

We now address the issue of the uncertainty principle. We have already dis-
cussed some aspects of its interpretation in quantum mechanics and signal analysis
in Chapter 3. The term uncertainty was coined in quantum mechanics, where it
properly connotes the fact that quantum mechanics is an inherently probabilistic
theory. In quantum mechanics the standard deviations involve the measurement
of physical observables and are probabilistic statements. However, in nonproba-
bilistic contexts the uncertainty principle should be thought of as expressing the
fact that a function and its Fourier transform cannot both be made arbitrarily nar-
row. It has nothing to do with "uncertainty" as used in quantum mechanics.

There is another important difference. In Chapter 2 we discussed that observ-
able signals are real and that the energy density spectrum of real signals does not
properly indicate the physical situation. For example, for real signals the average
frequency is zero, which is not a reflection of the physical situation. This led to the
desire to define a complex signal. In quantum mechanics wave functions are in-
herently complex, although they may be real. If a wave function is real, then the
average momentum is zero. That is perfectly all right and does reflect the physical
situation. It means that we have equal probability for the particle traveling to the
right and the particle traveling to the left. Therefore there is no need to introduce
the equivalent of an analytic signal. Momentum, unlike frequency, can be negative
or positive.
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Table 13.1. The relationship between quantum mechanics and signal analysis. The formal mathematical
correspondence is (position, momentum) +-+ (time, frequency). The wave function in quantum mechanics
depends on time but this has no formal correspondence in signal analysis.

Quantum Mechanics
(inherently probabilistic)

Position:

Momentum:

Time:

Wave function:

Momentum wave function:

4(P, t) = 1 f+t'(q, t) a-j9P/n dq
27r>i

Probability of position at time: t

Probability of momentum:

Expected value of position:

Expected value of momentum:

Standard deviation of position:

Standard deviation of momentum:

Uncertainty principle:

Current:

Iw(q, t) 12

10(p, t) 12

(q) = f gIV, (q,t)12dq

(p) = fpl0(P,t)I2 dp

aq = (q2) - (q)2

P= (P2)-(p)2

aq ap > hZ

d phase of O(q)
dq

Time:

Frequency:

Signal:

Spectrum:

Energy density:

Signal Analysis
(deterministic)

t

w

No correspondence

8(t)

S(w) = 1 / 9(t) a-i-t dt
27r .

18(t)12

Energy density spectrum: IS(w)12

Mean time: (t) = f t Ie(t)l2 dt

Mean frequency: (w) = f w I S(w) I2 dw

Duration: T = (t2)-(t)2

Bandwidth : B= (w2)_(w)2

Time bandwidth relation: BT > z

Instantaneous frequency: dt phase of s(t)



Chapter 14

Positive Distributions
Satisfying the Marginals

14.1 INTRODUCTION

Wigner showed that manifestly positive bilinear distributions satisfying the time and
frequency marginals do not exist.[' ] The spectrogram, for example, is man-
ifestly positive but does not satisfy the marginals while the Wigner distribution
satisfies the marginals but is not manifestly positive. Historically there has been
a sense expressed in the literature that manifestly positive distributions satisfying
the marginals cannot exist. But they do. They are obtained by a simple procedure
which ensures that the marginals are satisfied. These distributions are, of course,
not bilinear in the signal.

14.2 POSITIVE DISTRIBUTIONSI'27,

12''1

Take
P(t, w) = I S(w) I2 I s(t) I2 f(u, v) (14.1)

where u, v are functions of t and w

t
u(t) = f I s(t') 12 dt' v(w) = J 1 S(w') 12 dw' (14.2)

00

and where St is any positive function satisfying

i I

f0
S2(u, v) du = 1 (14.3)

198
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It is sufficient to define Q(u, v) only for 0 < u, v < 1. Note that u and v are the
cumulative margins, that is, they are the sum of the densities up to given time and
frequency values.

Marginals. First note that
dv = J S(w) I2 du; (14.4)

Now, integrate with respect to w

f P(t, w) dw = I s(t) 2 f I S(w) 12 !(u, v) dw (14.5)

Is(t) 12
J
1 1(u, v) dv (14.6)
0

_ I s(t) 12 (14.7)

Similarly for the frequency marginal.

Positivity. The distributions given by Eq. (14.1) are positive as long as 12 is positive
for the range 0 < u, v < 1. cl may or may not be a functional of the marginals or
signal, but to generate all possible positive joint distributions we have to consider
it a functional of the signal. 12311 Examples of cl's satisfying the above conditions are
easily made up; for example,

il(u,v) = 1 - (nui-1 - 1)(mvm-1 - 1) (14.8)

where n, m are any integers.

Relationship Between Kernels. We have introduced the form given by Eq. (14.1)
because it makes the manifestly positive aspect dear. It is possible to obtain this
form using the general lass developed in Chapter 9. There exists a relationship
between the kernels,11281 but generally it is easier to work directly with Eq. (14.1).

The Wigner Distribution for a Chirp. In Section 8.6 we pointed out that for one
signal and one signal only, the Wigner distribution was manifestly positive. That
case is given by Eq. (8.43). The reason it is positive is the it is not really bilinear It
can be obtained[] from Eq. (14.1).

Weak and Strong Finite Support. For the distributions given by Eq. (14.1), the
factor I S(w)12 1 s(t) 12 appears. Therefore, if the signal is zero at a certain time or
the spectrum is zero at a frequency, the distribution will likewise bezero, assuming
that fl is not infinity at those values. Therefore these positive distributions satisfy
the strong finite support property and hence also weak finite support.

Uncertainty Principle. Since these distributions satisfy the marginals, they satisfy
the uncertainty principle.
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Scale Invariance. We now show, following Loughlin,lm4i that these distributions
are scale invariant. The distribution of the scaled signal, sa,(t) = s(at), is

Pac(t, w) = Sac(w) I2 3ac(t) 2 9(uac(t), vec(w))

I S(w/a) 12 1 s(at) 2 Q(uec (t), v. (w)) (14.10)

But

t t
at

uac(t) =
J I

S.,#1) I2 dt' = a
J 1 s(at') 12 dt' = f

I s(t') I2 dt' = t1 (at)
00

(14.11)
and similarly va,(w) = v(w/a). Therefore we have that

P3,(t, w) = I S(w/a) I2 I s(at) 2 n(u(at), v(w/a)) (14.12)

= Plat, w/a) (14.13)

(14.9)

Time and Frequency Shifts. For a signal that is shifted by a time to and frequency
wo the distribution is

Pah (t, w) = I Sah(w)
12

I Sah(t) I2 cZ(uah(t), vah(w)) (14.14)

= I S(w - wo) I2 I s(t - to) I2
1z(uah(t), vah(w)) (14.15)

But

u I s(t') I2 dt' = u(t -to)sh(t) = f I Sah(t') 12 dt' = f I s(t' - to) I2 dt' t_tot
t00 00 00

(14 16)

and also vah(w) = v(w - wo), which shows that
.

Pah(t,w) = P(t - to,w - wo) (14.17)

Conditional Distributions. The conditional distributions are

) -P(tI
P(t, w) _ IS (t) I2 S2 ( v) (14 18)w u,-
I S(w) I2

.

P(w(t) - P(t,
w) = I S(w)

121(u v) 19)(14,
1 3(t) 12

.
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Consequences of Positivity. Our experience in everyday life is, of course, with pos-
itive densities. However, our experience in time-frequency analysis has dealt with
either positive distributions that do not satisfy the marginals or non-manifestly
positive ones that do satisfy the marginals. We now examine the nature of time-
frequency distributions that are both manifestly positive and satisfy the marginals.

First let us note that if the marginal is zero at a certain point in time then the
joint distribution must be zero at that time for all values of frequency; the strong
finite support property is satisfied. This is so because to get the time marginal we
add nonnegative pieces, which cannot add up to zero unless the pieces are zero
themselves. This is no different than saying that if there are no people who are six
feet tall, then there are no people at that height for any weight. Similarly, if the
spectrum is zero for a certain value of frequency, the joint distribution will be zero
for all times at that frequency.

Now consider the issue of instantaneous frequency and positive distributions.
Can we obtain the derivative of the phase as the conditional average,

(w)t =
s(t)

y w P(t, w) dw ? (t)2
1

Jo
(14.20)

The answer is no in general, but yes sometimes. The general answer of no comes
about by the following argument of Claasen and Mecklenbrauker.11201 Suppose we
have an analytic signal and therefore the spectrum is zero for negative frequencies.
By the arguments given above the joint distribution will also be zero for negative
frequencies. If the distribution is positive the conditional average will be positive
for an analytic signal. This is a satisfying result. However, we know from Section
2.7 that there are analytic signals that produce an instantaneous frequency, defined
as the derivative of the phase, which may go negative. Hence, for those signals,
Eq. (14.20) cannot be satisfied. But those are precisely the signals for which the
derivative of the phase, as a representation of the concept of instantaneous fre-
quency, apparently makes no sense. Therefore, a meaningful question is whether,
for cases where the derivative of the phase meets our expectations of instantaneous
frequency, positive distributions can satisfy Eq. (14.20). No general results regard-
ing this question are known.

14.3 THE METHOD OF LOUGHLIN, PITTON, AND ATLAS

Construction of positive distributions has been achieved by Loughlin, Pitton, and
Atlas. I'] They have formulated the problem in the following way. With our present
knowledge we cannot fix the joint distribution. There are too many Sl's. The prob-
lem of finding a function for conditions that do not fix the function is a long standing
one in many fields. One approach is the method of maximum entropy. The idea
is that we find all the functions that satisfy the conditions and then choose among
them the one that maximizes the entropy, the reason being that the maximum en-
tropy solution is the one that is unbiased. In practice this is achieved by taking a
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guess at the joint distribution, PO,rdefining the cross entropy by

A _ - JJ P(t, w) log P(t, `"') dt dw (14.21)
Po(t,w)

and maximizing this expression with the constraints of the marginals, positivity and
other possible constraints one may want to impose. In Figs. 14.1 - 14.3 we give a
number of examples. Fonollosa and Nikias[2021 have added the additional constraint
that the distribution along a given axis be a specified function. In particular, if we
have a two dimensional distribution and want to obtain the density of the variable
u = at + bw where a, b are the direction cosines specifying the axis, then the density
of u is given by Eq. (4.97),

P(u) = ffo(u_ (at + bw)) P(t, w) dt dw (14.22)

J P(t, (u - at)/b) dt (14.23)

In our case we do not know P(t, w). Fonollosa and Nikias used the Wigner distri-
bution to obtain P(u) and impose the constraint for a finite number of axis.

(a)
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I IS(t`'I)
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Fig. 14.1 Positive joint time-
S(t) 12 frequency of a chirp (a) and the sum

of two chirps (b) and correspond-
ing marginals. Notice that the time-
frequency distribution in (b) oscil-t - lates and is not simply the sum of
the time frequency distributions of

I

i S rw) 2 two chirps. This must be so if the
marginals are to be satisfied. For a

! iI r1 fuller discussion of this issue refer to
Section 1.10. (Courtesy of P. Lough-

w - lin, J. Pitton, and L. Atlas.)
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Fig. 14.2 For (A), the signal is a sequence of decaying exponentials, shown in (a). The

frequency is constant. In (b) and (c) are the wide band and narrow band spectrograms.
The manifestly positive distribution that satisfies the marginals is shown in (d). (B) is
the same as (A) except that the frequency is continually increasing linearly. (Courtesy of
P. Loughlin, J. Pitton and L. Atlas.)
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Fig. 14.3 The signal is the sound of a
grinding machine. The spectrogram
is (a) and the positive distribution is
(b). The spectrograms gives no in-
dication of the fine detail. The pos-
itive time-frequency distribution re-
solves the lines and moreover shows
that some of the lines have periodic
amplitude modulation. (Courtesy of
P Loughlin, J. Pitton, L. Atlas and
G. Bernard. Data courtesy of Boeing
Commerical Airplane Group.)
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Chapter 15

The Representation of Signals

15.1 INTRODUCTION

In the previous chapters we developed the theory of joint representations for time
and frequency. We now extend the methods to other physical variables. For a phys-
ical quantity, we want to obtain its density, average value, spread, and other results
as was done for the case of frequency. This is accomplished by expanding the signal
in the representation of the physical quantity in the same sense that the Fourier rep-
resentation is the appropriate representation for the physical quantity "frequency".
The basic idea of representing a signal in another representation is to write the sig-
nal as a linear combination of other functions, the expansion functions. They are
obtained by solving the eigenvalue problem for an operator that represents, or is
associated with, the physical quantity of interest. For example, the complex sinu-
soids are the eigenfunctions of the frequency operator, and the frequency operator
is associated with or corresponds to the physical quantity "frequency". We will use
"a" to signify the physical quantity we are studying and script capital A for the
associated operator.

15.2 ORTHOGONAL EXPANSION OF SIGNALS

A signal is expanded in the form

JF(a)u(a,t)das(t) = (15.1)

where u(a, t) are the basis functions and F(a) are the "expansion coefficients" or
the "transform of the signal". As we will prove momentarily, F(a) is given by

F(a) = fs(t)u*(a,t)dt (15.2)

204
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The basis functions, u(a, t) are always functions of two variables, in this case
time and a. The a's are the numerical values of the physical quantity and they may
be continuous, discrete or both. Furthermore, the range of a's may be infinite or
limited. The integration in Eq. (15.2) implies a specific region of integration. For
example, for frequency the range is all possible values, while for scale we will see
that the range is from zero to infinity. In this section we assume that the variable a
is continuous and at the end of this section we address the discrete case.

The functioh F(a) gives us an indication of how important a particular value of
a is for the signal at hand. If F(a) is relatively large only in a particular region we
can then say that the signal is concentrated at those values of a.

The Expansion Functions, Operators, and the Eigenvalue Problem. Where do we
get the expansion functions, the u's, that presumably are the natural functions for
the physical quantity we are interested in? Also, how do we determine the possible
numerical values, the a's, that the physical quantity may attain? Both are obtained
by solving the eigenvalue problem for the operator that corresponds to the physical
quantity. Operators are commands that change functions. For example, multiplica-
tion, squaring, differentiation, integration, and combinations of these are operators.

Generally, the eigenvalue problem is written as

A u(a, t) = a u(a, t) (15.3)

In the eigenvalue problem the operator is given and one seeks to find those func-
tions, the u's, that when operated upon give back the same function multiplied by
a number, in this case a. Generally, there are an infinite number of such functions
each paired with an eigenvalue a. The u(a, t)'s are called the eigenfunctions and
the a's are the eigenvalues. Solution of the eigenvalue problem means solving for
both the u 's and a's. For example, the operator d/ dx, operating on ell returns a e"x,
hence eax is an eigenfunction with eigenvalue a. For this case there are an infinite
number of eigenfunctions because we can take any number for a.

Linear Hermitian Operators. A linear operator is one that satisfies

A(f+g)=Af+Ag (15.4)

For example, the operation of differentiation is linear because the derivative of the
sum is the sum of the derivatives. However, the operation of squaring is not because
the square of the sum is not the sum of the squares.

An operator is Hermitian or self adjoint if for any pair of functions, f (t) and
g(t),

fg*(t) A f (t) dt = 11(t) {Ag(t)}* dt (15.5)

To prove that an operator is Hermitian one has to show that Eq. (15.5) does indeed
hold for any pair of functions.
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Importance of Hermiticity. The importance of Hermiticity is threefold. First, Her-
miticity of the operator guarantees that the eigenfunctions are complete and or-
thogonal. This means that the eigenfunctions satisfy

f u' (a', t) u(a, t) dt = 6(a - a') (15.6)

f u' (a, t') u(a, t) da = 6(t - t') (15.7)

It is these properties of the expansion functions that allow us to transform between
s(t) and F(a) as given by Eqs. (15.1) and (15.2). In particular, to see how to obtain
F(a), multiply Eq. (15.1) by u` (a', t) and integrate with respect to time,

f s(t)u'(a',t)dt = Jf F(a) u(a, t) if (a', t) da dt (15.8)

f F(a) 8(a - a') da (15.9)

F(a') (15.10)

which proves the inverse relation, Eq. (15.2).
Second, if the operator is Hermitian the eigenvalues are guaranteed to be real.

This is important because in nature measurable quantities are real. Hence, if the
eigenvalues are to be measurable numerical values, the operator should be Hermi-
tian to assure that this is so. That is not to say that non-Hermitian operators are not
important but simply that they do not represent measurable physical quantities.
For example, the translation operator that we studied in Section 1.4 is not Hermi-
tian but is very useful.

Third, if an operator is Hermitian we can manipulate it in advantageous ways.
We have already seen this in Section 1.4 and we will see it over and over. The proof
that Hermitian operators do produce real eigenvalues and complete and orthogo-
nal eigenfunctions can be found in any book on mathematical methods.

Range and Values of a. It is important to understand that the numerical values
and range of the eigenvalues are obtained by solving the eigenvalue problem. It is
not imposed or assumed. If the solution of the eigenvalue problem predicts certain
values for the physical parameter a and we experimentally obtain a value that does
not correspond to one of those values, then there are only three possibilities: the
experiment is wrong, we have made an error in solving the eigenvalue problem, or
we do not have the correct operator for that physical quantity.

Possible and Actual Values of the a's. One must be very dear about the following
distinction. The solution of the eigenvalue problem gives us the possible values
that the physical quantity may attain, that is, the a's. However, for a particular
signal the actual values attainable are given by the function F(a), which may or
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may not range over all possible values of a. For example, any frequency is possible,
but for a particular signal only certain frequencies may exist. Note that solving the
eigenvalue problem has nothing to do with the signal at hand. The eigenvalue
problem is solved once and for all, but F(a) must be recalculated for each different
signaL

Normalization. For linear operators, a constant times an eigenfunction is also a
solution to the eigenvalue problem. To fix the constant the eigenfunctions are nor-
malized so that Eqs. (15.6) and (15.7) are satisfied. In that case we say that we have
normalized to a delta function.

The Usage of "spectrum." The set of eigenvalues obtained by solving the eigen-
value problem is often called the spectrum and the terms continuous and discrete
spectrum are used to communicate whether the d s are continuous or discrete. The
use of the word spectrum for the general case is unfortunate, because spectrum is
associated with frequency which is only one particular case. But even more un-
fortunate, the word spectrum is often used to denote the Fourier transform, S(w).
However, the particular usage is usually clear from the context.

Example 15.1: Frequency.

From Chapter 1 we know that the frequency operator is

First let us prove that it is Hermitian. For any two functions, f and g, we have, by
integration by parts, that

f 9'(t) dt f(t)dt = f9
0

-00
- f f (t) d

9.(t)
dt (15.12)

dt (15.13)f f (t) (4(t))
and hence the frequency operator is Hermitian.

The eigenvalue problem is
W u(w, t) = w u(w, t) (15.14)

and the solutions are

u(w,t) = ce'" (15.15)

Notice that all real values of w are possible. Therefore we say that the range of fre-
quencies are the real numbers from -oo to oo. To obtain the normalization consider

f u' (w, t) u(w', t) dt = c'f e-'"t e" t dt = 2ac26(w - w') (15.16)
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Since we want to normalize to a delta function we must take c2 = 1/21r and hence
the normalized frequency eigenfunctions are

(15.17)

Example 15.2: Time.

The time operator in the time representation is t, and the eigenvalue problem is

t u(t, t') = t'u(t, t') (15.18)

where t' are the eigenvalues. This is the equation that led Dirac to invent the Dirac
delta function. The solutions are

u(t, t') = 6(t - t') (15.19)

where t' can be any number. Therefore the eigenvalues are continuous. The eigen-
functions are complete and orthogonal.

Discrete Case. If the eigenvalues are discrete, then the notation a,, is used to denote
them, where n is an integer index. By convention, whenever possible, the eigen-
values are arranged in order of increasing magnitude. The corresponding eigen-
functions are denoted by u,, (t) and the eigenvalue problem is written as

Aun(t) = a,, u,, (t) (15.20)

We emphasize that before we have solved the eigenvalue problem we do not know
whether the solutions will be discrete or continuous or both. As in the continuous
case, the eigenfunctions are orthogonal and complete,

J un<(t) un(t) dt = 6n,,, (15.21)

E un(t) un(t') = 6(t - t') (15.22)
n

A signal can be expanded as

where the coefficients, cn, are

8(t) _ E Cn un(t)
n

(15.23)

c =
J

un(t) s(t) dt (15.24)

The proof of Eq. (15.24) is the same as for the continuous case which we gave in the
previous section.
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Signals in different representations: Terminology. One can uniquely go back and
forth between s(t) and F(a). Nothing is lost. Therefore we say that s(t) is the
signal in the time representation and that F(a) is the signal in the a representation.
Similarly, for the discrete case we say that the set of {c,}'s is the signal in the u,1
representation.

15.3 OPERATOR ALGEBRA

We now give an elementary exposition of the basic operator methods we will subse-
quently use. The two fundamental operators are the time and frequency operators
and generally other operators will be functions of these. The primary idea is that
for a physical quantity we will associate an operator.

Very often we will be dealing with two or more physical quantities and thus
with two or more operators. If we have two operators, A and B, then the operator
AB means to operate first with B and then with A. Generally, the order of opera-
tion is not interchangeable, as, for example, putting on socks and shoes. The order
matters. If the order doesn't matter, as, for example, putting on a hat and shoes,
then we say the operators commute. To determine if two operators commute, we
operate with AB and BA on an arbitrary function to see whether the same answer
is obtained. Equivalently, we can operate with AB - BA to examine whether zero
is obtained. The operator AB - BA is called the commutator of A and B and is
denoted by [ A, B ],

[A, B1 = AS - BA [ Commutator of A and B ] (15.25)

As we will see the commutator of two quantities plays a fundamental role. Some
properties of the commutator are

[A,B] = -[B,A] (15.26)

[cA,B] = c [A,B] (15.27)

[A,B+C] = [A,B] + [A,C] (15.28)

It is also useful to define the anticommutator,

[ A, B ]+ = AB + BA [ Anticommutator of A and B ] (15.29)

Note that [ A, B ] + and [ A, B ] are respectively symmetric and antisymmetric with
the interchange of the two operators.

Forming Hermitian Operators. One often forms a new operator from Hermitian
operators and it is important to know whether the new operator is Hermitian. As-
suming that A and B are Hermitian, the following are readily verified to be Hermi-
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tian operators:

cA
An

A+B
[A,Bl+
[A,B]lj

Chap. 15 The Representation of Signals

are Hermitian if A and B are Hermitian and c is real (15.30)

Operator Equations and Fundamental Commutation Relation. An operator equa-
tion means that when we operate with either side on an arbitrary function the same
result is obtained. For example, the fundamental operator commutation rule be-
tween time and frequency

TW - WT = j (15.31)

means that operating with the left hand side on an arbitrary function is the same as
multiplying that function by j. To prove this consider

(TW - WT) s(t) =
(t 1 d - 1 d

t l s(t) (15 32)
j dt j dt//

1 (tat - tat - 8)

.

(15.33)

= is(t) (15.34)

which proves Eq. (15.31).
Operator equations are manipulated almost like algebraic equations but careful

attention must be paid to the fact that operators may not commute and therefore
can not be switched around an expression.

Functions of an Operator. By a function of an operator, Q(A), we mean, by def-
inition, that in the ordinary Taylor expansion of the function one substitutes the
operator for the variable,

Q(A) = E cnAn if Q(x) (15.35)
n n

When will Q(A) thus defined be Hermitian? We already know that An is Hermitian
and therefore c,, An is Hermitian if cn is real. But having the cn's real means that
the function Q(x) is real, hence we conclude that

Q(A) is Hermitian if A is Hermitian and Q(x) is a real function (15.36)

A problem that often arises is the operation of Q(A) on an arbitrary function.
Generally, we just do it. However, a useful formula can be derived. Consider first
the action of Q(A) on an eigenfunction of A,



Sec. 3 Operator Algebra 211

Q(A) u(a, t) = E c,,,An u(a, t) = E c,an u(a, t)
n n

But the sum is recognized to be Q(a) and therefore we have

(15.37)

Q(A) u(a, t) = Q(a) u(a, t)

Now consider the operation of Q(A) on an arbitrary function s(t),

(15.38)

Q(A)s(t) = Q(A) J
F(a) u(a, t) da = J

F(a)Q(A) u(a, t) da

and therefore, using Eq. (15.38),

(15.39)

r
Q(A) s(t) = J F(a) Q(a) u(a, t) da

The Inverse of an Operator. The inverse of A, A-1, is defined so that

(15.40)

A-'A = AA-1 = T (15.41)

where T is the unit operator. 'typically we leave out the unit operator because it
is understood to be there where appropriate. For example, we write [ T, W] = j
instead of [ T, W] = jZ.

The inverse of an operator that is the product of two operators is given by

(AB)-1 = B-1A-1 (15.42)

This is so because

(AB)-'(AB) = B-'A-'AB = B-1B = Z (15.43)

The Adjoint of an Operator. The adjoint is another operator, denoted by At, which
forces the equality

J g`Af dt = f f {Atg}' dt (15.44)

If the adjoint of an operator happens to equal the operator itself, then we see that
Eq. (15.44) becomes the definition of a Hermitian operator, Eq. (15.5), and hence

if A = At then A is Hermitian (self adjoint) (15.45)

As can be seen from the definition of adjoint, the adjoint of a constant is the complex
conjugate of the constant,

At = c' if A = c = constant (15.46)
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The adjoint of a product of operators is given by

(AB)t = Bt At (15.47)

Another important property of the adjoint is that

A + At

(A - At)lj
are Hermitian whether A is Hermitian or not - (15.48)

An arbitrary, possibly non Hermitian, operator can be written in the following way

A = 2(A+At)+ij(A-At)/j (15.49)

Notice that we have multiplied and divided by j in the second term. The impor-
tance of this decomposition is twofold. First, it breaks up an operator into sym-
metric and antisymmetric parts. Second, it expresses an operator as a sum of a
Hermitian operator plus j times a Hermitian operator. This is the operator analog
of writing a complex number in terms of its real and imaginary part.

Product of Two Hermitian Operators. The product of two Hermitian operators
is not necessarily Hermitian. However, using the above decomposition by letting
A -+ AB it can be written in the following useful way,

AB = 2 (AB + (AB)t) + 2 (AB - (AB)t) (15.50)

= (AB + BA) + 1 (AB - BA) (15.51)

A,BI++1[A,B1/j (15.52)

This expresses AB in terms of its commutator and anticommutator.

Unitary Operators. An operator u is said to be unitary if its adjoint is equal to its
inverse,

Ut = U-1 [ Unitary 1 (15.53)

The importance of unitary operators is that they preserve normalization when op-
erating on a function. That is, f (t) and U f (t) have the same normalization if U is
unitary,

J f (t) 12 dt =
J

U f (t) 12 dt (15.54)

To see this consider

f I U f (t) I2 dt = f {U f(t)I* U f(t) dt = f f * (t) Utu f (t) dt = f I f(t)12 dt

(15.55)
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In general, an operator of the form

u=ejA (15.56)

will be unitary if A is Hermitian. To see this, first note that if A is Hermitian then

Ut = e-jAt (15.57)

This can be proven straightforwardly

t
Ut = (&,q) t = [- .7n An = (-j)" Atn = e-jAt

n! n!
n n

To show that u is unitary if A is Hermitian, consider

(15.58)

UUt = e'}1 a-'At = e3A a-jA = 2 (15.59)

Therefore, Ut = U-1, which is the definition of a unitary operator.
Unitary operators are not Hermitian but they do obey the simple manipulative

rule

J g*Uf dt = fi (Utg)1 dt = r f (U_lg)` dt (15.60)

This is the case since the middlestep is the definition of adjoint, and the right side
follows because of Eq. (15.53).

Example 15.3: Tlranslation Operator.

The translation operator defined by U = e'Tl^' is unitary. That follows because the
frequency operator is Hermitian. Also, we can see that from the fact that e"N' f (t) =
f (t + r) and by noting that f (t) and f (t +,r) have the same normalization for any r.
The inverse of the translation operator is U-1 = e-2 W. This follows from Eq. (15.53)
or can be verified directly,

e-;Tw e'Tws(t) = e-'"''s(t +,r) = s(t +,r - T) = s(t) (15.61)

15.4 AVERAGES

If the density of a is taken to be I F(a) I2, then the average value of a is

(a) = J a I F(a) 12 da (15.62)

and more generally the average of any function, g(a), is

(g) = f g(a) I F(a) I2 da (15.63)
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In Section 1.4 we saw that we can calculate frequency averages directly from the
signal, without calculating the Fourier transform. This is a special case of the more
general result whereby the average of g (a) can be calculated directly from the signal,
and the calculation of the transform F(a) can be avoided. This is a fundamental
result of operator theory. In particular,

(g) = J g(a) I F(a) I' da =
J s' (t) g(A) s(t) dt (15.64)

To prove this, consider

J s' (t) g(A) s(t) dt = f/f F' (a') u' (a', t) g(A)F(a) u(a, t) dt da'da (15.65)

Now,

J

sg(A) u(a, t) = g(a) u(a, t), we have

s' (t) g(A) s(t) dt = f/f F ' (a') u' (a', t) g(a)F(a) u(a, t) dt da'da (15.66)

= ffF*(al)g(a)F(a)6(a - a') dada (15.67)

= f g(a) I F(a) I2 da (15.68)

Averages of Hermitian Operators Are Real. We use both (A) and (a) to signify
the average of a,

(a) = fs*(t)As(t)dt (15.69)

It is important to appreciate that the average defined by Eq. (15.69) will always be
real provided the operator is Hem-titian. The reason is that if the operator is Her-
mitian, then Eq. (15.64) holds and the middle term is real if g is a real function.

Example 15.4: Frequency.

The frequency operator is

W = j d

and therefore

(g(w)) = f I S(w) I Zg(w) dw = f s* (t) g Q
1

s(t) dt (15.71)

which is a relation we have repeatedly used in the previous chapters to simplify cal-
culations.
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Averages of Non-Hermitian Operators. If A is not Hermitian, then its average,

calculated by way of Eq. (15.69), will be a complex number. The real and imaginary
parts can be explicitly written down by using Eq. (15.49). Taking average values of

both sides of that equation we have

(A)=.1(A+At ) + zj((A-At)lj) (15.72)

This is the average value of an operator in terms of its real and imaginary parts. If

A is Hermitian then the second term, the imaginary part, is zero.
A particularly important case is when the operator is the product of two Hermi-

tian operators. Taking average values of Eq. (15.51) we have

(AB) = z([A,B]+)+.Ij([A,B]lj) (15.73)

which expresses the average value for the product of two operators in terms of the
real and imaginary parts since both ((AB + BA)) and ([ A, B ] /j) are real.

The Covariance. In Section 1.8 we defined the covariance between time and fre-
quency as the average of t cp(t), where W is the phase of the signal. We now define
the covariance of any two quantities byil

Covab = 1(AB+BA) - (A) (B) (15.74)

= 2([A,B]+) - (A)(B) (15.75)

= 2([A- (A),B- (B) ]+) (15.76)

The rational for this definition will be discussed in Section 17.10.

Example 15.5: Time-Frequency Covariance.

Using the commutation relation, TW - WT = j, we have

(TW+WT)_(2TW)-j=2 f s'tWsdt-j=2 ft4d(t) 8(t) 2 dt = 2(t (t))

(15.77)
and therefore

Covt,,, = (tW (t)) - (t)(w) (15.78)

which is the same definition we used in Eq.(1.124). We mentioned in Section 1.8 that

f t'P (t) 18(t) 12 dt = -fw 0'(w) I S(w) 12 dw (15.79)

A simple proof will now be given. Instead of evaluating (TW + WT) in the time
representation we evaluate it in the spectral representation. Using the same steps as
above,

(TW+WT) = (2WT)+j = 2f S'wTSdw+j =
r

-2 J S(w)I2 dw = -2(w 0' )
JJ

(15.80)

Since the two methods of calculation must give the same result we have Eq. (15.79).
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15.5 THE UNCERTAINTY PRINCIPLE FOR ARBITRARY
VARIABLES

If we have two physical quantities then we will have an uncertainty principle be-
tween them if the operators do not commute. Specifically, the uncertainty principle
for any two quantities represented by the operators A and B is

CaCb>-Z1([A,B]) (15.81)

where Qa is the standard deviation defined in the usual way,

Qa = (A2) - (A) 2 (15.82)

r s* (t) (A - (A) )2 s(t) dt (15.83)

J
1(.4 - (A)) s(t) 12dt (15.84)

Similarly for B. Furthermore, the signal that minimizes the uncertainty product is
obtained by solving

(B-(B))s(t) = A (A - (A)) s(t) (15.85)

where
A = ([28]) (15.86)

,a

Note that in general A may be complex since [ A, B ] is not Hermitian. As with the
uncertainty principle for time and frequency, Eqs. (3.3) and (3.4), a more general
result can be proven,

0'a vb > 2 ([ A, B ]) 2 + 4 Covab (15.87)

Proof of the Uncertainty Principle. First some preliminaries. For convenience de-
fine

Ao = A- (A) Bo = B- (B) (15.88)

and note that the operators A0 and Bo are Hermitian and that their mean is zero.
Furthermore, it is easy to verify that

[Ao,Bo] = [A,B] (15.89)

and
[Ao,Bo]+ = [A,B]+-2A(B)-2B(A)+2(A)(B) (15.90)
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Taking expectation values of both sides of Eq. (15.89) we have correspondingly

([Ao,Bo]) = ([A,B])

and
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(15.91)

([Ao, Bo ]+) = 2 COVab (15.92)

With these preliminaries we can now derive the uncertainty principle for arbi-
trary quantities by considering

r
22 dt (15.93)dt x

J
Bo 3(t) 1

Oa Q6 = J Ao s(t) 1

J {A0 s(t) }`{8os(t) } dt (15.94)

2

= I fs(t)AoBos(t)dt (15.95)

= I (.A0 Bo) I2 (15.96)

where in going from step (15.93) to step (15.94) we have used the Schwarz inequal-
ity, Eq. (3.10), and in going from (15.94) to (15.95) we have used the Hermiticity
property of the operator. Therefore

OoCb 2 > I (AOBO) I2

Using Eq. (15.92) and (15.91) we have

(AoBo) = 2([Ao,Bo]+)+2j([Ao,Bo]lj)

and hence

2 2
oa Qb

(15.97)

(15.98)

= COVab + 2 j ([.A0, BO ] /j) (15.99)

>_ ICOVab+2.7([A0,B0]/7)I2

= Cova6+q I([A0,Bo])I2

= Cov b + 4 I ([ A, B ]) I2

(15.100)

(15.101)

(15.102)

which is Eq. (15.87). Since COVab is positive it can be dropped to obtain the more
standard uncertainty principle, Eq. (15.81).

The minimum uncertainty signal is obtained when the two functions are pro-
portional, \ Aos = Bos and Cov , = 0. That is,

A(A-(A))s=(B-(B))s (15.103)
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([A- (A),B- (B))._) =0 (15.104)

The constant A is thus far arbitrary. To fix it let us first write the above in terms of
Ao and Bo,

AAos = Bos

0 = (AoBo)+(BoAo)

(15.105)

(15.106)

Multiply the first equation by Ao and take average values; then multiply by Bo and
take average values, to obtain

a(BoAo) (Bo)

Since (.As) = as and (Bo) = ab, we may write this as

(15.107)

Aas = (AO Bo) ab/A = (Bo Ao) (15.108)

Adding and subtracting these two equations, we have

A as + ab /a = 0 (15.109)

as - 012/_\/A = ([ Ao, Bo]) = ([ A, B ]) (15.110)

Solving for A we obtain

2aa

Note that A is purely imaginary.

Example 15.6: Time and Frequency.

The commutator of the time and frequency operator is j, so

at aW>zl([T,'J)I=aljI = i

(15.111)

(15.112)



Chapter 16

Density of a Single Variable

16.1 INTRODUCTION

In this chapter we develop the basic methods to study the density of a single vari-
able. The object is to generalize the ideas and methods that have been developed
for the cases of frequency and time to arbitrary variables.

16.2 DENSITY OF A SINGLE VARIABLE

In the Fourier case the density of frequency is taken to be I S(w) 12 and we can argue
by analogy that for an arbitrary variable it should be I F(a) 12, where F(a) is the "a"
transform of the signal, Eq. (15.2). We are now in a position to "derive" this by
way of the characteristic function method. The word derive is in quotes because
the general result for calculating averages, Eq. (15.64), has built into it that I F(a) 12
is the density. The following derivation, using the characteristic function operator
method, illustrates the simplicity and consistency of the method and will be the
basis for obtaining joint densities of two variables. If P(a) is the density of a then
the characteristic function is

M(a) = (ejaa) = f &aaP(a) da

and the distribution is obtained from the characteristic function by

(16.1)

P(a) = 2- J M(a) a-,)aa da (16.2)

As we have pointed out in previous chapters the characteristic function is an aver-

219
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age and therefore it can be calculated directly from the signal by way of

M(a) =
J 3`(t) e?aAs(t) dt (16.3)

Expanding the signal in terms of the transform we have

e3aA
J F(a) u(a, t) da (16.4)

r F(a) a *A u(a, t) da (16.5)

J
&"°'F(a) u(a, t) da (16.6)

e3aA3(t)

and therefore

ffJ
M(a) F' (a') u' (a', t) a "F(a) u(a, t) da' da dt (16.7)

J / F (a') e'aa 6(a - a')F(a) da' da (16.8)

f F(a)I2e3aada
(16.9)

Comparing Eq. (16.9) with Eq. (16.1) we have

P(a) = I F(a) 12 (16.10)

Discrete Case. For the characteristic function we have

M(a) = J 3' (t) e&-AS(t) dt (16.11)

JEECkUk(t)
eyaACnun(t)dt (16.12)

n k

(e2aA )

f Ck uk(t)
a?a°" cn un(t) dt (16.13)

n k

ck5knCn elaan (16.14)
n k

= E IcnI2e'aa°
n

(16.15)
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which gives

P(a) = f M(a)
a-j-a da

1'
(16.16)

1 I C. l2 jcka, a-jaa da
27r n

(16.17)

_ E I c-n. I2 6(an - a) (16.18)
n

The only values which are not zero are the an's and their density is

P(an) = I Cn I2

Example 16.1: Distribution of Frequency.

(16.19)

For frequency

M(r) = (e)TW) = Js*(t)e3TW3(t) (16.20)

The operator e'"'' is the translation operator

e"TWs(t) = s(t + r) (16.21)

and therefore

M(r) =
J

s' (t) s(t + r) dt (16.22)

The distribution is given by

P(w)
2a I M(r) a-'-" d7- (16.23)

= 2 ff s' (t) a(t + r) a-'T" dr dt (16.24)

I S(w) 12 (16.25)

as expected.

Example 16.2: Distribution of Inverse Frequency.

Method 1. We define inverse frequency by

(16.26)

where wo is an arbitrarily chosen reference frequency. As we are making an ordinary
transformation we can use the method developed in Section 4.7. Since

P(w) = IS(w)I2 (16.27)
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the distribution of r is, according to Eq. (4.86),

P(r) = P(w) I d = wo IS(wo/r) I2
(16.28)

Wo/* r2

Method 2. Alternatively we can define the inverse frequency operator

R = W (16.29)

and use the operator methods developed. Solving the eigenvalue problem in the fre-
quency representation

WO u(r, w) = ru(r, w)

gives

(16.30)

u(r, w) _ 6(w - wo/r) _ 6(r - wo/w) (16.31)

Calling G(r) the inverse frequency transform we have

G(r) =
J

S(w) u' (r, w) dw = J S(w) 6(w - wo/r) dw = S(wo/r)

(16.32)

The distribution is
P(r) = IG(r)I2 = I S(wo/r) I2 (16.33)

which is the same as Eq. (17.124).

16.3 MEAN VALUES

As we showed in the previous chapter, the average of a can be calculated directly
from the signal by way of

(a) = I s` (t) A .9(t) dt (16.34)

We now obtain an interesting form analogous to the one we obtained for frequency,
Eq. (1.90). Rewrite Eq. (16.34) as

( a ) =
J

(1) I s(t) 12 dt (16.35)

and break up As/s into its real and imaginary parts

) (16.36)
As=(SIRAsl

\\ //
+j1A \\

to write r r 1 / l 1

(a) =
J L

) + j l )

J

I s(t) 12 dt (16.37)
e R \ 8 I
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Since the mean value of a Hermitian operator has to be real we must have

which leaves

J
(' s(t)I2dt=O

8

s(t) l2 dt
(a) = f()R

Example 16.3: Spectral Average.

Taking A to be the frequency operator, A = W = d, we have

W8 _ 11 d _ 1 A' (t)
8 a j dt

e j A(t) +'P (t)

The real part is gyp' (t), and using Eq. (16.39) we immediately have

(w) =

(16.38)

(16.39)

(16.40)

(16.41)

As with the average, the standard deviation can also be written directly in terms of
the signal,

2Q =a

S-q

f (a - (a))' I F(a) I2 da

s'(t)(A- (A ))2s(t) dt

1

I

\As -(A))s(t)
2

dt

As (A

(16.42)

(16.43)

(16.44)

2

dt (16.45)

The first two terms are real since (A) is real, hence

QQ = f (1)a(t) 12 dt + f [(k)
R

- (A)
J

2 18(t) 12 dt (16.46)

Example 16.4: Bandwidth Equation.

From the previous example we have

(Ws = _A'(t) (Ws =,P (t) (16.47)8 / A(t) \ 8 I R
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16.5

and therefore

(*)(Ow)2 = J A2 A2(t)dt +
J

(U)))2
A2(t) dt (16.48)

which is the bandwidth equation for frequency.

ARBITRARY STARTING REPRESENTATION

(A) = JF*(b)AF(b)db (16.50)

a, = r F` (b) (A - (A) )2 F(b) db (16.51)

where now A has to be expressed in the variables of the b representation. The
identical derivation of Section 16.3 leads to

(a) f()F(b)I2db (16.52)

F(b) = J u' (b, t) s(t) dt (16.49)

The average and bandwidth of a can be calculated using F(b) as the signal, instead
of s(t),

In the above considerations we have been transforming between the time repre-
sentation and the a representation. However, there is no particular reason why we
must start with the time representation. We can work between any two represen-
tations, say, a and b. Suppose we have a quantity, b, and its associated operator,
B, and we solve for the eigenfunctions, which we call u(b, t). The signal in the b
representation is then

and

Q2 = f (AF)2
1 F(b) I2 db + f [(f) - (AJ F(b) 12 db (16.53)

Example 16.5: Mean Time and Duration in Terms of the Spectrum.

We write the spectrum in terms of its amplitude and phase S(w) = B(w) e"' to
obtain

Therefore

TS 1 1 d 1 B'(w) - ,

S
=-3- S=-7B(w) (w) (16.54)

(TS\ _ B'(w) (TS) T=
S /I B(w) R

and the mean time and duration expressed in terms of the spectrum are

(16.55)

(t) = - fp1(sI2 dw (16.56)

at = f (B'(``')2 1B(w)12dw + J 1S(w)12dw
`\ B(w)

(16.57)



Chapter 17

Joint Representations
for Arbitrary Variables

17.1 INTRODUCTION

We now generalize the methods we developed for time-frequency representations
to obtain joint representations for arbitrary quantities. In generalizing we will use
the time-frequency case for examples so that we may check by recovering the known
results. In the next chapter we specialize to the study of scale.

17.2 MARGINALS

For two quantities, a and b, represented by the operators A and B we seek joint
distributions, P(a, b). In the previous chapter we saw that the densities of a and b
are given by I F(a) 12 and I F(b) 12, where F(a) and F(b) are the a and b transforms,
respectively. The joint density should therefore satisfy the marginal conditions

J
P(a, b) db = I F(a) 12 (17.1)

J P(a, b) da = I F(b) 2 (17.2)

17.3 CHARACTERISTIC FUNCTION OPERATOR METHOD

As for the time-frequency case, we approach the problem of finding joint densities
by the characteristic function method which was generalized for arbitrary operators
by Scully and Cohen.1505] The characteristic function is

M(a, Q) = (eiaa+_,Ab) = ff e3cra+j13'P(a, b)da db (17.3)

225
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and the distribution is obtained from M(a, 3) by Fourier inversion

P(a, b) 41r2 ff M(a, Q)
e-jaa-jRb da dQ (17.4)

Since the characteristic function is the average of j,,a+jOb, we expect to calculate
it by finding the average of a yet unspecified operator. We shall call that operator
the characteristic function operator and denote it by M (a, /). Accordingly we write

M(a, Q) = (M (a, Q)) = fs*(t)M(a,/3) s(t) dt (17.5)

There are many possibilities for M. Among them are

M(a,13)

-4

-.,

ejaA+jQB

e7aAejOB

e3RB e3aA

(17.6)

(17.7)

(17.8)

or more involved combinations like

M(a, a) = ejaA/2 &, B ejaA/2 (17.9)

Since there are an infinite number of possible orderings, there are an infinite num-
ber of distributions. It is this ordering ambiguity that gives rise to the general class
of time-frequency distributions and we will see that it also gives rise to a general
class for arbitrary variables.

The method for obtaining a distribution is as follows: Choose an ordering, that
is a characteristic function operator, M (a, p), calculate the characteristic function
by way of Eq. (17.5), and then obtain the distribution using

ff(M(a, /3)) e-jaa-j)" da d/i
P(a, b) 47r2

17.4 METHODS OF EVALUATION

(17.10)

We now consider the evaluation of the characteristic function and particularly of the
expectation value of ejaA+3QB. Although this is only one form, it is an important
one because very often other characteristic function operators may be expressed in
terms of it. The evaluation of (ejc,A+jOB) is a problem that appears in many fields
and has a long history is891 We discuss two methods for its simplification.

Method 1. Solve the eigenvalue problem,l505

{aA+/Ii} u(A,t) _ .1 u(A,t) (17.11)
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Since a and,6 are real numbers and A and B are Hermitian, the quantity aA +08
is also Hermitian. Therefore the solution to the eigenvalue problem gives rise to a
complete set of eigenfunctions, the u's. Any signal can hence be expressed in terms
of them by

s(t) = / u(A, t)F(.1) dA

with the inverse transformation given by

(17.12)

F(A) = f u' (A, t) s(t) dt

Now consider

(17.13)

&aA+,iABS(t) = ejaA+iPB f u(A, t)F(A) dA =
J e'-u(.\, t)F(A) dA (17.14)

Substituting for F(A) we have

eyaA+joB s(t) _ f G(t, t') s(t') dt'

where

(17.15)

G(t, t') = r e&'` u' (A, t') u(A, t) dA (17.16)

This method works quite well in many cases but has the disadvantage that the
eigenvalue problem must be solved.

Example 17.1: Time and Frequency.

The eigenvalue problem

(OT + rW) u(A, t) = A u(A, t) (17.17)

in the time representation is

(et-jrdt)u(A,t) = Au(A,t) (17.18)

and the solutions, normalized to a delta function, are

u(.1, t) = 1 ej(at-et2/2)/r (17.19)
27rr

Calculating G of Eq. (17.16)

G(t, t') = 5(r + t - t') ejer/2 ejet (17.20)

and substituting in Eq. (17.15), we have

e'eT+irws(t) = J G(t, t') s(t') dt' = yOr/2 e,7ete(t + r) (17.21)



228 Chap. 17 Joint Representations for Arbitrary Variables

And so the characteristic function is

M(B,T) s(t) ej6r/2ejOt8(t+T)dt
(17.22)

J s'(t - 2T)ejets(t+ 2r)dt (17.23)

which is the characteristic function of the Wigner distribution.

Method 2. The second method seeks to directly simplify the operator e3cA+jsB.

This, however, is one of the most difficult problems in mathematical analysis and
simplification has thus far been achieved only for special cases. One such case is
when both operators commute with their commutator,

[IA,B],A] = [[A,B],B] = 0 (17.24)

in which case[589]

This relation holds for time and frequency since their commutator is a number and
hence commutes both with the time and frequency operator. We have already used
this method in Chapter 10.

Another special case is when

[A,B] = c1 +c2A (17.27)

e.7c,A+705 = e-a0[A,S]/2 e3AB e_7aA

= ea,81A,B1/2ejaAej3B

(17.25)

(17.26)

in which case 11131

where

ejaA+j9B = e7µac,1c9 e7aµAe,j#B e,7aA

1 -jlic2µ=
j.C2

[1-(1+j/9c2)e ] (17.29)

(17.28)

This case will arise when we study the scale operator. These relations are proved in
the appendix. Note that for c2 = 0, Eq. (17.24) holds and we have

A= 0 ; j./c2 = j/3 for c2 - 0 (17.30)

and hence Eq. (17.28) becomes Eq. (17.25).
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17.5 GENERAL CLASS FOR ARBITRARY VARIABLES

As with time-frequency case, instead of dealing with all possible orderings we can
use the kernel method to obtain all possible representations. Choose a specific or-
dering to produce a specific characteristic function, M(a, /3). Using it, form a new
characteristic function by

. Mnew(a, Q) _ 0(a, 0) M(a, /0) (17.31)

where 0 is the kernel. The new distribution is

Pnew(a, b) = 1 ff Mnew(a, 0)
e-jaa-u/3b da d/3 (17.32)

fJ O(a, /3) M(a, /3) a-'°`a-job da d,0 (17.33)
47r2

and it will satisfy the marginals of the original distribution if the kernel satisfies

0(0, Q) = 0(a, 0) = 1 (17.34)

Equation (17.33) is the general class for arbitrary variables. It can be written in the
triple integral form by using Eq. (17.5) for M,

P(a, b) =
47r2

fJ(M(,$))e__2dad/3 (17.35)

s* (t) M(a, Q) s(t) e-j,a-jAb da d,0 dt (17.36)

17.6 TRANSFORMATION BETWEEN DISTRIBUTIONS

Suppose we have two distributions, Pl and P2, with corresponding kernels, 01, 02,
and corresponding characteristic functions, M1 and M2. The respective character-
istic functions are

Ml (a, 3) = 01(a, R) M(a, 3) (17.37)

M2 (a, /0) = 02(a, /3) M(a, /0) (17.38)

which gives

Ml (a, /0) =
01(a, 0)

M2 (a, [3) (17.39)
02 (a, /0)

Now

P ( b = -'tea - jQb dM 3 d 17 40l a, ) i (a, / ) a a Q
47r2 ff ( . )

&1(a, /0) M -j-a -jpb d3 d
1

17 41) a2 (a,, a Q
2 ff .( )

47r 02(a, /0)
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and since

we have

M2(a,0) = if ejaa+jOl P2 (a, b) da db (17.42)

Pl
(a, b) 1 ffff 01 (a, Q) eja(a'-a) +30(b'-b) P2(a', b') do d,0 da db' (17.43)

4 m2(, a)

This can be written as

with

PI(a,b) = JJg(a' -a,b'-b)P2(a,b')da'db' (17.44)

g(a, b) = 12 J
ejaa+j Ob 01 (a, A) do df3

4-7r 02(a,,3)

17.7 LOCAL AUTOCORRELATION

(17.45)

In studying time-frequency distributions we saw that a fruitful approach was to
generalize the relationship between the power spectrum and the autocorrelation
function by defining a local autocorrelation function. A similar development holds
for arbitrary variables. Consider the variable b. We write its density as

P(b) = -1 f R(f3)
a-jOb d,3 (17.46)

where R(b) is the characteristic function of b (which we write as R instead of M as
is the convention). We generalize by taking the joint distribution of a, 6 to be the
local autocorrelation of b around some value a and write

P(a, b) = 2- f R0((J) a-j$b dO (17.47)

Comparing Eq. (17.47) with Eq. (17.33), we find

Ra(/3) = 1 f O(a, R) M(a, Q) a-!"a da (17.48)

In terms of the characteristic function operator this may be written as

Ra(Q) = 2 -
If O(a, 0) em M(a, 0) 9(t) a-jaa da dt (17.49)
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17.8 INSTANTANEOUS VALUES

We rewrite Eq. (16.46) here, which expresses the bandwidth directly in terms of the
signal,

as = f (As)
2 18(t) I2 dt + f [ (A 2 18(t) 12 dt (17.50)

8 I 8 R

Comparing it to the general result that connects the global and local standard de-
viation, Eq. (4.71),

as aalb P(b) db + f((a)b - (a) )2 P(b) db (17.51)

we conclude that the instantaneous value, at, and its conditional standard devia-
tion, aalt, are given by

lat=(a )t As
s

J
R

(17.52)
2

a
2It As

v

In an eigenstate we expect the value of the physical quantity to be the fixed for
all time. For an eigenstate, A u(a, t) = a u(a, t) and therefore

A u(a,t)
a (17 53).

u(a,t)

Because the operator is Hermitian, the eigenvalue, a, is real, and Eq. (17.52) gives

at = a aaIt = 0 (17.54)

We see that in an eigenstate the instantaneous value is equal to the global average
and the local standard deviation is zero for all time.

Relation Between Global and Instantaneous Quantities. We expect the average
value to be the average of the local value,

(17.55)(A) = f (A )t I s(t) I2 dt = f()R
This is seen to be the case since

f s(t)`As(t) dt = f As I S(t) I2 dt (17.56)

f f (As) +
(j I I s(t) 12 dt (17.57)

L 8 R 3 I.J

f
(As) R I

s(t) I2 dt (17.58)
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where the second term in Eq. (17.57) is zero because we know that the average value
of a Hermitian operator is real.

17.9 LOCAL VALUES FOR ARBITRARY VARIABLE PAIRS

We now consider the more general question of the conditional value of a quantity
for a fixed value of another arbitrary quantity. We shall use the notation (a)b or ab
for the conditional value of a for a given value of b. In Section 16.4 we showed that
the bandwidth of a can be written in the following way:

F(b) Iz db (17.59)Ora -
J (c): F(b) 1z db + f [ (c) -

A)12

where F(b) is the signal in the b representation. Comparing with Eq. (17.51) gives

ab = (a )b
(A(b)F(b)

= F(b) ) R
(17.60)

z (A(b)F(b)12
(17.61)aalb F(b)

)
r

Again, we expect that the global average be the average of the conditional value,

(a) (A )b i F(b) 12 db = 1()R I F(b) I2 db (17.62)

The proof is identical to that given in the previous section where b was time.

Example 17.2: Group Delay.

For a we take time and for b we take frequency. Hence F(b) is the spectrum S(w)
Writing the spectrum as

S(w) = B(w) e"ti(w) (17.63)

we have
TS 11 d 1B'(w)-S == )( (17 64)

w-S d j B(w)
S

Therefore
(t)W = -V),(w)

.

(17.65)

which is the group delay. Its standard de

2

viation is, according to Eq. (17.61),

17 66at1w . )(
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17.10 THE COVARIANCE

In Chapter 1 we showed how the covariance can be defined for the case of time and
frequency. In Section 15.5 we gave an expression for the covariance for arbitrary
variables but did not justify that definition. We do so now. Let us place ourselves in
the b representation. The joint moment is then (bab) since ab is the instantaneous
value of a for a given b. The covariance is

COVab = (bab) - (A) (B) (17.67)

b CA(b)F(b) (A)(B)F(b) rt
(17.68)

We could have equally well put ourselves in the a representation, in which case

Covab = (aba) - (A) (B) (17.69)

_ (a (B(a)F(a)\ \ - (A) (B) (17.70)F(a)
) R

/
These two definitions are identical because

/ b (A(b)F(b) > -_ (a (B(a)F(a)),)
\ F(b)

)
R F(a)

We prove this by showing first that the definition given in Section 15.5 for the co-
variance is the same as given above, namely

COVab = 2((AB+BA)) - (A)(B) (17.72)

Consider

C a F(a))) 2
(a( F(a)))+ 2 (a f F()))*) (17.73)

a

= 2[JF'ABF+JaFBtF'1 (17.74)

= 2(AB+BA) (17.75)

If we start with the expression given by the left hand side of Eq. (17.71),the identical
derivation leads to the same result. Hence we conclude that the two expressions
for the covariance, Eqs. (17.68) and (17.70), are identical.
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17.11 GENERALIZATION OF THE SHORT-TIME
FOURIER TRANSFORM

We now generalize the short-time Fourier transform to arbitrary variables. First con-
sider the case where the two variables are time and b and subsequently generalize
to two arbitrary variables.

The Short-Tune b Transform. We focus in on a particular time by the usual proce-
dure of defining a modified signal according to

st(T) = s(T) h(T - t) (17.76)

where t is the fixed time of interest, ,r is the running time, and h(t) is the windowing
function. Instead of taking the Fourier transform of this modified signal, we take
the b transform,

Ft (b) = Js(r)h(T_t)u*(b,T)dT (17.77)

In analogy with the short-time Fourier transform this shall be called the short-time
b transform. The joint time - b density is then

P(t, b) = I Ft (b)
I2 = fs(r)h(r _t)u*(b,T)dT

2

(17.78)

The Short-a b Transform. We first recall that the signals in the a and b representa-
tions, are given by

F(a) =
J

u' (a, t) a(t) dt (17.79)

F(b) =
J

u' (b, t) s(t) dt (17.80)

These two equations are the transformation from the time representation to the
a and b representations. However, we can transform directly from the a to the b
representation,

F(b) = Jcx(b,a)F(a)da (17.81)

where a(b, a) is called the transformation matrix. It is given by

a(b,a) = J u'(b,t)u(a,t)dt (17.82)

which can be verified by substituting it into Eq. (17.81). Now we window the signal
in the a representation to obtain a modified signal,

F,,(a') = F(a') h(a' - a) (17.83)
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where a' is the running variable, and a is the fixed value of interest. Taking the b
transform of the modified signal, we have

Fa(b) _ f a(b, a') h(a' - a)F(a') da' (17.84)

and it is reasonable to call this the short-a b transform. The joint density is therefore

r 2

P(a, b) = I Fa(b) I2 =
J

a(b, a') h(a' - a)F(a') da' (17.85)

which is a joint distribution for the variables a and b analogous to the spectrogram.

17.12 UNITARY TRANSFORMATION

Another method for obtaining joint distributions for variables other than time and
frequency is to start with the general class of time-frequency distributions,

P(t'W) 412 N dudadQ (17.86)

and for the signal, s(t), use a transformed signal. The transformed signal is obtained
by a unitary transformation, so chosen to be in the representation of one of the
variables, a, we are interested (see section 15.3). The other variable, b, is as yet
unspecified. In the general time-frequency representation, Eq. (9.1), replace s(t) by
us(t) and replace the variables t, w by a, b:

P(a, b) 412 ffJ us* (u) ejoT+jAwus(u) 0(9, 7-) e-jaa-jOl du da dQ (17.87)

This approach was developed by Baraniuk and Jones.("']
It can be directly verified that the marginals for this distribution are

J P(a, b) db = I Us(a) 12 (17.88)

J
P(a, b) da = I Sua(b)

12 (17.89)

where Sua(b) is the Fourier transform of the transformed signal, Us(a). Let us sup-
pose our interest was to have a distribution where one of the marginals is I Us (a) I2.
We are not free to choose the other - it is forced and not at our disposal. The ad-
vantage of the Baraniuk-Jones procedure is that we do not have to calculate new
distributions, but can use the already calculated time-frequency distribution. It can-
not be applied to two arbitrary variables because both variables are not under our
control. We now ask, what are the two variables or operators that generate Eq.
(17.87) for the joint distribution?[52]
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Similarity and Unitary Transformation. To see the relation between the form given
by Eq. (17.87) and the general procedure developed in the previous sections we first
have to define the concept of a similarity and unitary transformation of operators.
If we have an operator and form a new operator, A', according to

A' = U-1 AU [ similarity transformation 1 (17.90)

then that is called a similarity transformation. If, in addition, the operator is unitary,
then U-1 = Ut, in which case

A' = Ut AU [ unitary transformation 1 (17.91)

and the transformation is called a unitary transformation. The reason for defining
a unitary operator transformation in this way is that by doing so we obtain the im-
portant result that averages retain their form in both representations. In particular,
if we call s' the transformed signal

s' = Uts = U-1s (17.92)

then

(a') = fs'(t)..4"s'(t)dt (17.93)

= J{U_1s(t)}* Ut AUU-1s(t) dt (17.94)

fs*(t)As(t)dt (17.95)

(a) (17.%)

An important property of a unitary transformation is that the eigenvalues of
operators remain the same. Also, Hermiticity is retained; that is, A' is Hermitian
if A is. Another important property of a unitary transformation is that it leaves
algebraic equations functionally the same. In particular, it leaves the commutator
invariant. If

[A,B] = C (17.97)

then
[A!, B'] = C' (17.98)

To see this, multiply Eq. (17.97) on the left by Ut and on the right by U

Ut[A,B]U = UtCU =C' (17.99)

But

Ut [ A, B ]U = Ut (AB - BA)U (17.100)

= Ut(AUU-1B - BUU-'A)U (17.101)

= UtAUU-1BU - UtBUU-'AU (17.102)

= [A',B'l (17.103)
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and hence Eq. (17.98) follows.
We are now in a position to see which two operators generate the joint distri-

bution, Eq. (17.87). They are operators that are related to the time and frequency
operator by a unitary transformation,P4

A = LitTU ; B = Ut WU (17.104)

To prove this we calculate the characteristic function and distribution for A and B
as per the general procedure given by Eqs. (17.3) and (17.4),

M(a, 3) = O(a, Q)
J

s' (t) e?3A+?AB s(t) dt (17.105)

= 0(a, Q) J s* (t) eia,6/2 e?/A eJ#8 s(t) dt (17.106)

= 0(a, Q) f s`(t) eja'3/2 (ll-1 eiaTU) (U-1 e'3WU) s(t) dt (17.107)

= O(a, p) J Us* (t) e&a7+3 Us(t) dt (17.108)

where in going from step (17.107) to (17.108) we have used the fact that

e3a'A = Ut e&aT U ;
e.70g = Ut e3,31V U (17.109)

which can be readily proven. The distribution is the double Fourier transform of
M, which gives Eq. (17.87).

Therefore for the case where the two new variables are connected to time and
frequency by a similarity transformation, the general class of distributions for a and
b is obtained from the general class of time-frequency distributions by substituting
the transformed signal for s(t). This simplification can be used whenever applica-
ble.

Generalization.i52] This result can be further generalized. Suppose we have two
arbitrary variables and use the procedure we have developed to obtain the general
class, that is, Eq. (17.10), which we repeat here,

P(a, b)
47r2

JJJ s* (t)
m

(a, (3) s(t),-iaa'-0b' dt da d[3 (17.110)

Now suppose that we have two new variables which are related to A, B by way of

A' = Ut Au ; B' = Ut BU (17.111)

Then we do not have to recalculate their general class. It can be obtained from Eq.
(17.110) by substituting the transformed signal for s(t),
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P(a', b') =
4 2 JJJ l t s' (t) M(a, 0)11 s(t) e-?oar-'pb' dt da d,3 (17.112)

The proof is the same as in the time-frequency case. This shows that variables con-
nected by a unitary transformation have distributions that are functionally identi-
cal.

17.13 INVERSE FREQUENCY

It is sometimes of interest to obtain a distribution of time and inverse frequency.

Method 1. The straightforward way to obtain such a distribution is to use the gen-
eral class of time-frequency distributions and the method of Section 4.7 to transform
distributions. The distribution in time and inverse frequency, P(t, r), is given by

P(t, r) dt dr = P(t, w) dt dw (17.113)

where P(t, w) is a time-frequency distribution.
Using

r = wo/w dr = -wo/w2 dw = _r dw (17.114)
WO

we obtain

P(t, r) = r2 P(t, wo/r) (17.115)

where the P on the right hand side is the time-frequency distribution. Any time-
frequency distribution can be used for P(t, w). If we use the Wigner distribution

P(t, r) - we
W(t, wo/r) (17.116)r

1 WO / s'(t- 2r)e-21 ?O/'s(t+ zT)dTr (17.117)
27r r2 J

1 r2 f S`(wo/r - 8/2) a-jte S(wo/r - 8/2) d9 (17.118)

To obtain the general class of time-inverse frequency distributions we can use the
general class of time-frequency distributions, Eq. (9.1), together with Eq. (17.115).
Doing so yields

P(t, r) =
41 r2

fJJ&i9t_20/7+i914(O,'r)s*(u - 2r) s(u + 2r) dudr dO

(17.119)
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In terms of the spectrum it is

JfJ e-iet-iTWO/* +9ra 0(0,,r) S' (u +
z
9)S(u -

2

9) du d7- dB
P(t'

r)
47r2 T2

(17.120)
The marginals of these distributions are thermarginals of time and inverse frequency

1 P(t, r) dr = I S(t) 12
;

J
P(t, r) dt = r2 I S(wo/r) 12 (17.121)

Method 2. Alternatively, although in this case much harder, we can use operator
methods. Here we do not need to, since we are mating a transformation of ordinary
functions; nevertheless, it is of some interest to do so. Take

M(8 ,c) = J S* (W) ej9T+jRR S(w) dw (17.122)

for the characteristic function. We first address the simplification of eioT+,RRS(w).
Using the method given by Eqs. (17.11)-(17.16) we solve the eigenvalue problem

[OT u(A,w) = Au(A,w) (17.123)

in the frequency representation

f j6 d
4°

J
u(A,w) = U(,\, W) (17.124)

The solution is

u(A w) = 1 e-71J1W-WORIn IWI1/B (17.125)
21x9

which gives for

JSu(A,w)u*(A,w1)d)

he G of Eq. (17.16)

W°RIR(W/W')/05(9+w -w) (17.126)G(w,w') = = Cj

and therefore

&BT+7RTtS(w) = rS1""/° 5(9 + w' - w) S(w') dw' (17.127)

S(w - 0) exp I j SON
In W w

e 1
(17.128)

Using this result we calculate

r 1

M(B, rc) = JSS(w)S(W_9) exp I j wOrv In w w
B J

dw (17.129)

JS*(W+0)S(w_9)exp[jn]dw1 1 W+ 2B
(17.130)
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The distribution is therefore

i
P(t, r) fffS*(w+9) S(w - 10) exp I j wOK In w + i e I e-yet-j"'' dO dw

z

which after considerable algebra leads to

(17.131)

P(t, r) = 1 wou 2 e-jwout/rS* wpU eu/2
S wou a-u/2 du

8xr3 f (sink u/2) ( 2r sinh u/2) (2r sinh u/2 )
(17.132)

This distribution satisfies the marginals of time and inverse frequency, Eqs. (17.121).

17.14 APPENDIX

The simplification of eA+B is generally difficult but for the case where'

[A, B] =Q+aA (17.133)

simplification is possible. This encompasses the time-frequency and time-scale case.
If one tries to expand eA+B and attempts to use the commutation relations to

rearrange each term, a very significant mess ensues. One of the well known tricks to
simplify this type of expression is to introduce a parameter A and write an equation
similar to the one we are trying to simplify. In particular, we write

f eaB eaA e-a(A+B) (17.134)

The idea is to obtain a differential equation for f (A) and solve it. The solution,
hopefully, will be a simpler form than what we started out with.

Before proceeding we establish some operator relations. Taking the commutator
of A with [ A, B ] we have

[A,[A,B]]=[A,aA]=0 (17.135)

Also,
[ B, [ A, B ] ] = a[ B, A]= -a/- a 2 A (17.136)

There is a well known relationIM91 that is very useful for simplification of operator
identities,

,\2 V
e'\ASe -\A=B+.1[A,B]+ 2i[A,[A,B]]+ 3i[A,[A,[A,B]]]+... (17.137)

1 For the sake of neatness we use here the notation [ A, B ] = 0 + aA rather than [ A, B ] = cl + c2A
used in the text. The a, 0 used in this appendix should not be confused with their usage in the text.
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Using Eqs. (17.135) and (17.136) we have

eAABe---\A = B + AJ3 + .A aA (17.138)

e''BAe-'\B = e-a°A+ Q(e-'`° - 1) (17.139)a
Differentiating Eq. (17.134) with respect to A and using the relations just given we
establish that

df
d(,) = -A(/3 + aA) f (17.140)

Solving, we have

f (a) = exp[e-\"(,\ + 1/a)(/3 + aA)/a + k] (17.141)

where k is a constant of integration which is found by imposing the requirement
that f (0) = 1. This gives

k
(aA + /3)

(17 142)
a2

and

.

f (A) = e-µa9/a a-µaA {1 - (1 + \a) a-a°}a (17 143)s
.

Hence
AB AA -a(A+B) - iAA- aA/de e ae µ= e (17.144)

or
ea(A+B) eµap/a eµa.4 eaB e.1A=

Taking.1= 1 gives

(17.145)

eA+B = eµO/a e' eB eA (1 + a) a-°`} (17.146)



Chapter 18

Scale

18.1 INTRODUCTION

In this chapter we develop, using the general methods of the previous chapters,
the basic properties of scale. Scale is considered to be a physical attribute just like
frequency. The frequency transform, the Fourier transform, allows us to ascertain
the frequency content of a signal. Similarly, we will develop the scale transform,
which allows the determination of the scale content. The first objective is to ob-
tain the operator that represents scale. The scale transform is obtained by solving
the eigenvalue problem for the operator. Having the scale operator and transform
allows us to obtain average scale, scale bandwidth, instantaneous scale, and other
properties in complete analogy to frequency. Scaling can be applied to any variable.
For concreteness we develop scale for time functions and subsequently consider the
scaling of other variables, such as frequency. In the next chapter we develop joint
representations of scale and time and frequency.

18.2 THE SCALE AND COMPRESSION OPERATOR

For the scale operator, C, we take the Hermitian operator

C = 2(TW+WT) = (18.1)

That this operator gives results that conform to our intuitive sense of scaling will be
seen as we develop its properties. In the time representation C is given by

(18.2)
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Using the commutation relation for time and frequency, (TW - WT) = j, it can
be written in the following alternative forms,

C=TW-2j=WT+2j (18.3)

Compression Operator. In Chapter 1 we showed that from the frequency operator,
W, we obtain the translation operator by forming 0rw,

e,jTW s(t) = s(t + 7r) (18.4)

We expect a similar result for the scale operator in that it will define a compression
operator. In fact,

s(t) = eal2 s(ea/2t) (18.5)

That is, eiac compresses functions with the factor ea/2. If we take In a for a we
have

ejInaC 8(t) =
s(at)

The significance of the factors, ea/2 or f, is that they preserve normalization. They
entered in an automatic way because the operator ej°c is unitary.

Equation. (18.6) is basic and we give two proofs. The first proof relies strictly on
the algebraic properties of the operator; the second depends on the eigenfunctions
of scale and is presented after we obtain them. To show Eq. (18.6) consider first the
action of C on tn,

(18.6)

Ctn = (TW - 2 j) t" _ -j (td
t + 2j to = -jtntn-1 2 jt" (18.7)

and hence
Ctn = -j (.n, +

2)tn
(18.8)

By repeated action we have

Now

Cktn = (-j)k(n+ 2)ktn (18.9)

ejaCtn = `` Grktn = q00 (-j)k(n + 2)ktn = eQ(n+1/2)tn (18.10)
k=O

k.
=O

k. l
k

To obtain the action of ejac on an arbitrary function, s(t) , we expand the function
in a power series

00

s(t) = e&ac E ante = ea/2 E an eantn = ea/2s(eat) (18.11)
n=0 n=0
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which is the desired result.

Basic Commutation Relations. Unlike the commutator for time and frequency the
commutator of scale with time or frequency does not produce a number. The com-
mutation relations are

[T,C]=jT [W,C]=-jW - (18.12)

which can be proven directly by using the definition of C and [ T, W ] = j. These
relations are fundamental and determine the uncertainty principle for scale, as we
discuss in Section 18.9. Furthermore,

[T,[T,C]] =0 ; [W,[W,CI] = 0 (18.13)

[C,[T,CII=T [C,[W,CII=W (18.14)

All these relations are important for the simplification of expressions involving the
scale operator.

18.3 THE SCALE EIGENFUNCTIONS

To obtain the scale transform we solve the eigenvalue problem for the scale op-
erator. We shall use c and y(c, t) to indicate the eigenvalues and eigenfunctions,
respectively. The eigenvalue problem is

C y(c, t) = c y(c, t) (18.15)

Explicitly, using Eq. (18.3),

_jtdy(c,t)
_-

1

dt ?
y(c, t) = c y(c, t) (18.16)

The solutions, normalized to a delta function, are

1 ejctnt
y(c, t) = 2?r f t > 0 (18.17)

It is possible to obtain this solution only if time is positive, and thus for scaling we
must have an origin in time. This is reasonable since to scale is to enlarge or reduce.
That means we must multiply time t by a number from zero to one for enlargement
and a number bigger than one for reduction. At no time do we multiply by a nega-
tive number. Also, the appearance of the logarithm is reasonable because it has the
effect of putting on an equal footing the range of zero to one (enlargement) with
the range of one to infinity (reduction).
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Completeness and Orthogonality. Since the scale operator is Hermitian we expect
that the eigenfunctions are complete and orthogonal,

J0

00 y` (c', t) y(c, t) dt = 6(c- c') (18.18)

f y' (c, t') y(c, t) do = 6(t - t') t, t' > 0 (18.19)

These relations are proven in the appendix.

Properties of the Scale Eigenfunctions. In Table 18.1 we list the main algebraic
properties of the eigenfunctions and contrast them to the frequency eigenfunctions,

e2Wt1
u(w, t) =

2

=
(18.20)

Notice that with respect to the time variable, multiplication/division in the scale
case corresponds to addition/subtraction in the frequency case.

Table 18.1. Properties of the scale kernel and frequency kernel

Scale kernel: y(c, t)

7(c, tt') = 7(c, t) 7(c' t')

7(c, t/t') = 7(c, t) y' (c, t')

y(c + c', t) = 7(c, t)'Y(c', t)

y(c, t) = j In t y(c, t)

et Y(c, t) jc
t1/2

7(c+ t)

ejac,y(c, t) = eo/2y(c,
tea)

Frequency kernel: u(w, t)

u(w, t + t') = u(w, t) u(w, t')

u(w, t - t') = u(w, t) u* (w, t')

u(w + w', t) = u(w, t) u(w', t)

u(w, t) = jt u(w, t)

st u(w, t) _ jw u(w, t)

e20" u(w, t) = u(w + o, t)

18.4 THE SCALE TRANSFORM

Any function can be expanded in terms of the scale eigenfunctions,

s(t) = fD(c).(c,t)dc

1 ejctnt

2n J D(c) dc
vt-

(18.21)

(18.22)
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and the inverse transformation is
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r
D(c) = J s(t)'y (c, t) dt (18.23)

0

1 roo a-jclnt
= s(t) dt (18.24)J27r VIt

We call D(c) the scale transform. It can also be written as

D(c) = 1

f
s(t) t-jc-1/2 dtf (18.25)

2Tr

which shows that it is the Mellin transform of the signal with the complex argument
-jc+ 2 . We know from the last chapter that the density of a quantity is the absolute
square of its transform and therefore the density of scale is

P(c) = I D(c) 12 [Intensity or density of scale] (18.26)

Invariance of the Scale Transform to Compression. The fundamental property of
the Fourier transform, S(w), is that the energy density function of a translated func-
tion is identical to the energy density of the original function. That is, the Fourier
transform of the signal, s(t), and the translated signal, at, = s(t + to), differ only
by a phase factor:

s(t + to) St,.(w) = e''"tc S(w) if s(t) b S(c1) (18.27)

Hence they have identical energy density spectra,

I Str(W)12 = I S(w)
12 (18.28)

A similar idea holds for scale in that the scale energy density of a scaled function
is equal to the scale energy density of the original function. If we compare the scale
transform of s(t) and sa, = f s(at), they will differ only by a constant phase factor,

's(at) b D,c(c) = D(c) if s(t) b D(c) (18.29)

Therefore

Dac(c)
I2

= D(c) 1 2 (18.30)

This a basic result which shows that the scaling of any time function leaves the
energy density scale spectrum unchanged.

Alternative Proof of the Compression Operator. Using the fact that the scale eigen-
functions satisfy e3°'5(c, t) = er°l2ry(c, a°t), we have

ei°c s(t) = eJ°c
J

D(c)'y(c, t) dc =
J

D(c) e3" y(c, t) dc (18.31)

J
D(c) e°/2 ry(c, e°t) dc = e°l2 8(e°t) (18.32)
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which is identical to Eq. (18.5).

The Scale Transform of the Sum of Scaled Functions. Let us first consider a signal
composed of the sum of translated functions,

s(t) _ Ck f (t + tk)
k=1

(18.33)

The Fourier transform of s(t) is the sum of the Fourier transform of each term. But
the Fourier transform of f (t - tk) is e&"tMF(w), where F is the Fourier transform of
f (t). Therefore we have

n n

E F(w) ckey"tkS(w) =
k=1 k=1

We now obtain the analog for the sum of scaled signals,

(18.34)

n

s(t) _ E Ck ak f (akt) (18.35)
k=1

The scale transform of each term is ck eic In all E(c), where E(c) is the scale transform
of f (t). Therefore

n n
D(c) =

L
[ Ck a clnakE(c) = E(c) Ck ejclnak

IC=1l =1 k=1

If we consider the situation where the amplitudes are arbitrary

n

3(t) = Akf (akt)
k=1

then

D(C) = E(C) k C7clnak

k=1

(18.36)

(18.37)

(18.38)

Relation with the Fourier Transform. An interesting viewpoint of the scale trans-
form is obtained by considering a new function constructed by replacing time with
the logarithm of time,

ft (t) _ s(lnt) (18.39)

The factor 1/f is inserted to preserve normalization. Now consider the scaletrans-
form of ft,

ft(t) ajnt
dt (18.40)DI (c)

= 1

Jo= f
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1 roo a-jclnt
=

27r J
s(lnt) t dt

1 °°

= 27r f oo

s(r) a-jcr dT

which is the Fourier transform of s(t) ,

Dt(c) = S(c) (18.43)

Inversely we can consider the scale transform to be the Fourier transform of the
function s(et) et/2. If we define

f (t) = s(et) et/2

then the Fourier transform of f (t) is

F(c) = 1 fm s(et) et/2 a-.i° dt
27r

1 0o a-jclnt
s(t) v dt_

27r o

= D(c)

18.5 SIGNALS WITH HIGH SCALE CONTENT

(18.44)

(18.45)

(18.46)

(18.47)

What kind of signals have high scale content, that is, a high concentration of scale
around a particular value? Signals with the highest scale content are the scale eigen-
functions, because their transform is a delta function of scale. As far as other func-
tions are concerned a way to develop our intuition is to use the crutch of Fourier
transforms developed in the above section. For a function s(t) consider the func-
tion et/2s(et) and ask if that new function has a high frequency content. If it does
then the original function will have a high scale content, because its scale transform
will be functionally the same as the Fourier transform of et/2s(et).

Example 18.1: The Highest and the Lowest Scale Content Signals.

The eigenfunctions have the highest scale content because

c' In t1 d
D(c) = 6(c - c) if s(t) = 2a f (18.48)

What functions have the lowest or flattest scale content? We approach this by asking
what functions have the lowest frequency content. They are functions that have a flat
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spectrum. Signals that give rise to flat spectra are impulses, 6(t - to). Therefore, using
our argument above, the functions that have the lowest scale content are

_ 1 e-jelntp
D(c)

(18.49)
2 a to

for s(t) = 6(Int - Into) = 6(ln(t/to)) = 6(t - to) (18.50)
X/-to VrZ

where for the last step in Eq. (18.50) we have used Eq. (18.93). We see therefore that
impulses have the lowest frequency and scale content.

18.6 SCALE CHARACTERISTIC FUNCTION

The characteristic function for the density of scale is

M(Q) = r e-7°` I D(c) I2 dc (18.51)

or

J
00

fo

s*(t) e'°c 8(t) dt (18.52)

s` (t) a°/2 s( a°t) dt (18.53)

M(Q) = o s*(e-°/2t) s(e°/2t) dt (18.54)
0

As usual, the distribution is given by

M(Q) a-J°° do, (18.55)P(c) = 1

27r

= a J J s' (e-°'2t) s(e°/2t) a-jac dQ dt (18.56)

Malting the transformation

x = e-°/2 t y= e°/2 t (18.57)

Q = In(y/x) ; t = xy ; t do, dt = dx dy ; do dt =
dx

yy (18.58)

we have

1 °O °° e-jc(lny-Inx)
P(c) = 2I Jo f 8' (x) s(y)

xy
dxdy (18.59)

= 1 D(c) 12 (18.60)
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Total Energy Conservation. The total energy, E, of a signal is obtained by inte-
grating over all time the energy density, I s(t) 12. It should also be obtainable by
integrating the scale density over all scale. That is indeed the case since

00

J
I s(t) 12 dt =

J
I D(c) 12 do (18.61)

0

This shows that the total energy is preserved in the transformation. This is the
analog to Parceval's theorem for time and frequency. It can be proven by direct
substitution, although it follows from general considerations since the compression
operator is unitary.

18.7 MEAN SCALE AND BANDWIDTH

There are three equivalent ways we can calculate the mean value for scale. The
first is by direct use of the scale density, the second is to use the general formula for
calculating the average value of any operator, and the third is to use Eq. (17.58),

(c) =
J

(18.62)

s' (t) C s(t) dt (18.63)j
= f7

(CS)
R I s(t) 12 dt (18.64)

All three formulas will lead to the same result, but the last is the easiest to use.
Calculating \C9s =

1 (t
A() + 2 J (18.65)

we see that the real part is t cp'(t) and therefore

(c) =
J

ao t cp' (t) A2 (t) dt (18.66)
0

The Scale Bandwidth. Similarly, the scale bandwidth can also be calculated by
using any one of the three alternative formulas,

UC = f(c_(c))2ID(c)2dc (18.67)

J s' (t) (C-(c))2s(t)dt =
J

(C-(c))s(t)12dt (18.68)
0

(Cs12
s(t) 12 dt + r 1 (Cs \ - (C ] 2 1 s(t) 12 dt (18.69)

S I J 8 R
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where, the last equation is obtained from Eq. (16.46). Again, the last equation is
easiest since we have just calculated the real and imaginary parts of Cs/E, Eq. (18.65).
We immediately have

18.8 INSTANTANEOUS SCALE

In Chapter 16 we showed that the instantaneous value of a quantity is given by the
real part of As/s, where A is an arbitrary operator. Therefore, instantaneous scale
is

=tcp'(t)=twb
(C9) R

(18.71)

That is, instantaneous scale is time multiplied by instantaneous frequency. The gen-
eral relation of a conditional mean to the global mean is that the global mean is the
average of the conditional mean. For scale we expect

00

(c) = f ct I s(t) I2 dt (18.72)
0

and that is the case, as can be seen by Eq. (18.64).

18.9 UNCERTAINTY PRINCIPLE FOR SCALE

In Section 15.5 we showed that there is always an uncertainty principle for two
operators if they do not commute. Specializing to scale and time we have

T tl --2I([T,C])I (18.73)

From Eq. (18.12) we know that [T, C ] = jT and therefore we have the following
uncertainty principle for time and scale,[' 1-111

or 01 2 > ZI(t)I (18.74)

where (t) is the mean time.

Minimum Uncertainty Product Signal. Using Eq. (15.103), the minimum uncer-
tainty product signal is

( [td +
2] -(c)) s(t) = A(t-(t))s(t) (18.75)
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where
([T,C)) _ (t)

2vt tat
and the solution isE1511

8(t) = k t0'

where k is a normalizing constant and

(t) 1 (t)2
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(18.76)

(18.77)

a1 = ,t 02 = 2 at - 1) (18.78)

18.10 FREQUENCY AND OTHER SCALING

In the preceding sections we have considered the scaling of time. We can equally
consider the scaling of frequency or the scaling of any other variable. Let us first
consider frequency scaling. From a structural point of view it is clear that to obtain
the frequency scaling operator, CW, we just replace t by w in Eq. (18.2),

(w+4)- (18.79)

Everything we have derived for time scaling can beimmediately transliterated for
frequency by substituting w for t appropriately. In particular, the frequency scale
eigenfunctions are

1 ejclil W

7W (c, w} =
27r V'_

(18.80)

and the transformations between the frequency domain and the scale domain are

S(w) =
1 JD(c)

G'_9C}I1W

2-7r
do , w > 0 (18.81)

D,,
(c) Z-r j oy S(w)

e

v -

W

dw (18.82)

We have used DW (c) to emphasize that we are defining a different transform, the
frequency scale transform. For the frequency scaling representation only the posi-
tive half of the spectrum is considered, which is equivalent to considering analytic
signals. For frequency functions we have

e2°c, S(w) = eo/2S(e'w) ej Inoc., S(w) = / S(Qw) (18.83)

For mean frequency-scale and bandwidth we have

00

(c) = f w (w) B2 (w) duo (18.84)
0
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oc = f°° (tW(W) +2)2B2(w)dw+
f°°(w

'(w)-(c))2B2(w)dw (18.85)
/

where B(w) and ti(w) are the spectral amplitude and phase. Similarly, instanta-
neous scale in the frequency domain is given by

c, = wV (w) (18.86)

Other Domains. For an arbitrary domain, say the a domain, the scale operator is

Ca
2j

(a+a) (18.87)

and in general we have

e3'c° F(a) = e'12F(e'a) e "'cc F(a) = V -o F(aa) (18.88)

To convert the equations we have derived for time scaling to scaling in the a domain,
all we have to do is substitute a for t and s(a) for s(t) in any of the formulas. The
above application for frequency was an example of this.

18.11 APPENDIX

We prove the completeness relations Eq. (18.18) and (18.19). Consider the left hand
side of Eq. (18.18)

00
1 [00 e-jdlnt ejclnt

y* (c', t) y(c, t) dtf (18.89)
0 27r o f f

ao e3(c-c )Int1

dt1 18 90
27r t0

( ).

1

00

e&(c-c')x dxf (18.91)
27r

6(c - c') (18.92)

where in going from Eq. (18.89) to Eq. (18.91) we have made the transformation
x = In t. To prove Eq. (18.19) we first establish the following delta function identity

6(ln(x/a)) = a 6(x - a)

with a positive. To prove it consider

(18.93)

fo

M

6(ln(x/a)) f (x)dx = a f
00

6(y) f (a el) ebdy = a f (a) (18.94)
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which is the same answer that would be obtained if we integrate the right hand
side of Eq. (18.93) with f (x). Now consider

J
ry'(c,t')y(c,t)dc 1 e-jcut' e3clnt

27r t' V
(18.95)

t b(ln t - In t') (18.96)

1 b(ln(t/t')) (18.97)

t b(t - t') (18.98)

6(t - t') (18.99)

which proves Eq. (18.19).



Chapter 19

Joint Scale Representations

19.1 INTRODUCTION

In this chapter we obtain joint representations where scale is one of the variables
and the other variable is time or frequency. We also consider joint representations
of the three variables, time, frequency, and scale. The general approach we use is
the characteristic function operator method developed in Chapters 10 and 17.

19.2 JOINT TIME-SCALE REPRESENTATIONS

We use P(t, c) for the time-scale distribution and M(9, a) for the corresponding
characteristic function. As usual they are connected by

M(9, Q) = ff SBt+iac P(t, c) dt dc = (&et+)oc) (19.1)

P(t' c) = 4' ff M(9, a) e-jet-j` dO do (19.2)

Marginals. The energy densities of time and scale are I s(t) 12 and I D(c) 12, respec-
tively. Therefore, we would ideally like

P(c) = J P(t, c) dt = D(c) 12 (19.3)

P(t) = J P(t, c) dc = 1 s(t)12 (19.4)

However, as in the time-frequency case, there are joint representations that do not
satisfy the marginals exactly but are nonetheless useful.

255
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Joint Characteristic Function. For the characteristic function operator we use the
notation M(8, a; T, C). The average of the characteristic function operator is the
characteristic function,

M(9, a)
10

s` (t) M(9, Q; T, C) s(t) dt (19.5)
0

As we discussed in Chapter 17, there are many possible orderings. In Table 19.1 we
list some of the possibilities and the corresponding characteristic functions and joint
distributions. In the appendix we work out the first two choices in detail because
they utilize and illustrate the main mathematical techniques. Marinovich,1179,

1

Bertrand and Bertrandl"8, 711 and Altes112) introduced the concept of joint scale repre-
sentations. They obtained, by other methods, the first two representations of Table
19.1. Further development of the theory has been made by Rioul,(4Ml Posch,14541 Ri-
oul and Flandrin,14901 Papandreou, Hlawatsch and Boudreaux-Bartels,1421, 42a) Bara-
niuk and Jones, 149,511 Shenoy and Parks,151o, 5111 and Cohen.1141,1511

It is straightforward to verify, by direct integration, that the time-scale distri-
butions of Table 19.1 satisfy the marginals of time and scale, Eqs. (19.3) and (19.4).
However, the easiest way to ascertain that is by noting that each of those character-
istic functions satisfy the characteristic functions of the marginals. That is,

M(O,O;T,C) = ejOT
; M(o o;? C) = e2'c (19.6)

Of course, checking the characteristic function does not check whether the algebra
to obtain the distribution was correctly done.

19.3 GENERAL CLASS OF TIME-SCALE DISTRIBUTIONS

To obtain the general class of joint time-scale representations we use the method
developed in Section 17.5. We start with any characteristic function and define a
new one by

Mnew(9, a) = W, a) M(6, a) (19.7)

where .0 is the kernel function whose role is identical to that in the time-frequency
case. The general class of time-scale functions is then

P(t,
c) 47r2

ff 0(9, a) M(9, a) e-jet-ioc d9 da (19.8)

Suppose we choose the characteristic function given by ordering one of Table 19.1.
Then

P(t,
c) 412 N

S*(e-o/2u) e-.iet-jCc+ieu 46(O, a) s(e°/2u) dO du da (19.9)

Any other starting characteristic function would serve equally well.
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Table 19.1. Time-scale representations

257

# Ordering aracteristic Fvnction:M(B, a)C Dlstri tion:P t, c)

1 ej°C/2ej8Tej°C/2
h

"O e
,)etf -°-72 Ja*(e/2t)eaca(etT/2t)dc

o
s'

(e-°/2t)8(e°/2t) dt

2 ejOT+j°C
f 00

e2jOte,nh(°/2)/° e-j°c
21r 2 sinh(a/2)

a* (E °/2t)a(e°/2t) dt a' (e-O/2
at

} s(e°/2
at

) da
2 sinh(a/2) i(&/2)

3 exp[jet cosh(a/2)]
/1

J
1 e-1 °C

a2 cosh(o/2)J0
s' (e-°/2t)8(e°/2t) dt s' (e-O/2

cosh(a/2)
)e(e°/2

cosh(a/2))
da

4 ej°Ce.70T
j00 exp[j9e°/2t]IJ s(t)ry' (c, t) D* (c)

o
8* (e-O/2t)a(e°/2t)

5 ejaTej°C
TO

exp[j9e-°/2t] a' (t)-((c, t)D(c)
0

a' (e-2t)a(e°/2t)

6
2
1(141+151) 1 ({4} + {5}) Real part { a' (t)-y(c, t)D(c) }

Relation Between Representations. Suppose we have two time-scale distributions,
Pl and P2, with corresponding kernels, ¢1 and 02. Their characteristic functions are

M1(8, C) _ 01(010) M(e, 0) M2(0,0') = 02(0,0')M(0,0') (19.10)

Hence
Mj(e Q) = 01(0, a)

M2(9,o) (19.11)
02(0, 0')

By taking the Fourier transform of both sides we obtain

Pi(t, c) = ffg(t' - t, c' - c)P2(t', c') dt' do (19.12)

with

ifg(t, c) = 412 JJ
eet+j°c 2(010") d8 du (19.13)
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Local autocorrelation method. The general time-scale distribution can be written
in the form

P(t, c) = 1 JR,(o,)e-i"'-du
27r

(19.14)

with
Rt(CT)

= 27r
if 0(0, a) M(O, Q) e-iet dO (19.15)

We shall call Rt the generalized local scale autocorrelation function in analogy with
the local autocorrelation function for frequency, Eq. (9.7). Using Eq. (19.9) for the
general class, Rt (v) is explicitly given by

Rt(a) = 27r
J1 e°( "-t) ¢(8, Q) s*(e-°/2u) s(ea/2U)du dO (19.16)

19.4 JOINT FREQUENCY- SCALE REPRESENTATIONS

Because the scale operator has the identical form in any domain we can immediately
write down joint distributions of frequency and frequency scaling. Using M(T, Q)
and P(w, c) for the frequency-scale characteristic function and distribution, respec-
tively, and C,, for the frequency scale operator, we calculate the characteristic func-
tion by

M(T, c) = (M(T, a;W,C)) (19.17)

which is achieved by way of
00

M(r, v) =
J

S` (w) M (T, a; W, C) S(w) dw (19.18)
0

This is identical in structure to the time-frequency case. Therefore, all we have to
do is substitute T for 8 and S for s. However, it must be understood that now c
stands for scaling in the frequency domain, that is, scaling of frequency functions.
The marginals are

J P(w, c) dw = I D,(c) l2 (19.19)

I P(w, c) do = I S(w) I2 (19.20)

where D4, (c) is the transform defined by Eq. (18.24).

19.5 JOINT REPRESENTATION OF TIME, FREQUENCY, AND SCALE

We now consider joint representations of the three variables, time, frequency, and
scale. By scale we mean time-scaling, although with a small modification the proce-
dure can be used to obtain distributions of time, frequency, and frequency-scaling.
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We use the notation P(t, w, c) to signify the joint distribution and M(9, T, v) to sig-
nify the characteristic function. In Chapter 4 we discussed multivariate joint dis-
tributions but used the two dimensional case for the sake of clarity. We are now
dealing with a three dimensional situation in which case the characteristic function
and distribution are related by

M(9, T, a) = fff P(t, w, c) ejOt+j7W+30 C dt dw dc (19.21)

d6 dv dr)P(t ) fff M(8 22)(19, T, a' w, c e

The marginals we have to satisfy are

f
P(t, w, c) do = P(t, w) (19.23)

00

J P(t, w, c) dt = P(w, c) (19.24)
0

J
P(t, w, c) du) = P(t, c) (19.25)

where the right hand sides are the two dimensional densities of the corresponding
variables.

Characteristic Function. Many orderings are possible but it is sufficient to consider
one ordering and write all other possibilities by using the kernel method. We take
the ordering

M (0, T, a) = e3aw/2 eaoW/2

The characteristic function is

r000

M(O,T, a) =
.

s` (t) ejarW/2 e,;8T+jrw eiow/2 s(t) dt

which evaluates to

(19.26)

(19.27)

east s'(e-/2(t - T)) s(e°/2(t + T)) dt (19.28)M(B,T,Q) = f

From Eq. (19.22), the distribution is

P(t' w, c) ffs*(e_012(t - 2T)) e-aTW-a°` s(e°/2(t + 2T)) dT dv (19.29)

To obtain the general class of time-frequency-scale distributions we define a gen-
eral characteristic function by

Mnew(9, T, Q) _ 0(0,'r, a) M(9, T, a) (19.30)
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where 0(9, T, a) is a kernel of three variables. Therefore

Mnew(9, T, a) = 0(9, T, Q) f ejet s'(e-°/2(t - 2r)) s(e°l2(t + 2r)) dt (19.31)

and the general lass is

87r3 f Mnew (B, T, Q) e-jet-jrw-j°c dO da dT (19.32)

()5
T,a) 3'(e-'/'(4u - 2T)) s(e°/2(u+ 2T))ffff 0(0,

X e-je(t-u)-jrw-j°c dO da dT du (19.33)

The marginals of this general class are the general lasses of the marginals. For ex-
ample, consider integrating out scale. Integrating over c gives a 27r6(a) and there-
fore

P(t, W) = fP(t,wc)dc (19.34)

1

JfJ
-je(t-u)-jrw

47x2
4(9, T, 0) s' (u -

2
r) s(u + z r) a dB dr du (19.35)

This is precisely the general class of time-frequency distributions, Eq. (9.1), with the
general kernel ¢(B, Or, 0).

19.6 APPENDIX

We derive the distributions corresponding to orderings 1 and 2 of Table 19.1.

Ordering 1: M(B, a) = ei°C/2 ejOTe3°C/2. We have

M(8, a) (e3°C/2 ej9Te,°C/2)

r s.(t) ej°C/2 ejOTej°c/2s(t) dt

r s.(t) ej°C/2 ejet a°/4s(e°12t) dt

J
s*(t) exp(jOe°/2t) a°/2s(e°t) dt

(19.36)

(19.37)

(19.38)

(19.39)

or
fs*(el'2t)ei8ts(e/'2t)dtM(9, a) = (19.40)
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The distribution is

a) e-yet-j°c dB dQP(t ) ff M(9 (19.41),, C 4i2

-°12t') eiet's(e0 '2e) e-,iet-j°c d6 do, dt'

ffJ (19.42)
47r2 e

2- JJ
s`(e`°/2t')6(t - t')s(e°l2t') a-j°` dv dt' (19.43)

Hence

2 °s(e°/2t) doP(t, C) =
J

s*(e-°l2t) e- (19.44)

Ordering 2: M(O, a) = ejOT+,;°c. Since the scale operator satisfies

[T,C] =jT (19.45)

we can use Eq. (17.28) to obtain

ejOT+A°C = ei0' T ej°c ejeT (19.46)

with
77 _-1 {1-(1-Q)e°} (19.47)

01

The characteristic function is therefore
r

M(6, a) = I s* (t) ej9T+i°cs(t) dt =
J

s'(t) e.7efT ei°c eiOTs(t) dt (19.48)

Now we can follow essentially the same steps as in ordering 1 to obtain

M(9, a) =
J

s (e-°/2t) e2jet dt (19.49)

In one of the steps leading to Eq. (19.49) use is made of the fact that

e°/2 + 77e -o,/2 - e°/2
-

e-°12 - 2 sinh(a/2) (19.50)
Q or

The distribution is

P(t, c)
412

8* (e-°/2t') e2jet' su,h(°/2)/°s(e°/2t') e-jet-juc d9 dQ dt' (19.51)

which reduces to

QtP t c=
27r 2 sinh(Q/2)

as' (e_122 sinh(U/2)) 8 (e-/2
2 sinh(t7/2)

(19.52)
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