

SPEECH CODING
ALGORITHMS
Foundation and Evolution
of Standardized Coders

WAI C. CHU

Mobile Media Laboratory
DoCoMo USA Labs
San Jose, California

A JOHN WILEY & SONS, INC., PUBLICATION

SPEECH CODING
ALGORITHMS

SPEECH CODING
ALGORITHMS
Foundation and Evolution
of Standardized Coders

WAI C. CHU

Mobile Media Laboratory
DoCoMo USA Labs
San Jose, California

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright # 2003 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as

permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior

written permission of the Publisher, or authorization through payment of the appropriate per-copy fee

to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400,

fax 978-750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should

be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,

NJ 07030, (201) 748-6011, fax (201) 748-6008, e-mail: permreq@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in

preparing this book, they make no representations or warranties with respect to the accuracy or

completeness of the contents of this book and specifically disclaim any implied warranties of

merchantability or fitness for a particular purpose. No warranty may be created or extended by sales

representatives or written sales materials. The advice and strategies contained herein may not be suitable

for your situation. You should consult with a professional where appropriate. Neither the publisher nor

author shall be liable for any loss of profit or any other commercial damages, including but not limited to

special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department

within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,

however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Chu, Wai C. —

Speech coding algorithms: Foundation and evolution of standardized coders

ISBN 0-471-37312-5

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Intelligence is the fruit of industriousness
Accretion of knowledge creates genii

A Chinese proverb

CONTENTS

PREFACE xiii

ACRONYMS xix

NOTATION xxiii

1 INTRODUCTION 1

1.1 Overview of Speech Coding / 2

1.2 Classification of Speech Coders / 8

1.3 Speech Production and Modeling / 11

1.4 Some Properties of the Human Auditory System / 18

1.5 Speech Coding Standards / 22

1.6 About Algorithms / 26

1.7 Summary and References / 31

2 SIGNAL PROCESSING TECHNIQUES 33

2.1 Pitch Period Estimation / 33

2.2 All-Pole and All-Zero Filters / 45

2.3 Convolution / 52

2.4 Summary and References / 57

Exercises / 57

vii

3 STOCHASTIC PROCESSES AND MODELS 61

3.1 Power Spectral Density / 62

3.2 Periodogram / 67

3.3 Autoregressive Model / 69

3.4 Autocorrelation Estimation / 73

3.5 Other Signal Models / 85

3.6 Summary and References / 86

Exercises / 87

4 LINEAR PREDICTION 91

4.1 The Problem of Linear Prediction / 92

4.2 Linear Prediction Analysis of Nonstationary Signals / 96

4.3 Examples of Linear Prediction Analysis of Speech / 101

4.4 The Levinson–Durbin Algorithm / 107

4.5 The Leroux–Gueguen Algorithm / 114

4.6 Long-Term Linear Prediction / 120

4.7 Synthesis Filters / 127

4.8 Practical Implementation / 131

4.9 Moving Average Prediction / 137

4.10 Summary and References / 138

Exercises / 139

5 SCALAR QUANTIZATION 143

5.1 Introduction / 143

5.2 Uniform Quantizer / 147

5.3 Optimal Quantizer / 149

5.4 Quantizer Design Algorithms / 151

5.5 Algorithmic Implementation / 155

5.6 Summary and References / 158

Exercises / 158

6 PULSE CODE MODULATION AND ITS VARIANTS 161

6.1 Uniform Quantization / 161

6.2 Nonuniform Quantization / 166

6.3 Differential Pulse Code Modulation / 172

6.4 Adaptive Schemes / 175

6.5 Summary and References / 180

Exercises / 181

viii CONTENTS

7 VECTOR QUANTIZATION 184

7.1 Introduction / 185

7.2 Optimal Quantizer / 188

7.3 Quantizer Design Algorithms / 189

7.4 Multistage VQ / 194

7.5 Predictive VQ / 216

7.6 Other Structured Schemes / 219

7.7 Summary and References / 221

Exercises / 222

8 SCALAR QUANTIZATION OF LINEAR
PREDICTION COEFFICIENT 227

8.1 Spectral Distortion / 227

8.2 Quantization Based on Reflection Coefficient and

Log Area Ratio / 232

8.3 Line Spectral Frequency / 239

8.4 Quantization Based on Line Spectral Frequency / 252

8.5 Interpolation of LPC / 256

8.6 Summary and References / 258

Exercises / 260

9 LINEAR PREDICTION CODING 263

9.1 Speech Production Model / 264

9.2 Structure of the Algorithm / 268

9.3 Voicing Detector / 271

9.4 The FS1015 LPC Coder / 275

9.5 Limitations of the LPC Model / 277

9.6 Summary and References / 280

Exercises / 281

10 REGULAR-PULSE EXCITATION CODERS 285

10.1 Multipulse Excitation Model / 286

10.2 Regular-Pulse-Excited–Long-Term Prediction / 289

10.3 Summary and References / 295

Exercises / 296

11 CODE-EXCITED LINEAR PREDICTION 299

11.1 The CELP Speech Production Model / 300

CONTENTS ix

11.2 The Principle of Analysis-by-Synthesis / 301

11.3 Encoding and Decoding / 302

11.4 Excitation Codebook Search / 308

11.5 Postfilter / 317

11.6 Summary and References / 325

Exercises / 326

12 THE FEDERAL STANDARD VERSION OF CELP 330

12.1 Improving the Long-Term Predictor / 331

12.2 The Concept of the Adaptive Codebook / 333

12.3 Incorporation of the Adaptive Codebook to

the CELP Framework / 336

12.4 Stochastic Codebook Structure / 338

12.5 Adaptive Codebook Search / 341

12.6 Stochastic Codebook Search / 344

12.7 Encoder and Decoder / 346

12.8 Summary and References / 349

Exercises / 350

13 VECTOR SUM EXCITED LINEAR PREDICTION 353

13.1 The Core Encoding Structure / 354

13.2 Search Strategies for Excitation Codebooks / 356

13.3 Excitation Codebook Searches / 357

13.4 Gain Related Procedures / 362

13.5 Encoder and Decoder / 366

13.6 Summary and References / 368

Exercises / 369

14 LOW-DELAY CELP 372

14.1 Strategies to Achieve Low Delay / 373

14.2 Basic Operational Principles / 375

14.3 Linear Prediction Analysis / 377

14.4 Excitation Codebook Search / 380

14.5 Backward Gain Adaptation / 385

14.6 Encoder and Decoder / 389

14.7 Codebook Training / 391

14.8 Summary and References / 393

Exercises / 394

x CONTENTS

15 VECTOR QUANTIZATION OF LINEAR
PREDICTION COEFFICIENT 396

15.1 Correlation Among the LSFs / 396

15.2 Split VQ / 399

15.3 Multistage VQ / 403

15.4 Predictive VQ / 407

15.5 Summary and References / 418

Exercises / 419

16 ALGEBRAIC CELP 423

16.1 Algebraic Codebook Structure / 424

16.2 Adaptive Codebook / 425

16.3 Encoding and Decoding / 433

16.4 Algebraic Codebook Search / 437

16.5 Gain Quantization Using Conjugate VQ / 443

16.6 Other ACELP Standards / 446

16.7 Summary and References / 451

Exercises / 451

17 MIXED EXCITATION LINEAR PREDICTION 454

17.1 The MELP Speech Production Model / 455

17.2 Fourier Magnitudes / 456

17.3 Shaping Filters / 464

17.4 Pitch Period and Voicing Strength Estimation / 466

17.5 Encoder Operations / 474

17.6 Decoder Operations / 477

17.7 Summary and References / 481

Exercises / 482

18 SOURCE-CONTROLLED VARIABLE BIT-RATE CELP 486

18.1 Adaptive Rate Decision / 487

18.2 LP Analysis and LSF-Related Operations / 494

18.3 Decoding and Encoding / 496

18.4 Summary and References / 498

Exercises / 499

19 SPEECH QUALITY ASSESSMENT 501

19.1 The Scope of Quality and Measuring Conditions / 501

CONTENTS xi

19.2 Objective Quality Measurements for Waveform Coders / 502

19.3 Subjective Quality Measures / 504

19.4 Improvements on Objective Quality Measures / 505

APPENDIX A MINIMUM-PHASE PROPERTY OF THE
FORWARD PREDICTION-ERROR FILTER 507

APPENDIX B SOME PROPERTIES OF LINE
SPECTRAL FREQUENCY 514

APPENDIX C RESEARCH DIRECTIONS IN
SPEECH CODING 518

APPENDIX D LINEAR COMBINER FOR
PATTERN CLASSIFICATION 522

APPENDIX E CELP: OPTIMAL LONG-TERM PREDICTOR TO
MINIMIZE THE WEIGHTED DIFFERENCE 531

APPENDIX F REVIEW OF LINEAR ALGEBRA:
ORTHOGONALITY, BASIS, LINEAR
INDEPENDENCE, AND THE
GRAM–SCHMIDT ALGORITHM 537

BIBLIOGRAPHY 542

INDEX 553

xii CONTENTS

PREFACE

My first contact with speech coding was in 1993 when I was a Field Application

Engineer at Texas Instruments, Inc. Soon after joining the company I was assigned

to design a demo prototype for the digital telephone answering device project.

Initially I was in charge of hardware including circuit design and printed circuit

board layout. The core of the board consisted of a microcontroller sending

commands to a mixed signal processor, where all the signal processing tasks—

including speech coding—were performed. In those days a major concern was the

excessive cost associated with random-access memory (RAM), and compressing

the digital speech before storing was almost a mandatory requirement, as this

greatly improved cost-effectiveness.

Soon after the hardware was finished, the focus switched to software (or firmware)

design, mainly dealing with the control of various on-board peripheral devices. My

true interest, however, was the program code inside the mixed signal processor,

which was developed by a separate team of ‘‘advanced’’ engineers. I was told that

voice signals were compressed using a code-excited linear prediction (CELP)

algorithm. Also, it was possible to play back fixed announcement messages—such

as numbers and days of the week—with the messages stored in the linear prediction

coding (LPC) format. I had no idea what these algorithms were, nor how they

worked to compress speech. However, I was eager to learn the details, and decided

to go back to school and pursue a PhD with concentration in speech coding.

This book is the result of my personal experience as a researcher and practitioner

in the field of speech coding. Four years ago I decided to put in extra hours, usually

late nights and early mornings as well as weekends, to organize the literature in

speech coding and develop it into a logical presentation in terms of content and

terminology. Speech coding has evolved into a highly matured branch of signal

xiii

processing, with deployment in a plethora of products, such as, cellular phones,

answering machines, communication devices, and more recently, voice over

internet protocol (VoIP). It is obvious that a thorough textbook is necessary

for students, professors, and engineering professionals to handle the subject

appropriately. My sincere hope is that the availability of a book that collects

many of the techniques used in speech coding and presents them in an accessible

fashion will create excitement and enthusiasm, ensuring continuous rapid advances

in the field.

Philosophy and Approach

Speech Coding Algorithms reflects the core subject of the book, since most coding

techniques are implemented as algorithms, or computational procedures performed

by a processor. However, this is by no means an exhaustive documentation of all

methods developed in this field; it is rather the study of the most successful

techniques, defined as those incorporated in a standard. By doing so we concentrate

our effort on understanding the most influential ideas, which is a rather efficient

manner to navigate this vast territory of knowledge.

In my own personal learning curve, I found that there is a different and

refreshing lesson to be found in every standard. To understand a new standard it

is often necessary to look back into the developed techniques adopted by past

standards or studies. Attempting to learn by reading the official documentation

describing the standard is very often a frustrating experience, since the assumption

made in preparing those materials is that the audience consists of experts in the

subject, and hence the logical order and justification of a given approach is

routinely omitted. Therefore the origin and the reason behind a certain practice

cannot be fully understood. This might not be a problem if one’s objective is to

implement the algorithm without comprehending it. However, for those researchers

eager to delve deeply into its roots, alternative reference sources must be explored,

which can be a strenuous and prolonged process. In this book I have summarized

the knowledge acquired over an extended period of time, with the intention of

filling the void between principles and implementations.

In writing this book, a balance is sought between theory and practice, and

between intuition and rigor. Theoretical ideas are included only if they are used to

solve practical problems, and thorough proofs are provided. Speech coding is

related to human perception, and therefore a degree of fuzziness exists, in the sense

that no absolute right or wrong can be established for certain situations; in other

words, no mathematical proofs are obtainable. In these cases, solutions are often

found and justified on an intuitive basis. For the most part, the book is meant to be

pragmatic, since the discussed techniques are widely used in industry.

Prerequisites

The minimum background required to understand the book is explained, with

reference to popular textbooks where the relevant subjects can be found.

xiv PREFACE

� Advanced calculus, including complex variables [Churchill and Brown, 1990].

� Discrete-time signals and systems, Fourier transforms, z-transforms, filtering,

and convolution [Oppenheim and Schafer, 1989; Stearns and Hush, 1990].

� Random variables and stochastic processes, expectation, probability, and

wide-sense stationarity [Papoulis, 1991; Peebles 1993].

� Linear algebra, including linear equations, matrices, and vectors [Strang,

1988].

� Experience with high-level programming using a language such as C.

The above list is covered in most undergraduate Electrical Engineering curricula;

with this background, the book is self-contained.

Organization

The text is divided into 19 chapters. Chapter 1 provides an overview of the subjects

covered, with references to various aspects of speech coding, standards, algorithms,

and comments on notation and terminology. Chapter 2 is a review of some signal

processing techniques, some are very general, but others are less known outside

speech coding literature. Chapter 3 contains some foundation for stochastic

processes and models, which are important for an understanding of the theoretical

aspects. Chapter 4 is about linear prediction, the integral part of almost all modern

speech coders. Chapter 5 reviews the various aspects of scalar quantization, which

are utilized routinely by many speech coding algorithms. One of the earliest digital

coding techniques is pulse code modulation (PCM); it and its variants are the topic

of Chapter 6. Chapter 7 deals with vector quantization, which has become more and

more important for the achievement of high efficiency in coding systems. Linear

prediction coefficients (LPC) are normally quantized for transmission as part of the

compressed bit-stream; Chapter 8 covers the various methods for scalar quantiza-

tion of these coefficients. One of the landmarks in low bit-rate speech coding is the

linear prediction coding (LPC) algorithm, discussed in Chapter 9. Chapter 10

is devoted to regular pulse excitation coders, with a thorough description of the

GSM 6.10 standard. Principles of code-excited linear prediction (CELP) are given

in Chapter 11, covering the various aspects of analysis-by-synthesis, signal

calculation, postfilter design, and efficiency. Chapters 12 and 13 present the

structure of two standardized CELP coders: FS1016 and IS54, respectively; these

are both milestones in speech coding development. Chapter 14 is dedicated to

the G.728 low-delay CELP standard, with thorough explanations of strategies for

delay reduction and detailed structures of the coder. Vector quantization of LPC

is included in Chapter 15, representing a huge advance with respect to scalar

quantization techniques covered in Chapter 8, and methods used by various

standardized coders are analyzed. The highly influential algebraic CELP (ACELP)

algorithm is covered in Chapter 16, where several ACELP-based standards are

described, with focus on the G.729 standard. The mixed excitation linear prediction

(MELP) algorithm is discussed in Chapter 17, and is shown to be an improvement

PREFACE xv

upon the LPC coder, covered in Chapter 9. Chapter 18 is devoted to the IS96

variable bit-rate CELP algorithm, which is a source-controlled multimode coder

with the operating mode selected by the input characteristics of the speech signal.

Finally, Chapter 19 is concerned with various methods to assess the quality of

speech signals, especially those processed by a speech coding algorithm.

The following table summarizes the chapters and their prerequisites.

Chapter Title Prerequisites

1 Introduction

2 Signal Processing Techniques 1

3 Stochastic Processes and Models

4 Linear Prediction 1, 2, 3

5 Scalar Quantization

6 Pulse Code Modulation and its Variants 4, 5

7 Vector Quantization 5

8 Scalar Quantization of Linear Prediction Coefficients 4, 5

9 Linear Prediction Coding 4, 8

10 Regular-Pulse Excitation Coders 4, 8

11 Code-Excited Linear Prediction 2, 4

12 The Federal Standard Version of CELP 2, 8, 11

13 Vector Sum Excited Linear Prediction 8, 12

14 Low-Delay CELP 4, 11

15 Vector Quantization of Linear Prediction Coefficients 7 , 8

16 Algebraic CELP 7, 12, 15

17 Mixed Excitation Linear Prediction 9, 15

18 Source-Controlled Variable Bit-Rate CELP 11

19 Speech Quality Assessment 1

Acknowledgments

Throughout my professional career, I have had the opportunity to work with and

learn from a number of people whom I should like to publicly acknowledge. My

former advisor Dr. Nirmal K. Bose at the Pennsylvania State University had

provided me with invaluable instruction, trust, and friendship during my graduate

studies; his methodical style, hard-working spirit, and commitment toward educa-

tion have served as a role model to follow. I am grateful to my former supervisor

Dr. Tandhoni S. Rao at Texas Instruments Inc., who had guided me through projects

involving adaptive filters, speech coding, and programming of digital signal

processors.

I would like to dedicate this book to my parents who have always encouraged

my academic interests and provided the moral support throughout my life and

career. I am deeply indebted to my cousin Chi-Ming Chu and wife Kam-Chi Chu

for their help and support during my graduate studies at Stevens Tech; their

industriousness and candid spirit have given me a great deal of positive influence.

xvi PREFACE

I am particularly indebted to my wife Laura for her love and patience, and for

thoroughly reviewing and proofreading the first version of the manuscript.

I am grateful to the Wiley team for their professionalism and help during the

production of this book; special thanks to George Telecki (Executive Editor) and

Rosalyn Farkas (Associate Editor). I am also most grateful to Dr. Andreas Spanias

and Dr. Allen Levesque for their encouraging comments and constructive

critiques—both early reviewers of the manuscript. I also wish to thank my former

colleague at Texas Instruments Inc., Wai-Ming Lai for her help in examining

some chapters of the text.

Last but not least, this book is dedicated to Universidad Simón Bolivar, the

school where I received most of my early engineering education. Universidad

Simón Bolivar me ha dado generosamente el vigor, la fortaleza, y la sabiduria

necesaria para conquistar obstáculos y dominar dificultades tanto en la ingenieria

como en la vida. Espero dar con este libro a los aspirantes en esta rama de la

ingenieria lo mismo que me ha dado la respectuosa universidad.

Feedback

A book of this length is certain to contain errors and omissions. While attempts

were made to provide a highly understandable and correct content, there are

doubtless many places where improvements are possible. Feedback is welcome to

the author via email at wcc2@ieee.org. Please note that a personal reply to all

messages might not be possible.

WAI C. CHU

PREFACE xvii

ACRONYMS

2-D Two-dimensional

3GPP Third generation partnership project

AbS Analysis-by-synthesis

ACELP Algebraic code-excited linear prediction

ACR Absolute category rating

ADPCM Adaptive differential pulse code modulation

AES Audio Engineering Society

ANSI American National Standards Institute

APCM Adaptive pulse code modulation

AR Autoregressive

ARMA Autoregressive moving average

CCITT International Telegraph and Telephone Consultative Committee

(replaced by ITU-T)

CCR Comparison category rating

CDMA Code division multiple access

CELP Code-excited linear prediction

CEPT Conference of European Posts and Telephones

CS-ACELP Conjugate structure algebraic code-excited linear prediction

DC Direct current

DCR Degradation category rating

DFT Discrete Fourier transform

DMOS Degradation mean opinion score

DoD U.S. Department of Defense

DPCM Differential pulse code modulation

DSP Digital signal processing/processor

xix

DTAD Digital telephone answering device

DTFT Discrete time Fourier transform

DTMF Dual-tone multifrequency

EFR Enhanced full rate

ETSI European Telecommunications Standards Institute

FFT Fast Fourier transform

FIR Finite impulse response

FM Frequency modulation

FS Federal Standard

GLA Generalized Lloyd algorithm

GSM Groupe Speciale Mobile

ICASSP International Conference on Acoustics, Speech, and Signal

Processing

IDFT Inverse discrete Fourier transform

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IIR Infinite impulse response

ISO International Organization for Standardization

ITU International Telecommunications Union

ITU–R ITU–Radiocommunication Sector

ITU–T ITU–Telecommunications Standardization Sector

LAR Log area ratio

LD-CELP Low-delay code-excited linear prediction

LMS Least mean square

LP Linear prediction

LPC Linear prediction coding/coefficient

LSF Line spectral frequency

LSP Line spectral pair

LTI Linear time-invariant

MA Moving average

MIPS Millions of instructions per second

MNB Measuring normalizing block

MOS Mean opinion score

MP–MLQ Multipulse–maximum likelihood quantization

MPEG Moving Picture Expert Group

MSE Mean square error

MSVQ Multistage vector quantization

NCS National Communications System

PAQM Perceptual audio quality measure

PC Personal computer

PCM Pulse code modulation

PDF Probability density function

PESQ Perceptual evaluation of speech quality

PG Prediction gain

PMF Probability mass function

xx ACRONYMS

PSD Power spectral density

PSQM Perceptual speech quality measure

PVQ Predictive vector quantization

QCELP Qualcomm code-excited linear prediction

RAM Random access memory

RC Reflection coefficient

RCR Research and Development Center for Radio Systems of Japan

RMS Root mean square

ROM Read only memory

RPE–LTP Regular pulse excited–long-term prediction

RV Random variable

SD Spectral distortion

SNR Signal to noise ratio

SPG Segmental prediction gain

SSE Sum of squared error

SSNR Segmental signal to noise ratio

TDMA Time division multiple access

TI Texas Instruments

TIA Telecommunications Industry Association

TTS Text to speech

UMTS Universal Mobile Telecommunications System

VBR Variable bit-rate

VoIP Voice over internet protocol

VQ Vector quantization

VSELP Vector sum excited linear prediction

WSS Wide sense stationary

ACRONYMS xxi

NOTATION

b�c Floor operation: returns the highest integer just below the operand

d�e Ceiling operation: returns the lowest integer just above the operand

ð�Þ� Complex conjugate

ð�ÞT Transpose

ð�ÞB Backward arrangement (vector)

 Assignment

� Equivalent by definition

; Empty set

[Union

\ InterceptionQ
ProductP
Sum

* Convolution

� Exclusive or

R Bold italic type implies a field or set

a;R Bold type implies a matrix or vector

0 Zero vector

I Identity matrix

Af�g Time average

Ef�g Expectation

Ref�g Real part

Imf�g Imaginary part

argð�Þ Argument (phase)

cosð�Þ Cosine

xxiii

ctgð�Þ Cotangent

expð�Þ Exponential

grdð�Þ Group delay

lgð�Þ Base 2 logarithm

lnð�Þ Natural logarithm

logð�Þ Base 10 logarithm

modð�Þ Modulo operation

sgnð�Þ Sign function, returns � 1 depending on the operand

sinð�Þ Sine

sincðxÞ ¼ sinðpxÞ=ðpxÞ
bps Bits per second

dB Decibel

Hz Hertz

kbps Kilo-bit per second

kHz Kilo-Hertz

xxiv NOTATION

CHAPTER 1

INTRODUCTION

In general, speech coding is a procedure to represent a digitized speech signal using

as few bits as possible, maintaining at the same time a reasonable level of speech

quality. A not so popular name having the same meaning is speech compression.

Speech coding has matured to the point where it now constitutes an important appli-

cation area of signal processing. Due to the increasing demand for speech commu-

nication, speech coding technology has received augmenting levels of interest from

the research, standardization, and business communities. Advances in microelectro-

nics and the vast availability of low-cost programmable processors and dedicated

chips have enabled rapid technology transfer from research to product develop-

ment; this encourages the research community to investigate alternative schemes

for speech coding, with the objectives of overcoming deficiencies and limitations.

The standardization community pursues the establishment of standard speech cod-

ing methods for various applications that will be widely accepted and implemented

by the industry. The business communities capitalize on the ever-increasing

demand and opportunities in the consumer, corporate, and network environments

for speech processing products.

Speech coding is performed using numerous steps or operations specified as an

algorithm. An algorithm is any well-defined computational procedure that takes

some value, or set of values, as input and produces some value, or set of values,

as output. An algorithm is thus a sequence of computational steps that transform

the input into the output. Many signal processing problems—including speech

coding—can be formulated as a well-specified computational problem; hence, a

particular coding scheme can be defined as an algorithm. In general, an algorithm

is specified with a set of instructions, providing the computational steps needed to

perform a task. With these instructions, a computer or processor can execute them

1

so as to complete the coding task. The instructions can also be translated to the

structure of a digital circuit, carrying out the computation directly at the hardware

level.

The purpose of this book is to explain the theoretical issues and implementa-

tional techniques related to the fascinating field of speech coding. The topics of dis-

cussion are focused on some of the well-established and widely used speech coding

standards. By studying the most successful standards and understanding their prin-

ciples, performance, and limitations, it is possible to apply a particular technique to

a given situation according to the underlying constraints—with the ultimate goal

being the development of next-generation algorithms, with improvements in all

aspects.

This chapter is organized as follows: an overview of speech coding is provided

first, with the structure, properties, and applications of speech coders explained; the

different classes of speech coders are described next, followed by speech produc-

tion and modeling, covering properties of speech signals and a very simple coding

system. High-level explanation of the human auditory system is given, where the

system properties are used to develop efficient coding schemes. Activities of stan-

dard bodies and many standardized coders are discussed in the next section, fol-

lowed by issues related to analysis and implementation of algorithms. A brief

summary is given at the end of the chapter.

1.1 OVERVIEW OF SPEECH CODING

This section describes the structure, properties, and applications of speech coding

technology.

Structure of a Speech Coding System

Figure 1.1 shows the block diagram of a speech coding system. The continuous-

time analog speech signal from a given source is digitized by a standard connection

Speech
source

Output
 speech

Filter Sampler A/D
converter

Source
encoder

Channel
encoder

Channel

Channel
decoder

Source
decoder

D/A
converter

Filter

Figure 1.1 Block diagram of a speech coding system.

2 INTRODUCTION

of filter (eliminates aliasing), sampler (discrete-time conversion), and analog-to-

digital converter (uniform quantization is assumed). The output is a discrete-time

speech signal whose sample values are also discretized. This signal is referred to as

the digital speech.

Traditionally, most speech coding systems were designed to support telecommu-

nication applications, with the frequency contents limited between 300 and

3400 Hz. According to the Nyquist theorem, the sampling frequency must be at

least twice the bandwidth of the continuous-time signal in order to avoid aliasing.

A value of 8 kHz is commonly selected as the standard sampling frequency for

speech signals. To convert the analog samples to a digital format using uniform

quantization and maintaining toll quality [Jayant and Noll, 1984]—the digital

speech will be roughly indistinguishable from the bandlimited input—more than

8 bits/sample is necessary. The use of 16 bits/sample provides a quality that is con-

sidered high. Throughout this book, the following parameters are assumed for the

digital speech signal:

Sampling frequency ¼ 8 kHz;

Number of bits per sample ¼ 16:

This gives rise to

Bit-rate ¼ 8 kHz � 16 bits ¼ 128 kbps:

The above bit-rate, also known as input bit-rate, is what the source encoder attempts

to reduce (Figure 1.1). The output of the source encoder represents the encoded

digital speech and in general has substantially lower bit-rate than the input. The

linear prediction coding algorithm (Chapter 9), for instance, has an output rate of

2.4 kbps, a reduction of more than 53 times with respect to the input.

The encoded digital speech data is further processed by the channel encoder,

providing error protection to the bit-stream before transmission to the communica-

tion channel, where various noise and interference can sabotage the reliability of the

transmitted data. Even though in Figure 1.1 the source encoder and channel encoder

are separated, it is also possible to jointly implement them so that source and chan-

nel encoding are done in a single step.

The channel decoder processes the error-protected data to recover the encoded

data, which is then passed to the source decoder to generate the output digital

speech signal, having the original rate. This output digital speech signal is

converted to continuous-time analog form through standard procedures: digital-

to-analog conversion followed by antialiasing filtering.

In this book, the emphasis is on design of the source encoder and source decoder.

For simplicity, they are referred to as the encoder and decoder, respectively

(Figure 1.2). The input speech (a discrete-time signal having a bit-rate of 128 kbps)

enters the encoder to produce the encoded bit-stream, or compressed speech

data. Bit-rate of the bit-stream is normally much lower than that of the input

OVERVIEW OF SPEECH CODING 3

speech. The decoder takes the encoded bit-stream as its input to produce the output

speech signal, which is a discrete-time signal having the same rate as the

input speech. As we will see later in this book, many diverse approaches can be

used to design the encoder/decoder pair. Different methods provide differing speech

quality and bit-rate, as well as implementational complexity.

The encoder/decoder structure represented in Figure 1.2 is known as a speech

coder, where the input speech is encoded to produce a low-rate bit-stream. This

bit-stream is input to the decoder, which constructs an approximation of the original

signal.

Desirable Properties of a Speech Coder

The main goal of speech coding is either to maximize the perceived quality at a

particular bit-rate, or to minimize the bit-rate for a particular perceptual quality.

The appropriate bit-rate at which speech should be transmitted or stored depends

on the cost of transmission or storage, the cost of coding (compressing) the digital

speech signal, and the speech quality requirements. In almost all speech coders, the

reconstructed signal differs from the original one. The bit-rate is reduced by repre-

senting the speech signal (or parameters of a speech production model) with

reduced precision and by removing inherent redundancy from the signal, resulting

therefore in a lossy coding scheme. Desirable properties of a speech coder include:

� Low Bit-Rate. The lower the bit-rate of the encoded bit-stream, the less

bandwidth is required for transmission, leading to a more efficient system.

This requirement is in constant conflict with other good properties of the

system, such as speech quality. In practice, a trade-off is found to satisfy the

necessity of a given application.

� High Speech Quality. The decoded speech should have a quality acceptable

for the target application. There are many dimensions in quality perception,

including intelligibility, naturalness, pleasantness, and speaker recognizabil-

ity. See Chapter 19 for a thorough discussion on speech quality and techniques

to assess it.

� Robustness Across Different Speakers / Languages. The underlying technique

of the speech coder should be general enough to model different speakers

(adult male, adult female, and children) and different languages adequately.

Note that this is not a trivial task, since each voice signal has its unique

characteristics.

Encoder Decoder
Input Output
speech speech
(128 kbps) (128 kbps)Encoded

bit-stream
(<128 kbps)

Figure 1.2 Block diagram of a speech coder.

4 INTRODUCTION

� Robustness in the Presence of Channel Errors. This is crucial for digital

communication systems where channel errors will have a negative impact on

speech quality.

� Good Performance on Nonspeech Signals (i.e., telephone signaling). In a

typical telecommunication system, other signals might be present besides

speech. Signaling tones such as dual-tone multifrequency (DTMF) in keypad

dialing and music are often encountered. Even though low bit-rate speech

coders might not be able to reproduce all signals faithfully, it should not

generate annoying artifacts when facing these alternate signals.

� Low Memory Size and Low Computational Complexity. In order for the

speech coder to be practicable, costs associated with its implementation must

be low; these include the amount of memory needed to support its operation,

as well as computational demand. Speech coding researchers spend a great

deal of effort to find out the most efficient realizations.

� Low Coding Delay. In the process of speech encoding and decoding, delay is

inevitably introduced, which is the time shift between the input speech of the

encoder with respect to the output speech of the decoder. An excessive delay

creates problems with real-time two-way conversations, where the parties tend

to ‘‘talk over’’ each other. Thorough discussion on coding delay is given next.

About Coding Delay

Consider the delay measured using the topology shown in Figure 1.3. The delay

obtained in this way is known as coding delay, or one-way coding delay [Chen,

1995], which is given by the elapsed time from the instant a speech sample arrives

at the encoder input to the instant when the same speech sample appears at the

decoder output. The definition does not consider exterior factors, such as commu-

nication distance or equipment, which are not controllable by the algorithm

designer. Based on the definition, the coding delay can be decomposed into four

major components (see Figure 1.4):

1. Encoder Buffering Delay. Many speech encoders require the collection of a

certain number of samples before processing. For instance, typical linear prediction

(LP)-based coders need to gather one frame of samples ranging from 160 to 240

samples, or 20 to 30 ms, before proceeding with the actual encoding process.

Synthetic
Input Bit-stream speech

 speech
Delay

Encoder Decoder Measure
time
shift

Figure 1.3 System for delay measurement.

OVERVIEW OF SPEECH CODING 5

2. Encoder Processing Delay. The encoder consumes a certain amount of time

to process the buffered data and construct the bit-stream. This delay can be

shortened by increasing the computational power of the underlying platform and

by utilizing efficient algorithms. The processing delay must be shorter than the

buffering delay, otherwise the encoder will not be able to handle data from the

next frame.

3. Transmission Delay. Once the encoder finishes processing one frame of input

samples, the resultant bits representing the compressed bit-stream are transmitted to

the decoder. Many transmission modes are possible and the choice depends on the

particular system requirements. For illustration purposes, we will consider only two

transmission modes: constant and burst. Figure 1.5 depicts the situations for these

modes.

In constant mode the bits are transmitted synchronously at a fixed rate, which is

given by the number of bits corresponding to one frame divided by the length of the

frame. Under this mode, transmission delay is equal to encoder buffering delay: bits

associated with the frame are fully transmitted at the instant when bits of the next

frame are available. This mode of operation is dominant for most classical digital

communication systems, such as wired telephone networks.

 TimeDecoder
processing
delay

Transmission
delay / Decoder
buffering delay

Encoder
processing
delay

Buffer
input
frame

Encode
Bit

transmission Decode
Output
frame

Encoder
buffering
delay

Coding delay

Figure 1.4 Illustration of the components of coding delay.

Number
Encoder buffering delay

 of bits

Time

Time

Figure 1.5 Plots of bit-stream transmission pattern for constant mode (top) and burst mode

(bottom).

6 INTRODUCTION

In burst mode all bits associated with a particular frame are completely sent

within an interval that is shorter than the encoder buffering delay. In the extreme

case, all bits are released right after they become available, leading to a negligibly

small transmission delay. This mode is inherent to packetized network and the

internet, where data are grouped and sent as packets.

Transmission delay is also known as decoder buffering delay, since it is the

amount of time that the decoder must wait in order to collect all bits related to a

particular frame so as to start the decoding process.

4. Decoder Processing Delay. This is the time required to decode in order to

produce one frame of synthetic speech. As for the case of the encoder processing

delay, its upper limit is given by the encoder buffering delay, since a whole frame of

synthetic speech data must be completed within this time frame in order to be ready

for the next frame.

As stated earlier, one of the good attributes of a speech coder is measured by its

coding delay, given by the sum of the four described components. As an algorithm

designer, the task is to reduce the four delay components to a minimum. In general,

the encoder buffering delay has the greatest impact: it determines the upper limit for

the rest of the delay components. A long encoding buffer enables a more thorough

evaluation of the signal properties, leading to higher coding efficiency and hence

lower bit-rate. This is the reason why most low bit-rate coders often have high

delay. Thus, coding delay in most cases is a trade-off with respect to the achievable

bit-rate.

In the ideal case where infinite computational power is available, the processing

delays (encoder and decoder) can be made negligible with respect to the encoder

buffering delay. Under this assumption, the coding delay is equal to two times the

encoder buffering delay if the system is transmitting in constant mode. For burst

mode, the shortest possible coding delay is equal to the encoder buffering delay,

where it is assumed that all output bits from the encoder are sent instantaneously

to the decoder. These values are idealistic in the sense that it is achievable only if

the processing delay is zero or the computational power is infinite: the underlying

platform can find the results instantly once the required amount of data is collected.

These ideal values are frequently used for benchmarking purposes, since they repre-

sent the lower bound of the coding delay. In the simplest form of delay comparison

among coders, only the encoder buffering delay is cited. In practice, a reasonable

estimate of the coding delay is to take 2.5 to 3 and 1.5 to 2.5 times the frame

interval (encoder buffering delay) for constant mode transmission and burst

mode transmission, respectively.

Applications of Speech Coders

Speech coding has an important role in modern voice-enabled technology, particu-

larly for digital speech communication, where quality and complexity have a direct

impact on the marketability and cost of the underlying products or services. There

OVERVIEW OF SPEECH CODING 7

are many speech coding standards designed to suit the need of a given application.

Some examples are as follows:

� FS1015 LPC (Chapter 9). This coder was created in 1984 to provide secure

communication in military applications. On a battlefield, the messages must

be sent in such a way that the enemy cannot understand them. By deploying a

secret coding scheme, the transmitted messages are safeguarded.

� TIA IS54 VSELP (Chapter 13). This coder was standardized in 1989 for time

division multiple access (TDMA) digital cellular telephony in North America.

� ETSI AMR ACELP (Chapter 16). This coder was standardized in 1999 as part

of the Universal Mobile Telecommunications System (UMTS) linked to the

3rd Generation Partnership Project (3GPP).

More recently, with the explosive growth of the internet, the potential market of

voice over internet protocol (voice over IP, or VoIP) has lured many companies to

develop products and services around the concept. In sharp contrast with conven-

tional telephony, the internet carries voice traffic as data packets over a packet-

switched data network instead of a synchronous stream of binary data. To residen-

tial customers, a major benefit of internet telephony is lower bills for long-distance

voice calls. To corporations, VoIP allows integration of data and voice into a single

network, which is translated into substantial cost saving and administration effi-

ciency. According to one study [Thomsen and Jani, 2000], VoIP traffic grew by

almost 900% from 1998 to 1999 and is projected to grow another 5000% by

2004. Speech coding will play a central role in this revolution.

Another smaller-scale area of application includes voice storage or digital

recording, with some outstanding representatives being the digital telephone

answering device (DTAD) and solid-state recorders. For these products to be com-

petitive in the marketplace, their costs must be driven to a minimum. By compres-

sing the digital speech signal before storage, longer-duration voice messages can

be recorded for a given amount of memory chips, leading to improved cost

effectiveness.

Techniques developed for speech coding have also been applied to other

application areas such as speech synthesis, audio coding, speech recognition, and

speaker recognition. Due to the weighty position that speech coding occupies in

modern technology, it will remain in the center of attention for years to come.

1.2 CLASSIFICATION OF SPEECH CODERS

The task of classifying modern speech coders is not simple and is often confusing,

due to the lack of clear separation between various approaches. This section pre-

sents some existent classification criteria. Readers must bear in mind that this is

a constantly evolving area and new classes of coders will be created as alternative

techniques are introduced.

8 INTRODUCTION

Classification by Bit-Rate

All speech coders are designed to reduce the reference bit-rate of 128 kbps toward

lower values. Depending on the bit-rate of the encoded bit-stream, it is common to

classify the speech coders according to Table 1.1. As we will see later in this chap-

ter and throughout the book, different coding techniques lead to different bit-rates.

A given method works fine at a certain bit-rate range, but the quality of the decoded

speech will drop drastically if it is decreased below a certain threshold. The mini-

mum bit-rate that speech coders will achieve is limited by the information content

of the speech signal. Judging from the recoverable message rate from a linguistic

perspective for typical speech signals, it is reasonable to say that the minimum lies

somewhere around 100 bps. Current coders can produce good quality at 2 kbps and

above, suggesting that there is plenty of room for future improvement.

Classification by Coding Techniques

Waveform Coders

An attempt is made to preserve the original shape of the signal waveform, and

hence the resultant coders can generally be applied to any signal source. These

coders are better suited for high bit-rate coding, since performance drops sharply

with decreasing bit-rate. In practice, these coders work best at a bit-rate of

32 kbps and higher.

Signal-to-noise ratio (SNR, Chapter 19) can be utilized to measure the quality of

waveform coders. Some examples of this class include various kinds of pulse code

modulation (PCM, Chapter 6) and adaptive differential PCM (ADPCM).

Parametric Coders

Within the framework of parametric coders, the speech signal is assumed to be gen-

erated from a model, which is controlled by some parameters. During encoding,

parameters of the model are estimated from the input speech signal, with the para-

meters transmitted as the encoded bit-stream. This type of coder makes no attempt

to preserve the original shape of the waveform, and hence SNR is a useless quality

measure. Perceptual quality of the decoded speech is directly related to the accu-

racy and sophistication of the underlying model. Due to this limitation, the coder is

signal specific, having poor performance for nonspeech signals.

TABLE 1.1 Classification of Speech Coders According
to Bit-Rate

Category Bit-Rate Range

High bit-rate >15 kbps

Medium bit-rate 5 to 15 kbps

Low bit-rate 2 to 5 kbps

Very low bit-rate <2 kbps

CLASSIFICATION OF SPEECH CODERS 9

There are several proposed models in the literature. The most successful, how-

ever, is based on linear prediction. In this approach, the human speech production

mechanism is summarized using a time-varying filter (Section 1.3), with the coeffi-

cients of the filter found using the linear prediction analysis procedure (Chapter 4).

This is the only type of parametric coder considered in this book.

This class of coders works well for low bit-rate. Increasing the bit-rate normally

does not translate into better quality, since it is restricted by the chosen model. Typi-

cal bit-rate is in the range of 2 to 5 kbps. Example coders of this class include linear

prediction coding (LPC, Chapter 9) and mixed excitation linear prediction (MELP,

Chapter 17).

Hybrid Coders

As its name implies, a hybrid coder combines the strength of a waveform coder

with that of a parametric coder. Like a parametric coder, it relies on a speech pro-

duction model; during encoding, parameters of the model are located. Additional

parameters of the model are optimized in such a way that the decoded speech is

as close as possible to the original waveform, with the closeness often measured

by a perceptually weighted error signal. As in waveform coders, an attempt is

made to match the original signal with the decoded signal in the time domain.

This class dominates the medium bit-rate coders, with the code-excited linear

prediction (CELP, Chapter 11) algorithm and its variants the most outstanding

representatives. From a technical perspective, the difference between a hybrid

coder and a parametric coder is that the former attempts to quantize or represent

the excitation signal to the speech production model, which is transmitted as part

of the encoded bit-stream. The latter, however, achieves low bit-rate by discarding

all detail information of the excitation signal; only coarse parameters are extracted.

A hybrid coder tends to behave like a waveform coder for high bit-rate, and like

a parametric coder at low bit-rate, with fair to good quality for medium bit-rate.

Single-Mode and Multimode Coders

Single-mode coders are those that apply a specific, fixed encoding mechanism at all

times, leading to a constant bit-rate for the encoded bit-stream. Examples of such

coders are pulse code modulation (PCM, Chapter 6) and regular-pulse-excited long-

term prediction (RPE-LTP, Chapter 10).

Multimode coders were invented to take advantage of the dynamic nature of the

speech signal, and to adapt to the time-varying network conditions. In this config-

uration, one of several distinct coding modes is selected, with the selection done by

source control, when it is based on the local statistics of the input speech, or net-

work control, when the switching obeys some external commands in response to

network needs or channel conditions.

Figure 1.6 shows the block diagram of a multimode coder with source control. In

this system several coding modes are selected according to the properties of the

signal at a given interval of time. In an open-loop system, the modes are selected

10 INTRODUCTION

by solely analyzing the input signal. While in a closed-loop approach, encoded out-

comes of each mode are taken into account in the final decision. The mode selection

information is transmitted as part of the bit-stream, which is used by the decoder to

select the proper mode.

Most multimode coders have variable bit-rate, where each mode has a particular,

fixed value. Keeping the bit-rate varied allows more flexibility, leading to improved

efficiency and a significant reduction in average bit-rate. Examples of multimode

coders include the TIA IS96 variable bit-rate CELP coder (Chapter 18), which is

source controlled in nature; and the ETSI AMR ACELP coder (Chapter 16), which

is a network-controlled version.

1.3 SPEECH PRODUCTION AND MODELING

In this section, the origin and types of speech signals are explained, followed by the

modeling of the speech production mechanism. Principles of parametric speech

coding are illustrated using a simple example, with the general structure of speech

coders described at the end.

Origin of Speech Signals

The speech waveform is a sound pressure wave originating from controlled

movements of anatomical structures making up the human speech production

Encoder 1

Encoder N

Encoder 2

Decoder 1

Decoder N

Decoder 2

 Input
 speech

 Bit-stream

 Synthetic
 speech

 Bit-stream

Encoder
selection

Pack

Unpack

Figure 1.6 Encoder (top) and decoder (bottom) of a source-controlled multimode coder.

SPEECH PRODUCTION AND MODELING 11

system. A simplified structural view is shown in Figure 1.7. Speech is basically

generated as an acoustic wave that is radiated from the nostrils and the mouth

when air is expelled from the lungs with the resulting flow of air perturbed by

the constrictions inside the body. It is useful to interpret speech production in terms

of acoustic filtering. The three main cavities of the speech production system are

nasal, oral, and pharyngeal forming the main acoustic filter. The filter is excited

by the air from the lungs and is loaded at its main output by a radiation impedance

associated with the lips.

The vocal tract refers to the pharyngeal and oral cavities grouped together. The

nasal tract begins at the velum and ends at the nostrils of the nose. When the velum

is lowered, the nasal tract is acoustically coupled to the vocal tract to produce the

nasal sounds of speech.

The form and shape of the vocal and nasal tracts change continuously with time,

creating an acoustic filter with time-varying frequency response. As air from the

lungs travels through the tracts, the frequency spectrum is shaped by the frequency

selectivity of these tracts. The resonance frequencies of the vocal tract tube are

called formant frequencies or simply formants, which depend on the shape and

dimensions of the vocal tract.

Inside the larynx is one of the most important components of the speech produc-

tion system—the vocal cords. The location of the cords is at the height of the

‘‘Adam’s apple’’—the protrusion in the front of the neck for most adult males.

Vocal cords are a pair of elastic bands of muscle and mucous membrane

that open and close rapidly during speech production. The speed by which the cords

open and close is unique for each individual and define the feature and personality

of the particular voice.

Figure 1.7 Diagram of the human speech production system.

12 INTRODUCTION

Classification of Speech Signals

Roughly speaking, a speech signal can be classified as voiced or unvoiced. Voiced

sounds are generated when the vocal cords vibrate in such a way that the flow of air

from the lungs is interrupted periodically, creating a sequence of pulses to excite the

vocal tract. With the vocal cords stationary, the turbulence created by the flow of air

passing through a constriction of the vocal tract generates unvoiced sounds. In time

domain, voiced sound is characterized by strong periodicity present in the signal,

with the fundamental frequency referred to as the pitch frequency, or simply pitch.

For men, pitch ranges from 50 to 250 Hz, while for women the range usually

falls somewhere in the interval of 120 to 500 Hz. Unvoiced sounds, on the other

hand, do not display any type of periodicity and are essentially random in nature.

To experiment with voice and unvoiced sounds and the involvement of the vocal

cords, try placing your fingers on the front of your neck while you speak. Consider

the ‘‘fa’’ sound as in ‘‘father.’’ First, attempt to pronounce for a few seconds the ‘‘f’’

sound alone, which is a consonant in American English. Next, pronounce ‘‘a’’ for a

few seconds, which is a vowel. How do your fingers feel for the two cases? In the

first case you shouldn’t feel any vibration in the front of your neck; while in the

second case some pulsation is detected. Speak louder if you have problems feeling

it. The oscillation is associated with the activities of the vocal cords and is present

for the pronunciation of vowels.

Figure 1.8 shows an example speech waveform uttered by a male subject, where

both voiced and unvoiced signals are present. It is possible to appreciate from this

example the nonstationarity nature of speech signals, where statistics of the signal

change constantly with time. We see that for the voiced frame, there is clear peri-

odicity in time domain, where the signal repeats itself in a quasiperiodic pattern;

and also in frequency domain, where a harmonic structure is observed. Note that

the spectrum indicates dominant low-frequency contents, due mainly to the rela-

tively low value of the pitch frequency. For the unvoiced frame, however, the signal

is essentially random. From the spectrum we can see that there is a significant

amount of high-frequency components, corresponding to rapidly changing signals.

It is necessary to indicate that the voiced / unvoiced classification might not be

absolutely clear for all frames, since during transitions (voiced to unvoiced or vice

versa) there will be randomness and quasiperiodicity that is difficult to judge as

strictly voiced or strictly unvoiced.

For most speech coders, the signal is processed on a frame-by-frame basis,

where a frame consists of a finite number of samples. The length of the frame is

selected in such a way that the statistics of the signal remain almost constant within

the interval. This length is typically between 20 and 30 ms, or 160 and 240 samples

for 8-kHz sampling.

Modeling the Speech Production System

In general terms, a model is a simplified representation of the real world. It is

designed to help us better understand the world in which we live and, ultimately,

SPEECH PRODUCTION AND MODELING 13

to duplicate many of the behaviors and characteristics of real-life phenomenon.

However, it is incorrect to assume that the model and the real world that it repre-

sents are identical in every way. In order for the model to be successful, it must be

able to replicate partially or completely the behaviors of the particular object or fact

that it intends to capture or simulate. The model may be a physical one (i.e., a

model airplane) or it may be a mathematical one, such as a formula.

The human speech production system can be modeled using a rather simple

structure: the lungs—generating the air or energy to excite the vocal tract—are

represented by a white noise source. The acoustic path inside the body with all

its components is associated with a time-varying filter. The concept is illustrated

in Figure 1.9. This simple model is indeed the core structure of many speech coding

algorithms, as can be seen later in this book. By using a system identification

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0 0.5 1

1500 1600 1700

0

4�104

−4�104

2�104

1�106

1�105

1�104

1�103

−2�104

4400 4500 4600
−2000

0

2000

0 0.5 1
10

100

n

n n

s[n]

0

4�104

−4�104

2�104

−2�104

s[n]

s[n]

ω/πω/π

|S(ejw)|

1�106

1�105

1�104

1�103

10

100

|S(ejw)|

Figure 1.8 Example of speech waveform uttered by a male subject about the word

‘‘problems.’’ The expanded views of a voiced frame and an unvoiced frame are shown, with

the magnitude of the Fourier transorm plotted. The frame is 256 samples in length.

14 INTRODUCTION

technique called linear prediction (Chapter 4), it is possible to estimate the para-

meters of the time-varying filter from the observed signal.

The assumption of the model is that the energy distribution of the speech signal

in frequency domain is totally due to the time-varying filter, with the lungs produ-

cing an excitation signal having a flat-spectrum white noise. This model is rather

efficient and many analytical tools have already been developed around the concept.

The idea is the well-known autoregressive model, reviewed in Chapter 3.

A Glimpse of Parametric Speech Coding

Consider the speech frame corresponding to an unvoiced segment with 256 samples

of Figure 1.8. Applying the samples of the frame to a linear prediction analysis pro-

cedure (Chapter 4), the coefficients of an associated filter are found. This filter has

system function

HðzÞ ¼ 1

1þP10
i¼1 aiz�i

with the coefficients denoted by ai, i ¼ 1 to 10.

White noise samples are created using a unit variance Gaussian random number

generator; when passing these samples (with appropriate scaling) to the filter, the

output signal is obtained. Figure 1.10 compares the original speech frame, with two

realizations of filtered white noise. As we can see, there is no time-domain corre-

spondence between the three cases. However, when these three signal frames are

played back to a human listener (converted to sound waves), the perception is

almost the same!

How could this be? After all, they look so different in the time domain. The

secret lies in the fact that they all have a similar magnitude spectrum, as plotted

in Figure 1.11. As we can see, the frequency contents are similar, and since the

human auditory system is not very sensitive toward phase differences, all three

Output speech

White
noise

generator

Time-
varying

filter

Lungs Trachea
Pharyngeal cavity
Nasal cavity
Oral cavity
Nostril
Mouth

Figure 1.9 Correspondence between the human speech production system with a simplified

system based on time-varying filter.

SPEECH PRODUCTION AND MODELING 15

frames sound almost identical (more on this in the next section). The original

frequency spectrum is captured by the filter, with all its coefficients. Thus, the

flat-spectrum white noise is shaped by the filter so as to produce signals having a

spectrum similar to the original speech. Hence, linear prediction analysis is also

known as a spectrum estimation technique.

0 50 100 150 200 250
−5000

0

5000

0 50 100 150 200 250
−5000

0

5000

0 50 100 150 200 250
−5000

0

5000

n

n

n

s[n]

s1[n]

s2[n]

Figure 1.10 Comparison between an original unvoiced frame (top) and two synthesized

frames.

0 20 40 60 80 100 120
0.1

1

10

100

1�103

k

|S[k]|

Figure 1.11 Comparison between the magnitude of the DFT for the three signal frames of

Figure 1.10.

16 INTRODUCTION

How can we use this trick for speech coding? As we know, the objective is to

represent the speech frame with a lower number of bits. The original number of bits

for the speech frame is

Original number of bits ¼ 256 samples � 16 bits=sample ¼ 4096 bits:

As indicated previously, by finding the coefficients of the filter using linear pre-

diction analysis, it is possible to generate signal frames having similar frequency

contents as the original, with almost identical sounds. Therefore, the frame can

be represented alternatively using ten filter coefficients, plus a scale factor. The

scale factor is found from the power level of the original frame. As we will see later

in the book, the set of coefficients can be represented with less than 40 bits, while

5 bits are good enough for the scale factor. This leads to

Alternative number of bits ¼ 40 bitsþ 5 bits ¼ 45 bits:

Therefore, we have achieved an order of magnitude saving in terms of the

number of required bits by using this alternative representation, fulfilling in the

process our objective of bit reduction. This simple speech coding procedure is

summarized below.

� Encoding

Derive the filter coefficients from the speech frame.

Derive the scale factor from the speech frame.

Transmit filter coefficients and scale factor to the decoder.

� Decoding

Generate white noise sequence.

Multiply the white noise samples by the scale factor.

Construct the filter using the coefficients from the encoder and filter the scaled

white noise sequence. Output speech is the output of the filter.

By repeating the above procedures for every speech frame, a time-varying filter

is created, since its coefficients are changed from frame to frame. Note that this

overly simplistic scheme is for illustration only: much more elaboration is neces-

sary to make the method useful in practice. However, the core ideas for many

speech coders are not far from this uncomplicated example, as we will see in later

chapters.

General Structure of a Speech Coder

Figure 1.12 shows the generic block diagrams of a speech encoder and decoder. For

the encoder, the input speech is processed and analyzed so as to extract a number of

parameters representing the frame under consideration. These parameters are

encoded or quantized with the binary indices sent as the compressed bit-stream

SPEECH PRODUCTION AND MODELING 17

(see Chapter 5 for concepts of quantization). As we can see, the indices are packed

together to form the bit-stream; that is, they are placed according to certain prede-

termined order and transmitted to the decoder.

The speech decoder unpacks the bit-stream, where the recovered binary indices

are directed to the corresponding parameter decoder so as to obtain the quantized

parameters. These decoded parameters are combined and processed to generate the

synthetic speech.

Similar block diagrams as in Figure 1.12 will be encountered many times in later

chapters. It is the responsibility of the algorithm designer to decide the functionality

and features of the various processing, analysis, and quantization blocks. Their

choices will determine the performance and characteristic of the speech coder.

1.4 SOME PROPERTIES OF THE HUMAN AUDITORY SYSTEM

The way that the human auditory system works plays an important role in speech

coding systems design. By understanding how sounds are perceived, resources in

the coding system can be allocated in the most efficient manner, leading to

improved cost effectiveness. In subsequent chapters we will see that many speech

coding standards are tailored to take advantage of the properties of the human audi-

tory system. This section provides an overview of the subject, summarizing several

Input
PCM
speech

…

Index 1 Index 2 Index N
 Bit-stream

Bit-stream

Index 1 Index 2 Index N

 …

Synthetic
speech

Analysis and processing

Extract
enand code

parameter 1

Extract
enand code

parameter 2

Extract
enand code

parameter N

Pack

Unpack

Decode
parameter 1

Decode
parameter 2

Decode
parameter N

Combine and processing

Figure 1.12 General structure of a speech coder. Top: Encoder. Bottom: Decoder.

18 INTRODUCTION

topics including the structure of the human auditory system, absolute threshold,

masking, and phase perception.

Structure of the Human Auditory System

A simplified diagram of the human auditory system appears in Figure 1.13. The

pinna (or informally the ear) is the surface surrounding the canal in which sound

is funneled. Sound waves are guided by the canal toward the eardrum—a mem-

brane that acts as an acoustic-to-mechanic transducer. The sound waves are then

translated into mechanical vibrations that are passed to the cochlea through a series

of bones known as the ossicles. Presence of the ossicles improves sound propaga-

tion by reducing the amount of reflection and is accomplished by the principle of

impedance matching.

The cochlea is a rigid snail-shaped organ filled with fluid. Mechanical oscilla-

tions impinging on the ossicles cause an internal membrane, known as the basilar

membrane, to vibrate at various frequencies. The basilar membrane is characterized

by a set of frequency responses at different points along the membrane; and a sim-

ple modeling technique is to use a bank of filters to describe its behavior. Motion

along the basilar membrane is sensed by the inner hair cells and causes neural

activities that are transmitted to the brain through the auditory nerve.

The different points along the basilar membrane react differently depending on

the frequencies of the incoming sound waves. Thus, hair cells located at different

positions along the membrane are excited by sounds of different frequencies.

The neurons that contact the hair cells and transmit the excitation to higher auditory

centers maintain the frequency specificity. Due to this arrangement, the human

auditory system behaves very much like a frequency analyzer; and system

characterization is simpler if done in the frequency domain.

Figure 1.13 Diagram of the human auditory system.

SOME PROPERTIES OF THE HUMAN AUDITORY SYSTEM 19

Absolute Threshold

The absolute threshold of a sound is the minimum detectable level of that sound in

the absence of any other external sounds. That is, it characterizes the amount of

energy needed in a pure tone such that it can be detected by a listener in a noiseless

environment. Figure 1.14 shows a typical absolute threshold curve, where the hor-

izontal axis is frequency measured in hertz (Hz); while the vertical axis is the abso-

lute threshold in decibels (dB), related to a reference intensity of 10�12 watts per
square meter—a standard quantity for sound intensity measurement.

Note that the absolute threshold curve, as shown in Figure 1.14, reflects only the

average behavior; the actual shape varies from person to person and is measured by

presenting a tone of a certain frequency to a subject, with the intensity being tuned

until the subject no longer perceive its presence. By repeating the measurements

using a large number of frequency values, the absolute threshold curve results.

As we can see, human beings tend to be more sensitive toward frequencies in the

range of 1 to 4 kHz, while thresholds increase rapidly at very high and very low

frequencies. It is commonly accepted that below 20 Hz and above 20 kHz, the

auditory system is essentially dysfunctional. These characteristics are due to the

structures of the human auditory system: acoustic selectivity of the pinna and canal,

mechanical properties of the eardrum and ossicles, elasticity of the basilar

membrane, and so on.

We can take advantage of the absolute threshold curve in speech coder design.

Some approaches are the following:

� Any signal with an intensity below the absolute threshold need not be

considered, since it does not have any impact on the final quality of the coder.

� More resources should be allocated for the representation of signals within the

most sensitive frequency range, roughly from 1 to 4 kHz, since distortions in

this range are more noticeable.

Masking

Masking refers to the phenomenon where one sound is rendered inaudible because

of the presence of other sounds. The presence of a single tone, for instance, can

10 100 1 .10
3

1 .10
4

1 .10
5

0

100

200

f

AT(f)

Figure 1.14 A typical absolute threshold curve.

20 INTRODUCTION

mask the neighboring signals—with the masking capability inversely proportional

to the absolute difference in frequency. Figure 1.15 shows an example where a sin-

gle tone is present; the tone generates a masking curve that causes any signal with

power below it to become imperceptible. In general, masking capability increases

with the intensity of the reference signal, or the single tone in this case.

The features of the masking curve depend on each individual and can be mea-

sured in practice by putting a subject in a laboratory environment and asking for

his/her perception of a certain sound tuned to some amplitude and frequency values

in the presence of a reference tone.

Masking can be explored for speech coding developments. For instance, analyz-

ing the spectral contents of a signal, it is possible to locate the frequency regions

that are most susceptible to distortion. An example is shown in Figure 1.16. In this

case a typical spectrum is shown, which consists of a series of high- and low-power

regions, referred to as peaks and valleys, respectively. An associated masking curve

exists that follows the ups and downs of the original spectrum. Signals with power

below the masking curve are inaudible; thus, in general, peaks can tolerate more

distortion or noise than valleys.

Frequency

Power
A single tone

Masking curve

Figure 1.15 Example of the masking curve associated with a single tone. Based on the

masking curve, examples of audible (&) and inaudible (*) tones are shown, which depend on

whether the power is above or below the masking curve, respectively.

Frequency

Power

Signal spectrum

Masking curve

Figure 1.16 Example of a signal spectrum and the associated masking curve. Dark areas

correspond to regions with relatively little tolerance to distortion, while clear areas

correspond to regions with relatively high tolerance to distortion.

SOME PROPERTIES OF THE HUMAN AUDITORY SYSTEM 21

Awell-designed coding scheme should ensure that the valleys are well preserved

or relatively free of distortions; while the peaks can tolerate a higher amount of

noise. By following this principle, effectiveness of the coding algorithm is

improved, leading to enhanced output quality.

As we will see in Chapter 11, coders obeying the principle of code-excited linear

prediction (CELP) rely on the perceptual weighting filter to weight the error spec-

trum during encoding; frequency response of the filter is time-varying and depends

on the original spectrum of the input signal. The mechanism is highly efficient and

is widely applied in practice.

Phase Perception

Modern speech coding technologies rely heavily on the application of perceptual

characteristics of the human auditory system in various aspects of a quantizer’s

design and general architecture. In most cases, however, the focus on perception

is largely confined to the magnitude information of the signal; the phase counterpart

has mostly been neglected with the underlying assumption that human beings are

phase deaf.

There is abundant evidence on phase deafness; for instance, a single tone and its

time-shifted version essentially produce the same sensation; on the other hand,

noise perception is chiefly determined by the magnitude spectrum. This latter

example was already described in the last section for the design of a rudimentary

coder and is the foundation of some early speech coders, such as the linear predic-

tion coding (LPC) algorithm, studied in Chapter 9.

Even though phase has a minor role in perception, some level of phase preserva-

tion in the coding process is still desirable, since naturalness is normally increased.

The code-excited linear prediction (CELP) algorithm, for instance, has a mechanism

to retain phase information of the signal, covered in Chapter 11.

1.5 SPEECH CODING STANDARDS

This book focuses mainly on the study of the foundation and historical evolution of

many standardized coders. As a matter of principle, a technique is included only if

it is part of some standard. Standards exist because there are strong needs to have

common means for communication: it is to everyone’s best interest to be able to

develop and utilize products and services based on the same reference.

By studying the supporting techniques of standardized coders, we are indeed

concentrating our effort on understanding the most influential and successful ideas

in this field of knowledge. Otherwise, we would have to spend an enormous amount

of effort to deal with the endless papers, reports, and propositions in the literature;

many of these might be immature, incomplete, or, in some instances, impractical. A

standard, on the other hand, is developed by a team of experts over an extended

period of time, with extensive testing and repeated evaluation to warrant that a set

of requirements is met. Only organizations with vast resources can coordinate

22 INTRODUCTION

such endeavors. According to Cox [1995], the time required to complete a

standard from beginning to end under the best of circumstances is around

4.5 years.

This does not mean that a standard is error-free or has no room for improvement.

As a matter of fact, new standards often appear as improvement on the existing

ones. In many instances, a standard represents the state-of-the-art at the time; in

other terms, a reference for future improvement. The relentless research effort

will continuously push existent technology toward unknown boundaries.

Standard Bodies

The standard bodies are organizations responsible for overseeing the development

of standards for a particular application. Brief descriptions of some well-known

standard bodies are given here.

� International Telecommunications Union (ITU). The Telecommunications

Standardization Sector of the ITU (ITU-T) is responsible for creating speech

coding standards for network telephony. This includes both wired and wireless

networks.

� Telecommunications Industry Association (TIA). The TIA is in charge of

promulgating speech coding standards for specific applications. It is part of

the American National Standards Institute (ANSI). The TIA has successfully

developed standards for North American digital cellular telephony, including

time division multiple access (TDMA) and code division multiple access

(CDMA) systems.

� European Telecommunications Standards Institute (ETSI). The ETSI has

memberships from European countries and companies and is mainly an

organization of equipment manufacturers. ETSI is organized by application;

the most influential group in speech coding is the Groupe Speciale Mobile

(GSM), which has several prominent standards under its belt.

� United States Department of Defense (DoD). The DoD is involved with the

creation of speech coding standards, known as U.S. Federal standards, mainly

for military applications.

� Research and Development Center for Radio Systems of Japan (RCR). Japan’s

digital cellular standards are created by the RCR.

The Standards Covered in this Book

As mentioned before, this book is dedicated to standardized coders. Table 1.2 con-

tains the major standards developed up to 1999. The name of a standard begins with

the acronym of the standard body responsible for development, followed by a label

or number assigned to the coder (if available); at the end is the particular algorithm

selected. The list in Table 1.2 is not meant to be exhaustive, and many other stan-

dards are available either for special purpose or private use by corporations.

SPEECH CODING STANDARDS 23

However, the major achievements in speech coding for the past thirty years are well

represented by the coders on the list.

It is important to mention that the philosophy of this book is to explain the whys

and hows of a specific algorithm; most importantly, to justify the selection of a par-

ticular technique for an application. Each standardized coder tends to have its own

idiosyncrasies and minute operational tricks that might not be important for the

understanding of the foundation of the algorithm and hence are often omitted. In

order to develop a bit-stream compatible version of the coder, consultation with

official documentation is mandatory. Even though many documents describing

the standards are available to the general public, it doesn’t mean that it is free

for anyone to use. The standards are created through the efforts of individuals,

and licensing royalties are the way that these individuals get compensated.

On incorporating many of the techniques discussed in this book to commercial

TABLE 1.2 Summary of Major Speech Coding Standards

Year Bit-Rate

Finalized Standard Name (kbps) Applications

1972a ITU-T G.711 PCM 64 General purpose

1984b FS 1015 LPC 2.4 Secure communication

1987b ETSI GSM 6.10 RPE-LTP 13 Digital mobile radio

1990c ITU-T G.726 ADPCM 16, 24, 32, 40 General purpose

1990b TIA IS54 VSELP 7.95 North American TDMA

digital cellular telephony

1990c ETSI GSM 6.20 VSELP 5.6 GSM cellular system

1990c RCR STD-27B VSELP 6.7 Japanese cellular system

1991b FS1016 CELP 4.8 Secure communication

1992b ITU-T G.728 LD-CELP 16 General purpose

1993b TIA IS96 VBR-CELP 8.5, 4, 2, 0.8 North American CDMA

digital cellular telephony

1995a ITU-T G.723.1 MP-MLQ / 5.3, 6.3 Multimedia communications,

ACELP videophones

1995b ITU-T G.729 CS-ACELP 8 General purpose

1996a ETSI GSM EFR ACELP 12.2 General purpose

1996a TIA IS641 ACELP 7.4 North American TDMA

digital cellular telephony

1997b FS MELP 2.4 Secure communication

1999a ETSI AMR-ACELP 12.2, 10.2, 7.95, General purpose

7.40, 6.70, 5.90, telecommunication

5.15, 4.75

aCoder is described only partially.
bCoder is fully explained.
cCoder is mentioned only briefly without detailed technical descriptions.

24 INTRODUCTION

products, readers must be aware of patent licenses and be ready to negotiate

intellectual property rights agreements with the related organizations.

Figure 1.17 shows a quality/bit-rate/delay comparison plot for the various stan-

dards, with quality informally referring to how good the synthetic speech sounds as

a result of the encoding/decoding process associated with a speech coder. The plot

is for illustration purposes and does not mean to be absolutely precise, since quality

measurements (Chapter 19) must be done under various conditions and, in many

instances, it is difficult to establish a fair comparison. The data are compiled

from various sources and give a rough idea of relative performance among the dif-

ferent coders. Delay is reflected by the height of a particular quality/bit-rate coor-

dinate and refers to the encoder buffering delay.

Finally, the fact that certain proposed techniques have not become part of a

standard does not mean that they are worthless. Sometimes there is a need for

refinement; in other instances they are more suitable for special conditions. Since

the standardization process is routinely linked to politics, power, and money,

the adopted technology might not necessarily represent the best choice from a

pure technical perspective. Serious researchers should be ready to learn from

many sources and apply the acquired knowledge to optimize the solution for a

particular problem.

MELP

FS1015

G.723.1

IS96

IS641 G.729

GSMEFR

G.728 PCM
G.711

G.726
GSM6.10

IS54

FS1016

(ms)

Figure 1.17 Performance comparison between some standardized coders.

SPEECH CODING STANDARDS 25

1.6 ABOUT ALGORITHMS

A speech coder is generally specified as an algorithm, which is defined as a com-

putational procedure that takes some input values to produce some output values.

An algorithm can be implemented as software (i.e., a program to command a pro-

cessor) or as hardware (direct execution through digital circuitry). With the wide-

spread availability of low-cost high-performance digital signal processors (DSPs)

and general-purpose microprocessors, many signal processing tasks—done in the

old days using analog circuitry—are predominantly executed in the digital domain.

Advantages of going digital are many: programmability, reliability, and the ability

to handle very complex procedures, such as the operations involved in a speech

coder, so complex that the analog world would have never dreamed of it. In this

section the various aspects of algorithmic implementation are explained.

The Reference Code

It is the trend for most standard bodies to come up with a reference source

code for their standards, where code refers to the algorithm or program written

in text form. The source code is elaborated with some high-level programming

language, with the C language being the most commonly used [Harbison and

Steele, 1995]. In this reference code, the different components of the speech

coding algorithm are implemented. Normally, there are two main functions:

encode and decode taking care of the operations of the encoder and decoder,

respectively.

The reference source code is very general and might not be optimized for speed

or storage; therefore, it is an engineering task to adjust the code so as to suit a given

platform. Since different processors have different strengths and weaknesses, the

adjustment must be custom made; in many instances, this translates into assembly

language programming. The task normally consists of changing certain parts of

the algorithm so as to speed up the computational process or to reduce memory

requirements.

Depending on the platform, the adjustment of the source code can be relatively

easy or extremely hard; or it may even be unrealizable, if the available resources are

not enough to cover the demand of the algorithm. A supercomputer, for instance, is

a platform where there are abundant memory and computational power; minimum

change is required to make an algorithm run under this environment. The personal

computer (PC), on the other hand, has a moderate amount of memory and com-

putational power; so adjustment is desirable to speed up the algorithm, but memory

might not be such a big concern. A cellular handset is an example where memory

and computational power are limited; the code must be adjusted carefully so that

the algorithm runs within the restricted confinements.

To verify that a given implementation is accurate, standard bodies often provide

a set of test vectors. That is, a given input test vector must produce a corresponding

output vector. Any deviation will be considered a failure to conform to the

specification.

26 INTRODUCTION

About C and Cþþ
The C programming language has become almost a mandatory medium in software

development for many signal processing tasks. Its popularity is due to several fac-

tors: provision of a fairly complete set of facilities for dealing with a wide variety of

applications—including low-level, high efficiency for implementation and portabi-

lity across various computing platforms. Unfortunately, some of the advantages of

C can also pose problems for programmers. For instance, the efficiency is largely

due to the absence of confining rules that can lead to error-prone programming

habits.

Cþþ is referred to as an object-oriented language and has closed many holes in

the C language, providing better type checking and compile-time analysis. Cþþ
programmers are forced to declare functions so that the compiler can check their

use. On the other hand, systems designed using Cþþ are easier to express and

understand, which is especially true for complex projects, where many program-

mers are involved.

At present the speech coding community relies heavily on the C programming

language. Most standard bodies offer reference code written in C. The use of Cþþ
is largely for maintainability and extensibility and often comes with some perfor-

mance penalty, which is due to the many additional features of the language; the

penalty involved might not be acceptable for resource-critical platforms. Recently,

there are movements in the programming world regarding the creation of a new

intermediate language between C and Cþþ. It is essentially Cþþ but eliminates

many of the cumbersome and often unnecessary features so as to boost efficiency

but, at the same time, conserves the good programming guidelines of an object-

oriented approach.

Fixed-Point and Floating-Point Implementation

One of the earliest decisions that must be made on the implementation of a signal

processing system is whether the algorithms are going to be run on a fixed-point or

floating-point platform. Fixed-point numbers refer to those having limited dynamic

range; for instance, a 16-bit signed integer can represent a maximum of 65536 num-

bers within the interval of [�32768, 32767].
Floating-point numbers, on the other hand, can represent extremely small num-

bers and extremely big numbers. The IEEE Standard for Binary Floating-Point

Arithmetic (ISO/IEEE Std. 754-1985; see Harbison and Steele, [1995]), for

instance, defines the following 32-bit floating-point number:

s � 2e �
X24
k¼1

fk � 2�k;

where s ¼ �1 is the sign bit, e is the exponent in the range of [�125, 128], and fk,

with k ¼ 1 to 24, equal to 0 or 1 are the binary digits. The smallest positive number

out of this scheme is 2�149 while the biggest is 3.403 �1038.

ABOUT ALGORITHMS 27

Ideally, all algorithms should be implemented with floating-point processors; in

that way the rounding error after each operation will be negligibly small, and the

hazard of numeric overflow is virtually eliminated. Unfortunately, floating-point

processors are relatively expensive, due to the increased size of the processor’s

chip needed to support the more complex operations; also, power consumption is

higher when compared to a fixed-point processor. For cost and power sensitive con-

sumer appliances (i.e., the cellular handset), the fixed-point processor is almost the

mandatory choice.

Software development for floating-point environment is straightforward; under

most normal circumstances the numbers should remain within the wide dynamic

range supported by the processor. This is not quite the case for a fixed-point envir-

onment: it is tricky and a considerable amount of time must be spent on finding out

the range of each intermediate variable so as to ensure that all numbers remain

within the limited range. Texas Instruments, Inc. [1990] offers some guidelines

of fixed-point programming on a digital signal processor.

For early development and research, floating-point operations are normally

assumed, so that effort can be concentrated on the algorithm, instead of being

distracted by rounding errors and precision issues. After the operations of the algo-

rithm are well tested in a floating-point environment, it will be translated to fixed-

point (if that is the goal), which could be a time-consuming process; in some

instances, part of the algorithm must be modified or adjusted in order to run properly.

Due to the fact that many speech coders are targeted to consumer products, the

final cost becomes a primary concern. Thus, many standard bodies specify the refer-

ence code using fixed-point operations. In this way, the algorithm can run under a

fixed-point environment in a straightforward manner.

Description of Algorithms

The notation used in this book for algorithmic descriptions are illustrated with a

simple example. Given the array of samples s[n], n ¼ 0 to 200, consider the task

of autocorrelation calculation:

R½l� ¼
X200
n¼l

s½n�s½n� l�

for l ¼ 20 to 50, followed by peak search over the autocorrelation values within this

interval and returning the peak value and its position as results.

The block diagram description of the aforementioned algorithm is given in

Figure 1.18. As we can see, the input and output are clearly specified, with the

R[l] peak
s[n]

position

Autocorrelation
calculation

Peak
search

Figure 1.18 Example of algorithm and its block diagram.

28 INTRODUCTION

involved operations grouped into blocks. This type of description provides high-

level visualization of the operations and the relationships among the various com-

ponents. Many implementational details, however, remain hidden.

A flowchart contains more details about how the algorithm is implemented.

Figure 1.19 contains the flowchart of our example algorithm. It still preserves the

block structure, but the meaning and ordering of each block are precise, allowing

direct translation into program code. This type of description represents an inter-

mediate level between a high-level block diagram and the actual program code.

Ultimately, the algorithm is translated into program code. In this book, we shall

describe algorithms as programs written in a pseudocode that is very much like C.

Anyone who has been exposed to programming in high-level language should have

little trouble reading the code. For our example, the pseudocode description is as

follows:

AUTO_PEAK(s)
1. peak �1; position 20
2. for l 20 to 50
3. R 0
4. for n l to 200
5. R s[n]*s[n�l] þ R

l ← 20; peak ← −∞

Calculate R[l]

peak ← R[l]; position ←l

l++

Return peak & position

Start

R[l] > peak
+

−

−
l > 50

+

Figure 1.19 Example of algorithm and its flowchart.

ABOUT ALGORITHMS 29

6. if R > peak
7. peak R; position l
8. return peak, position

Note the use of assignment operator ‘‘ ’’ instead of equal sign ‘‘¼’’ like in

many programming languages. The expression a b means that the content of

b is assigned to a; after the operation, b remains intact while a is modified (having

same content as b). With the popularity of programming languages in recent years,

the meaning of ‘‘¼’’ has shifted from the traditional equal to that of assignment. To

many mathematicians, it is unacceptable since confusion occurs with common

practices in equation writing. To avoid problems with this regard, this book pre-

serves the old meaning of ‘‘¼’’, and assignments are explicitly indicated with ‘‘ ’’.

Another note is the use of multicharacter variables. Typically, variables in the

equations are expressed using single characters, which could be extracted from

the English or Greek alphabets. With the increasing complexity of algorithms,

the use of multicharacter variables is imperative to give a clear description of the

problem at hand. Thus, we frequently see variable names such as d1, d2, energy,

peak, position, and so on.

What separates pseudocode from ‘‘real’’ code is that, in the former, we employ

whatever expressive method is most clear and concise to specify a given algorithm.

Another difference is that for pseudocode, there is no concern with issues of soft-

ware engineering, such as data abstraction, modularity, and error handling. Atten-

tion is directed only to the essence of the algorithm.

Conventions for pseudocode writing are the use of indentation to indicate block

structure. The program constructs, such as for, if, and return, are represented using

bold characters. Meanings of these statements are essentially the same as for stan-

dard C. Consult a C manual when in doubt. Also, the variables are local to the given

procedure (such as n and l). We shall not use global variables without explicit

indication.

Analysis of Algorithms

Analyzing an algorithm implies the prediction of resource requirements necessi-

tated to run it. The resources are often measured in terms of memory and comput-

ation constituting the two fundamental cost components of digital hardware. These

two components are explained next.

Memory Cost

Many types of memory devices are available for use in modern hardware. Most

software developers think of memory as being either random-access (RAM) or

read-only (ROM). But in fact there are subtypes of each and even hybrid memories;

see Barr [1999] for detail descriptions. ROM is needed to hold the instructions

corresponding to the program code and the supporting data; its contents are normally

unchanged during execution and its size depends on the complexity of the

30 INTRODUCTION

algorithm. RAM is needed to store the input, output, and intermediate variables.

Program code can usually be optimized so as to remove unnecessary operations,

leading to reduced memory size. Also, an algorithm may be modified to use less

memory, with possible speed penalty.

Computational Cost

Given a certain amount of input data, it is desirable to process them as quickly as

possible so as to generate the corresponding output data. Depending on the selected

technique, one algorithm can be more efficient than another. The running time is

measured by the number of primitive operations required to complete the mission.

For signal processing, it is common to count the number of sum (adding two num-

bers) and the number of product (multiplying two numbers) as measurements of the

computational cost. These two quantities can be found for different algorithms and

compared; the one offering the lowest counts is the most efficient.

Computational cost is often platform dependent; that is, counting the number of

primitive operations alone might not make sense for a certain processor. For

instance, the DSP families of Texas Instruments [1990, 1993] can often perform

one addition and one multiplication in one step; thus, a more meaningful

performance measure would be the maximum between the number of sums and

the number of products. On the other hand, the Intel Pentium processor [Intel,

1997] can perform four operations in parallel; an algorithm running on this

processor is normally modified to take advantage of the enhanced architecture,

and an alternative performance measure is necessary for meaningful comparison.

A commonly used reference measure between processors is millions-of-

instructions-per-second (MIPS). The final performance, however, depends on other

architectural features, as well as the specific algorithm; see Eyre [2001] for

additional details.

1.7 SUMMARY AND REFERENCES

This introductory chapter provided an overview to the general aspects of speech

coding, with guidelines to the rest of the materials covered in this book. The

purpose, operation, and classification of speech coders are described; origin and

modeling of speech signals are explained with revelation of the structure of a

simple parametric coder. Structure of the human auditory system is analyzed,

with the most important properties explained; these properties can be used to

develop efficient coding schemes for speech. The mission of standard bodies and

various aspects of algorithm design are described. Since speech coding is related

to human perception, it is often not possible to outline an absolute design guideline.

For instance, what is perceived as good by one person might not be so good for

another person. In fact, experts disagree on methodologies and techniques applied

to a given situation. Therefore, speech coding is a combination of art and science, in

the sense that an engineering framework is applied but very often it is refined

SUMMARY AND REFERENCES 31

according to human perception, which cannot be absolutely justifiable from a

mathematical perspective.

See Spanias [1994] and Kleijn and Paliwal [1995b] for alternative classification

criteria, as well as a more diversified survey on existing speech coding technology.

Das et al. [1995] provides detailed descriptions of multimode and variable bit-rate

coders. See Rabiner and Schafer [1978] for discussions of acoustic modeling of

speech production, as well as early modeling attempts using digital means. In

Deller et al. [1993], similar acoustic modeling is described, together with an

interesting historical recount on how a mechanical system was built for speech

generation, using principles of acoustic filters in 1939. Many references are avail-

able for human auditory system and psychoacoustics; see Rabiner and Juang [1993]

for an introduction and simple modeling; more extensive studies appear in Moore

[1997] and Zwicker and Fastl [1999]; a more signal-oriented treatment of sound

perception is found in Hartmann [1998].

Standardization procedures are discussed in Cox [1995]. Many issues related to

algorithm analysis and design can be found in Cormen et al. [1990]. There are a

plethora of books available for introductory C/Cþþ programming; see Harbison

and Steele [1995] for reference in the features of C, and Eckel [2000] for Cþþ
programming. An overview of the historical evolution of digital signal processors

appears in Eyre and Bier [2000]. Appendix C contains some research directions in

the speech coding arena.

32 INTRODUCTION

CHAPTER 2

SIGNAL PROCESSING TECHNIQUES

The basic and commonly used signal processing techniques in speech coding are

explained in this chapter, including pitch period estimation, all-pole/all-zero filters,

and convolution. Some topics are very general while others are specific to speech

processing.

Properties of speech signals constantly change with time. To process them

effectively it is necessary to work on a frame-by-frame basis, where a frame

consists of a certain number of samples. The actual duration of the frame is known

as length. Typically, length is selected between 10 and 30 ms or 80 and 240

samples. Within this short interval, properties of the signal remain roughly constant.

Thus, many signal processing techniques are adapted to this context when deployed

to speech coding applications.

2.1 PITCH PERIOD ESTIMATION

One of the most important parameters in speech analysis, synthesis, and coding

applications is the fundamental frequency, or pitch, of voiced speech. Pitch

frequency is directly related to the speaker and sets the unique characteristic of a

person. Voicing is generated when the airflow from the lungs is periodically inter-

rupted by movements of the vocal cords. The time between successive vocal cord

openings is called the fundamental period, or pitch period.

For men, the possible pitch frequency range is usually found somewhere

between 50 and 250 Hz, while for women the range usually falls between 120

and 500 Hz. In terms of period, the range for a male is 4 to 20 ms, while for a

female it is 2 to 8 ms.

33

Pitch period must be estimated at every frame. By comparing a frame with past

samples, it is possible to identify the period in which the signal repeats itself,

resulting in an estimate of the actual pitch period. Note that the estimation

procedure makes sense only for voiced frames. Meaningless results are obtained

for unvoiced frames due to their random nature.

Design of a pitch period estimation algorithm is a complex undertaking due to

lack of perfect periodicity, interference with formants of the vocal tract, uncertainty

of the starting instance of a voiced segment, and other real-world elements such as

noise and echo. In practice, pitch period estimation is implemented as a trade-off

between computational complexity and performance. Many techniques have been

proposed for the estimation of pitch period and only a few are included here.

The Autocorrelation Method

Assume we want to perform the estimation on the signal s[n], with n being the time

index. We consider the frame that ends at time instant m, where the length of the

frame is equal to N (i.e., from n¼m� Nþ 1 to m). Then the autocorrelation value*

R l;m½ � ¼
Xm

n¼m�N þ 1

s½n�s½n� l � ð2:1Þ

reflects the similarity between the frame s[n], n¼m� Nþ 1 to m, with respect to

the time-shifted version s[n� l], where l is a positive integer representing a time

lag. The range of lag is selected so that it covers a wide range of pitch period values.

For instance, for l¼ 20 to 147 (2.5 to 18.3 ms), the possible pitch frequency values

range from 54.4 to 400 Hz at 8 kHz sampling rate. This range of l is applicable for

most speakers and can be encoded using 7 bits, since there are 27¼ 128 values of

pitch period.

By calculating the autocorrelation values for the entire range of lag, it is possible

to find the value of lag associated with the highest autocorrelation representing

the pitch period estimate, since, in theory, autocorrelation is maximized when the

lag is equal to the pitch period. The method is summarized with the following

pseudocode:

PITCH(m, N)
1. peak 0

2. for l 20 to 150

3. autoc 0

4. for n m�Nþ1 to m

5. autoc autocþs[n]s[n�l]

* In Chapter 3, it is shown that the described quantity is actually an estimate of the true autocorrelation

function E{s[n]s[nþ l]}, without the scaling factor.

34 SIGNAL PROCESSING TECHNIQUES

6. if autoc>peak

7. peak autoc

8. lag l

9. return lag

It is important to mention that, in practice, the speech signal is often lowpass

filtered before being used as input for pitch period estimation. Since the

fundamental frequency associated with voicing is located in the low-frequency

region (<500 Hz), lowpass filtering eliminates the interfering high-frequency

components as well as out-of-band noise, leading to a more accurate estimate.

Example 2.1 The autocorrelation method is demonstrated here using the portion

of voiced speech signal shown in Figure 2.1, which is clearly periodic. Computing

the autocorrelation according to (2.1) for l¼ 20 to 150 gives the plot in Figure 2.2.

As we can see, two strong peaks are obtained together with minor peaks. The lag

corresponding to the highest peak is 71 and is the pitch period estimate for

m¼ 1500 and N¼ 180. This estimate is close to the period of the signal in time

domain.

Note that the next strong peak is located at a lag of 140, roughly doubling our

pitch period estimate. This is expected since a periodic waveform with a period of T

is also periodic with a period of 2T, 3T, . . . , and so on.

1000 1500 2000
−2�104

2�104

0

n

s[n]

Figure 2.1 A voiced portion of a speech waveform used in pitch period estimation.

PITCH PERIOD ESTIMATION 35

Magnitude Difference Function

One drawback of the autocorrelation method is the need for multiplication, which is

relatively expensive for implementation, especially in those processors with limited

functionality. To overcome this problem, the magnitude difference function is

invented. This function is defined by

MDF l;m½ � ¼
Xm

n¼m�Nþ 1

js½n� � s½n� l�j: ð2:2Þ

For short segments of voiced speech it is reasonable to expect that s[n]� s[n� l]

is small for l¼ 0, � T, � 2T, . . . , with T being the signal’s period. Thus, by

computing the magnitude difference function for the lag range of interest, one

can estimate the period by locating the lag value associated with the minimum

magnitude difference. Note that no products are needed for the implementation

of the present method. The following pseudocode summarizes the procedure:

PITCH_MD(m, N)
1. min 1
2. forl 20 to 150

3. mdf 0

4. for n m�Nþ1 to m

0 50 100 150

0

l

R[l,1500]

−5�109

5�109

Figure 2.2 Autocorrelation values obtained from the waveform of Figure 2.1.

36 SIGNAL PROCESSING TECHNIQUES

5. mdf mdf þ|s[n]�s[n�l]|

6. if mdf < min

7. min mdf

8. lag l

9. return lag

Further computational saving is obtainable from the fact that the magnitude

difference function is bounded. This fact is derived from (2.2) where MDF

[l, m] 	 0. From the same equation, each additional accumulation of term causes

the result to be greater than or equal to the previous sum since each term is positive.

Thus, it is not necessary to calculate the sum entirely; if the accumulated result at

any instance during the iteration loop is greater than the minimum found so far,

calculation stops and resumes with the next lag. The idea is implemented with

the following:

PITCH_MD1(m, N)
1. min 1
2. for l 20 to 150

3. mdf 0

4. for n m�Nþ1 to m

5. mdf mdf þ|s[n]�s[n�l]|

6. if mdf 	 min break

7. if mdf<min

8. min mdf

9. lag l

10. return lag

In this new implementation, whenever the accumulated result (mdf, Line 5) exceeds

the minimum found so far (min, Line 6), the loop is terminated and the algorithm

moves on to verify the next lag l. On average, a substantial computational saving is

achieved. Note that the approach is not applicable for autocorrelation computation,

because it relies on the finding of a peak, which normally must evaluate the entire

sum before any decision can be made. Low computational cost and lack of

multiplication make the magnitude difference function attractive for practical

applications.

Example 2.2 The same situation as in Example 2.1 is considered, where magni-

tude difference is computed for l 2 [20, 150]. The plot is shown in Figure 2.3. Low-

est MDF occurs at l¼ 70 with the next lowest MDF point located at l¼ 139.

Compared with the results of Example 2.1, the present method yields a slightly

lower estimate.

PITCH PERIOD ESTIMATION 37

Fractional Pitch Period

The methods discussed earlier can only find integer-valued pitch periods. That is,

the resultant period values are multiples of the sampling period (8 kHz)�1 ¼
0.125 ms. In many applications, higher resolution is necessary to achieve good

performance. In fact, pitch period of the original continuous-time (before sampling)

signal is a real number; thus, integer periods are only approximations introducing

errors that might have negative impact on system performance.

Multirate signal processing techniques can be introduced to extend the

resolution beyond the limits set by fixed sampling rate. Interpolation, for instance,

is a widely used method, where the actual sampling rate is increased. Medan, Yair,

and Chazan (1991) published an algorithm for pitch period determination, which is

based on a simple linear interpolation technique. The method allows the finding of a

real-valued pitch period and can be implemented efficiently in practice. This

method is explained in detail as follows.

Optimal Integer-Valued Pitch Period

Consider a speech frame that ends at time instant n¼m, with a length of N

(Figure 2.4). The frame can be expressed by

s½n� ¼ b � s½n� N� þ e½n�; m� N þ 1
 n
 m: ð2:3Þ

The above equation expresses {s[n], m� Nþ 1
 n
 m} as the sum between the

product of a coefficient b with the frame {s[n� N], m� 2Nþ 1
 n
 m� N} and

0 50 100 150
0

l

MDF[l,1500]

5�105

1�106

1.5�106

Figure 2.3 Magnitude difference values obtained from the waveform of Figure 2.1.

38 SIGNAL PROCESSING TECHNIQUES

the error signal* e[n]. Note from Figure 2.4 that two consecutive frames of length N

are involved. The optimal pitch period at time instant n¼m can be defined as the

particular value of N, denoted by No, that minimizes the normalized sum of squared

error

J½m;N� ¼

Pm
n¼m�N þ 1

s½n� � bs½n� N�ð Þ2

Pm
n¼m�Nþ 1

s2½n�
: ð2:4Þ

The normalization term (denominator) is required to compensate for the variable

size of the speech segments involved and the uneven energy distribution over the

pitch interval. Denoting No as our optimal pitch period, we have

No ¼ fNjJ½m;N�
 J½m;M�;Nmin
 N;M < Nmaxg; ð2:5Þ

where Nmin and Nmax are the minimum and maximum limits for the pitch period,

respectively. These two are parameters of the algorithm that can be set according to

the application. For instance, Nmin¼ 20 and Nmax¼ 147.

The optimal value of b can be found by differentiating J with respect to b and

setting the result to zero. This gives

b ¼

Pm
n¼m�Nþ 1

s½n�s½n� N�
Pm

n¼m�N þ 1

s2½n� N�
: ð2:6Þ

* This indeed is the concept of linear prediction, where the signal of the current frame is predicted from

the past, with the prediction calculated as the product of the past with a coefficient. Chapter 4 contains

further details on the topic.

s[n]

..

n

m − 2N + 1 m − N + 1 m

Figure 2.4 Signal frames in pitch period estimation.

PITCH PERIOD ESTIMATION 39

Substituting (2.6) in (2.4) and manipulating yields

J½m;N� ¼ 1�

Pm
n¼m�Nþ 1

s½n�s½n� N�
� �2

Pm
n¼m�Nþ 1

s2½n� N� Pm
n¼m�Nþ 1

s2½n�
: ð2:7Þ

Optimal Fractional Pitch Period

Consider the continuous-valued pitch period To defined by

To ¼ ðNo þ ZoÞTs ð2:8Þ

where Ts is the sampling period (8 kHz)�1 ¼ 0.125 ms and Zo is the fractional

pitch period.

Here we assume 0
 Zo < 1 so that

To

Ts
� 1 < No
 To

Ts
; ð2:9Þ

or

No ¼ To

Ts

� �
; ð2:10Þ

with b�c the floor function. Assume that the integer pitch period No is known. The

problem of fractional pitch period estimation consists of the determination of

Z¼ Zo so that

J½m;No þ Z� ¼ 1�

Pm
n¼m�No þ 1

s½n�s½n� No � Z�
()2

Pm
n¼m�No þ 1

s2½n� No � Z� Pm
n¼m�No þ 1

s2½n�
ð2:11Þ

is minimized, with 0
 Z < 1. In (2.11) the discrete-time signal is being delayed by

a real-valued amount and can be obtained with interpolation [Oppenheim and

Schafer, 1989]. In this case, a simple linear combination is used to interpolate,

which is given by

s nþ Z½ � � 1� Zð Þs½n� þ Zs½nþ 1�: ð2:12Þ

Applying (2.12) to s[n� No� Z],

s n� No � Z½ � � 1� Zð Þs n� No½ � þ Zs n� No � 1½ �: ð2:13Þ

40 SIGNAL PROCESSING TECHNIQUES

Substituting (2.13) in (2.11) and expanding leads to

J m;No þ Z½ �

¼ 1� 1� Zð Þa1 m;No½ � þ Za2 m;No½ �f g2

a3 m;No½ � 1� Zð Þ2a4 m;No½ � þ 2Z 1� Zð Þa6 m;No½ � þ Z2a5 m;No½ �
n o ;

ð2:14Þ

where

a1 m;No½ � ¼
Xm

n¼m�No þ 1

s½n�s½n� No�; ð2:15Þ

a2 m;No½ � ¼
Xm

n¼m�No þ 1

s½n�s½n� No � 1�; ð2:16Þ

a3 m;No½ � ¼
Xm

n¼m�No þ 1

s2½n�; ð2:17Þ

a4 m;No½ � ¼
Xm

n¼m�No þ 1

s2½n� No�; ð2:18Þ

a5 m;No½ � ¼
Xm

n¼m�No þ 1

s2½n� No � 1�; ð2:19Þ

a6 m;No½ � ¼
Xm

n¼m�No þ 1

s½n� No�s½n� No � 1�: ð2:20Þ

It is left as an exercise to verify the validity of equations (2.14) to (2.20). The

optimal fractional pitch period Zo is the one that minimizes (2.14). Differentiating

(2.14) with respect to Z and equating to zero, the optimal fractional pitch is found

to be

Zo m;No½ � ¼ a2 m;No½ �a4 m;No½ � � a1 m;No½ �a6 m;No½ �
a2 m;No½ � a4 m;No½ � � a6 m;No½ �ð Þ þ a1 m;No½ � a5 m;No½ � � a6 m;No½ �ð Þ :

ð2:21Þ

In some cases, Zo may fall outside the interval [0,1]. This happens when

the integer pitch period No deviates by one sampling period from the value

defined in (2.9). In such cases, the integer period is incremented by one when

Zo 	 1, and decremented by one when Zo < 0. Then Zo is recalculated from

(2.21).

PITCH PERIOD ESTIMATION 41

Summary of Algorithm

The Medan–Yair–Chazan method is summarized as follow:

Step 1. For N Nmin to Nmax, compute the normalized sum of squared error from

(2.7).

Step 2. Find the minimum value of J[m, N]; the corresponding value of N is the

optimal integer pitch period No.

Step 3. Compute Zo from (2.21).

Step 4. If Zo < 0, No No� 1, go back to Step 3.

Step 5. If Zo 	 1, No Noþ 1, go back to Step 3.

Minimization of J[m, N] in Step 2 is equivalent to the maximization of the

normalized autocorrelation

r½m;N� ¼

Pm
n¼m�Nþ 1

s½n�s½n� N�ffiPm
n¼m�Nþ 1

s2½n� N� Pm
n¼m�Nþ 1

s2½n�
s ð2:22Þ

since J[m, N] 	 0. Thus, Step 2 can be replaced by the maximization of (2.22).

The normalized autocorrelation

r m;No þ Z½ �

¼ 1� Zð Þa1 m;No½ � þ Za2 m;No½ �ffi
a3 m;No½ � 1� Zð Þ2a4 m;No½ � þ 2Z 1� Zð Þa6 m;No½ � þ Z2a5 m;No½ �

n or
ð2:23Þ

is often used to measure the amount of periodicity of the signal at the specified lag

and is derived directly from (2.14).

0 50 100 150
0

0.5

1

65 70 75
0

0.5

1

J[m, N]J[m, N]

N N

Figure 2.5 Left: Normalized sum of squared error obtained from the waveform of

Figure 2.1. Right: Expanded view showing the minimum point at N ¼ 72.

42 SIGNAL PROCESSING TECHNIQUES

Example 2.3 The same speech data as in Example 2.1 are utilized to illustrate

fractional pitch period estimation. Figure 2.5 shows the normalized sum of squared

error, where the global minimum is found at No¼ 72. From (2.21), the fractional

pitch period is found to be equal to �0.224; since it is negative, No is decreased by

one. Recalculating yields a fractional pitch period of 0.517. Thus, the final pitch

period estimate is equal to 71.517. Note that this final result is consistent with

the error plot in Figure 2.5, where the global minimum is more likely to be located

between 71 and 72, than between 72 and 73.

Checking for Multiples of a Pitch Period

Consider an autocorrelation-based estimation procedure where a peak-picking

strategy is applied. In this approach, autocorrelation of the signal is computed

for a range of lag; the particular lag providing the highest autocorrelation is selected

as the estimated pitch period.

This peak-picking approach might lead to erroneous outcome, whereas the result

actually corresponds to multiples of the fundamental pitch period; this is mainly

due to the fact that a periodic signal with period T is also periodic with periods

2T, 3T, . . . , and so on, since the signal repeats itself for those time intervals.

Thus, in the ideal case, the autocorrelation plot develops peaks at regular intervals

separated by the period T. Figure 2.6 shows an example of an ideal autocorrelation

plot, together with the plot of a real-world quasiperiodic signal, such as a voiced

speech frame. In many practical situations, the fundamental period (shortest period

r[l]

l

Tmin T 2T 3T Tmax

r[l]

l

Tmin T/3 T/2 T Tmax

r[T]

αr[T]

r[T]

Figure 2.6 Top: Autocorrelation plot of an ideal periodic signal with period T. Bottom:

Typical autocorrelation plot of a real-world quasiperiodic signal.

PITCH PERIOD ESTIMATION 43

associated with strong autocorrelation) is occluded from the autocorrelation plot

due to various conditions, such as:

� Period of the signal is not constant; that is, its value changes with time, such

as most speech frames.

� Limited time resolution of a discrete-time system.

� Noise and distortion applied to the signal.

Following a peak-picking strategy without further analyzing the data can lead to

disasters in speech coding applications, because the quality of the synthetic speech

relies heavily on an accurate estimation. An abrupt change in the value of the pitch

period for consecutive frames, for instance, introduces highly annoying artifacts.

Thus, given a certain estimated period, it is desirable to verify whether the period

itself is actually multiples of some fundamental period.

A simple procedure is presented here that allows multiplicity check. The main

idea is to verify the autocorrelation values at lags of T/i, i¼ 2, 3, 4, . . . , where T

is the estimated pitch period. If r[T/i] > ar[T], where r[�] is the autocorrelation

i ← Dmax

Ti ← round(T/i)

i ← i − 1

return T return Ti

 Start

r[Ti] > αr[T]

i < 2

Figure 2.7 Flowchart of an algorithm for multiplicity check of pitch periods.

44 SIGNAL PROCESSING TECHNIQUES

function and a < 1 is a positive scaling constant, then the estimated pitch period

becomes T/i. The purpose of a is to lower the peak autocorrelation value r[T] so as

to form a decision threshold; this is necessary since r[T] is the peak within

the search range. A value of a in the interval [0.5, 1] is a reasonable choice in

practice. Figure 2.7 shows the flowchart of the proposed algorithm, where the inputs

are the candidate pitch period T and the autocorrelation function r[l]. The algorithm

starts by dividing the input period by a range of denominators, denoted by i; with i

beginning at Dmax, which is a constant integer determining the minimum possible

pitch period estimate. A value of Dmax within the interval of [5, 10] is appropriate

for most practical purposes. Intermediate check points are found by dividing T by i

and rounding the results. If the autocorrelation value at the check point is greater

than that at T multiplied by the scaling factor a, Ti¼ round(T/i) is returned as the

fundamental period sought, where the round(�) operator rounds a number to the

nearest integer. Otherwise, the denominator i is reduced by one and the operation

repeated until i < 2. Even though the autocorrelation function is indicated here,

other approaches such as the magnitude difference function can be included with

little modification.

Note that once the algorithm finds a suitable period satisfying the threshold

constraint, it will end and return the result; thus, it starts searching from the shortest

lag, or highest denominator, since the purpose is to locate the fundamental pitch

period, corresponding to the lowest value.

2.2 ALL-POLE AND ALL-ZERO FILTERS

The filters with system function

H zð Þ ¼ 1

A zð Þ ¼
1

1þ PM
i¼ 1

aiz�i
ð2:24Þ

or

A zð Þ ¼ 1þ
XM
i¼ 1

aiz
�i ð2:25Þ

are of particular importance to speech coding. In (2.24) an all-pole filter is

described, since only poles are present, while the all-zero filter has the system

function given in (2.25). As we can see, H(z) and A(z) are the inverse of each other.

The constant M is the order of the filter and the ai are the filter’s coefficients. These

filters appear in all linear-prediction-based speech coders. As explained in

Chapter 4, M is also known as the prediction order, while the ai are referred to

as the linear prediction coefficients.

ALL-POLE AND ALL-ZERO FILTERS 45

Direct Form Realization

With x[n] being the input to the filter and y[n] the output, the time-domain

difference equation corresponding to (2.24) is

y n½ � ¼ x n½ � �
XM
i¼ 1

aiy n� i½ � ð2:26Þ

and for (2.25)

y n½ � ¼ x n½ � þ
XM
i¼ 1

aix n� i½ �: ð2:27Þ

Figure 2.8 shows the signal flow graphs of the above difference equations. Filters

implemented in this manner are called direct form. Note that the impulse response

of an all-pole filter has an infinite number of samples with nontrivial values due to

the fact that the scaled and delayed version of the output samples are added back to

the input samples. This is referred to as an infinite-impulse-response (IIR)

filter. For the all-zero filter, however, the impulse response only has Mþ 1

nontrivial samples (the rest are zeros) and is known as a finite-impulse-response

(FIR) filter.

1

y[n]

y[n]

x[n]

x[n]

−a1

−a2

a1 a2

−aM

aM

z−1

z−1

z−1

z−1 z−1 z−1

Figure 2.8 Signal flow graph for direct form implementation of an all-pole filter (top) and

all-zero filter (bottom).

46 SIGNAL PROCESSING TECHNIQUES

Lattice Realization

Figure 2.9 shows an alternative realization for the filters, called the lattice structure.

The parameters k1, . . . , kM are known as the reflection coefficients. The reflection

coefficients can be found from the direct form coefficients (a1, . . . , aM) through the

computational loop specified below.

For l¼M, M� 1, . . . , 1:

kl ¼ �aðlÞl ; ð2:28Þ

a
ðl�1Þ
i ¼ a

ðlÞ
i þ kla

ðlÞ
l�i

1� k2l
i ¼ 1; 2; . . . ; l� 1; ð2:29Þ

where ai¼ ai
(M). The above relations are obtained directly by deriving the input–

output difference equation of the lattice form and comparing to that of the direct

form. Chapter 4 presents a derivation of (2.28) and (2.29). For the all-pole filter,

the set of equations

vM�1 n½ � ¼ x n½ � þ kMuM�1 n� 1½ �;
vM�2 n½ � ¼ vM�1 n½ � þ kM�1uM�2 n� 1½ �;

..

.

v1 n½ � ¼ v2 n½ � þ k2u1 n� 1½ �;
y n½ � ¼ v1 n½ � þ k1y n� 1½ �;
u1 n½ � ¼ �k1y n½ � þ y n� 1½ �;
u2 n½ � ¼ �k2v1 n½ � þ u1 n� 1½ �;

..

.

uM�1 n½ � ¼ �kM�1vM�2 n½ � þ uM�2 n� 1½ �

ð2:30Þ

vM−1[n]

uM−1[n] u1[n]

u1[n] u2[n]

v1[n] v2[n]

kM−1

−kM−1

k1

−k1

−kM

−kM

−k2

−k2

−k1

−k1

kM
−kM

vM−2[n]

z−1

z−1 z−1 z−1

z−1 z−1

y[n]

y[n]

x[n]

x[n]

Figure 2.9 Signal flow graph for lattice implementation of an all-pole filter (top) and all-

zero filter (bottom).

ALL-POLE AND ALL-ZERO FILTERS 47

are solved successively to find out the output sequence y[n]. While for the all-zero

filter,

v1 n½ � ¼ x n½ � � k1x n� 1½ �;
u1 n½ � ¼ �k1x½n� þ x n� 1½ �;
v2 n½ � ¼ v1 n½ � � k2u1 n� 1½ �;
u2 n½ � ¼ �k2v1½n� þ u1 n� 1½ �;

..

.

y n½ � ¼ vM�1 n½ � � kMuM�1 n� 1½ �:

ð2:31Þ

Example 2.4 Given the filter’s coefficients, a1¼ �0.9, a2¼ 0.64, and a3¼
�0.576, the difference equations for direct form implementation are

y n½ � ¼ x n½ � þ 0:9y n� 1½ � � 0:64y n� 2½ � þ 0:576y n� 3½ �

for the all-pole filter, and

y n½ � ¼ x n½ � � 0:9x n� 1½ � þ 0:64x n� 2½ � � 0:576x n� 3½ �

for the all-zero filter. Reflection coefficients are found to be:

k3 ¼ �a3 ¼ 0:576;

a
ð2Þ
1 ¼

a
ð3Þ
1 þ k3a

ð3Þ
2

1� k23
¼ a1 þ k3a2

1� k23
¼ �0:79518;

a
ð2Þ
2 ¼

a
ð3Þ
2 þ k3a

ð3Þ
1

1� k23
¼ a2 þ k3a1

1� k23
¼ 0:181975;

k2 ¼ �að2Þ2 ¼ �0:181975;

a
ð1Þ
1 ¼

a
ð2Þ
1 þ k2a

ð2Þ
1

1� k22
¼ �0:67276;

k1 ¼ 0:67276:

The difference equations for lattice form implementation are

v2 n½ � ¼ x n½ � þ 0:576u2 n� 1½ �;
v1 n½ � ¼ v2 n½ � � 0:182u1 n� 1½ �;
y n½ � ¼ v1 n½ � þ 0:6728y n� 1½ �;
u1 n½ � ¼ �0:6728y n½ � þ y n� 1½ �;
u2 n½ � ¼ 0:182v1 n½ � þ u1 n� 1½ �;

48 SIGNAL PROCESSING TECHNIQUES

for the all-pole filter, and

v1 n½ � ¼ x n½ � � 0:6728x n� 1½ �;
u1 n½ � ¼ �0:6728x n½ � þ x n� 1½ �;
v2 n½ � ¼ v1 n½ � þ 0:182u1 n� 1½ �;
u2 n½ � ¼ 0:182v1 n½ � þ u1 n� 1½ �;
y n½ � ¼ v2 n½ � � 0:576u2 n� 1½ �;

for the all-zero filter.

Comparison Between the Two Realizations

Direct form realization is often the preferred approach in practice due to its

simplicity and lower computational requirement (Exercise 2.8). The lattice

structure, however, does provide some advantage.

To appreciate the benefit offered by the lattice form realization, some

background from Chapter 4 is needed. Readers are free to skip this paragraph

and reread it later after familiarizing themselves with the material in Chapter 4.

During linear prediction analysis, the method used to solve the normal equation

could be the Levinson–Durbin algorithm—where the linear prediction coefficients

(LPC or direct form coefficients) and reflection coefficients are both returned upon

completion. Likewise, it could as well be the Leroux–Gueguen algorithm—where

only the reflection coefficients are obtained. The lattice structure allows processing

to be performed directly using the reflection coefficients, without converting them

to LPCs; this is desirable for systems with limited numerical precision since

precision loss during conversion may lead to filter instability. Also note that using

the reflection coefficients allows a straightforward supervision of stability status,

since the condition jkij
 1 can easily be monitored. This is less of a concern for

systems with sufficient numerical precision, and direct form is customarily

implemented due to diminished computational burden.

Calculation of Output Sequence on a Frame-by-Frame Basis

For practical implementation of speech coding, the signal is processed on a frame-

by-frame basis. In filtering, for instance, the input signal is partitioned into frames

having N samples according to

xr n½ � ¼
x nþ rN½ �; 0
 n
 N � 1;

0; otherwise;

�
ð2:32Þ

where x[n] is the input signal, defined for �1 < n <1. Each frame is indexed by

the variable r, with r¼ 0, 1, 2, . . . , and the rth frame is denoted by xr[n]. Figure 2.10

illustrates the notation; note that n actually ‘‘wrap-around’’ from frame to frame.

ALL-POLE AND ALL-ZERO FILTERS 49

Thus, each frame consists of N samples, with n¼ 0 to N� 1 addressing samples

inside the frame.

Two methods are presented next, allowing the computation of the filter output on

a frame-by-frame basis. We will only consider direct form realization of all-pole

filters; however, the techniques can be applied in a straightforward manner to other

configurations and filters.

State-Save Method

This method saves the state of the current frame for use by the next frame. The state

of the filter in this case refers to the values stored in the delay elements (the z� 1 in

the signal flow graphs, Figure 2.8). From (2.26), the procedure is executed frame-

by-frame with

yr n½ � ¼ yr�1 nþ N½ �; �M
 n
 �1; ð2:33Þ

yr n½ � ¼ xr n½ � �
XM
i¼ 1

aiyr n� i½ �; 0
 n
 N � 1; ð2:34Þ

that is, M output values are saved and used to compute the next frame.

Zero-Input Zero-State Method

This method also saves the current state for future use; however, it separates the

filter’s output into two different responses and computes them separately. The

zero-input response is the output of the filter due exclusively to the state or history

of the filter with no input, or in other terms, zero input. The zero-state response is

the output of the filter due to the input frame, with the assumption that the filter has

zero initial state. The two responses are added together to form the overall response.

This approach is possible because of the linearity of the filter and can easily be

r

0 1 2 3 ...

n

0 N−1

N−1

N−1

n

0

n

 0

Figure 2.10 Illustration of time notation.

50 SIGNAL PROCESSING TECHNIQUES

shown to produce the same final result as the state-save method. Figure 2.11

illustrates the technique where two filters are involved. The first filter contains

the initial state carried over from a prior frame and is indicated in the block diagram

by the arrow entering the bottom of the filter, meaning that the overall response

(from the prior frame) is used to initialize the state of the filter at n¼ 0. In addition,

note that the filter input is ‘‘grounded,’’ a symbol borrowed from electronic circuit

diagrams to imply the fact that input to the filter is zero. The second filter is marked

with ‘‘zero’’ and has an initial state of zero; that is, the values stored in the

delay elements z� 1 are all zeros at n¼ 0. From (2.26) the method is executed

frame-by-frame with

� Zero-input response (szi):

szir n½ � ¼ yr�1 nþ N½ �; �M
 n
 �1; ð2:35Þ

szir n½ � ¼ �
XM
i¼ 1

ais
zi
r n� i½ �; 0
 n
 N � 1: ð2:36Þ

� Zero-state response (szs):

szsr n½ � ¼ 0; �M
 n
 �1; ð2:37Þ

szsr n½ � ¼ xr n½ � �
XM
i¼ 1

ais
zs
r n� i½ �; 0
 n
 N � 1: ð2:38Þ

� Overall response (y):

yr n½ � ¼ szir n½ � þ szsr n½ �; 0
 n
 N � 1: ð2:39Þ

So why would we bother with the extra complications associated with this me-

thod (Excerise 2.9)? The answer becomes clear when we study the CELP coder in

Chapter 11.

sr
zi[n]

sr
zs[n]

xr[n] yr[n]
H(z)

(Zero)

H(z)

Figure 2.11 Illustration of the zero-input zero-state method.

ALL-POLE AND ALL-ZERO FILTERS 51

2.3 CONVOLUTION

Given the linear time-invariant (LTI) system with impulse response h[n], and

denoting the system’s input as x[n] and the output as y[n], we have

y n½ � ¼
X1
k¼�1

x k½ �h n� k½ � ¼
X1
k¼�1

x½n� k�h½k�: ð2:40Þ

The above equation is known as the convolution sum between x[n] and h[n] and

is one of the fundamental relations in signal processing. In this section, we will

explore the usage of the convolution sum for the calculation of the output sequence

on a frame-by-frame basis, with emphasis on the all-pole filter.

Impulse Response of an All-Pole Filter

A straightforward way to find the impulse response sequence is by using the time-

domain difference equation (2.26), when the input is a single impulse: x[n] ¼ d[n].
That is,

h n½ � ¼ d n½ � �
XM
i¼ 1

aih n� i½ �: ð2:41Þ

Proceeding on a sample-by-sample basis, we have

h½n� ¼ 0; n < 0;

h½0� ¼ 1;

h½1� ¼ �a1h½0� ¼ �a1;
h½2� ¼ �a1h½1� � a2;

..

.

h½M � 1� ¼ �a1h½M � 2� � � � � � aM�2h½1� � aM�1;

h½M� ¼ �
XM
i¼ 1

aih½M � i�;

..

.

h½N � 1� ¼ �
XM
i¼ 1

aih½N � 1� i�:

ð2:42Þ

Thus, the impulse response sequence is determined by the filter coefficients.

All-Pole Filter: Calculation of Output Sequence on a Frame-by-Frame
Basis Using the Zero-Input Zero-State Method

Due to the IIR nature of the all-pole filter, it is in general not possible to use a

segment of the impulse response to compute the filter’s output on a frame-by-frame

52 SIGNAL PROCESSING TECHNIQUES

basis. However, it is possible to find the zero-state response using a segment of the

impulse response to compute the convolution sum. Here, the zero-input zero-state

method described in last section is modified to accommodate the convolution.

Given the impulse response sequence h[n], n¼ 0, . . . , N� 1, the zero-state

response (2.38) is found with

szsr n½ � ¼
Xn
k¼0

xr k½ �h n� k½ �; 0
 n
 N � 1; ð2:43Þ

which is the convolution sum adapted from (2.40). Equation (2.43) provides an

alternative to compute the zero-state response of the frame. The total number of

sums and products needed to find the N samples of the output sequence are

summarized in Table 2.1. By adding the numbers in each column, we have

Number of sums ¼ ðN � 1ÞN=2; ð2:44Þ
Number of products ¼ NðN þ 1Þ=2; ð2:45Þ

representing the total computational costs involved with this approach. Table 2.1 is

obtained by counting the number of sums and products in the following equations,

obtained from (2.43):

szsr ½0� ¼ xr 0½ �h 0½ �;
szsr 1½ � ¼ xr 0½ �h 1½ � þ xr 1½ �h 0½ �;

..

.

szsr N � 1½ � ¼ xr 0½ �h N � 1½ � þ � � � þ xr N � 1½ �h 0½ �:

ð2:46Þ

The above equations can be written in matrix form:

szsr ¼ H � xr; ð2:47Þ

where

szsr ¼ szsr 0½ � szsr 1½ � � � � szsr N � 1½ �� �T ð2:48Þ

TABLE 2.1 Amount of Computation Spent by Each
Individual Output Sample in the Convolution Sum

Sample Sums Number of Products

y½0� 0 1

y½1� 1 2

..

. ..
. ..

.

y½N � 1� N � 1 N

CONVOLUTION 53

is the N� 1 zero-state response vector,

xr ¼ xr 0½ � xr 1½ � � � � xr N � 1½ �½ �T ð2:49Þ

is the N� 1 input vector, and

H ¼

h½0� 0 � � � 0

h½1� h½0� � � � 0

..

. ..
. . .

. ..
.

h½N � 1� h½N � 2� � � � h½0�

2
66664

3
77775 ð2:50Þ

is the N� N impulse response matrix.

Comparing the computational cost associated with the convolution sum ((2.44)

and (2.45)) to that involved with a direct application of the time-domain difference

equation ((2.38), Exercise 2.9)), one can see that the number of operations of the

latter is less than the former. Thus, the practicality of the convolution sum approach

is in doubt. Use of the convolution sum in the calculation of the zero-state response

can reduce the computational cost significantly for the case of CELP coders, where

the zero-state response must be computed in a repetitive manner (Chapter 11).

Recursive Convolution

Given the sequence x[n], n¼ 0, . . . , S(L� 1)þ N� 1, with S, L, and N positive

integers, we define the following L sequences:

xð0Þ½n� ¼ x½nþ ðL� 1ÞS�;
xð1Þ½n� ¼ x½nþ ðL� 2ÞS�;

..

.

xðL�1Þ½n� ¼ x½n�:

ð2:51Þ

For n¼ 0 to N� 1, in general, we write

xðlÞ½n� ¼ x½nþ ðL� l� 1ÞS�; l ¼ 0; 1; . . . ; L� 1; n ¼ 0; 1; . . . ; n� 1: ð2:52Þ

Figure 2.12 illustrates the relationship between x[n] and x(l)[n]. Note that

xðlþ1Þ½n� ¼ xðlÞ½n� S�; S
 n
 N � 1: ð2:53Þ

That is, x(l)[n] is obtained by extracting N samples from the sequence x[n] from

different positions. Given a system with impulse response h[n], it is desired to find

54 SIGNAL PROCESSING TECHNIQUES

the zero-state responses corresponding to the input sequences x(l)[n]. Let’s denote

these responses as y(l)[n], in matrix form:

yðlÞ ¼ H � xðlÞ: ð2:54Þ

The above equation suggests the computation of the system responses by

applying an independent convolution operation to each input sequence. However,

the total computation can be reduced, since the input sequences share common

samples. To explore the situation, consider

yðlÞ½n� S� ¼
Xn�S
k¼ 0

xðlÞ½n� S� k�h½k�; ð2:55Þ

then

yðlþ1Þ½n� � yðlÞ½n� S�

¼
Xn�S
k¼ 0

xðlþ1Þ½n� k� � xðlÞ½n� S� k�
� 	

h½k� þ
Xn

k¼ n� Sþ1
xðlþ1Þ½n� k�h½k�: ð2:56Þ

Using (2.53), we come to the conclusion that

yðlþ1Þ½n� ¼
Pn
k¼ 0

xðlþ1Þ½n� k�h½k�; 0
 n
 S� 1;

yðlÞ½n� S� þ Pn
k¼ n� Sþ 1

xðlþ1Þ½n� k�h½k�; S
 n
 N � 1:

8>><
>>: ð2:57Þ

Therefore, if the lth response is available, only the first S samples of the (lþ 1)st

response need to be computed via the usual convolution. The last (N� S) samples

n
0 S(L−1) + N−1

S(L−1) + N

N S

x[n]

x(0)[n]

x(1)[n]

x(L−1)[n]

Figure 2.12 Obtaining the input sequences in recursive convolution.

CONVOLUTION 55

can be found using a simpler, less complex operation. The equation is known as

recursive convolution, since the convolution of one sequence can be found from

the previous response in a recursive fashion.

Recursive convolution is widely used by CELP-type speech coders (Chapter 11),

where the zero-state responses must be found from a codebook having overlapping

codevectors. The computational procedure shown in (2.57) improves the efficiency

dramatically, enabling the practical implementation of these types of coders. See

Exercise 2.12 for computational cost and comparison with regular convolution.

The Case of Single-Shift

When S¼ 1, a rather simple expression arises. From (2.57)

yðlþ1Þ½n� ¼ xðlþ1Þ½0�h½0�; n ¼ 0

yðlÞ½n� 1� þ xðlþ1Þ½0�h½n�; 1
 n
 N � 1:

(
ð2:58Þ

With the definition that y(l)[� 1]¼ 0, we have

yðlþ1Þ½n� ¼ yðlÞ½n� 1� þ xðlþ1Þ½0�h½n� ð2:59Þ

for 0
 n
 N� 1. From (2.52) we can derive an alternative expression

yðlþ1Þ½n� ¼ yðlÞ½n� 1� þ x½L� l� 2�h½n� ð2:60Þ

or

yðlÞ½n� ¼ yðl�1Þ½n� 1� þ x½L� l� 1�h½n�: ð2:61Þ

In (2.59), (2.60), and (2.61) it is assumed that each y(l)[n], l¼ 0 to L� 1,

occupies separate arrays. That is, different memory space is needed for each

sequence. In-place computation can be performed using the following pseudocode,

with the assumption that y(0)[n] is available and is initially stored in the y[n]

array.

1. for l 1 to L�1

2. for n N�1 downto 1

3. y[n] y[n�1] þ x[L�l�1]h[n]

4. y[0] x[L�l�1]h[0]

5. // New sequence is available: do something.

Note how the sample of the new sequence replaces the old one by going

backward in n. This method is applied if there is no need to store all L sequences

in memory, leading to substantial memory cost reduction.

56 SIGNAL PROCESSING TECHNIQUES

2.4 SUMMARY AND REFERENCES

This chapter presented several fundamental techniques that are widely used in sig-

nal processing. In the next chapters, we will see their application in actual imple-

mentations of speech coders. For a general reference on digital signal processing,

see Oppenheim and Schafer [1989]. Additional algorithms for convolution can be

found in Burrus and Parks [1985].

Pitch period estimation was an intense research topic back in the 1960s and

1970s. See Sondhi [1968] for evaluation of three pitch estimation methods; in

Rabiner et al. [1976], a comparative study of seven estimation algorithms is

described. Since the search procedure associated with pitch period estimation is

quite computationally demanding, many implementations put priority on complex-

ity reduction; alternative techniques are given in subsequent chapters.

EXERCISES

2.1 An effective and simple technique to improve the accuracy of the

autocorrelation method in pitch period estimation is center clipping. In this

method, a clipping function is applied to the speech signal prior to auto-

correlation calculation. One such function is

f ðxÞ ¼
xþ c; x < �c
0; �c
 x
 c

x� c; x > c

8<
:

where c is a positive constant known as the clipping limit. Typically, the

clipping limits are set to �30% of the absolute maximum of the waveform.

One problem associated with the autocorrelation method is that the first

formant frequency, which is often near or even below the fundamental pitch

frequency, can interfere with its detection. If the first formant is particularly

strong, a competing periodicity will be present in the autocorrelation values.

Clipping reduces the interference due to formant frequencies since the

magnitude spectrum is flattened. By clipping the signal, low-amplitude

samples are eliminated, leaving only the high-amplitude peaks of the wave-

form where most information related to pitch harmonics is located. The

resultant magnitude spectrum is less affected by the formant frequencies of

the vocal cavity, and the harmonic peaks will have more uniform amplitude.

Since the spectrum is flattened, the contribution of formant frequency

components to the periodicity present in the autocorrelation function is

reduced, making pitch period estimation more accurate.

Using a portion of voiced speech waveform, implement the autocorrelation

method utilizing the clipped speech signal as input. Plot the resultant

autocorrelation curve and compare to the case of no clipping.

EXERCISES 57

2.2 In speech coding applications, it is common to use only the low-frequency

portion of the signal for pitch period estimation. Thus, the input signal is first

lowpass filtered, with a typical bandwidth between 500 and 800 Hz. Imple-

ment this technique by first designing a lowpass filter. Plot the autocorrelation

curve and compare to the case where the lowpass filter is absent.

2.3 Decimation is the process of lowpass filtering a signal followed by down-

sampling [Oppenheim and Schafer, 1989]. Consider the pitch period estima-

tion algorithm where the signal is first decimated by a factor of 2; a first pitch

period estimation is found in the decimated domain. Then a refined result is

obtained in the original domain by searching the neighborhood near the first

estimate. Specify the algorithm by drawing the block diagram and writing

down all relevant equations. What is the advantage of this approach?

2.4 Autocorrelation can also be computed by

R l;m½ � ¼
Xm

n¼m�Nþ1
s½n�s½nþ l�:

In practice, both approaches yield similar results. Explain possible advantages

or disadvantages between the two methods.

2.5 The normalized autocorrelation function, defined by

r l;m½ � ¼

Pm
n¼m�Nþ1

s½n�s½n� l�ffiPm
n¼m�Nþ1

s2½n� Pm
n¼m�Nþ1

s2½n� l�
s ;

is often employed for pitch period estimation. Due to the addition of the

normalizing term (denominator), the resultant correlation values are compen-

sated for changing signal amplitudes, leading to more precise estimations.

Using a portion of a voiced speech waveform, apply the normalized

autocorrelation method and compare with the original approach.

2.6 Given the samples x[0], x[1], . . . , x[N� 1] and assuming that they are sorted

in ascending order of magnitude

x½0�
 x½1�
 � � �
 x½N � 1�;
then the sample median ~x of these numbers is defined by

~x ¼ x N þ 1ð Þ=2½ �; N odd;

x N=2½ � þ x N=2þ 1½ �ð Þ=2; N even:

�

Median filtering can be applied as an alternative to eliminate multiples of a

pitch period. For instance, suppose the sequence of pitch period under

58 SIGNAL PROCESSING TECHNIQUES

consideration is 50, 51, 100, 52, 49, and the value being processed is 100;

the median filter chooses the sample median of the five numbers and returns

51 as a result. After median filtering, the new sequence becomes 50, 51, 51,

52, 49. The technique is in fact a low-complexity alternative for the removal

of multiplicity in a sequence of pitch period.

(a) Obtain a sequence of pitch period values by analyzing a speech signal

with the autocorrelation method. Apply the median filter and compare

the input-output values; change the number of samples under considera-

tion by the median filter and record its effects.

(b) Discuss the advantages/disadvantages of the method when compared to

the approach discussed in the present chapter.

2.7 Given the second order filter with a1 ¼�0.9, a2¼ 0.6,

(a) Find the reflection coefficients.

(b) Find the difference equations corresponding to direct form and lattice

form realizations for both the all-pole and all-zero configurations.

(c) Via a substitution/elimination process, manipulate the lattice equations

into one single equation relating the output to the input. Show at the end

that direct form and lattice form produce the exact same output.

2.8 Given the Mth order all-pole filter, find out the computational complexity

associated with direct form realization and lattice realization. The answer

should be expressed as the number of additions and multiplications per

output sample. Which realization is more efficient? Repeat for an all-zero

filter.

2.9 Find out the number of additions and products required per frame for the

state-save method and the zero-input zero-state method. Express the answers

in terms of the filter’s order (M) and the frame length (N), with the

assumption that N > M. Partial answer: The latter requires twice the

amount of computation as the former.

2.10 On a sample-by-sample basis, find the impulse response of an all-zero filter

using the time-domain difference equation. Express the answer in terms of

the filter’s coefficients. How many nontrivial samples are there?

2.11 Find out the computational cost involved with the calculation of N samples

of the impulse response h[n] of an all-pole filter (n¼ 0 to N� 1) using the

time-domain difference equation, with N > M. For computational cost, fill

out Table 2.2 and add the numbers in each column to yield the total number

of sums and products. Show that

Number of sums ¼ ðM � 2ÞðM � 1Þ
2

þ ðN �MÞðN � 1Þ;

Number of products ¼ ðM � 2ÞðM � 1Þ
2

þ ðN �MÞM:

EXERCISES 59

2.12 (a) Show that for a direct convolution sum, computational costs involved

with an N-sample sequence are

Number of sums ¼ ðN � 1ÞN=2;
Number of products ¼ NðN þ 1Þ=2:

(b) In the application of recursive convolution, show that the computational

costs are given below.

Number of sums ¼ Sð2N � S� 1Þ=2;
Number of products ¼ Sð2N � Sþ 1Þ=2:

What happen when S¼ N? For N¼ 40, compare the computational cost of the

two schemes when S¼ 1 and S¼ 2.

2.13 Within the context of recursive convolution, consider the alternative

definition for input sequences:

xðlÞ½n� ¼ x½nþ lS�; l ¼ 0; 1; . . . ; L� 1; n ¼ 0; 1; . . . ; n� 1:

Derive the equation for recursive convolution based on this definition.

TABLE 2.2 Computational Cost for Exercise 2.11

n Number of Sums Number of Products

0 0 0

1 0 0

2 1 1

3
..
.

M � 1

M
 n
 N � 1

60 SIGNAL PROCESSING TECHNIQUES

CHAPTER 3

STOCHASTIC PROCESSES
AND MODELS

This chapter is devoted to the study of stochastic processes or random signals and

their analysis through statistical signal processing. Speech is very often modeled as

random with certain properties that can be captured using a simple model. By esti-

mating the parameters of the underlying model, information related to the signal

can be represented using alternative media.

Power spectral density plays an important role in speech processing due to the

fact that the human auditory system relies heavily on the power distribution in the

frequency domain. Many diverse methods have been developed in the past to esti-

mate the power spectral density from signal samples, a vast field known as spectrum

estimation. Here the discussion is limited to the practical methods and procedures.

A relatively simple method known as the periodogram is first presented followed by

the autoregressive model. With the model, the signal spectrum is assumed to take

on a specific functional form, controlled by a few parameters. The spectral estima-

tion problem is then one of estimating the unknown parameters of the model rather

than estimating the spectrum itself. Substituting the parameters into the model leads

to the actual signal spectrum. The approach is known as the parametric method of

spectral estimation.

The autocorrelation function is often estimated first from the signal sequence

while dealing with parametric spectral estimation based on the autoregressive

model. In fact, it is shown that the autocorrelation function and the power spectral

density form a Fourier transform pair. Different methods used to estimate the auto-

correlation function are presented with an analysis and discussion of advantages

and disadvantages of each method. Other signal models are described at the end

of the chapter, which are not very commonly applied to speech coding applications

due to the complexity involved.

61

In dealing with these topics, many authors consider the general case of complex-

valued signals. Since the underlying signal is real for most speech processing appli-

cations, we will deal exclusively with real-valued signals for simplicity.

3.1 POWER SPECTRAL DENSITY

The power spectral density (PSD), also referred to as the power spectrum, is a

description of the second-order statistics of a stochastic process in the frequency

domain. Here the definition of PSD is provided, and its relationship with the auto-

correlation function is found; it is shown that the autocorrelation function is the

time-domain counterpart of the power spectral density.

Average Power of a Deterministic Signal

The average power of the deterministic signal x½n� is given by

P ¼ lim
N!1

1

2N þ 1

XN
n¼�N

jx½n�j2: ð3:1Þ

By defining

xN ½n� ¼
x½n�; jnj
 N;

0; otherwise;

�
ð3:2Þ

we have

P ¼ lim
N!1

1

2N þ 1

X1
n¼�1

jxN ½n�j2 ¼ 1

2p

ðp
�p

lim
N!1

jXNðejoÞj2
2N þ 1

 !
do; ð3:3Þ

where

xN ½n� !F XNðejoÞ: ð3:4Þ

That is, they form a Fourier transform pair:

XNðejoÞ ¼
X1
n¼�1

xN ½n�e�jon; ð3:5Þ

xN ½n� ¼ 1

2p

ðp
�p

XNðejoÞejon do: ð3:6Þ

The Parseval theorem is used to derive (3.3); see Exercise 3.1 for a proof.

62 STOCHASTIC PROCESSES AND MODELS

Average Power of a Stochastic Process

For the stochastic process* x½n�, (3.3) only represents the power in one sample

realization. By taking the expected value, we obtain the average power P for the

random signal as follows:

P ¼ 1

2p

ðp
�p

lim
N!1

EfjXNðejoÞj2g
2N þ 1

 !
do ð3:7Þ

with Ef�g the expectation operator.

Definition of Power Spectral Density

The power spectral density function SðejoÞ of a stochastic process is defined in

general by

P ¼ 1

2p

ðp
�p

SðejoÞ do; ð3:8Þ

where P is the average power of the stochastic process x½n�. Comparing (3.7) to

(3.8) we arrive at the following relation for the PSD:

SðejoÞ ¼ lim
N!1

EfjXNðejoÞj2g
2N þ 1

 !
: ð3:9Þ

Average Power as Time Average of the Second Moment

Applying the expectation operator to (3.1) leads to

P ¼ lim
N!1

1

2N þ 1

XN
n¼�N

Efx2½n�g ¼ AfEfx2½n�gg; ð3:10Þ

where x½n� is assumed to be real. Therefore, the average power of the stochastic

process x½n� is given by the time average of its second moment. For a wide-sense

stationary (WSS) process, Efx2½n�g is constant with n and so is the average power P.
The time average operator Af�g is defined by

Af�g ¼ lim
N!1

1

2N þ 1

XN
n¼�N
ð�Þ: ð3:11Þ

*The simplified notation for stochastic process is used here, where x½n� for n fixed is a random variable. A

stricter notation would be x½n; ��, where � is a variable representing the outcome of an experiment. In this

latter notation, if n and � are fixed, x½n; �� is a number. See Papoulis [1991] for details.

POWER SPECTRAL DENSITY 63

We are especially interested in the WSS process since the resultant mathematics

are simple and tractable. For speech coding, the WSS assumption can be applied to

short intervals.

Theorem 3.1. Given a stochastic process x½n� with autocorrelation function

R½n1; n2� ¼ Efx½n1�x½n2�g; ð3:12Þ

then

SðejoÞ ¼
X1
l¼�1

AfR½n; nþ l�ge�jol; ð3:13Þ

and

AfR½n; nþ l�g ¼ 1

2p

ðp
�p

SðejoÞejol do: ð3:14Þ

Equations (3.13) and (3.14) show that SðejoÞ and AfR½n; nþ l�g form a Fourier

transform pair, denoted by

AfR½n; nþ l�g !F SðejoÞ: ð3:15Þ

Proof. From (3.4),

XNðejoÞ ¼
X1
n¼�1

xN ½n�e�jon ¼
XN
n¼�N

x½n�e�jon: ð3:16Þ

Substituting (3.16) in (3.9) gives

SðejoÞ ¼ lim
N!1

1

2N þ 1
E

XN
n1¼�N

x½n1�ejon1
XN

n2¼�N
x½n2�e�jon2

()

¼ lim
N!1

1

2N þ 1

XN
n1¼�N

XN
n2¼�N

Efx½n1�x½n2�ge�joðn2�n1Þ: ð3:17Þ

The expectation within the summation of the above equation is identified as the

autocorrelation function of x½n�, (3.12). Thus,

SðejoÞ ¼ lim
N!1

1

2N þ 1

XN
n1¼�N

XN
n2¼�N

R½n1; n2�e�joðn2�n1Þ: ð3:18Þ

64 STOCHASTIC PROCESSES AND MODELS

Now consider the change of variables with n ¼ n1 and l ¼ n2 � n1 ¼ n2 � n.

Equation (3.18) becomes

SðejoÞ ¼
X1
l¼�1

lim
N!1

1

2N þ 1

XN
n¼�N

R½n; nþ l�
()

e�jol: ð3:19Þ

The quantity within braces is recognized as the time average of the autocorrelation

function. Thus, the theorem is proved.

Theorem 3.2. Given a WSS stochastic process with autocorrelation function

R½l� ¼ Efx½n�x½nþ l�g, then

SðejoÞ ¼
X1
l¼�1

R½l�e�jol ð3:20Þ

and

R½l� ¼ 1

2p

ðp
�p

SðejoÞejol do; ð3:21Þ

that is,

R½l� !F SðejoÞ: ð3:22Þ

See Exercise 3.2 for a proof of this result.

Example 3.1: White Noise White noise is a stochastic process characterized by a

constant PSD, given by

SðejoÞ ¼ s2; ð3:23Þ
where s2 represents the variance of the signal. The autocorrelation function is

therefore

R½l� ¼ s2d½l�: ð3:24Þ
That is, the autocorrelation function is a delta function. If follows from (3.24) that a

white noise signal must have zero mean (Exercise 3.3) and two samples from dif-

ferent time instances are uncorrelated (Exercise 3.4).

White noise is generated in practice using a random number generator and, in

most cases, is either uniformly distributed or normally distributed (Gaussian).

Gaussian distribution is preferred in certain applications due to its analytic ele-

gance: linear combination of any number of independent normal random variables

with zero mean always leads to a normal random variable. Also, the central limit

theorem states that under certain general conditions, the sum of independent ran-

dom variables (any distribution) results in a normally distributed random variable

POWER SPECTRAL DENSITY 65

[Papoulis, 1991]. In order to approach the behavior of theoretical white noise, the

random number generator must possess certain ‘‘good’’ qualities, namely, the

sequence of numbers generated must be statistically independent from each other.

Many tests exist that provide measurement of the property of random number gen-

erators [Banks and Carson, 1984].

Theorem 3.3. Correlation Relations Between the Input and Output of a Linear
Time-Invariant (LTI) System. We are given an LTI system with impulse response

h½n�. The system input is the WSS process x½n� with output y½n�. Then
Ryx½l� ¼ h½l� � Rx½l�; ð3:25Þ
Rxy½l� ¼ h½�l� � Rx½l�; ð3:26Þ
Ry½l� ¼ h½l� � Rxy½l�; ð3:27Þ
Ry½l� ¼ h½l� � h½�l� � Rx½l�; ð3:28Þ

where Rxy½n1; n0� ¼ Efx½n1� y½n0�g is the cross-correlation between x½n� and y½n�.
When x½n� and y½n� are jointly WSS—as in the present case—the cross-correlation

depends only on l ¼ n1 � n0; hence, Rxy½l� ¼ Efx½n�y½n� l�g.
The last equation indicates that the autocorrelation function of the output process

is a twofold convolution of the input autocorrelation function with the system’s

impulse response.

Proof. From the convolution sum,

y½n� ¼
X1
k¼�1

h½k�x½n� k�: ð3:29Þ

Evaluating the above relation at n ¼ n1 and multiplying both sides by x½n0� gives

y½n1�x½n0� ¼
X1
k¼�1

h½k�x½n1 � k�x½n0�: ð3:30Þ

Taking the expectation,

Ryx½n1; n0� ¼
X1
k¼�1

h½k�Rx½n1 � n0 � k�: ð3:31Þ

Since x½n� is a WSS process, Ryx is a function only of the difference n1 � n0, imply-

ing that x½n� and y½n� are jointly stationary. Substituting the variable l ¼ n1 � n0
produces

Ryx½l� ¼
X1
k¼�1

h½k�Rx½l� k�; ð3:32Þ

which is (3.25).

66 STOCHASTIC PROCESSES AND MODELS

Equation (3.26) is a direct consequence of (3.25) and the symmetric properties

of cross-correlation and autocorrelation. By using a procedure parallel to the one

used to find (3.25) (multiplying both sides of (3.29) by y½n0� instead of x½n0�),
(3.27) is derived. Finally, (3.28) is found by substituting (3.26) in (3.27).

Theorem 3.4: Power Spectral Density of the Output of an LTI System. We are

given an LTI system with transfer function HðejoÞ. The system input is the WSS

process x½n� with PSD SxðejoÞ, and the output process is y½n�. Then

SyðejoÞ ¼ jHðejoÞj2SxðejoÞ ð3:33Þ

is the PSD of the output process y½n�. This result is obtained by applying the Fourier
transform to (3.28). The function jHðejoÞj2 is sometimes referred to as the power

transfer function.

3.2 PERIODOGRAM

Consider an N-point sequence x½n�; n ¼ 0; . . . ;N � 1. The periodogram INðejoÞ is
defined to be

INðejoÞ ¼ 1

N
jXNðejoÞj2; ð3:34Þ

where

XNðejoÞ ¼
XN�1
n¼0

x½n�e�jno ð3:35Þ

is the Fourier transform of the finite-length sequence x½n�.
When the finite-length sequence is selected through a window sequence w½n�,

that is,

XNðejoÞ ¼
XN�1
n¼0

w½n�x½n�e�jno; ð3:36Þ

the resultant frequency function, as defined in (3.34), is known as the modified per-

iodogram, or simply periodogram.

Theorem 3.5. We are given the N-point real sequence x½n�; n ¼ 0; . . . ;N � 1. Then

INðejoÞ ¼
XN�1

l¼�ðN�1Þ
R½l�e�jol ð3:37Þ

PERIODOGRAM 67

with

R½l� ¼ 1

N

XN�1
m¼ 0

w½mþ l�w½m�x½mþ l�x½m� ð3:38Þ

being the autocorrelation function of the sequence w½n�x½n�. Thus, the periodogram
is related to the autocorrelation function through the Fourier transform

equation (3.37).

Proof. From (3.34),

INðejoÞ ¼ 1

N
XNðejoÞX�NðejoÞ

¼ 1

N

XN�1
n¼ 0

XN�1
m¼ 0

w½n�w½m�x½n�x½m�e�joðn�mÞ

¼ 1

N

XN�1
m¼ 0

XN�m�1
l¼�m

w½m�w½mþ l�x½m�x½mþ l�e�jol: ð3:39Þ

Note that w½n� is zero outside the interval n 2 ½0;N � 1�; hence,

INðejoÞ ¼ 1

N

XN�1
l¼�ðN�1Þ

XN�1
m¼0

w½m�w½mþ l�x½m�x½mþ l�e�jol; ð3:40Þ

which completes the proof.

Comparing (3.37) with (3.20) one can reach the conclusion that the periodogram

is similar to the power spectral density. Indeed, the periodogram is an estimate of

the PSD using a finite number of samples from the signal source, with the estimate

being an approximate calculation of the true function. Due to its simplicity,

the periodogram is often used in practice to study the signal source of interest in

the frequency domain. References are given at the end of the chapter where

more extensive discussion regarding the statistical properties of periodogram can

be found.

The choice of the window depends on frequency resolution and spectral leakage.

The ideal window spectrum is an impulse, which would require a window sequence

of infinite length. Many options are available for finite-length window, with

the Hamming window being one of the most widely used. In practice, the sample

mean of the finite-length sequence is often subtracted before computing the peri-

odogram. This avoids leakage due to the zero-frequency component that interferes

with the low-frequency zone.

68 STOCHASTIC PROCESSES AND MODELS

3.3 AUTOREGRESSIVE MODEL

A model is used for any hypothesis that may be applied to explain or describe the

hidden laws that are supposed to govern or constrain the generation of some data of

interest. One common method for modeling random signals is to represent them as

the output of an all-pole linear filter driven by white noise. Since the power spec-

trum of the filter output is given by the constant noise spectrum multiplied by the

squared magnitude of the filter (see (3.33)), random signals with desired spectral

characteristics can be produced by choosing a filter with an appropriate denomina-

tor polynomial.

The sequence values x½n�; x½n� 1�; . . . ; x½n�M� represent the realization of an

autoregressive (AR) process of order M if it satisfies the difference equation

x½n� þ a1x½n� 1� þ � � � þ aMx½n�M� ¼ v½n�; ð3:41Þ

where the constants a1; a2; . . . ; aM are known as the AR parameters and v½n� repre-
sents a white noise process; the above equation can be written as

x½n� ¼ �a1x½n� 1� � a2x½n� 2� � � � � � aMx½n�M� þ v½n�: ð3:42Þ

Therefore, the present value of the process, x½n�, is equal to a linear combination of

past values of the process, x½n� 1�; . . . ; x½n�M�, plus an error term v½n�. The
process x½n� is said to be regressed on x½n� 1�; x½n� 2�; . . . ; x½n�M�; in particular,

x½n� is regressed on previous values of itself, hence the name ‘‘autoregressive.’’

System Function of the AR Process Analyzer

Taking the z-transform of (3.41) and manipulating yields

HAðzÞ ¼ VðzÞ
XðzÞ ¼

XM
i¼0

aiz
�i; ð3:43Þ

where HAðzÞ denotes the system function of the AR analyzer, which is a filter that

takes x½n� as input and produces v½n� at its output. The parameter a0 is equal to one

in the above equation. Thus, the AR analyzer transforms an AR process at its

input to white noise at its output. Figure 3.1 shows the direct form realization

[Oppenheim and Schafer, 1989] of the AR analyzer. Note that the AR process

analyzer is an all-zero filter and hence of FIR nature.

System Function of the AR Process Synthesizer

With the white noise v½n� acting as input, we can use the system function given by

HSðzÞ ¼ XðzÞ
VðzÞ ¼

1

HAðzÞ ¼
1PM

i¼0 aiz�i
ð3:44Þ

AUTOREGRESSIVE MODEL 69

to synthesize the AR process x½n�. Direct form realization is shown in Figure 3.2.

Note that the AR process synthesizer is an all-pole filter whose impulse response

length is infinite (IIR). The synthesizer takes white noise as input and produces an

AR signal at its output. From (3.44) we see that the system function of the analyzer

is the inverse of the system function for the synthesizer; we can also write

HSðzÞ ¼ 1

ð1� p1z�1Þð1� p2z�1Þ � � � ð1� pMz�1Þ ; ð3:45Þ

where p1; p2; . . . ; pM are poles of HSðzÞ and are roots of the characteristic equation

1þ a1z
�1 þ a2z

�2 þ � � � þ aMz
�M ¼ 0: ð3:46Þ

Thus, an AR process is synthesized by filtering white noise using an all-pole

filter.

PSD of an AR Process

As explained earlier, an AR process is the output of the LTI system characterized by

HSðzÞ, when the input is a white noise process. From (3.23) it follows that the input

x[n] v[n]

z-1

z-1

z-1

a1

aM-1

aM

Figure 3.1 Direct form realization of the AR process analyzer filter.

v[n] x[n]

z-1

z-1

z-1

− a1

− aM-1

− aM

Figure 3.2 Direct form realization of the AR process synthesizer filter.

70 STOCHASTIC PROCESSES AND MODELS

PSD is constant and equal to s2
v , the variance of the input signal v½n�. From (3.33)

the PSD of the output AR process x½n� is

SxðejoÞ ¼ jHSðejoÞj2s2
v : ð3:47Þ

0 20 40 60 80 100 120 140
10

0

10

0 20 40 60 80 100 120 140
10

0

10

0 0.2 0.4 0.6 0.8 1
0.001
0.01

0.1
1

10

100
1000

0 0.2 0.4 0.6 0.8 1
0.001

0.01

0.1

1

10

100

1000

v[n]

(b)

(c)

(a)

(d)

n

n

ω/π

ω/π

Sx(e
jω)

x[n]

Sv(e jω)

Figure 3.3 Signal plots for (a) white noise and (b) AR signal (150 samples). PSD (solid)

and periodogram (dots, calculated with 400 samples) plots for (c) white noise and (d) AR

signal.

AUTOREGRESSIVE MODEL 71

That is, the PSD of an AR process is given by the product between the magni-

tude squared of the transfer function of the synthesizer and the variance of the input

white noise.

Example 3.2 White noise is generated using a random number generator

with uniform distribution and unit variance. This signal is then filtered by an AR

synthesizer with

a1 ¼ 1:534 a2 ¼ 1 a3 ¼ 0:587 a4 ¼ 0:347 a5 ¼ 0:08

a6 ¼ �0:061 a7 ¼ �0:172 a8 ¼ �0:156 a9 ¼ �0:157 a10 ¼ �0:141

Segments of the signals are plotted in Figure 3.3. Note that for white noise, correla-

tion is almost nonexistent between adjacent samples; that is, signal values are inde-

pendent from each other. For the AR signal, however, a strong correlation exists

between adjacent samples, where the value of the signal at a given time instant

tends to follow the close-by samples.

From the same figure, the theoretical PSDs of the two signals are plotted

together with the periodogram using N ¼ 400 samples and a rectangular window.

The periodogram values, even though noise-like, fluctuate around the theoretical

functions, confirming the fact that it is indeed an estimate of the PSD. Note that,

for white noise, the theoretical PSD is constant and equal to one (3.23) while for the

AR signal, it is given by (3.47). The periodogram is significantly different from the

theoretical PSD because a single ensemble realization of the random process is con-

sidered in the experiment. By evaluating a large number of realizations, the average

result will converge toward the theoretical functions.

Other observations can be drawn from the signal plots. First, the AR signal is

‘‘colored,’’ meaning that its PSD is not flat, as opposed to that of the white noise,

with the shape or contour of the spectrum being determined by the synthesizer. If

the AR signal is filtered by the corresponding analyzer, white noise can be obtained

at its output. Thus, the analyzer filter is often referred as the ‘‘whitener,’’ which

decorrelates an input signal by flattening its power spectrum.

Normal Equation

Since v½n� represents a white noise sample at time instant n, it is not correlated with

x½n� l� for l 	 1. That is,

Efv½n�x½n� l�g ¼ 0; l ¼ 1; 2; . . . ;M: ð3:48Þ

Multiplying both sides of (3.41) by v½n� and taking expectation yields

Efv½n�x½n�g ¼ s2
v : ð3:49Þ

72 STOCHASTIC PROCESSES AND MODELS

That is, the cross-correlation between x½n� and v½n� is given by the variance of v½n�.
Multiplying both sides of (3.41) by x½n� 1�; l ¼ 0; 1; . . . ;M, and taking expectation

yields the system of equations

Rx½0� þ a1Rx½1� þ � � � þ aMRx½M� ¼ s2
v ;

Rx½1� þ a1Rx½0� þ � � � þ aMRx½M � 1� ¼ 0;

..

.

Rx½M� þ a1Rx½M � 1� þ � � � þ aMRx½0� ¼ 0:

ð3:50Þ

Or in matrix form,

Rx½0� Rx½1� � � � Rx½M�
Rx½1� Rx½0� � � � Rx½M � 1�
..
. ..

. . .
. ..

.

Rx½M� Rx½M � 1� � � � Rx½0�

0
BBBB@

1
CCCCA

1

a1

..

.

aM

0
BBBB@

1
CCCCA ¼

s2
v

0

..

.

0

0
BBB@

1
CCCA: ð3:51Þ

The above equation is known as the normal equation* for WSS AR processes.

Given the autocorrelation sequence Rx½0�;Rx½1�; . . . ;Rx½M�, (3.51) can be solved

to yield the model parameters ai. See Exercises 3.7 and 3.8 for alternative forms

of the equation.

3.4 AUTOCORRELATION ESTIMATION

In the previous sections we mentioned that the periodogram is an estimate of the

PSD. It was also shown that the autocorrelation function and PSD form a Fourier

transform pair. Based on this fact, the autocorrelation function can be estimated first

from the signal; the Fourier transform is then computed for the purpose of spectrum

estimation.

As we will see in later chapters, the autocorrelation function plays an important

role in linear prediction analysis: a procedure used to calculate the autoregressive

parameters, or linear prediction coefficients of the signal model. Thus, it is impor-

tant to study the different estimation methods available for autocorrelation.

Since speech is nonstationary, the autocorrelation values must be estimated and

changed for every short interval of time; that is, their values are recalculated in each

signal frame. Fundamentally, two types of procedure exist: nonrecursive and recur-

sive. The difference between the two types of estimation methods is analogous to

digital filters: FIR and IIR. In a nonrecursive approach the window used for extrac-

tion has finite length, while an infinite-length window is used for recursive methods.

The use of either of these techniques depends on the particular application.

*The normal equation is also known as the Yule–Walker equation or Wiener–Hopf equation in the

literature.

AUTOCORRELATION ESTIMATION 73

The autocorrelation function of a real discrete-time signal x½n� at lag l is defined

by*

Rx½l� ¼ Afx½n�x½nþ l�g ¼ lim
N!1

1

2N þ 1

XN
n¼�N

x½n�x½nþ l�: ð3:52Þ

Implementations of various estimators are explained next.

Nonrecursive Estimation Methods

Nonrecursive methods are based on a well-defined window sequence w½n� to extract
the signal frame of interest for further processing, with the Hamming window being

one of the most widely used. The causal Hamming window is defined with

w½n� ¼ 0:54� 0:46 cos 2pn
N�1

 �

; 0
 n
 N � 1;

0; otherwise;

�
ð3:53Þ

with N being the window length (number of nonzero samples). Figure 3.4 shows a

plot of the window sequence. In practice, the values of the window sequence are

often stored in memory.

* In the application of the theory of stochastic processes, we will assume that the signals under

consideration are ‘‘ergodic in correlation,’’ meaning that the time average Afx½n�x½nþ l�g is equal to the

expectation Efx½n�x½nþ l�g.

0 200

0

1

n

w[n]

R

H

Figure 3.4 Plots of the rectangular and Hamming window, with a length of N ¼ 240.

74 STOCHASTIC PROCESSES AND MODELS

Assume we want to perform the estimation on the frame that ends at time instant

m, where the length of the frame is equal to N (i.e., from n ¼ m� N þ 1 to m). One

approach is

R½l;m� ¼ 1

N

X1
n¼�1

x½n�w½m� n�x½nþ l�w½m� n� l�: ð3:54Þ

Figure 3.5 illustrates the situations for l > 0 and l < 0. Note that the window

sequence w½n� is causal. Taking into account the limits of the summation, the above

equation can be manipulated to yield

R½l;m� ¼ 1

N

Xm
n¼m�Nþ1þjlj

x½n�w½m� n�x½n� jlj�w½m� nþ jlj�: ð3:55Þ

The estimator represented by (3.54) and (3.55) has the following properties:

w [n]

(a)

n
N−1

w [m − n]

(b)

n
m−N+1 m

w[l]

l > 0

(c)

n
m−N+1− l m− l

w[l]

l < 0

(d)

 n
N − l m−l

Figure 3.5 (a) A causal window sequence with N samples. (b) The time-reversed and

-shifted window w½m� n�. (c) w½m� n� l� for l > 0. (d) w½m� n� l� for l < 0.

AUTOCORRELATION ESTIMATION 75

� R½l;m� is a biased estimator of Rx½l�. If x½n� is a realization of a WSS, ergodic,

random process, then by taking the expected value of (3.55) we find (assuming

a rectangular window)

EfR½l;m�g ¼ 1

N

Xm
n¼m�Nþ1þjlj

Efx½n�x½n� jlj�g ¼ N � jlj
N

Rx½l�: ð3:56Þ

In statistical terms, the estimator is biased when EfR½l;m�g 6¼ Rx½l� with the

bias being the difference EfR½l;m�g � Rx½l�. The bias is a measure of the error

involved by using the estimator: the smaller the bias the better the estimator.

� R½l;m� is asymptotically unbiased. From (3.56),

lim
N!1

EfR½l;m�g ¼ Rx½l�: ð3:57Þ

Thus, R½l;m� is asymptotically unbiased by definition.

See Exercises 3.10 and 3.11 for other versions of the nonrecursive estimator and

their statistical properties.

Recursive Estimation Methods

For most speech coding applications, the frame length N is on the order of 200 sam-

ples, since it is roughly the time interval during which the signal remains stationary.

An example is illustrated in Figure 3.6 (a), where a window of length 200 is used to

calculate the autocorrelation values every 200 samples. In some applications it

might be necessary to perform the calculation in an interval that is much shorter

than 200, for instance, 40. By updating the estimates more frequently, delay asso-

ciated with the buffering process (required to gather the input samples) is greatly

reduced, which is highly desirable in practice. Figure 3.6(b) shows the solution

(a)
.....

(b)
.....

(c)

Figure 3.6 Illustration of nonrecursive autocorrelation estimation. (a) Estimation is

performed every 200 samples; a window of length 200 is used. (b) Estimation is performed

every 40 samples; a window of length 40 is used. (c) Estimation is performed every 40

samples; a window of length 200 is used. Note that the windows overlap each other.

76 STOCHASTIC PROCESSES AND MODELS

where a window of length 40 is used. A short window, however, will increase

the bias of the estimates, leading to inaccurate results. For higher precision, the

situation depicted in Figure 3.6(c) can be applied, where a 200-sample window

is employed every 40 samples, leading to overlapping. A disadvantage of this latter

approach is in the computational aspect: for every short interval of time (40 samples

in this case), 200 samples must be stored to compute the autocorrelation values,

which is repeated for every 40-sample intervals. Since the windows are overlap-

ping, some information should be reusable from interval to interval; in the present

(nonrecursive) scheme, however, the procedure is not taking advantage of the

situation, leading to a high degree of inefficiency.

To overcome these problems, a recursive approach is desirable. In this case,

information from the past frames is used to update the estimates of the present

frame so as to increase efficiency. Consider an estimator of autocorrelation based

on the following relation:

R½l;m� ¼
X1

n¼�1
x½n�w½m� n�x½n� l�w½m� nþ l�; ð3:58Þ

which is essentially (3.54) without the scaling constant 1/N. In most applications,

only the relative magnitude between the autocorrelation values for different lag l is

important; thus, the scaling constant can be omitted. The type of window that we

consider here has the shape shown in Figure 3.7, where it is causal with a decaying

amplitude (w½n� ! 0 as n!1). Since the infinite-length window has very small

amplitude outside a certain region, say, a region of length N, similar statistical

properties can be drawn as in the nonrecursive case.

Barnwell Window

Barnwell (1981) proposed the following infinite-length sequence as the window

used for autocorrelation estimation:

w½n� ¼ ðnþ 1Þanu½n�; ð3:59Þ
with a a real positive constant smaller than one and u½n� the unit step function. The

window sequence w½n� has z-transform

WðzÞ ¼ 1

ð1� az�1Þ2 : ð3:60Þ

w[n]

 n

Figure 3.7 A causal window sequence of infinite length.

AUTOCORRELATION ESTIMATION 77

That is, it is an all-pole function with second-order pole located at z ¼ a. Figure 3.8
shows various window sequences for different values of a.

Note that the magnitude of the window is negligible outside a certain finite-

length interval; the length of this interval is a function of the constant a. By
choosing the right a, it is possible to include more or less data for the estimation

process. Typical window lengths are on the order of 30 ms in speech coding or 240

samples for an 8-kHz sampling rate; a constant a near 0.98 is a good choice to meet

the specification.

Let’s define

xl½n� ¼ x½n�x½n� l� ð3:61Þ

and

wl½n� ¼ w½n�w½nþ l�: ð3:62Þ

Equation (3.58) can be rewritten as

R½l;m� ¼
X1
n¼�1

xl½n�wl½m� n� ¼ xl½m� � wl½m�: ð3:63Þ

That is, the autocorrelation estimate with lag l and at the frame end time m is given

by the convolution between the sequence xl½m� and wl½m�. R½l;m� can therefore be

considered as the output of an LTI filter with impulse response wl½m� and input

xl½m�. Recalling the fact that wl½m� is a causal sequence, (3.63) can be rewritten

as

R½l;m� ¼
Xm
n¼�1

xl½n�wl½m� n�: ð3:64Þ

0 100 200 300 400
0

10

20

30

w[n]

n

α = 0.986

0.984
0.982

0.980

Figure 3.8 Barnwell window for four different values of a.

78 STOCHASTIC PROCESSES AND MODELS

Now, we seek the system functionWlðzÞ of the LTI filter whose impulse response

is wl½m�. It can be shown (Exercise 3.12) that

WlðzÞ ¼ ðlþ 1Þal � ðl� 1Þalþ2z�1
1� 3a2z�1 þ 3a4z�2 � a6z�3

: ð3:65Þ

Equation (3.65) is the system function of the LTI filter needed for the estimation

of autocorrelation. Figure 3.9 shows the system needed for recursive calculation of

x[m]

: :

W0(z)

W1(z)

W2(z)

Wl(z)

 (•)2
R[0 , m]

R[1, m]

R[2 , m]

R[l , m]

x0[m]

x1[m]

x2[m]

xl[m]

z−1

z−1

z−1

Figure 3.9 Block diagram of the system needed for recursive calculation of autocorrelation

estimates.

xl[m] R[l, m]

xl[m] R[l, m]

(l + 1)α l

z−1

z−1

z−1

−(l−1)αl+2

3α2

−3α4

α6

(l + 1)α l

z−1

z−1

z−1

−(l −1)αl+2

3α2

−3α4

α6

z−1

Figure 3.10 Direct form I (top) and direct form II (bottom) implementation of WlðzÞ.

AUTOCORRELATION ESTIMATION 79

the autocorrelation estimates. The system function WlðzÞ can be implemented in

direct form I or direct form II as shown in Figure 3.10. [Oppenheim and Schafer,

1989]. Direct form II realization has some important advantages: the filter can be

separated into a recursive section where the multipliers 3a2, �3a4, and a6 are

involved, and a nonrecursive section constructed with the multipliers ðlþ 1Þa
and �ðl� 1Þalþ2. The two products in the nonrecursive portion of the filters

need only be carried out once on every frame interval and not on every sample,

leading to substantial computational savings. In contrast, direct form I provides

no such benefit.

To summarize, the Barnwell windowing method for recursive autocorrelation esti-

mation presents the following differences when compared to nonrecursive techniques:

� Since the parameter a completely controls the window length, the same

amount of computation is required regardless of the window length or frame

size. In a nonrecursive approach using a finite-length window, the amount of

computation is proportional to the window length.

� The scaling constants in the recursive sections of the linear filters for different

lag l are all identical. This allows for less constant storage and simpler filter

realizations.

� Since all the window information is contained in the linear filter coefficients,

no extensive ROM storage is needed to support the window function. In

contrast, nonrecursive methods often require samples of the window to be

stored in memory, with the actual amount dependent on the window length.

Chen Window

In the aforementioned Barnwell windowing technique, the products of the current

signal sample and previous samples are passed through a bank of third-order IIR

filters, and the autocorrelation coefficients are obtained at the outputs of the filters.

For fixed-point arithmetic, rounding is necessary and introduces errors that tend

to accumulate as noise in the recursive structure of IIR filters. Since most target

processors for speech coding applications are of the fixed-point type, use of the

Barnwell window presents serious implementational problems. To avoid the pro-

blem associated with a recursive structure, a conventional blockwise nonrecursive

window (such as the Hamming window) can be used. However, as mentioned ear-

lier, with frequent updates and a high degree of window overlapping, the resulting

scheme is inefficient, with excessive complexity.

Chen proposed a hybrid window consisting of a recursively decaying tail and a

section of nonrecursive samples at the beginning [Chen, 1995]. The recursive part is

exponentially decaying while the nonrecursive part is a section of the sine function.

The overall shape is very similar to the Barnwell window. The purpose of the non-

recursive portion is to mimic the general shape of the Barnwell window, while the

purpose of the recursive portion is to enable recursive calculation so as to reduce

complexity (with respect to a nonrecursive approach). By using this window,

80 STOCHASTIC PROCESSES AND MODELS

numerical sensitivity is greatly reduced (with respect to Barnwell window),

enabling the deployment of a hybrid window with sufficient accuracy using

fixed-point arithmetic.

The window is defined by

w½n� ¼
0; n
 0;

sinðcnÞ; 0 < n
 L;

ban�L�1; n 	 Lþ 1;

8<
: ð3:66Þ

where L is the length of the nonrecursive section of the window and a, b, and c are

constants that must be found for a particular window specification. To ensure a

smooth junction between the sine function and the exponential function at

n ¼ Lþ 1, two conditions are imposed:

� Values of the two functions are equal at n ¼ Lþ 1, which means

sinðcðLþ 1ÞÞ ¼ b: ð3:67Þ

� Slopes of the two functions (derivatives with respect to n) are equal at

n ¼ Lþ 1, implying

c cosðcnÞ ¼ bðln aÞan�L�1: ð3:68Þ
At n ¼ Lþ 1,

ln a ¼ c ctgðcðLþ 1ÞÞ ð3:69Þ
or

a ¼ exp½c ctgðcðLþ 1ÞÞ�: ð3:70Þ
Summarizing, the following procedure is used for window design.

Step 1. The decaying factor a is first fixed; its choice depends on how long we want

the effective length of the exponential tail to be.

Step 2. Length of the nonrecursive part is L. Its value is chosen based on how we

want to shape the initial part of the window and how much computational com-

plexity we are willing to have. Obviously, the larger the number L, the higher the

complexity. Also, more storage is required for the longer nonrecursive window.

Step 3. Once a and L are known, (3.69) or (3.70) is solved for the constant c. This

can be done with a graphical approach.

Step 4. Equation (3.67) is used to find b.

Example 3.3 The window design procedure is illustrated for the case when

a ¼ 0:51=40 ¼ 0:9828205985 and L ¼ 30. These specifications correspond to the

AUTOCORRELATION ESTIMATION 81

window used for the perceptual weighting filter of the ITU-T G.728 LD-CELP

coder (Chapter 14). Thus, Steps 1 and 2 of the design procedure are already com-

pleted. For Step 3, we use a graphic method to solve c. In Figure 3.11, (3.70) is

plotted as a function of c. From there we can see that when c � 0:06, the desired

value of a is reached; the range of c used to search for the result is found experi-

mentally. Fine tuning its value yields the final result of c ¼ 0:0597731696, which is

done manually on a trial-and-error basis. (Note that a simple computer program

can be created to search for c.) In Step 4, the value of c is substituted in (3.67)

to give b ¼ 0:96. The window is therefore completely specified and is plotted in

Figure 3.12.

0.04 0.06 0.08
0.9

1

1.1

c

α(c)

Desired α

Figure 3.11 Graphical approach to finding the parameter c of the Chen window.

0 100 200 300
0

0.5

1

w[n]

n

Figure 3.12 Chen window with a ¼ 0:51=40 and L ¼ 30.

82 STOCHASTIC PROCESSES AND MODELS

Computational Procedure for Chen Window

For causal windows, (3.58) reduces to

R½l;m� ¼
Xm

n¼�1
x½n�w½m� n�x½n� l�w½m� nþ l�: ð3:71Þ

The time-reversed and -shifted window sequence w½m� n� is shown in

Figure 3.13, where the limits separating the recursive and nonrecursive portions

are shown. Equation (3.71) can be written as

R½l;m� ¼
Xm�L�1

n¼�1
x½n�w½m� n�x½n� l�w½m� nþ l�

þ
Xm

n¼m�L
x½n�w½m� n�x½n� l�w½m� nþ l�: ð3:72Þ

Let’s define

Ro½l;m� ¼
Xm�L�1
n¼�1

x½n�w½m� n�x½n� l�w½m� nþ l�; ð3:73Þ

which represents the recursive part of the estimation equation. Assume now that we

want to compute the recursive autocorrelation estimate at the frame end time

mþ N, with N being a positive integer. We can write

Ro½l;mþ N� ¼
XmþN�L�1

n¼�1
x½n�w½mþ N � n�x½n� l�w½mþ N � nþ l�

¼
Xm�L�1
n¼�1

x½n�w½mþ N � n�x½n� l�w½mþ N � nþ l�

þ
XmþN�L�1

n¼m�L
x½n�w½mþ N � n�x½n� l�w½mþ N � nþ l�: ð3:74Þ

w[n] w[m − n]

 n n
0 L L + 1 0 m−L −1 m −L m

Figure 3.13 Chen window showing the nonrecursive and recursive portion (left), together

with the time-reversed and -shifted version (right).

AUTOCORRELATION ESTIMATION 83

Figure 3.14 shows the relative positions of the window sequences. We can see

that the limits in the summations of (3.73) and (3.74) involve only the recursive part

of the window. Substituting the actual expression for the window (3.66) in (3.73)

leads to

Ro½l;m� ¼ b2a2m�2L�2þl
Xm�L�1
n¼�1

x½n�x½n� l�a�2n: ð3:75Þ

Similarly, for (3.74) we have

Ro½l;mþ N� ¼ b2a2m�2L�2þlþ2N
Xm�L�1
n¼�1

x½n�x½n� l�a�2n

þ
XmþN�L�1

n¼m�L
x½n�x½n� l�w½mþ N � n�w½mþ N � nþ l�: ð3:76Þ

Comparing (3.75) and (3.76) gives

Ro½l;mþ N� ¼ a2NRo½l;m� þ
XmþN�L�1

n¼m�L
x½n�x½n� l�w½mþ N � n�w½mþ N � nþ l�:

ð3:77Þ

w[m + N−n]

 n

1 m + N

w[m + N−n + l]

n

1 m + N + l

w[m−n]

 n

 m −L −1 m −L m

w[m − n + l]

 n

m − L + l −1 m + l
m − L + l

Figure 3.14 Relative positions of various time-reversed and -shifted window sequences.

84 STOCHASTIC PROCESSES AND MODELS

Therefore, Ro½l;mþ N� can be calculated recursively from Ro½l;m� using (3.77).

The autocorrelation estimate at mþ N is thus given by

R½l;mþ N� ¼ Ro½l;mþ N� þ
XmþN

n¼mþN�L
x½n�w½mþ N � n�x½n� l�w½mþ N � nþ l�:

ð3:78Þ

Note from Figure 3.14 that a total of N þ Lþ lmax þ 1 values of the window

must be stored. Discounting the first value of zero, a total of N þ Lþ lmax values

are needed. This number can also be found from the limits of the summations in

(3.77) and (3.78).

The following pseudocode performs the calculations:

1. Ro [l, m] 0

2. temp 0

3. for n m � L to m þ N � L � 1

4. temp temp þx[n]x[n � l]w[m þ N � n]w[m þ N � n þ l]

5. Ro[l,m þ N] a2N Ro[l,m]þtemp
6. temp 0

7. for n m þ N � L to m þ N

8. temp temp þ x[n]x[n � l]w[m þ N � n]w[m þ N � nþl]

9. R[l,m þ N] Ro[l,m þ N]þtemp// Results are here

10. m m þ N

11. goto 2

3.5 OTHER SIGNAL MODELS

Besides the AR model presented in Section 3.3, there are other linear models that

are encountered less frequently; however, they are sometimes applied for specific

tasks. The models included in this section are the moving average (MA) model and

the autoregressive–moving average (ARMA) model.

MA Model

The moving average process x½n� of order K satisfies the difference equation

x½n� ¼ v½n� þ b1v½n� 1� þ � � � þ bKv½n� K�; ð3:79Þ

where the constants b1; b2; . . . ; bK are known as the MA parameters and v½n� repre-
sents a white noise process. Thus, an MA process is formed by a linear combination

of ðK þ 1Þ white noise samples. Figure 3.15 shows the MA process analyzer and

synthesizer filters.

OTHER SIGNAL MODELS 85

ARMA Model

The autoregressive–moving average process x½n� of orders ðM;KÞ satisfies the

difference equation

x½n� þ a1x½n� 1� þ � � � þ aMx½n�M� ¼ v½n� þ b1v½n� 1� þ � � � þ bKv½n� K�;
ð3:80Þ

where the constants a1; . . . ; aM; b1; . . . ; bK are the ARMA parameters, with v½n�
a white noise process. The ARMA model is the most flexible of all three linear

models; however, its design and analysis are more difficult than the AR or the

MA model.

3.6 SUMMARY AND REFERENCES

Important concepts in statistical signal processing are presented in this chapter,

which form the foundations for many speech coding algorithms. As we will see

in later chapters, many coding schemes attempt to estimate the parameters of a

time-varying filter, used to capture the PSD of the original speech. Since the

x[n] v[n]

v[n] x[n]

z−1

z−1

z−1

b1

bK−1

bK

z−1

z−1

z−1

−b1

−bK−1

−bK

Figure 3.15 Direct form realization of the MA process analyzer filter (top) and the

synthesizer filter (bottom).

86 STOCHASTIC PROCESSES AND MODELS

number of parameters needed to specify the time-varying filter is far less than the

number of speech samples, a high compression ratio is achievable.

Further reading in spectrum estimation can be found in Stearns and Hush [1990]

and Therrien [1992]. Foundation of stochastic processes are found in Papoulis

[1991] and Peebles [1993]. A comprehensive discussion of finite-length effects in

DSP systems, and noise performance of FIR and IIR filters are found in DeFatta

et al. [1988].

EXERCISES

3.1 The Parseval theorem in the Fourier transform states that if

x½n� !F XðejoÞ
then

X1
n¼�1

jx½n�j2 ¼ 1

2p

ðp
�p
jXðejoÞj2do:

Use the theorem to derive (3.3).

3.2 Derive (3.20) from (3.13) based on the fact that R½n; nþ l� ¼ R½l� for a WSS

random signal. That is, the autocorrelation is constant with respect to the time

variable n.

3.3 The zero mean condition for white noise can be verified as follows. Given the

white noise signal x½n� with zero mean ðEfx½n�g ¼ 0Þ, form another signal with

y½n� ¼ x½n� þ m, where m 6¼ 0 is a constant. Show that the autocorrelation

function of y½n� does not satisfy the white noise definition.

3.4 The random variables x and y are uncorrelated if the cross-covariance defined

by

Cxy ¼ Efðx� mxÞðy� myÞg

is zero, with mx and my being the mean of x and y, respectively. Argue why,

for a white noise signal, samples from different time instances are

uncorrelated.

3.5 Cross-covariance for the jointly WSS random processes x½n� and y½n� is defined
by

Cxy½l� ¼ Efðx½n� � mxÞðy½n� l� � myÞg;

that is, it is a correlation function for the random processes with the mean

removed (mx is the mean of x½n� and my is the mean of y½n�). Derive the

EXERCISES 87

following equations:

Cyx½l� ¼ h½l� � Cx½l�;
Cxy½l� ¼ h�½�l� � Cx½l�;
Cy½l� ¼ h½l� � Cxy½l�;
Cy½l� ¼ h½l� � h�½�l� � Cx½l�;

where similar conditions as for (3.25) to (3.28) apply.

3.6 We are given an LTI system with transfer function HðejoÞ. The system input is

the WSS process x½n� with PSD SxðejoÞ; the output process is y½n�. Then
SyxðejoÞ ¼ HðejoÞSxðejoÞ;
SxyðejoÞ ¼ H�ðejoÞSxðejoÞ;
SyðejoÞ ¼ HðejoÞSxyðejoÞ:

Sxy and Syx are the cross PSD between x½n� and y½n� and are defined as the

Fourier transform of the respective cross-correlation functions.

3.7 Show that the normal equation can be written in the form

1 a1 � � � aM

a1 1þ a2 � � � 0

..

. ..
. . .

. ..
.

aM aM�1 � � � 1

0
BBBB@

1
CCCCA

Rx½0�
Rx½1�
..
.

Rx½M�

0
BBBB@

1
CCCCA ¼

s2
v

0

..

.

0

0
BBB@

1
CCCA:

This form of the equation can be used to solve for the autocorrelation sequence

Rx½l� given the model coefficients ai and the white noise variance s2
v .

3.8 Ignoring the relation containing the white noise variance ðs2
vÞ, show that the

normal equation can be written as

Rx½0� Rx½1� � � � Rx½M � 1�
Rx½1� Rx½0� � � � Rx½M � 2�
..
. ..

. . .
. ..

.

Rx½M � 1� Rx½M � 2� � � � Rx½0�

0
BBBBB@

1
CCCCCA

a1

a2

..

.

aM

0
BBBB@

1
CCCCA ¼ �

Rx½1�
Rx½2�
..
.

Rx½M�

0
BBBB@

1
CCCCA:

Thus, the AR parameters ai can be found from the experimentally accessible

quantities Rx½l�; that is, Rx½l� can be estimated from actual data samples of

x½n�.

3.9 For the ten-order AR model presented in Example 3.2, use the alternative form

of the normal equation as shown in Exercise 3.7 to solve for the variance of the

AR signal, assuming that the input white noise has unit variance.

88 STOCHASTIC PROCESSES AND MODELS

3.10 Consider the l-dependent rectangular window

w½n� ¼
ffiffiffiffiffiffiffiffi
N

N�jlj
q

; n ¼ 0; 1; . . . ;N � 1;

0; otherwise:

(

Substituting in (3.54) yields the estimator

R½l;m� ¼ 1

N � jlj
Xm

n¼m�Nþ 1þ jlj
x½n�x½n� jlj�

with jlj < N. Show that R½l;m� is an unbiased autocorrelation estimator.

One problem with this estimator is that when jlj approaches N, the

denominator in the above estimation equation approaches zero, leading to

numerical problems. Thus, even though the estimator is unbiased, it is

seldom used in practice.

3.11 Consider the autocorrelation estimator

R½l;m� ¼ 1

N

X1
n¼�1

x½n�x½n� jlj�w½m� n�:

In this estimator, the signal product is computed first; it is then multiplied by

the window to calculate the autocorrelation. For a rectangular window of

length N show that

R½l;m� ¼ 1

N

Xm
n¼m�Nþ1

x½n�x½n� jlj�

is an unbiased estimator.

3.12 Given

wl½n� ¼ w½n�w½nþ l�;
where

w½n� ¼ ðnþ 1Þanu½n�;
prove that

WlðzÞ ¼ ðlþ 1Þal � ðl� 1Þalþ2z�1
1� 3a2z�1 þ 3a4z�2 � a6z�3

;

where wl½n� and WlðzÞ form a z-transform pair. Hint: Use the time-shift

property of the z-transform [Oppenheim and Schafer, 1989]

w½nþ l� !z zlWðzÞ:
For a < jzj <1, apply the complex convolution theorem and solve the

contour integral based on the residue theorem [Churchill and Brown, 1990].

EXERCISES 89

3.13 Repeat the Chen window design procedure for (a) a ¼ 0:751=40; L ¼ 35 and

(b) a ¼ 0:751=8; L ¼ 20. Find the values of b and c for both cases. These

specifications are used by the ITU-T G.728 LD-CELP coder (Chapter 14),

where the first one is for the synthesis filter while the second one is for the

log-gain predictor.

3.14 Draw the signal flow graphs for the ARMA process analyzer/synthesizer

filters.

90 STOCHASTIC PROCESSES AND MODELS

CHAPTER 4

LINEAR PREDICTION

Linear prediction (LP) forms an integral part of almost all modern day speech cod-

ing algorithms. The fundamental idea is that a speech sample can be approximated

as a linear combination of past samples. Within a signal frame, the weights used to

compute the linear combination are found by minimizing the mean-squared predic-

tion error; the resultant weights, or linear prediction coefficients (LPCs*), are used

to represent the particular frame.

Within the core of the LP scheme lies the autoregressive model (Chapter 3).

Indeed, linear prediction analysis is an estimation procedure to find the AR para-

meters, given samples of the signal. Thus, LP is an identification technique where

parameters of a system are found from the observation. The basic assumption is that

speech can be modeled as an AR signal, which in practice has been found to be

appropriate.

Another interpretation of LP is as a spectrum estimation method. As explained

earlier, LP analysis allows the computation of the AR parameters, which define the

PSD of the signal itself (Chapter 3). By computing the LPCs of a signal frame, it is

possible to generate another signal in such a way that the spectral contents are close

to the original one.

LP can also be viewed as a redundancy removal procedure where information

repeated in an event is eliminated. After all, there is no need for transmission if

certain data can be predicted. By displacing the redundancy in a signal, the amount

*In some literature, the linear prediction coefficients are referred to as LPC parameters, with the acronym

meaning ‘‘linear prediction coding,’’ which is the name assigned to an early standardized coder covered in

Chapter 9. Since linear prediction is a general tool that might not apply to coding applications, we take the

simpler approach in this book by referring to the coefficient as LPC. Hence, the LPC acronym bears two

different meanings, which is normally clear from the context.

91

of bits required to carry the information is lowered, therefore achieving the purpose

of compression.

In this chapter, the basic problem of LP analysis is stated, followed by its adapta-

tion toward nonstationary signals. Examples of processing on actual speech samples

are provided. Two computationally efficient procedures, namely, the Levinson–

Durbin algorithm and the Leroux–Gueguen algorithm, are explained. The concept

of long-term linear prediction is described, followed by some LP-based speech

synthesis models. Practical issues related to speech processing are explained,

with an alternative prediction scheme based on the moving average (MA) model

given at the end of the chapter. LP is by no means confined to the speech processing

arena; in fact, it is widely applied to many diverse areas. Readers are encouraged to

consult other sources for additional information on the topic.

4.1 THE PROBLEM OF LINEAR PREDICTION

Here, linear prediction is described as a system identification problem, where the

parameters of an AR model are estimated from the signal itself. The situation is

illustrated in Figure 4.1. The white noise signal x½n� is filtered by the AR process

synthesizer to obtain s½n�—the AR signal—with the AR parameters denoted by âi.

A linear predictor is used to predict s½n� based on theM past samples; this is done with

ŝ½n� ¼ �
XM
i¼1

ais½n� i�; ð4:1Þ

where the ai are the estimates of the AR parameters and are referred to as the linear

prediction coefficients (LPCs)*. The constant M is known as the prediction order.

Therefore, prediction is based on a linear combination of the M past samples of the

signal, and hence the prediction is linear. The prediction error is equal to

e½n� ¼ s½n� � ŝ½n�: ð4:2Þ

 Signal source

AR
signal
s[n]

e[n]
Prediction

error

1

1
1

+ −

=
∑â zi

i

i

M − −

=
∑a zi

i

i

M

1
x[n]

White
noise

Predicted
signal

[]s n

AR process
synthesizer

Predictor

Figure 4.1 Linear prediction as system identification.

*In some literature, the sign convention for the LPC is reversed.

92 LINEAR PREDICTION

That is, it is the difference between the actual sample and the predicted one.

Figure 4.2 shows the signal flow graph implementation of (4.2) and is known

as the prediction-error filter: it takes an AR signal as input to produce the

prediction-error signal at its output.

Error Minimization

The system identification problem consists of the estimation of the AR parameters

âi from s½n�, with the estimates being the LPCs. To perform the estimation, a criter-

ion must be established. In the present case, the mean-squared prediction error

J ¼ E e2½n�� � ¼ E s½n� þ
XM
i¼1

ais½n� i�
 !2

8<
:

9=
; ð4:3Þ

is minimized by selecting the appropriate LPCs. Note that the cost function J is

precisely a second-order function of the LPCs. Consequently, we may visualize

the dependence of the cost function J on the estimates a1, a2, . . ., aM as a bowl-

shaped (M þ 1)-dimensional surface with M degrees of freedom. This surface is

characterized by a unique minimum. The optimal LPCs can be found by setting

the partial derivatives of J with respect to ai to zero; that is,

qJ
qak
¼ 2E s½n� þ

XM
i¼1

ais½n� i�
 !

s½n� k�
()

¼ 0 ð4:4Þ

for k ¼ 1; 2; . . . ;M. At this point, it is maintained without proof that when (4.4) is

satisfied, then ai ¼ âi; that is, the LPCs are equal to the AR parameters. Justification

s [n] e [n]

z-1

z-1

z-1

a
1

a
2

aM

− []s n

Figure 4.2 The prediction-error filter.

THE PROBLEM OF LINEAR PREDICTION 93

of this claim appears at the end of the section. Thus, when the LPCs are found,

the system used to generate the AR signal (AR process synthesizer) is uniquely

identified.

Normal Equation

Equation (4.4) can be rearranged to give

Efs½n�s½n� k�g þ
XM
i¼1

aiEfs½n� i�s½n� k�g ¼ 0 ð4:5Þ

or XM
i¼1

aiRs½i� k� ¼ �Rs½k� ð4:6Þ

for k ¼ 1; 2; . . . ;M, where

Rs½i� k� ¼ Efs½n� i�s½n� k�g; ð4:7Þ
Rs½k� ¼ Efs½n�s½n� k�g: ð4:8Þ

Equation (4.6) defines the optimal LPCs in terms of the autocorrelation Rs½l� of the
signal s½n�. In matrix form, it can be written as

Rsa ¼ �rs; ð4:9Þ

where

Rs ¼

Rs½0� Rs½1� � � � Rs½M � 1�
Rs½1� Rs½0� � � � Rs½M � 2�
..
. ..

. . .
. ..

.

Rs½M � 1� Rs½M � 2� � � � Rs½0�

0
BBBB@

1
CCCCA; ð4:10Þ

a ¼ ½a1 a2 � � � aM�T ; ð4:11Þ
rs ¼ ½Rs½1� Rs½2� � � � Rs½M��T : ð4:12Þ

Equation (4.9) is known as the normal equation. Assuming that the inverse of the

correlation matrix Rs exists, the optimal LPC vector is obtained with

a ¼ �Rs
�1rs: ð4:13Þ

Equation (4.13) allows the finding of the LPCs if the autocorrelation values of s½n�
are known from l ¼ 0 to M.

94 LINEAR PREDICTION

Prediction Gain

The prediction gain of a predictor is given by

PG ¼ 10 log10
s2
s

s2
e

� �
¼ 10 log10

E s2½n�� �
E e2½n�f g
� �

ð4:14Þ

and is the ratio between the variance of the input signal and the variance of the

prediction error in decibels (dB). Prediction gain is a measure of the predictor’s per-

formance. A better predictor is capable of generating lower prediction error, leading

to a higher gain.

Example 4.1: Predicting White Noise Consider the situation when s½n� is a white
noise signal; that is, Rs½l� ¼ s2

sd½l�. From (4.12) we see that rs is the zero vector and
from (4.10) Rs is a diagonal matrix, leading to the LPC vector a ¼ 0. Hence,
e½n� ¼ s½n� and the prediction gain is PG ¼ 0 dB. The result means that white noise

is unpredictable: nothing can be gained with a predictor. The unpredictability is due

to the fact that no correlation exists between white noise samples. For most

real-world signals, like speech, correlation exists and hence it is possible to obtain

higher than zero gain with a linear predictor.

Minimum Mean-Squared Prediction Error

From Figure 4.1 we can see that when ai ¼ âi, e½n� ¼ x½n�; that is, the prediction

error is the same as the white noise used to generate the AR signal s½n�. Indeed,
this is the optimal situation where the mean-squared error is minimized, with

Jmin ¼ E e2½n�� � ¼ E x2½n�� � ¼ s2
x ; ð4:15Þ

or equivalently, the prediction gain is maximized.

The optimal condition can be reached when the order of the predictor is equal to

or higher than the order of the AR process synthesizer. In practice, M is usually

unknown. A simple method to estimate M from a signal source is by plotting the

prediction gain as a function of the prediction order. In this way it is possible to

determine the prediction order for which the gain saturates; that is, further increas-

ing the prediction order from a certain critical point will not provide additional

gain. The value of the predictor order at the mentioned critical point represents a

good estimate of the order of the AR signal under consideration.

As was explained before, the cost function J in (4.3) is characterized by a unique

minimum. If the prediction order M is known, J is minimized when ai ¼ âi, leading

to e½n� ¼ x½n�; that is, prediction error is equal to the excitation signal of the AR

process synthesizer. This is a reasonable result since the best that the prediction-

error filter can do is to ‘‘whiten’’ the AR signal s½n�. Thus, the maximum prediction

THE PROBLEM OF LINEAR PREDICTION 95

gain is given by the ratio between the variance of s½n� and the variance of x½n� in
decibels.

Taking into account the AR parameters used to generate the signal s½n�, we
have

Jmin ¼ s2
x ¼ Rs½0� þ

XM
i¼1

aiRs½i�; ð4:16Þ

which was already derived in Chapter 3. The above equation can be combined with

(4.9) to give

Rs½0� rTs

rs Rs

� �
1

a

� �
¼ Jmin

0

� �
ð4:17Þ

and is known as the augmented normal equation, with 0 the M � 1 zero vector.

Equation (4.17) can also be written as

XM
i¼0

aiRs i� k½ � ¼ Jmin; k ¼ 0

0; k ¼ 1; 2; . . . ;M

�
ð4:18Þ

where a0 ¼ 1.

4.2 LINEAR PREDICTION ANALYSIS
OF NONSTATIONARY SIGNALS

So far the discussion is focused on a WSS stochastic process. Due to the dynamic

nature of a speech signal, the LPCs must be calculated for every signal frame.

Within a frame, one set of LPCs is determined and used to represent the signal’s

properties in that particular interval, with the underlying assumption that the statis-

tics of the signal remain unchanged within the frame. The process of calculating the

LPCs from signal data is called linear prediction analysis.

The problem of linear prediction is restated as follows. It is desired to calculate

the LPCs on the N data points ending at time m: s½m� N þ 1�, s½m� N þ
2�; . . . ; s½m�. The LPC vector is written as

a½m� ¼ ½a1½m� a2½m� � � � aM ½m��T ð4:19Þ

with M being the prediction order. From the last section, we need to solve the

normal equation, rewritten here in a time-adaptive form

R½m�a½m� ¼ �r½m�; ð4:20Þ

96 LINEAR PREDICTION

with

R½m� ¼

R½0;m� R½1;m� R½2;m� � � � R½M � 1;m�
R½1;m� R½0;m� R½1;m� � � � R½M � 2;m�
R½2;m� R½1;m� R½0;m� � � � R½M � 3;m�

..

. ..
. . .

. ..
.

R½M � 1;m� R½M � 2;m� R½M � 3;m� � � � R½0;m�

0
BBBBBB@

1
CCCCCCA
ð4:21Þ

and

r½m� ¼ ½R½1;m� R½2;m� � � � R½M;m��T : ð4:22Þ

Hence, for the case of nonstationary signals, LP analysis is performed for every

signal frame ending at time m. The autocorrelation values R½l;m� are estimated for

each frame and the normal equation is solved to yield the set of LPCs associated

with the particular frame. Methods of autocorrelation estimation are extensively

discussed in Chapter 3.

Prediction Schemes

Different prediction schemes are used in various applications and are decided by

system requirements. Generally, two main techniques are applied in speech coding:

internal prediction and external prediction. Figure 4.3 illustrates the schemes. For

internal prediction, the LPCs derived from the estimated autocorrelation values

using the frame’s data are applied to process the frame’s data themselves. In exter-

nal prediction, however, the derived LPCs are used in a future frame; that is, the

n n
m −N+1 N m m−N+1 N m

Interval where the
autocorrelation
values are estimated.

Interval where the
autocorrelation
values are estimated.

The LPCs derived from the
estimated autocorrelation
values are used to predict the
signal samples within the same
interval.

Interval where the
derived LPCs from the
estimated autocorrelation
values are used to predict
the signal samples.

Figure 4.3 Illustration of internal prediction (left) and external prediction (right).

LINEAR PREDICTION ANALYSIS OF NONSTATIONARY SIGNALS 97

LPCs associated with the frame are not derived from the data residing within the

frame, but from the signal’s past. The reason why external prediction can be used is

because the signal statistics change slowly with time. If the frame is not excessively

long, its properties can be derived from the not so distant past.

Many speech coding algorithms use internal prediction, where the LPCs of a

given frame are derived from the data pertaining to the frame. Thus, the resultant

LPCs capture the statistics of the frame accurately. Typical length of the frame

varies from 160 to 240 samples. A longer frame has the advantage of less computa-

tional complexity and lower bit-rate, since calculation and transmission of LPCs are

done less frequently. However, a longer coding delay results from the fact that the

system has to wait longer for sample collection. Also, due to the changing nature of

a nonstationary environment, the LPCs derived from a long frame might not be able

to produce good prediction gain. On the other hand, a shorter frame requires more

frequent update of the LPCs, resulting in a more accurate representation of the sig-

nal statistics. Drawbacks include higher computational load and bit-rate. Most

internal prediction schemes rely on nonrecursive autocorrelation estimation

methods, where a finite-length window is used to extract the signal samples.

External prediction is prevalently used in those applications where low coding

delay is the prime concern. In that case, a much shorter frame must be used (on

the order of 20 samples, such as the LD-CELP standard—Chapter 14). A recursive

autocorrelation estimation technique is normally applied so that the LPCs are

derived from the samples before the time instant n ¼ m� N þ 1 (Figure 4.3).

Note that the shape of the window associated with a recursive autocorrelation

estimation technique puts more emphasis on recent samples. Thus, the statistics

associated with the estimates are very close to the actual properties of the frame

itself, even though the estimation is not based on the data internal to the frame.

In many instances, the notions of internal and external become fuzzy. As we will

see later in the book, many LP analysis schemes adopted by standardized coders are

based on estimating several (usually two) sets of LPCs from contiguous analysis

intervals. These coefficients are combined in a specific way and applied to a given

interval for the prediction task. We skip the details for now, which are covered

thoroughly in Chapter 8, when interpolation of LPCs is introduced.

Prediction Gain

Prediction gain is given here using a similar definition as presented in the last sec-

tion, with the expectations changed to summations

PG m½ � ¼ 10 log10

Pm
n¼m�Nþ1 s

2½n�Pm
n¼m�Nþ1 e2½n�

� �
; ð4:23Þ

where

e½n� ¼ s½n� � ŝ½n� ¼ s½n� þ
XM
i¼1

ai m½ �s½n� i�; n ¼ m� N þ 1; . . . ;m: ð4:24Þ

98 LINEAR PREDICTION

The LPCs ai½m� are found from the samples inside the interval ½m� N þ 1;m� for
internal prediction, and n < m� N þ 1 for external prediction. Note that the pre-

diction gain defined in (4.23) is a function of the time variable m. In practice, the

average performance of a prediction scheme is often measured by the segmental

prediction gain, defined with

SPG ¼ AfPG½m�g; ð4:25Þ
which is the time average of the prediction gain for each frame in the decibel

domain.

Example 4.2 White noise is generated using a random number generator with

uniform distribution and unit variance. This signal is then filtered by an AR synthe-

sizer with

a1 ¼ 1:534 a2 ¼ 1 a3 ¼ 0:587 a4 ¼ 0:347 a5 ¼ 0:08

a6 ¼ �0:061 a7 ¼ �0:172 a8 ¼ �0:156 a9 ¼ �0:157 a10 ¼ �0:141

The frame of the resultant AR signal is used for LP analysis, with a length of 240

samples. Nonrecursive autocorrelation estimation using a Hamming window is

applied. LP analysis is performed with prediction order ranging from 2 to 20; pre-

diction error and prediction gain are found for each case. Figure 4.4 summarizes the

results, where we can see that the prediction gain grows initially from M ¼ 2 and is

maximized when M ¼ 10. Further increasing the prediction order will not provide

additional gain; in fact, it can even reduce it. This is an expected result since the AR

model used to generate the signal has order ten.

0 10 20
9

9.5

10

PG

M

Figure 4.4 Prediction gain (PG) as a function of the prediction order (M) in an experiment.

LINEAR PREDICTION ANALYSIS OF NONSTATIONARY SIGNALS 99

Theoretically, the curve of prediction gain as a function of the prediction order

should be monotonically increasing, meaning that PGðM1Þ � PGðM2Þ if M1 � M2.

In the present experiment, however, only one sample realization of the random

process is utilized; thus, the general behavior of the linear predictor is not fully

revealed. For a more accurate study on the behavior of the signal, a higher number

of sample realizations for the random signal are needed.

Figure 4.5 compares the theoretical PSD (defined with the original AR para-

meters) with the spectrum estimates found with the LPCs computed from the signal

frame using M ¼ 2, 10, and 20. For low prediction order, the resultant spectrum is

not capable of fitting the original PSD. An excessively high order, on the other

hand, leads to overfitting, where undesirable errors are introduced. In the present

case, a prediction order of 10 is optimal. Note how the spectrum of the original

signal is captured by the estimated LPCs. This is the reason why LP analysis is

known as a spectrum estimation technique, specifically a parametric spectrum

estimation method since the process is done through a set of parameters or

coefficients.

ω /π

0 0.5 1
0.01

0.1

1

10

()H()ω 2

()H10()ω 2

ω
π

ω /π

S(e
jω

)

0 0.5 1
0.01

0.1

1

10

ω
π

S(e
jω

)

πω /(a) (b)

0 0.5 1
0.01

0.1

1

10

S(e
jω

)

(c)

Figure 4.5 Plots of PSD (solid trace) together with several estimates (dot trace) using the

LPC found with (a) M ¼ 2, (b) M ¼ 10, and (c) M ¼ 20.

100 LINEAR PREDICTION

4.3 EXAMPLES OF LINEAR PREDICTION ANALYSIS OF SPEECH

So far the linear prediction analysis technique was described in a general context.

For applications involving a speech signal, the signal itself is often assumed to

satisfy the AR model. Facts related to LP analysis of speech are derived in this sec-

tion from real speech samples, where accuracy of the AR assumption is evaluated.

The observations made are used to tailor the scheme of LP as applied to speech

coding.

Example 4.3 Speech samples of a male subject are used in the experiment. Figure

4.6 shows the speech frames considered. As we can see, the frame ending at

m ¼ 400 is unvoiced, and the frame ending at m ¼ 1000 is voiced, with a pitch per-

iod approximately equal to 49 time-units. Also note that the unvoiced frame has

amplitude far lower than the voiced frame, which is commonly the case in practice.

Length of each frame is equal to 240 samples—a popular value used in speech

coding. Periodograms of the two frames are plotted in Figure 4.7. Note that the

ω /πω /π

0 0.5 1
0.001

0.01

0.1

1

10

100

1000

1 10
4

1 10
5

0 0.5 1
0.001

0.01

0.1

1

10

100

1000

1 10
4

1 10
5

I()ωI(e
jω

) I(e
jω

)

Figure 4.7 Periodograms of the signal frames in Figure 4.6. Left: Unvoiced. Right: Voiced.

n

200 300 400
20− −

0

20

800 900 1000
200

0

200

s
ns[]

n n

s[n]

Figure 4.6 The speech frames used in the experiment. Left: Unvoiced (m ¼ 400). Right:

Voiced (m ¼ 1000).

EXAMPLES OF LINEAR PREDICTION ANALYSIS OF SPEECH 101

spectrum of the unvoiced frame is relatively smooth, while for the voiced frame a

harmonic structure is present, indicating a strong fundamental component in the

signal. Obviously the harmonics are associated with periodicity in the time domain.

Periodicity can also be detected or measured from the autocorrelation values

shown in Figure 4.8, where the lag ranges from 0 to 100. For the noise-like

unvoiced frame, the values of the autocorrelation have low magnitude when the

lag is higher than ten, indicating the fact that correlation between distant samples

is low. For the voiced frame, on the other hand, high correlation exists between

samples, which is particularly strong when the lag is equal to the pitch period

and is around 49 in the present case. As expected, the value of the autocorrelation

gradually decreases with increasing lag in both cases since correlation between

samples tends to weaken. These results show that it is possible to classify a frame

as unvoiced or voiced by calculating its autocorrelation, and pitch period can be

determined by locating the peaks of the autocorrelation.

ll

0 50 100
5000−

0

5000

0 50 100
5 10

5

0

5 10
5

R
lR[l] R[l]

−

Figure 4.8 Autocorrelation values for the signal frames in Figure 4.6. Left: Unvoiced.

Right: Voiced.

1 10 100
0

5

10

15

PG

M

Voiced

Unvoiced

Figure 4.9 Plot of prediction gain (PG) as a function of the prediction order (M) for the

signal frames in Figure 4.6.

102 LINEAR PREDICTION

The selected frames are used for LP analysis, where the derived LPCs are

employed to predict the samples within the frame (internal prediction). The predic-

tion gain results are found for prediction order ranging from 2 to 100 and are plotted

in Figure 4.9.

STATEMENT 1: For a given prediction order, the average prediction gain obtainable

for voiced frames is higher than for unvoiced frames.

The above statement is partially reflected in Figure 4.9 and is true in general

when a large number of frames are analyzed. This can be understood from the nat-

ure of the signal itself. An unvoiced frame is highly random, with low correlation

between samples, and therefore less predictable than a voiced frame.

Back to Figure 4.9, we observe that for the unvoiced frame, prediction gain

increases abruptly when the prediction order goes from 2 to 5. Further increasing

the prediction order provides additional gain increase, but at a milder pace. For

M > 10, prediction gain remains essentially constant, implying the fact that corre-

lation between far separated samples is low.

For the voiced frame, prediction gain is low for M � 3, it remains almost con-

stant for 4 < M < 49, and it reaches a peak for M � 49. The phenomenon is due to

the fact that, for the voiced frame under consideration, the pitch period is approxi-

mately equal to 49. For M < 49, the number of LPCs is not enough to remove the

correlation between samples one pitch period apart. For M � 49, however, the

linear predictor is capable of modeling the correlation between samples one pitch

period apart, leading therefore to a substantial improvement in prediction gain.

Further note that the change in prediction gain is abrupt: between M ¼ 48 and

49, for instance, a jump of nearly 3 dB in prediction gain is observed.

STATEMENT 2: For a voiced frame, the prediction gain associated with a predictor

having a prediction order large enough to cover one pitch period is substantially

higher than the prediction gain associated with a predictor having a prediction

order lower than one pitch period.

The above statement is a key observation to develop the concept of long-term

prediction (described later), which is an efficient modeling strategy for voiced

signals.

The effectiveness of the predictor at different prediction orders can be studied

further by observing the level of ‘‘whiteness’’ in the prediction-error sequence.

The prediction-error filter associated with a good predictor is capable of removing

as much correlation as possible from the signal samples, leading to a prediction-

error sequence with a flat PSD. Figure 4.10 illustrates the prediction-error sequence

of the unvoiced frame and the corresponding periodogram for different prediction

order. Note that M ¼ 4 is not enough to ‘‘whiten’’ the original signal frame, where

we can see that the periodogram of the prediction error does not mimic the flat

spectrum of a white noise signal. For M ¼ 10, however, flatness is achieved in the

periodogram and, hence, the prediction error becomes ‘‘roughly’’ white.

EXAMPLES OF LINEAR PREDICTION ANALYSIS OF SPEECH 103

Figure 4.11 shows the prediction-error sequences and the corresponding period-

ograms of the voiced frame. We can see that forM ¼ 3, a high level of periodicity is

still present in the prediction-error sequence and a harmonic structure is observed in

the corresponding periodogram. When M ¼ 10, the amplitude of the prediction-

error sequence becomes lower. However, the periodic components remain. As we

can see, the periodogram develops a flatter appearance, but the harmonic structure

is still present. ForM ¼ 50, periodicity in the time domain and frequency domain is

reduced to a minimum. Hence, in order to effectively ‘‘whiten’’ the voiced frame, a

minimum prediction order equal to 50 is required.

STATEMENT 3: To remove the correlation between samples using a linear predictor,

a much higher prediction order is required for a voiced frame than for an unvoiced

frame. For effective whitening of a voiced frame, the prediction order should be

greater than or equal to the underlying pitch period of the signal.

For many speech coding algorithms where the LPCs are quantized and trans-

mitted as information on the frame, a prediction order of ten is normally used. In

general, an order of ten can describe quite well the PSD of an unvoiced frame, but it

ω /π

ω /π

200 300 400
20−

−

0

20

200 300 400
20

0

20

n

n

0 0.5 1
0.001

0.01

0.1

1

10

100

1000

IE()ω

0 0.5 1
0.001

0.01

0.1

1

10

100

1000

IE()ω

I(e
jω

)

I(e
jω

)

e[n]

e[n]

Figure 4.10 Plots of prediction error and periodograms for the unvoiced frame in Figure

4.6. Top: M ¼ 4. Bottom: M ¼ 10.

104 LINEAR PREDICTION

is definitely inadequate for a voiced frame. As we will see later in this book, dif-

ferent coding algorithms use different strategies to recreate the spectrum of a voiced

frame. Most of these algorithms rely on a predictor of order ten to capture the

‘‘envelope’’ of the PSD. The idea of the envelope of the spectrum is illustrated

in Figure 4.12, where the PSD of the voiced frame using the derived LPCs is super-

imposed with the periodogram of the speech signal. We can see that the spectrum

n ω /π

e[n]

e[n]

I(e
jω

)

0 0.5 1
1

10

100

1000

1 10
4

1 10
5

IE()ω

ω
π

0 0.5 1
1

10

100

1000

1 10
4

1 10
5

800 900 1000
100

0

100

n

0 0.5 1
1

10

100

1000

1 10
4

1 10
5

IE()ω

ω
π

800 900 1000
100

0

100

n

800 900 1000
100

0

100

I(e
jω

)

n

n

ω /π

ω /π

I(e
jω

)

e[n]

−

−

−

Figure 4.11 Plots of prediction error and periodograms for the voiced frame in Figure 4.6.

Top: M ¼ 3. Middle: M ¼ 10. Bottom: M ¼ 50.

EXAMPLES OF LINEAR PREDICTION ANALYSIS OF SPEECH 105

estimate with a prediction order of ten represents a smoothed version, or the envel-

ope of the signal spectrum. When M ¼ 50, the spectrum estimate becomes much

closer to the periodogram.

Example 4.4: External Prediction Using the Chen Window The Chen window

(Chapter 3) with a ¼ 0:51=40 and L ¼ 30 is used in autocorrelation estimation. With

a prediction order of 50, a linear predictor is derived from the autocorrelation values

and used in external prediction, where the frame length is varied from 10 to 50.

Segmental prediction gain is measured using roughly 40 seconds of speech material.

Figure 4.13 summarizes the results, where the segmental prediction gain is plotted as

ω/π ω/π

0 0.5 1
0.001

0.01

0.1

1

10

100

1000

1 10
4

1 10
5

.())
2

ccc

0 0.5 1
0.001

0.01

0.1

1

10

100

2

0 0.5 1
0.001

0.01

0.1

1

10

100

1000

1 10
4

1 10
5

I(e
jω

)I(e
jω

)

Figure 4.12 LPC-based spectrum estimate (dotted line) and periodogram (solid line) for a

voiced speech frame. Left: M ¼ 10. Right: M ¼ 50.

0 20 40 60
8

9

10

11

N

SPG

Figure 4.13 Segmental prediction gain (SPG) as a function of the frame’s length (N) in an

external prediction experiment.

106 LINEAR PREDICTION

a function of the frame’s length. As we can see, prediction gain is the highest for

short frames, which is expected, since as the frame’s length increases, the statistics

derived from the signal’s past become less and less accurate for representing the

frame itself; therefore prediction gain drops. In the ITU-T G.728 LD-CELP coder

(Chapter 14), the frame’s length is equal to 20 samples and is a trade-off between

computational complexity, coding delay, and quality of the synthesized speech.

4.4 THE LEVINSON–DURBIN ALGORITHM

The normal equation as given in (4.9) can be solved by finding the matrix inverse

for Rs, with the solution provided in (4.13). In general, inverting a matrix is quite com-

putationally demanding. Fortunately, efficient algorithms are available to solve the

equation, which take advantage of the special structure of the correlation matrix.

This section discusses the Levinson–Durbin algorithm while the next one is con-

cerned with the Leroux–Gueguen algorithm, both highly suitable for practical

implementation of LP analysis. Consider the augmented normal equation of form

R½0� R½1� � � � R½M�
R½1� R½0� � � � R½M � 1�
..
. ..

. . .
. ..

.

R½M� R½M � 1� � � � R½0�

2
6664

3
7775

1

a1

..

.

aM

2
6664

3
7775 ¼

J

0

..

.

0

2
664
3
775 ð4:26Þ

with the objective being the solution for the LPCs ai; i ¼ 1; . . . ;M, given the auto-

correlation values R½l�; l ¼ 0; 1; . . . ;M: J represents the minimum mean-squared

prediction error or the variance of the input white noise for the AR process synthe-

sizer. In a practical situation, the autocorrelation values are estimated from the

signal samples and J is usually unknown; however, the Levinson–Durbin solution

is formulated to solve for this quantity as well.

The Levinson–Durbin approach finds the solution to the Mth-order predictor

from that of the (M � 1)th-order predictor. It is an iterative–recursive process where

the solution of the zero-order predictor is first found, which is then used to find the

solution of the first-order predictor; this process is repeated one step at a time until

the desired order is reached. The algorithm relies on two key properties of the

correlation matrix:

� The correlation matrix of a given size contains as subblocks all the lower-

order correlation matrices.

� If

R½0� R½1� � � � R½M�
R½1� R½0� � � � R½M � 1�
..
. ..

. . .
. ..

.

R½M� R½M � 1� � � � R½0�

2
66664

3
77775

a0
a1

..

.

aM

2
6664

3
7775 ¼

b0
b1

..

.

bM

2
6664

3
7775; ð4:27Þ

THE LEVINSON–DURBIN ALGORITHM 107

then

R½0� R½1� � � � R½M�
R½1� R½0� � � � R½M � 1�
..
. ..

. . .
. ..

.

R½M� R½M � 1� � � � R½0�

2
66664

3
77775

aM
aM�1
..
.

a0

2
6664

3
7775 ¼

bM
bM�1
..
.

b0

2
6664

3
7775; ð4:28Þ

that is, the correlation matrix is invariant under interchange of its columns

and then its rows. The mentioned properties are direct consequences of the

fact that the correlation matrix is Toeplitz. We say that a square matrix is

Toeplitz if all the elements on its main diagonal are equal, and if the elements

on any other diagonal parallel to the main diagonal are also equal.

We consider the solution to the augmented normal equation starting from zero

prediction order. It is shown that the solution for a certain order can be obtained

from the lower prediction order results.

Predictor of Order Zero

In this case we consider the equation

R½0� ¼ J0; ð4:29Þ

which is already solved. The above relation states basically that the minimum

mean-squared prediction error achievable with a zero-order predictor is given by

the autocorrelation of the signal at lag zero, or the variance of the signal itself.

For zero order the prediction is always equal to zero; hence, the prediction error

is equal to the signal itself. Expanding (4.29) to the next dimension, we have

R½0� R½1�
R½1� R½0�
� �

1

0

� �
¼ J0

�0

� �
; ð4:30Þ

which is the two-dimensional (2-D) version of (4.26) with a1 ¼ 0. Since a1 ¼ 0, the

optimal condition cannot be achieved in general, and the term �0 is introduced on

the right-hand side to balance the equation. This quantity is found from the equation

as

�0 ¼ R½1�: ð4:31Þ

From the property of the correlation matrix, (4.30) is equivalent to

R½0� R½1�
R½1� R½0�
� �

0

1

� �
¼ �0

J0

� �
ð4:32Þ

Equations (4.30) and (4.32) are used in the next step.

108 LINEAR PREDICTION

Predictor of Order One

We seek to solve

R½0� R½1�
R½1� R½0�
� �

1

a
ð1Þ
1

� �
¼ J1

0

� �
; ð4:33Þ

where a
ð1Þ
1 is the LPC of the predictor; the superscript denotes the prediction order

of one. J1 represents the minimum mean-squared prediction error achievable using

a first-order predictor. Thus, we have two unknowns in (4.33): a
ð1Þ
1 and J1. Consider

a solution of the form

1

a
ð1Þ
1

� �
¼ 1

0

� �
� k1

0

1

� �
; ð4:34Þ

with k1 being a constant. Multiplying both sides by the correlation matrix, we

have

R½0� R½1�
R½1� R½0�
� �

1

a
ð1Þ
1

� �
¼ R½0� R½1�

R½1� R½0�
� �

1

0

� �
� k1

R½0� R½1�
R½1� R½0�
� �

0

1

� �
ð4:35Þ

Substituting (4.30), (4.32), and (4.33) gives

J1

0

� �
¼ J0

�0

� �
� k1

�0

J0

� �
: ð4:36Þ

Then

k1 ¼ �0

J0
¼ R½1�

J0
; ð4:37Þ

where (4.31) is used. The LPC of this predictor is readily found from (4.34) to be

a
ð1Þ
1 ¼ �k1: ð4:38Þ

Using (4.36) and (4.37), we find

J1 ¼ J0 1� k21
� 	

: ð4:39Þ

Thus, the first-order predictor is completely specified. The parameter k1 is

known as the reflection coefficient (RC), representing an alternative form of LPC.

Note that k1 (and therefore a
ð1Þ
1 and J1) is derived from the results of the previous

THE LEVINSON–DURBIN ALGORITHM 109

step: the zero-order predictor. In a similar manner, we can expand (4.33) to dimen-

sion three:

R½0� R½1� R½2�
R½1� R½0� R½1�
R½2� R½1� R½0�

2
64

3
75 1

a
ð1Þ
1

0

2
4

3
5 ¼ J1

0

�1

2
4

3
5 ð4:40Þ

or

R½0� R½1� R½2�
R½1� R½0� R½1�
R½2� R½1� R½0�

2
64

3
75 0

a
ð1Þ
1

1

2
4

3
5 ¼ �1

0

J1

2
4

3
5; ð4:41Þ

where �1 represents the additional term necessary to balance the equation when a

first-order predictor is used and R½2� 6¼ 0. This quantity is solved as

�1 ¼ R½2� þ a
ð1Þ
1 R½1�: ð4:42Þ

Predictor of Order Two

We go one step further by solving

R½0� R½1� R½2�
R½1� R½0� R½1�
R½2� R½1� R½0�

2
64

3
75

1

a
ð2Þ
1

a
ð2Þ
2

2
64

3
75 ¼ J2

0

0

2
4

3
5: ð4:43Þ

The unknowns in this case are the LPCs a
ð2Þ
1 and a

ð2Þ
2 and the minimum mean-

squared prediction error J2. Consider a solution of the form

1

a
ð2Þ
1

a
ð2Þ
2

2
64

3
75 ¼ 1

a
ð1Þ
1

0

2
4

3
5� k2

0

a
ð1Þ
1

1

2
4

3
5; ð4:44Þ

with k2 as the RC. Multiplying both sides by the correlation matrix leads to

J2

0

0

2
4

3
5 ¼ J1

0

�1

2
4

3
5� k2

�1

0

J1

2
4

3
5; ð4:45Þ

110 LINEAR PREDICTION

where (4.40), (4.41), and (4.43) are used to derive the above relation. The RC k2 can

be found from (4.45) and using (4.42) for �1:

k2 ¼ 1

J1
R½2� þ a

ð1Þ
1 R½1�

 �
: ð4:46Þ

From (4.44), we find

a
ð2Þ
2 ¼ �k2; ð4:47Þ

a
ð2Þ
1 ¼ a

ð1Þ
1 � k2a

ð1Þ
1 : ð4:48Þ

Finally, J2 is found from (4.45) and (4.46) as

J2 ¼ J1 1� k22
� 	

: ð4:49Þ

For the next step, (4.43) is expanded according to

R½0� R½1� R½2� R½3�
R½1� R½0� R½1� R½2�
R½2� R½1� R½0� R½1�
R½3� R½2� R½1� R½0�

2
6664

3
7775

1

a
ð2Þ
1

a
ð2Þ
2

0

2
6664

3
7775 ¼

J2
0

0

�2

2
664

3
775 ð4:50Þ

or

R½0� R½1� R½2� R½3�
R½1� R½0� R½1� R½2�
R½2� R½1� R½0� R½1�
R½3� R½2� R½1� R½0�

2
6664

3
7775

0

a
ð2Þ
2

a
ð2Þ
1

1

2
6664

3
7775 ¼

�2

0

0

J2

2
664

3
775: ð4:51Þ

Note that

�2 ¼ R½3� þ a
ð2Þ
1 R½2� þ a

ð2Þ
2 R½1�: ð4:52Þ

Predictor of Order Three

In this case, the solution to be considered has the form

1

a
ð3Þ
1

a
ð3Þ
2

a
ð3Þ
3

2
66664

3
77775 ¼

1

a
ð2Þ
1

a
ð2Þ
2

0

2
6664

3
7775� k3

0

a
ð2Þ
2

a
ð2Þ
1

1

2
66664

3
77775: ð4:53Þ

THE LEVINSON–DURBIN ALGORITHM 111

Proceeding in a similar manner, one arrives at the solution

k3 ¼ 1

J2
R½3� þ a

ð2Þ
1 R½2� þ a

ð2Þ
2 R½1�

 �
; ð4:54Þ

a
ð3Þ
3 ¼ �k3; ð4:55Þ

a
ð3Þ
2 ¼ a

ð2Þ
2 � k3a

ð2Þ
1 ; ð4:56Þ

a
ð3Þ
1 ¼ a

ð2Þ
1 � k3a

ð2Þ
2 ; ð4:57Þ

J3 ¼ J2 1� k23
� 	

: ð4:58Þ

The procedure continues until the desired prediction order is reached.

A Summary

The Levinson–Durbin algorithm is summarized as follows. Inputs to the algorithm

are the autocorrelation coefficients R½l�; with the LPCs and RCs the outputs.

� Initialization: l ¼ 0, set

J0 ¼ R½0�:

� Recursion: for l ¼ 1; 2; . . . ;M

Step 1. Compute the lth RC

kl ¼ 1

Jl�1
R½l� þ

Xl�1
i¼1

a
ðl�1Þ
i R½l� i�

 !
: ð4:59Þ

Step 2. Calculate LPCs for the lth-order predictor:

a
ðlÞ
l ¼ �kl; ð4:60Þ

a
ðlÞ
i ¼ a

ðl�1Þ
i � kla

ðl�1Þ
l�i ; i ¼ 1; 2; . . . ; l� 1: ð4:61Þ

Stop if l ¼ M.

Step 3. Compute the minimum mean-squared prediction error associated

with the lth-order solution

Jl ¼ Jl�1 1� k2l
� 	

: ð4:62Þ

Set l lþ 1; return to Step 1.

112 LINEAR PREDICTION

The final LPCs are

ai ¼ a
ðMÞ
i ; i ¼ 1; 2; . . . ;M: ð4:63Þ

Note that in the process of solving the LPCs, the set of RCs (ki, i ¼ 1; 2; . . . ;M) is

also found.

A virtue of the Levinson–Durbin algorithm lies in its computational efficiency.

Its use results in a huge saving in the number of operations and storage locations

compared to standard methods for matrix inversion. Another benefit of its use is in

the set of RCs, which can be used for the verification of the minimum phase prop-

erty of the resultant prediction-error filter. A system is minimum phase when its

poles and zeros are inside the unit circle. Thus, a minimum phase system has a

stable and causal inverse [Oppenheim and Schafer, 1989]. Dependence of the mini-

mum phase condition on RCs is stated in the following theorem.

Theorem 4.1. The prediction-error filter with system function

A zð Þ ¼ 1þ
XM
i¼1

aiz
�i; ð4:64Þ

where the ai are the LPCs found by solving the normal equation, is a minimum

phase system if and only if the associated RCs ki satisfy the condition

jkij < 1; i ¼ 1; 2; . . . ;M: ð4:65Þ

See Appendix A for a proof of the theorem.

The fact that AðzÞ represents a minimum phase system implies that the zeros of

AðzÞ are inside the unit circle of the z-plane. Thus, the poles of the inverse system

1=AðzÞ are also inside the unit circle. Hence, the inverse system is guaranteed to be

stable if the RCs satisfy condition (4.65). Since the inverse system is used to synthe-

size the output signal in an LP-based speech coding algorithm, stability is manda-

tory with all the poles located inside the unit circle. Therefore, by using the

Levinson–Durbin algorithm to solve for the LPCs, it is straightforward to verify

the stability of the resultant synthesis filter by inspecting the RCs. If the magnitudes

of the RCs are less than one, the filter is stable.

What should we do in the case where the filter is unstable? A simple heuristic is

commonly applied to fix the situation. For instance, the LPC from the last frame

(representing a stable filter) can be taken and used in the present frame. Since adja-

cent frames often share similar statistical properties, the distortion introduced is

perceptually small.

Conversion of Reflection Coefficients to Linear Prediction Coefficients

As mentioned earlier, the RC represents an alternative form of the LPC. Indeed, a

one-to-one correspondence exists between the two sets of parameters. RCs possess

several desirable properties, making them the preferred parameters to deal with in

THE LEVINSON–DURBIN ALGORITHM 113

many practical situations. Here we consider the problem of finding the LPCs given

the set of RCs. Consider the set of RCs ki; i ¼ 1; . . . ;M. It is desired to find the

corresponding LPCs ai. The problem can be solved directly from the equations

in the Levinson–Durbin algorithm, summarized as follows:

For l ¼ 1; 2; . . . ;M,

a
ðlÞ
l ¼ �kl; ð4:66Þ

a
ðlÞ
i ¼ a

ðl�1Þ
i � kla

ðl�1Þ
l�i ; i ¼ 1; 2; . . . ; l� 1: ð4:67Þ

At the end of the loop, the desired result is ai ¼ a
ðMÞ
i .

Conversion of Linear Prediction Coefficients to Reflection Coefficients

Given the set of LPCs ai; i ¼ 1; . . . ;M, it is desired to find the corresponding

RCs ki. This problem can again be solved using the Levinson–Durbin algorithm,

working in a reversed fashion. By changing the index in (4.67) to

a
ðlÞ
l�i ¼ a

ðl�1Þ
l�i � kla

ðl�1Þ
i ð4:68Þ

and substituting (4.68) in (4.67) to eliminate a
ðl�1Þ
l�i leads to

a
ðlÞ
i ¼ a

ðl�1Þ
i � kla

ðlÞ
l�i � k2l a

ðl�1Þ
i ;

or

a
ðl�1Þ
i ¼ a

ðlÞ
i þ kla

ðlÞ
l�i

1� k2l
: ð4:69Þ

The above equation is used to find the RCs based on the following loop, with

a
ðMÞ
i ¼ ai:

For l ¼ M;M � 1; . . . ; 1,

kl ¼ �aðlÞl ; ð4:70Þ

a
ðl�1Þ
i ¼ a

ðlÞ
i þ kla

ðlÞ
l�i

1� k2l
; i ¼ 1; 2; . . . ; l� 1: ð4:71Þ

4.5 THE LEROUX–GUEGUEN ALGORITHM

A potential problem with the Levinson–Durbin algorithm lies in the values of the

LPCs, since they possess a large dynamic range and a bound on their magnitudes

114 LINEAR PREDICTION

cannot be found on a theoretical basis. The issue is of little concern if the algorithm

is implemented under a floating-point environment. However, it could present some

difficulties for fixed-point implementation.

Example 4.5 A total of 1300 frames having 240 samples each are used to demon-

strate the typical distribution of LPCs and RCs. These frames are LP analyzed with

a prediction order of ten. Figure 4.14 shows the histogram plots for the LPCs a1, a2,

a3, a6, a7, and a10. In general, we observe that the low-order coefficients tend to

have a wider dynamic range. For high-order coefficients, the magnitudes tend to

a7 a10

a3

%

%

5−

%

5− 5−

a1

0 5
0

20

40

int
m

0 5
0

20

40

a2

a6

0 5
0

20%

40

0 5
0

20

40

5−

%

0 5
0

20

40

%

0 5
0

20

40

5− 5−

Figure 4.14 Histogram plots of some LPCs, obtained from 1300 frames of speech material.

Vertical axis is the percentage of occurrence, while the horizontal axis is the value of the

coefficients.

THE LEROUX–GUEGUEN ALGORITHM 115

be small and most coefficients are gathered around the origin. Even though high-

magnitude (>4) coefficients are scarce, no clear bounds exist, leading to problems

in fixed-point implementation of the Levinson–Durbin algorithm.

Figure 4.15 shows the histogram plots of the corresponding RCs, where k1, k2,

k3, k6, k7, and k10 are displayed. Note that in all cases they are bounded so that

jkij � 1. This bound is important for efficient design of algorithms under a fixed-

point environment since usage of the finite numerical range can be maximized.

k10k7

−2

−2

−2−2

−2

%

0 2
0

10

20

.
hrc2

m

1201
100

intm

0 2
0

10

20

.
hrc6

m

1201
100

intm

0 2
0

10

20

.
hrc10

m

1201
100

%

k2

%

k6

%

0 2
0

10

20

intm

0 2
0

10

20

intm

−2 0 2
0

10

20

%

k1

k3

%

Figure 4.15 Histogram plots of some reflection coefficients, obtained from 1300 frames of

speech material. Vertical axis is the percentage of occurrence, while the horizontal axis is the

value of the coefficients.

116 LINEAR PREDICTION

The Leroux–Gueguen Solution

Leroux and Gueguen [1979] proposed a method to compute the RCs from the

autocorrelation values without dealing directly with the LPCs. Hence, problems

related to dynamic range in a fixed-point environment are eliminated. Consider

the parameter

eðlÞ½k� ¼ EfeðlÞ½n�s½n� k�g ¼
Xl
i¼0

a
ðlÞ
i R½i� k�; ð4:72Þ

where

eðlÞ½n� ¼ prediction error using an lth-order prediction-error filter;

a
ðlÞ
i ¼ LPC of an lth-order predictor;

R½k� ¼ autocorrelation value of the signal s½n�:

A fixed-point implementation arises from the fact that the parameters e, as
defined in (4.72), have a fixed dynamic range. This is stated in the following

theorem.

Theorem 4.2. Given the parameters e as defined in (4.72), then

eðlÞ½k��� �� � R½0�: ð4:73Þ

Proof. Given any two random variables x and y, the condition

E xyf gð Þ2� E x2
� �

E y2
� �

; ð4:74Þ

known as the Schwarz inequality [Papoulis, 1991], is satisfied. Applying the

inequality to our problem leads to

eðlÞ½k��� ��2¼ jEfeðlÞ½n�s½n� k�gj2 � EfðeðlÞ½n�Þ2gE s2½n� k�� � ¼ JlR½0�;

with Jl denoting the variance of the prediction error. Since the power of the predic-

tion error (Jl) is in general less than or equal to the power of the signal s½n� (R½0�),
we have jeðlÞ½k�j2 � R½0�2 and the theorem is proved.

To derive the Leroux–Gueguen algorithm, relations between the e parameters

and variables in the Levinson–Durbin algorithm are found. First, note that

kl ¼ eðl�1Þ½l�
eðl�1Þ½0� ; l ¼ 1; 2; . . . ;M; ð4:75Þ

THE LEROUX–GUEGUEN ALGORITHM 117

and is found directly from (4.72) and (4.59). Substituting the recursive relation for

the LPCs, (4.61) gives

eðlÞ½k� ¼
Xl�1
i¼0

a
ðl�1Þ
i � kla

ðl�1Þ
l�i

 �
R½i� k� � klR½l� k�

¼
Xl�1
i¼0

a
ðl�1Þ
i R½i� k� � kl

Xl�1
i¼0

a
ðl�1Þ
i R½iþ k � l�:

Note that the relation R½l� ¼ R½�l� is used. Comparing with (4.72) leads to

eðlÞ½k� ¼ eðl�1Þ½k� � kleðl�1Þ½l� k�: ð4:76Þ

The above equation relates the e parameters at the lth order with the parameters at

order l� 1. From (4.72) we observe that

eð0Þ½k� ¼ R½k�: ð4:77Þ

Hence, (4.75) and (4.76) can be used to solve the RCs recursively starting

from l ¼ 1. Higher-order solutions are built on solutions from a previous order.

The question to ask next is how many e parameters need to be computed at each

order l or what is the range of k. The answer can be found by deriving the range of k

at each l, descending from l ¼ M, with M being the desired prediction order. At

l ¼ M,

kM ¼ eðM�1Þ½M�
eðM�1Þ½0� :

Thus, we only need

eðM�1Þ½0�; eðM�1Þ½M�

from order M � 1. At order M � 1, we need to solve

kM�1 ¼ eðM�2Þ½M � 1�
eðM�2Þ½0� ;

eðM�1Þ½M� ¼ eðM�2Þ½M� � kM�1eðM�2Þ½�1�;
eðM�1Þ½0� ¼ eðM�2Þ½0� � kM�1eðM�2Þ½M � 1�:

Hence, the parameters

eðM�2Þ½�1�; eðM�2Þ½0�; eðM�2Þ½M � 1�; eðM�2Þ½M�

118 LINEAR PREDICTION

are needed at order M � 2. Proceeding in this way we can find the parameters

needed at each order l. Table 4.1 summarizes the results.

The Leroux–Gueguen algorithm can now be summarized as follows.

� Initialization: l ¼ 0, set

eð0Þ½k� ¼ R½k�; k ¼ �M þ 1; . . . ;M: ð4:78Þ

� Recursion: for l ¼ 1; 2; . . . ;M

Step 1. Compute the lth RC

kl ¼ eðl�1Þ½l�
eðl�1Þ½0� : ð4:79Þ

Stop if l ¼ M.

Step 2. Calculate the e parameters:

eðlÞ½k� ¼ eðl�1Þ½k� � kleðl�1Þ½l� k�; k ¼ �M þ lþ 1; . . . ; 0; lþ 1; . . . ;M: ð4:80Þ

Set l lþ 1; return to Step 1.

Leroux–Gueguen Versus Levinson–Durbin

The Leroux–Gueguen algorithm is better suited for fixed-point implementation

since all intermediate variables have known bound. A drawback is the fact that

TABLE 4.1 The e Parameters Required at Each Order l in the
Leroux–Gueguen Algorithm

l Parameters Required

M

M � 1 eðM�1Þ½0�; eðM�1Þ½M�
M � 2 eðM�2Þ½�1�; eðM�2Þ½0�; eðM�2Þ½M � 1�; eðM�2Þ½M�
M � 3 eðM�3Þ½�2�; . . . ; eðM�3Þ½0�; eðM�3Þ½M � 2�; . . . ; eðM�3Þ½M�
M � 4 eðM�4Þ½�3�; . . . ; eðM�4Þ½0�; eðM�4Þ½M � 3�; . . . ; eðM�4Þ½M�

..

.

1 eð1Þ½�M þ 2�; . . . ; eð1Þ½0�; eð1Þ½2�; . . . ; eð1Þ½M�
0 eð0Þ½�M þ 1�; . . . ; eð0Þ½0�; eð0Þ½1�; . . . ; eð0Þ½M�

THE LEROUX–GUEGUEN ALGORITHM 119

only RCs are returned as the result, which is not a problem if the associated filter is

in lattice form. LPCs are required for the direct-form filter and can be obtained

either using the Levinson–Durbin method or the Leroux–Gueguen algorithm

followed by the conversion procedure explained in Section 4.4.

Use of a lattice filter is often uninviting due to the increased amount of compu-

tation. In addition, for a time-varying situation, coefficient update from frame to

frame introduces a stronger undesirable transient in the lattice structure. On the

other hand, the Leroux–Gueguen approach followed by RC-to-LPC conversion

does not provide significant computational saving, if any, when compared to the

Levinson–Durbin algorithm. All these factors combined make the Levinson–Durbin

approach more popular in practice, even though it is known to have numerical

problems.

In the practical implementation of the Levinson–Durbin algorithm under a fixed-

point environment, careful planning is necessary to ensure that all variables are

within the allowed range. See Chen et al. [1991] for a discussion on the selection

between the two algorithms within the context of LD-CELP coder design, with the

Levinson–Durbin method choosen at the end.

4.6 LONG-TERM LINEAR PREDICTION

Experiments in Section 4.3 using real speech data have shown that the prediction

order must be high enough to include at least one pitch period in order to model

adequately the voiced signal under consideration. A linear predictor with an order

of ten, for instance, is not capable of accurately modeling the periodicity of the

voiced signal having a pitch period of 50. The problem is evident when the predic-

tion error is examined: a lack of fit is indicated by the remaining periodic compo-

nent. By increasing the prediction order to include one pitch period, the periodicity

in the prediction error has largely disappeared, leading to a rise in prediction gain.

High prediction order leads to excessive bit-rate and implementational cost since

more bits are required to represent the LPCs, and extra computation is needed dur-

ing analysis. Thus, it is desirable to come up with a scheme that is simple and yet

able to model the signal with sufficient accuracy.

Important observation is derived from the experimental results of Section 4.3

(Figure 4.9). An increase in prediction gain is due mainly to the first 8 to 10 coeffi-

cients, plus the coefficient at the pitch period, equal to 49 in that particular case.

The LPCs at orders between 11 and 48 and at orders greater than 49 provide essen-

tially no contribution toward improving the prediction gain. This can be seen from

the flat segments from 10 to 49, and beyond 50. Therefore, in principle, the coeffi-

cients that are not contributing toward elevating the prediction gain can be elimi-

nated, leading to a more compact and efficient scheme. This is exactly the idea of

long-term linear prediction, where a short-term predictor is connected in cascade

with a long-term predictor, as shown in Figure 4.16. The short-term predictor is

basically the one we have studied so far, with a relatively low prediction order M

in the range of 8 to 12. This predictor eliminates the correlation between nearby

120 LINEAR PREDICTION

samples or is short-term in the temporal sense. The long-term predictor, on the

other hand, targets correlation between samples one pitch period apart.

The long-term prediction-error filter with input es½n� and output e½n� has system
function

HðzÞ ¼ 1þ bz�T : ð4:81Þ

Note that two parameters are required to specify the filter: pitch period T and long-

term gain b (also known as long-term LPC or pitch gain). The procedure to deter-

mine b and T is referred to as long-term LP analysis. Positions of the predictors in

Figure 4.16 can actually be exchanged. However, experimentally it was found that

the shown configuration achieves on average a higher prediction gain [Ramachan-

dran and Kabal, 1989]. Thus, it is adopted by most speech coding applications.

Long-Term LP Analysis

A long-term predictor predicts the current signal sample from a past sample that is

one or more pitch periods apart, using the notation of Figure 4.16:

ês½n� ¼ �bes½n� T �; ð4:82Þ

where b is the long-term LPC, while T is the pitch period or lag. Within a given time

interval of interest, we seek to find b and T so that the sum of squared error

J ¼
X
n

es½n� � ês½n�ð Þ2 ¼
X
n

es½n� þ bes½n� T�ð Þ2 ð4:83Þ

is minimized. Differentiating the above equation with respect to b and equating to

zero, one can show that

b ¼ �
P

n es½n�es½n� T �P
n e

2
s ½n� T � ; ð4:84Þ

which gives the optimal long-term gain as a function of two correlation quantities

of the signal, with the correlation quantities a function of the pitch period T. An

es[n]
s[n] e[n]− −

=
∑a zi

i

i

M

1

Short-term
rpredicto

Long-term
predictor

−bz-T

Figure 4.16 Short-term prediction-error filter connected in cascade to a long-term

prediction-error filter.

LONG-TERM LINEAR PREDICTION 121

exhaustive search procedure can now be applied to find the optimal T. Substituting

(4.84) back into (4.83) leads to

J ¼
X
n

e2s ½n� �
P

n es½n�es½n� T �� 	2P
n e

2
s ½n� T � : ð4:85Þ

The step-by-step procedure of long-term LP analysis is summarized with the fol-

lowing pseudocode:

1. Jmin 1
2. for T Tmin to Tmax

3. (Use (4.84) to compute b)

4. (Use (4.83) or (4.85) to compute J)

5. if J < Jmin

6. Jmin J

7. bopt b

8. Topt T

9. return bopt, Topt

The parameters Tmin and Tmax in Line 2 define the search range within which the

pitch period is determined. The reader must be aware that the pseudocode is not

optimized in terms of execution speed. In fact, computation cost can be reduced

substantially by exploring the redundancy within the procedure (Exercise 4.8).

Example 4.6 The same speech frame as in Example 4.3 is used here, where long-

term LP analysis is applied to the 240-sample frame ending at time m ¼ 1000. As

was explained earlier in this section, analysis is done on the prediction-error

sequence obtained at the output of the short-term prediction-error filter (with a

T

J

20 40 60 80 100 120 140
9 10

4

1 10
5

1.1 10
5

1.2 10
5

Figure 4.17 Example of the sum of squared error (J) as a function of the pitch period (T) in

long-term LP analysis.

122 LINEAR PREDICTION

prediction order of 10). That is, short-term LP analysis is applied to the frame at

m ¼ 1000, and short-term prediction error is calculated using the LPC found. Of

course, short-term prediction error prior to the frame under consideration is avail-

able so that long-term LP analysis can be completed.

The sum of the squared error as a function of the pitch period (20 � T � 140) is

plotted in Figure 4.17. The overall minimum is located at T ¼ 49 and coincides

roughly with the period of the waveform in the time domain. Figure 4.18 shows

the short-term prediction error and the overall prediction error, with the

latter slightly lower in amplitude. In this case, prediction gain of the long-term

prediction-error filter is found to be 0.712 dB.

The Frame/Subframe Structure

Results of Example 4.6 show that the effectiveness of the long-term predictor on

removing long-term correlation is limited. In fact, the overall prediction-error

sequence is very much like the short-term prediction-error sequence, containing a

strong periodic component whose period is close to the pitch period itself.

The crux of the problem is that the parameters of the long-term predictor need to

be updated more frequently than the parameters of the short-term predictor. That is,

it loses its effectiveness when the time interval used for estimation becomes too

long, which is due to the dynamic nature of the pitch period as well as long-term

LPCs. Experiments using an extensive amount of speech samples revealed that by

shortening the time interval in which the long-term parameters were estimated from

20 to 5 ms, an increase in prediction gain of 2.2 dB was achievable [Ramachandran

and Kabal, 1989].

The idea of frame and subframe was born as a result of applying short-term LP

analysis to a relatively long interval, known as the frame. Inside the frame, it is

divided into several smaller intervals, known as subframes. Long-term LP analysis

is applied to each subframe separately. The scheme is depicted in Figure 4.19. Typi-

cal numbers as used by the FS1016 CELP coder (Chapter 12) are 240 samples for

the frame, which is comprised of four subframes having 60 samples each.

n

800 900 1000
100

0

100

es []

n

800 900 1000

0

100

n

e[n]

− 100−

Figure 4.18 Left: Input to long-term prediction-error filter (short-term prediction error).

Right: Output of the long-term prediction-error filter (overall prediction error).

LONG-TERM LINEAR PREDICTION 123

More frequent update of the long-term predictor obviously requires a higher bit-

rate. However, the resultant scheme is still more economical than the one using 50

or more LPCs to capture the signal’s statistics.

Example 4.7 The same experimental setup as in Example 4.6 is considered, with

the exception that long-term LP analysis is applied to the four subframes within the

frame defined by n 2 ½761; 1000�. Intervals of the subframes are n 2 ½761; 820�;
½821; 880�; ½881; 940�, and [941, 1000]. Figure 4.20 shows the error curves for the

Frame

Subframe 0 Subframe 1 Subframe 2 Subframe 3

Short-term LP
analysis performed
for the frame

Long-term LP
analysis performed
for each subframe

Figure 4.19 The frame/subframe structure.

J(

J(

,T

50 100 150
5000

1 10
4

1.5 10
4

2 10
4

50 100 150
3 10

4

4 10
4

5 10 4

6 10
4

T

J

J

T

T

Subframe 0

Subframe 2

50 100 150
1 10

4

2 10
4

3 10
4

),T 880

T

50 100 150
1 10

4

1.5 10
4

2 10
4

)1000

J

J

T

T

Subframe 1

Subframe 3

Figure 4.20 Example of the sum of squared error (J) as a function of the pitch period (T)

for the four subframes.

124 LINEAR PREDICTION

four subframes, where the minimums indicate the optimal pitch periods (20 �
T � 147). Parameters of the long-term predictor are summarized in Table 4.2.

Note that both the long-term gain and pitch period change drastically from sub-

frame to subframe.

Figure 4.21 shows the final prediction-error sequence. Compared to the outcome

of Example 4.6 (Figure 4.18), it is clear that in the present case the sequence is

‘‘whiter,’’ with lower amplitude and periodicity largely removed. A prediction

gain of 2.26 dB is registered, which is a substantial improvement with respect to

the 0.712 dB obtained in Example 4.6.

Fractional Pitch Period

One error source that limits the resolution and hence the accuracy of the long-term

predictor is time discretization, or quantization of the estimates of pitch period. The

problem is introduced by the sampling process, where a continuous-time signal is

TABLE 4.2 Results Summary for an Example of
Long-Term LP Analysis

Subframe Number b T

0 �0.833 97

1 �0.638 147

2 �0.735 49

3 �0.627 99

e[n]

800 900 1000

100−

0

100

n

Figure 4.21 Example of long-term prediction-error filter’s output.

LONG-TERM LINEAR PREDICTION 125

transformed to discrete time. A pitch estimate, expressed as an integer multiple of

the sampling interval, contains a time quantization error, which may lead to audible

distortions.

Another problem with integer pitch period is the phenomenon of pitch multipli-

cation. For periodic signals the current period is not only similar to the previous one

but also to periods that occurred multiple periods ago. Quantization error of the

continuous-valued pitch period can lead to mismatch during correlation calculation,

resulting in the exhaustive search procedure producing the best delay value to be

equal to a multiple of the ‘‘true’’ pitch period. Pitch multiplication is disadvanta-

geous for coding since a smooth pitch contour can be encoded more efficiently. In

addition, the sudden jump of pitch might lead to artifacts in the synthesized speech.

This effect is clearly observed in Example 4.7 (Figure 4.20 and Table 4.2), where

the four values of the pitch period are clearly multiples of a ‘‘true’’ value located

between 48 and 50.

Fractional pitch period is introduced as a mean to increase temporal resolution.

In this case, the pitch period is allowed to have a fractional part plus the integer

part. Analysis is performed using short-term prediction error delayed by a fractional

quantity and is obtained via interpolation. In general, long-term predictors with

high temporal resolution suffer less from pitch multiplication than low-resolution

ones. Experimental results have shown that by using fractional delay, the average

prediction gain is increased by 1.5 to 2.5 dB [Kroon and Atal, 1991]. The improve-

ment is more notorious for female speech since the shorter pitch period makes it

more susceptible to quantization errors.

Example 4.8 The same experimental setup as in Example 4.7 is considered with

the difference that long-term LP analysis is performed using fractional pitch period.

Only 1 bit is used to code the fractional part of the pitch period. Thus, the fraction

can only take two values: 0 or 0.5. Fractional delay is calculated using a simple

linear interpolation approach, where the fractionally delayed version of the short-

term prediction error (input to long-term prediction-error filter) is calculated

with

es½nþ 0:5� ¼ 1
2
es½n� þ es½nþ 1�ð Þ: ð4:86Þ

The same exhaustive search procedure can be applied to find the optimal long-

term gain and pitch period. In this particular case, a difference is observed only for

the last subframe, where the error curve as a function of the pitch period is shown in

Figure 4.22. The optimal pitch period for the subframe is found to be T ¼ 49:5 with
long-term gain b ¼ �1:086. Compared to the results of Example 4.7, we can see

that pitch multiplication of the last subframe is eliminated. Overall prediction gain

due to long-term prediction is 2.41 dB, a 0.15-dB improvement with respect to the

case of integer pitch period.

126 LINEAR PREDICTION

4.7 SYNTHESIS FILTERS

So far we have focused on analyzing the signal with the purpose of identifying the

parameters of a system, based on the assumption that the system itself satisfies the

AR constraint. The identification process is done by minimizing the prediction

error. If the prediction error is ‘‘white’’ enough, we know that the estimated system

is a good fit; therefore, it can be used to synthesize signals having similar statistical

properties as the original one. In fact, by exciting the synthesis filter with the system

function

HðzÞ ¼ 1

1þPM
i¼1 aiz�i

ð4:87Þ

using a white noise signal, the filter’s output will have a PSD close to the original

signal as long as the prediction order M is adequate. In (4.87), the ai are the LPCs

found from the original signal. Figure 4.23 shows the block diagram of the synth-

esis filter, where a unit-variance white noise is generated and scaled by the gain g

and is input to the synthesis filter to generate the synthesized speech at the output.

Since x½n� has unit variance, gx½n� has variance equal to g2. From (4.16) we can

readily write

g ¼ g

ffi
Rs½0� þ

XM
i¼1

aiRs½i�
vuut : ð4:88Þ

50 100 150
5000

1 10
4

1.5 10
4

2 10
4

J

T

Figure 4.22 Error curve for subframe 3 when fractional delay is applied (compare to Figure

4.20).

SYNTHESIS FILTERS 127

Thus, the gain can be found by knowing the LPCs and the autocorrelation values of

the original signal. In (4.88), g is a scaling constant. A scaling constant is needed

because the autocorrelation values are normally estimated using a window that

weakens the signal’s power. The value of g depends on the type of window selected

and can be found experimentally. Typical values of g range from 1 to 2. In addition,

it is important to note that the autocorrelation values in (4.88) must be the time-

averaged ones, instead of merely the sum of products.

Example 4.9 The same voiced frame as in Example 4.3 is analyzed to give a set

of 50 LPCs, corresponding to a predictor of order 50. The derived predictor is used

in synthesis where white noise with uniform distribution and unit variance is used

as input to the synthesis filter. The gain g is found from (4.88) with g ¼ 1:3. The
synthesized speech and periodogram are displayed in Figure 4.24. Compared to the

original signal (Figures 4.6 and 4.7), we can see that the two signals share many

common attributes in both the time and frequency domains. In fact, sounds gener-

ated by the two waveforms are very much alike.

As discussed earlier in the chapter, using high prediction order (>12) is compu-

tationally expensive and in most instances inefficient. Thus, many LP-based speech

s n

− −

=
∑a zi

i

i

M

1

x[n]
Unit-

variance
white
noise

Synthesized
speech

Predictor

g
Gain

Synthesis filter

Figure 4.23 The synthesis filter.

I e[]s n

ω /π

0 0.5 1
0.001

0.01

0.1

1

10

100

1000

1 10
4

1 10
5

800 900 1000
200

100−

−

0

100

200

n

jω

Figure 4.24 Plots of waveform and periodogram of the synthesized speech signal and

periodogram in an experiment.

128 LINEAR PREDICTION

coding algorithms rely on a prediction order between 8 and 12, with order ten being

the most widely employed. Since this low prediction order is not sufficient to recre-

ate the PSD for voiced signal, a non-white-noise excitation is utilized as input to the

synthesis filter. The choice of excitation is a trade-off between complexity and qual-

ity of synthesized speech. Different algorithms use different approaches to target

the problem and the details are given in subsequent chapters.

Long-Term and Short-Term Linear Prediction
Model for Speech Synthesis

The long-term predictor studied in Section 4.6 is considered for synthesis purposes.

A block diagram is shown in Figure 4.25, known as the long-term and short-term

linear prediction model for speech production. The parameters of the two predictors

are again estimated from the original speech signal. The long-term predictor is

responsible for generating correlation between samples that are one pitch period

apart. The filter with system function

HP zð Þ ¼ 1

1þ bz�T
; ð4:89Þ

describing the effect of the long-term predictor in synthesis, is known as the long-

term synthesis filter or pitch synthesis filter. On the other hand, the short-term

predictor recreates the correlation present between nearby samples, with a typical

prediction order equal to ten. The synthesis filter associated with the short-term pre-

dictor, with system function given by (4.87), is also known as the formant synthesis

filter since it generates the envelope of the spectrum in a way similar to the vocal

track tube, with resonant frequencies known simply as formants. The gain g in Fig-

ure 4.25 is usually found by comparing the power level of the synthesized speech

signal to the original level.

Example 4.10 The magnitude of the transfer functions for the pitch synthesis fil-

ter and formant synthesis filter obtained from Example 4.7 are plotted in Figure

4.26. In the same figure, the product of the transfer functions is also plotted. Since

 Pitch synthesis filter Formant synthesis filter

− −

=
∑a zi

i

i

M

1

x[n]
Unit-

variance
white
noise

s n
Synthesized

speech

Short-term
predictor

g
Gain

−bz-T

Long-term
predictor

Figure 4.25 Long-term and short-term linear prediction model for speech production.

SYNTHESIS FILTERS 129

the two filters are in cascade, the overall transfer function is equal to their product.

Parameters of the filters are

b ¼ �0:735 T ¼ 49

a1 ¼ �1:502 a2 ¼ 1:738 a3 ¼ �2:029 a4 ¼ 1:789 a5 ¼ �1:376
a6 ¼ 1:255 a7 ¼ �0:693 a8 ¼ 0:376 a9 ¼ �0:08 a10 ¼ 0:033

Note that the pitch synthesis filter generates the harmonic structure due to the

fundamental pitch frequency, while the formant synthesis filter captures the spec-

trum envelope. Product of the two recreates the original signal spectrum. Compared

to Figure 4.7, we can see that the spectrum due to the synthesis filters has a shape

that closely matches the PSD of the original signal.

Stability Issues

In many coding situations, the synthesis filters are excited by a random noise

sequence; stability of the filters is a prime concern. For the formant synthesis filter

with system function (4.87), we already know from Theorem 4.1 that it is a

0 0.5 1
0.01

0.1

1

10

100

.Hp()ω Hf()ω

/ω π

H e H ep
j

f
jω

(c)

0 0.5 1
0.1

1

10

ω
π

ω /π

ω

(a)

Hp()ωH ep
jω()

() ()

0 0.5 1
0.01

0.1

1

10

100

Hf()ω

/ω π

H ef
jω

(b)

()

Figure 4.26 Magnitude plots of the transfer functions for (a) a pitch synthesis filter, (b) a

formant synthesis filter, and (c) a cascade connection between pitch synthesis filter and

formant synthesis filter.

130 LINEAR PREDICTION

minimum-phase system as long as the RCs have magnitude less than one, which

can be verified while solving the normal equation during LP analysis.

For the pitch synthesis filter with system function (4.89), the system poles are

found by solving

1þ bz�T ¼ 0

or

z�T ¼ �b: ð4:90Þ

There are a total of T different solutions for z, and hence the system has T

different poles. These poles lie at the vertices of a regular polygon of T sides

that is inscribed in a circle of radius jbj1=T . Thus, in order for the filter to be stable,

the following condition must be satisfied:

jbj < 1: ð4:91Þ

An unstable pitch synthesis filter arises when the absolute value of the numerator

is greater than the denominator as in (4.84), resulting in jbj > 1. This usually arises

when a transition from an unvoiced to a voiced segment takes place and is marked

by a rapid surge in signal energy. When processing a voiced frame that occurs just

after an unvoiced frame, the denominator quantity �e2s ½n� T� involves the sum of

the squares of amplitudes in the unvoiced segment, which is normally weak. On the

other hand, the numerator quantity �es½n�es½n� T� involves the sum of the products

of the higher amplitudes from the voiced frame and the lower amplitudes from the

unvoiced frame. Under these circumstances, the numerator can be larger in magni-

tude than the denominator, leading to jbj > 1. Therefore, an unstable pitch synth-

esis filter can arrive when the signal energy shows a sudden increase. To ensure

stability, the long-term gain is often truncated so that its magnitude is always

less than one.

Maintaining the long-term gain to have a magnitude strictly less than one is often

not a good strategy, since subjective quality could be adversely affected. This is true

for various kinds of speech sounds generated by a sudden release of pressure, such

as the stop consonants b and d. By easing the constraint on the long-term gain,

sounds of a transient, noncontinuant nature can be captured more accurately by

the underlying model, leading to an increase in subjective quality. Thus, it is com-

mon for various coding algorithms to tolerate short-term instability in the pitch

synthesis filter. A popular choice for the upper bound of the long-term gain is

between 1.2 and 2.

4.8 PRACTICAL IMPLEMENTATION

In general, LP analysis is a well-behaved procedure in the sense that the resultant

synthesis filter is guaranteed to be stable as long as the magnitudes of the RCs are

PRACTICAL IMPLEMENTATION 131

less than one (Section 4.4). In practice, however, there are situations under which

stability can be threatened. For instance, under marginally stable conditions, the

limited precision of the computational environment can lead to errors high enough

to produce an unstable filter; this could happen for signals with sustained oscilla-

tion, where the spectrum is associated with poles close to the unit circle. In this

section we study several techniques employed in speech coding to fix the described

problem, all of them aimed at alleviating ill-conditioning during LP analysis and, at

the same time, improving the stability of the resultant synthesis filter, as well as the

quality of the synthetic speech. These techniques can be used in an isolated fashion

or combined together.

Pre-emphasis of the Speech Waveform

The typical spectral envelope of the speech signal has a high frequency roll-off due

to radiation effects of the sound from the lips. Hence, high-frequency components

have relatively low amplitude, which increases the dynamic range of the speech

spectrum. As a result, LP analysis requires high computational precision to capture

the features at the high end of the spectrum. More importantly, when these features

are very small, the correlation matrix can become ill-conditioned and even singular,

leading to computational problems. One simple solution is to process the speech

signal using the filter with system function

HðzÞ ¼ 1� az�1; ð4:92Þ

which is highpass in nature. The purpose is to augment the energy of the high-

frequency spectrum. The effect of the filter can also be thought of as a flattening

process, where the spectrum is ‘‘whitened.’’ Denoting x½n� as the input to the filter

and y½n� as the output, the following difference equation applies:

y½n� ¼ x½n� � ax½n� 1�: ð4:93Þ

The filter described in (4.92) is known as the pre-emphasis filter. By pre-emphasiz-

ing, the dynamic range of the power spectrum is reduced. This process substantially

reduces numerical problems during LP analysis, especially for low-precision

devices. A value of a near 0.9 is usually selected.

It is common to find in a typical speech coding scheme that the input speech is

first pre-emphasized using (4.92). To keep a similar spectral shape for the synthetic

speech, it is filtered by the de-emphasis filter with system function

G zð Þ ¼ 1

1� az�1
ð4:94Þ

at the decoder side, which is the inverse filter with respect to pre-emphasis. Figure

4.27 shows the magnitude plots of the filter’s transfer functions.

132 LINEAR PREDICTION

Bandwidth Expansion Through Modification of the LPC

In the application of linear prediction, the resultant synthesis filter might become

marginally stable due to the poles located too close to the unit circle. The problem

is aggravated in fixed-point implementation, where a marginally stable filter can

actually become unstable (with the poles located outside the unit circle) after quan-

tization and loss of precision during processing. This problem creates occasional

‘‘chirps’’ or oscillations in the synthesized signal.

Stability can be improved by modifying the LPCs according to

anewi
¼ giai; i ¼ 1; 2; . . . ;M; ð4:95Þ

with g < 1 a positive constant. The operation moves all the poles of the synthesis

filter radially toward the origin, leading to improved stability. By doing so, the

original spectrum is bandwidth expanded, in the sense that the spectrum becomes

flatter, especially around the peaks, where the width is widened. Typical values for

g are between 0.988 and 0.996.

Another advantage of the bandwidth expansion technique is the shortening of the

duration of the impulse response, which improves robustness against channel

errors. This is because the excitation signal (in some speech coders the excitation

signal is coded and transmitted) distorted by channel errors is filtered by the synth-

esis filter, and a shorter impulse response limits the propagation of channel error

effects to a shorter duration.

0 0.5 1

0.1

1

10

|H (e
jω

)|

/ω π

α = 0.9

0.8

Figure 4.27 Magnitude plots of the transfer functions of the pre-emphasis filter.

PRACTICAL IMPLEMENTATION 133

Example 4.11 The LPCs from Example 4.10 are modified for bandwidth expan-

sion, using a constant g of 0.92. Figure 4.28 shows a comparison between the ori-

ginal and modified magnitude response and impulse response. Note how the

bandwidth-expanded version has a smoother, flatter frequency response; in addi-

tion, the impulse response decays faster toward zero. Poles of the system function

are plotted in Figure 4.29, where, after bandwidth expansion, they are pulled toward

the origin.

(

1 0 1

1

0

1

Im pi)

−
−

Re(pi)

Figure 4.29 Plot of poles for the original (�) and bandwidth-expanded (^) synthesis

filters.

/

0 0.5 1
0.01

0.1

1

10

100

0 20 40 60
1

0

1

2

ω π n

h[n]|H (e
jω

)|

γ = 0.92

γ = 1

γ = 1

Figure 4.28 Magnitude of the transfer function (left) and impulse response (right) of the

original (solid line) and bandwidth-expanded (dotted line) synthesis filters.

134 LINEAR PREDICTION

White Noise Correction

White noise correction mitigates ill-conditioning in LP analysis by directly redu-

cing the spectral dynamic range and is accomplished by increasing the autocorrela-

tion coefficient at zero lag by a small amount. The procedure is described by

R½0� l:R½0�
with l > 1 a constant. The constant l is usually selected to be slightly above one.

For the G.728 LD-CELP coder (Chapter 14), l ¼ 257=256 ¼ 1:00390625, an

increase of 0.39%. The process is equivalent to adding a white noise component

to the original signal with a power that is 24 dB below the original average power.

This directly reduces the spectral dynamic range and reduces the possibility of ill-

conditioning in LP analysis. The drawback is that such an operation elevates the

spectral valleys. By carefully choosing the constant l, the degradation in speech

quality can be made imperceptible.

Example 4.12 Figure 4.30 compares the magnitude plots of the synthesis filter

before and after white noise correction, where the LPCs are the same as in Example

4.10 and l ¼ 257=256. Note that the dynamic range of the original function is

reduced, where the lowest portion is elevated significantly.

Spectral Smoothing by Autocorrelation Windowing

In the bandwidth expansion method described earlier, the spectrum represented by

the LPCs is smoothed by manipulating the values of the coefficients. The technique

is applied after the LPCs are obtained.

0 0.5 1

0.01

0.1

1

10

100

/ω π

|H(e
jω

)|

After

Figure 4.30 Comparison between the magnitude plots of the synthesis filter’s transfer

functions before and after white noise correction.

PRACTICAL IMPLEMENTATION 135

On some occasions, it is desirable to introduce some smoothing before obtaining

the LPCs, since the solution algorithms (Levinson–Durbin or Leroux–Gueguen)

require many computational steps leading to error accumulation. This can be

done by windowing the autocorrelation function. Since the autocorrelation function

and the power spectral density form a Fourier transform pair (Chapter 3), multiply-

ing the autocorrelation values with a window (in lag domain) has the effect of con-

volving the power spectral density with the Fourier transform of the window (in

frequency domain) [Oppenheim and Schafer, 1989]. By selecting an appropriate

window, the desired effect of spectral smoothing is achieved. Given the autocorre-

lation function R½l�, windowing is performed with

Rnew½l� ¼ R½l� � w½l�; l ¼ 0; 1; . . . ;M; ð4:96Þ

a suitable choice for w½l� is the Gaussian window defined by

w½l� ¼ e�bl
2

; ð4:97Þ

where b is a constant. Figure 4.31 shows some plots of a Gaussian window for

various values of b.
The described technique can be used to alleviate ill-conditioning of the normal

equation before it is solved; after convolving in the frequency domain, all sharp

spectral peaks are smoothed out. The spectral dynamic range is reduced with the

poles of the associated synthesis filter farther away from the unit circle.

Example 4.13 The autocorrelation values corresponding to the LPCs of Example

4.10 are Gaussian windowed with b ¼ 0:01. Figure 4.32 compares the original

spectrum with the one obtained after smoothing: note how the sharp peaks are low-

ered and widened. The net effect is similar to a bandwidth expansion procedure

with direct manipulation of the LPCs.

−

w [l]

0 0.5 1

WW ,,ω 0.005 101

WW ,,ω 0.001 101

1 10
6

1 10
5

1 10 4−

−

0.001

0.01

0.1

1

|W (e
jω

)|

ω /π

β = 0.001

0.005

0 20 40
0

0.5

1

l

β = 0.001

0.005

Figure 4.31 Gaussian windows and their Fourier transforms (magnitude normalized).

136 LINEAR PREDICTION

4.9 MOVING AVERAGE PREDICTION

The discussion so far is based on the AR model. Figure 4.33 shows the block

diagrams of the AR process analyzer and synthesizer filters, where a predictor

with the difference equation given by (4.1) is utilized. It is straightforward to verify

that these block diagrams generate the exact same equations for the AR model. In

practical coding applications, parameters of the predictor are often found from the

signal itself since a computationally efficient procedure is available, enabling real-

time adaptation.

The MA model, as explained in Chapter 3, is in a sense the dual of the AR

model. Figure 4.34 shows the predictor-based block diagrams of the analyzer and

synthesizer filters. In this case, however, the difference equation of the predictor is

given by

ŝ n½ � ¼ �
XK
i¼1

bix n� i½ �; ð4:98Þ

0 0.5 1

0.01

0.1

1

10

100

/ω π

|H(e jω)|

After

Figure 4.32 Comparison between the magnitude plots of the synthesis filter’s transfer

functions before and after spectral smoothing.

s[n] x[n] x[n] s[n

Predictor Predictor
[]s n []s n

Figure 4.33 Block diagram of the AR analyzer filter (left) and synthesizer filter (right).

MOVING AVERAGE PREDICTION 137

with K the order of the model and bi the MA parameters. When compared with

(4.1) we can see that ‘‘prediction’’ is now based on a linear combination of excita-

tion or samples of prediction error x½n�, which in theory are white noise.

Unlike the AR model, where the optimal parameters can be found by solving a

set of linear equations based on the statistics of the observed signal, the MA para-

meters can only be found using a set of nonlinear equations, and in practice highly

computationally demanding. Hence, other approaches are normally applied to find

the model parameters; these include spectral factorization [Therrien, 1992] and

adaptive filtering techniques such as the least-mean-square (LMS) algorithm

[Haykin, 1991], as well as other iterative methods.

Even though (4.98) is a sort of ‘‘linear prediction’’ scheme, where the prediction

is based on a linear combination of samples, the name of LP is traditionally asso-

ciated with AR modeling. When prediction is based on the MA model, it is expli-

citly referred to as ‘‘MA prediction’’ in the literature. Why do we bother with MA

prediction? The technique offers some unique advantages and will be explained in

Chapter 6, where differential pulse code modulation (DPCM) is introduced, and

also in Chapter 7 with the introduction of predictive vector quantization (PVQ).

Finally, in Chapter 15, MA prediction is applied to the design of a predictive quan-

tizer for linear prediction coefficients.

4.10 SUMMARY AND REFERENCES

In this chapter, a theoretical foundation and practical implementation of linear

prediction are thoroughly explained. Linear prediction is described as a system

identification problem, where the parameters of an underlying autoregressive model

are estimated from the signal. To find these parameters, autocorrelation values are

obtained from the signal and a set of linear equations is solved. The resultant esti-

mation is optimal in the sense that the variance of the prediction error is minimized.

For nonstationary signals such as speech, the LP analysis procedure is applied to

each short interval of time, known as a frame. The extracted LPCs from each frame

result in a time-varying filter representing the activity of the human speech produc-

tion organs. LP is often associated with the acoustic tubes model for speech produc-

tion. Details can be found in Rabiner and Schafer [1978]. Efficient algorithms to

solve the normal equation were introduced. Two such procedures—the Levinson–

Durbin algorithm and the Leroux–Gueguen algorithm—can be used, with the latter

more suitable for fixed-point implementation since all intermediate quantities of the

procedure are bounded.

s[n] x[n] x[n] s[n

Predictor
[]

Predictor
[]s n s n

Figure 4.34 Block diagram of the MA analyzer filter (left) and synthesizer filter (right).

138 LINEAR PREDICTION

The method of LP analysis presented in this chapter is known in the literature as

the autocorrelation method. Other schemes exist for LP analysis. The covariance

method, for instance, formulates the problem in a different way, with the sum of

squared error minimized inside the frame. This method has not received wide

acceptance mainly because it cannot be solved as efficiently as the autocorrelation

method. Also, no simple procedure allows a stability check. For additional informa-

tion readers are referred to classical textbooks such as Markel and Gray [1976] and

Rabiner and Schafer [1978]. A discussion of the computational cost for various LP

analysis procedures is found in Deller et al. [1993].

Long-term linear prediction is an efficient scheme where correlation of the

speech signal is modeled by two predictors. The short-term predictor is in charge

of correlation between nearby samples, while the long-term predictor is in charge of

correlation located one or multiple pitch periods away. The method described in

this chapter is known as the one-tap predictor; that is, prediction is based on one

single sample from the distant past. For a multitap long-term predictor, see

Ramachandran and Kabal [1989]. However, the extra complexity and slight perfor-

mance improvement limit the application of the multitap long-term predictor in

practice [Kroon and Atal, 1991]. See Veeneman and Mazor [1993] for additional

insight.

Several techniques to alleviate ill-conditioning, improve stability, and increase

quality of the synthetic speech are presented. In a typical speech coding algorithm,

these methods are used separately or combined together, and they are often

included as standard computational steps. These procedures are cited in subsequent

chapters, where different standard coders are studied. Autocorrelation windowing

was introduced in Tohkura et al. [1978], developed originally to combat bandwidth

underestimation. See Chen [1995] for a discussion of the incorporation of white

noise correction, autocorrelation windowing, and bandwidth expansion to the

framework of the LD-CELP coder.

Prediction can also be defined within the context of other signal models, such as

MA. A good coverage of various statistical models can be found in Therrien [1992],

as well as other textbooks such as Haykin [1991] and Picinbono [1993].

One of the criticisms about the application of LP in speech modeling is the fact

that no zeros are incorporated in the system function of the synthesis filter, which

introduces inaccuracies when representing certain classes of signals, such as nasal

sounds. Difficulties related to a pole-zero type of system function, or ARMA mod-

el, are mainly due to the lack of efficient computational procedure to locate the

parameters of the model. See Lim and Lee [1993] for pole-zero modeling of speech

signals.

EXERCISES

4.1 Within the context of linear prediction, let e½n� denote the prediction error

under optimal conditions. Show that

Efe½n�s½n� k�g ¼ 0

EXERCISES 139

for k ¼ 1; 2; . . . ;M. That is, e½n� is orthogonal to s½n� k�. The relation is

known as the principle of orthogonality.

4.2 An alternative way to obtain

Jmin ¼ Rs½0� þ
XM
i¼1

aiRs½i�

is by substituting (4.6), the condition required to minimize the cost function

J(4.3), into J itself. Show the details of this alternative derivation.

4.3 In internal prediction where the analysis interval (for autocorrelation estima-

tion) is the same as the prediction interval (the derived LPCs are used to

predict the signal samples), find out the prediction gain when different

windows are involved in the LP analysis procedure. Using a prediction order

of ten and a frame length of 240 samples, calculate the segmental prediction

gain by averaging the prediction gain results for a large number of signal

frames for the two cases where the rectangular window or Hamming window

is involved. Which window provides higher performance?

4.4 Consider the situation of external prediction where the autocorrelation values

are estimated using a recursive method based on the Barnwell window. Using

a prediction order of 50 and a frame length of 20 samples, measure the

prediction gain for a high number of frames. Repeat the experiment using

various values of the parameter a of the window (Chapter 3). Plot the resultant

segmental prediction gain as a function of a. Based on the experiment, what is

the optimal value of the parameter a?

4.5 From the system function of the pitch synthesis filter, find the analytical

expression of the impulse response. Plot the impulse response of the pitch

synthesis filter for the following two cases:

(a) b ¼ 0:5; T ¼ 50.

(b) b ¼ 1:5; T ¼ 50.

What conclusions can be reached about the stability of the filter?

4.6 Within the context of the Levinson–Durbin algorithm, (a) prove that

(a)

Jl ¼ J0
Yl
i¼1

1� k2i
� 	

;

which is the minimum mean-squared prediction error achievable with an

lth-order predictor.

(b) Prove that the prediction gain of the lth-order linear predictor is

PGl ¼ �10 log10

Yl
i¼1

1� k2i
� 	 !

:

140 LINEAR PREDICTION

4.7 In Example 4.8, where the simple linear interpolation procedure is applied to

create fractional delay, show that the long-term prediction-error filter can be

implemented as in Figure 4.35, with the long-term LPC summarized in Table

4.3, where b is the long-term gain given by (4.84). Thus, the considered long-

term predictor with fractional delay is indeed a two-tap long-term predictor.

What happens with the cases when two or more bits are used to encode the

fractions?

4.8 In the long-term LP analysis procedure, minimization of J is equivalent to

maximizing the quantity P
n es n½ �es n� T½ �� 	2P

n e
2
s n� T½ � :

Justify the above statement. Develop a more efficient pseudocode to perform

the task.

4.9 One suboptimal way to perform long-term LP analysis is by determining the

pitch period T based on maximizing the autocorrelation

R T½ � ¼
X
n

es n½ �es n� T½ �:

Note that the sum of squared error J is not necessarily minimized. An

advantage of the method is the obvious computation saving. Write down

the pseudocode to perform long-term LP analysis based on the described

approach. Mention the property of the resultant long-term gain b. Hint: The

maximum autocorrelation value is in general greater than or equal to zero.

es[n] e[n

b0

b1

z-T

z-1

Figure 4.35 Equivalent signal flow graph of a long-term prediction-error filter with

fractional delay.

TABLE 4.3 Long-Term LPC for a Prediction Error
Filter with Two Fractional Values: 0 or 0.5

Fraction b0 b1

0 b 0

1/2 b/2 b/2

EXERCISES 141

4.10 Use some speech signal to obtain a set of autocorrelation values for a 10th

order predictor. Find the corresponding LPCs and plot the magnitude of the

response for the associated synthesis filter. Also, plot the poles of the system

function. Repeat using the LPCs obtained by first applying a white noise

correction (l ¼ 257=256), followed by a Gaussian windowing (b ¼ 0:001),
and finally apply bandwidth expansion with g ¼ 0:98 to the resultant LPCs.

4.11 Within the context of AR modeling, where the prediction error is e½n� and the
prediction is ŝ½n�, derive the difference equation relating e½n� to ŝ½n� and show
that the system function of the filter with e½n� as input and ŝ½n� as output is

HðzÞ ¼ �
PM

i¼1 aiz
�i

1þPM
i¼1 aiz�i

:

4.12 Develop the pseudocode to perform long-term LP analysis using the

fractional delay scheme described in Example 4.8. Consider two cases: an

exhaustive search approach, where all possible delay values are evaluated,

and a two-step suboptimal scheme, where the integer pitch period is located

first followed by a fractional refinement near the integer result found.

4.13 In the long-term and short-term linear prediction model for speech produc-

tion, the long-term predictor has a delay of T, while the short-term predictor

has an order of M, with T > M. Is it functionally equivalent to replace the

cascade connection of pitch synthesis filter and formant synthesis filter with

a single filter composed of a predictor of order T with system function

�
XT
i¼1

aiz
�i;

where ai ¼ 0 for i ¼ M þ 1;M þ 2; . . . ; T � 1? Why or why not?

142 LINEAR PREDICTION

CHAPTER 5

SCALAR QUANTIZATION

Representation of a large set of elements with a much smaller set is called quanti-

zation. The number of elements in the original set in many practical situations is

infinite, like the set of real numbers. In speech coding, prior to storage or transmis-

sion of a given parameter, it must be quantized. Quantization is needed to reduce

storage space or transmission bandwidth so that a cost-effective solution is

deployed. In the process, some quality loss is introduced, which is undesirable.

How to minimize loss for a given amount of available resources is the central

problem of quantization.

In this chapter, the basic definitions involved with scalar quantization are given,

followed by an explanation of uniform quantizers—a common type of quantization

method widely used in practice. Conditions to achieve optimal quantization are

included with the results applied toward the development of algorithms used for

quantizer design. Algorithmic implementation is discussed in the last section,

where computational cost is addressed. The presentation of the material is intended

to be rigorous mathematically. However, the main goal is to understand the practi-

cal aspects of scalar quantization, so as to incorporate the techniques in the coding

of speech.

5.1 INTRODUCTION

In this section the focus is on the basic issues of scalar quantization.

Definition 5.1: Scalar Quantizer. A scalar quantizer Q of size N is a mappin from

the real number x 2 R into a finite set Y containing N output values (also known

143

as reproduction points or codewords) yi. Thus,

Q:R! Y

where

ðy1; y2; . . . ; yNÞ 2 Y:

Y is known as the codebook of the quantizer. The mapping action is written as

QðxÞ ¼ yi; x 2 R; i ¼ 1; . . . ; N: ð5:1Þ

In all cases of practical interest, N is finite so that a finite number of binary digits is

sufficient to specify the output value. We further assume that the indexing of output

values is chosen so that

y1 < y2 < � � � < yN :

Definition 5.2: Resolution. We define the resolution r of a scalar quantizer as

r ¼ log2 N � lgN; ð5:2Þ

which measures the number of bits needed to uniquely specify the quantized value.

Definition 5.3: Cell. Associated with every N point quantizer is a partition of the

real line R into N cells Ri, i ¼ 1, . . . , N. The ith cell is defined by

Ri ¼ fx 2 R: QðxÞ ¼ yig ¼ Q�1ðyiÞ: ð5:3Þ

It follows that [
i

Ri ¼ R; ð5:4Þ

and if i 6¼ j

Ri \ Rj ¼
: ð5:5Þ

Definition 5.4: Granular Cell and Overload Cell. A cell that is unbounded is

called an overload cell. The collection of all overload cells is called the overload

region. A cell that is bounded is called a granular cell. The collection of all granular

cells is called the granular region.

The set of numbers

x0 < x1 < x2 < � � � < xN ;

144 SCALAR QUANTIZATION

known as the boundary points, are used to define the cells for the quantizer, which

are given by

Ri ¼ ðxi�1; xi�; i ¼ 1; . . . ; N; ð5:6Þ

where x 2 (a, b] implies a < x
 b. Based on this definition, we have x0 ¼ �1 and

xN ¼1. Two overload cells exist: R1 ¼ (x0, x1] ¼ (�1, x1] and RN ¼ (xN�1, xN] ¼
(xN�1, 1]. The number of granular cells is equal to N� 2, defined by (5.6) with

i ¼ 2 to N� 1.

Definition 5.5: Regular Quantizer. A quantizer is defined to be regular if each

cell Ri is an interval such that yi 2 (xi�1, xi).

Since most quantizers for coding applications are regular, only regular quanti-

zers are considered in this book. Figure 5.1 shows an example of the transfer

characteristic of a regular quantizer.

Definition 5.6: Encoder and Decoder. Every quantizer can be viewed as the

combined effect of two successive operations—an encoder E and a decoder D:

E:R! I;

D: I ! R;

Q(x)

y8

x0 = −∞ x1 x2 x3

 x
x4 x5 x6 x7 x8 = ∞

 y1

Figure 5.1 Example of the transfer characteristic for a regular quantizer with eight output

levels.

INTRODUCTION 145

with I the index set {1, 2, . . . , N}. Thus, if Q(x) ¼ yi, then E(x) ¼ i and D(i) ¼ yi.

Furthermore,

x̂ ¼ QðxÞ ¼ DðEðxÞÞ ¼ yi: ð5:7Þ

Definition 5.7: Distance or Distortion Measure. A distance or distortion measure

is an assignment of a nonnegative cost d(x, Q(x)) associated with quantizing any

input value x with a reproduction point Q(x):

dðx;QðxÞÞ ¼ 0; QðxÞ ¼ x;

>0; otherwise:

�
ð5:8Þ

Given a distortion measure we can quantify the performance of a system by the

expected value of d. Let x denote a continuously distributed random variable with a

specified PDF fx(x). Then the expected value of the distortion can be expressed as

D ¼ Efdðx; QðxÞÞg ¼
ð1
�1

dðx; QðxÞÞfxðxÞ dx: ð5:9Þ

The performance of a quantizer is often specified in terms of a signal-to-noise

(SNR) ratio, given by

SNR ¼ 10 log10
s2
x

D

� �
ð5:10Þ

measured in decibels, with s2
x denoting the variance of x. Taking into account the

partition into cells, (5.9) can be rewritten as

D ¼
XN
i¼1

ð
Ri

dðx;QðxÞÞfx xð Þ dx: ð5:11Þ

This is equivalent to

D ¼
XN
i¼1

P x 2 Rif gE dðx; yiÞjx 2 Rif g; ð5:12Þ

with P{ �} denoting the probability of an event. A conditional expectation term is

incorporated.

Example 5.1: Mean-Squared Error Criterion. Due to its simplicity and analyti-

cal elegance, the mean-squared error is widely used in many practical situations.

Consider the distortion measure defined by the squared error:

dðx; x̂Þ ¼ ðx� x̂Þ2: ð5:13Þ

146 SCALAR QUANTIZATION

Then from (5.11), the expected value of the distortion, or mean-squared error, is

given by

D ¼ Efðx� QðxÞÞ2g ¼
XN
i¼1

ð
Ri

ðx� yiÞ2 fx xð Þ dx ¼
XN
i¼1

ðxi
xi�1
ðx� yiÞ2 fx xð Þ dx:

ð5:14Þ

5.2 UNIFORM QUANTIZER

A uniform quantizer is one of the simplest to design and widely used in practice.

For a uniform quantizer, the transfer characteristic Q(x) is such that

yiþ1 � yi ¼ �; i ¼ 1; 2; . . . ; N � 1; ð5:15aÞ
xiþ1 � xi ¼ �; xi; xiþ1 finite ð5:15bÞ

with � a constant known as the step size. The output levels for a uniform quantizer

are given by

yi ¼ xi ��=2; i ¼ 1; . . . ; N � 1; ð5:16aÞ
yN ¼ xN�1 þ�=2: ð5:16bÞ

Figure 5.2 shows an example of a uniform quantizer. Quantization error is defined

by

eðxÞ ¼ x� QðxÞ: ð5:17Þ

Q(x)

y8

∆

x1 x2 x3

x
x4 x5 x6 x7

 y1

∆/2
∆

Figure 5.2 Example of the transfer characteristic for a uniform quantizer with eight output

levels.

UNIFORM QUANTIZER 147

Figure 5.3 plots the error e(x) corresponding to the quantizer of Figure 5.2. Note

that

jeðxÞj
 �=2; A�
 x
 Aþ; ð5:18Þ

with

Aþ ¼ xN�1 þ� ð5:19aÞ

and

A� ¼ x1 ��: ð5:19bÞ

One design technique for uniform quantizers is to assign Aþ and A� to be equal

to the maximum and minimum of the input value, respectively. Hence, excessive

overload error is eliminated. Once the values of Aþ and A� are known, the step

size � can be found from (5.19) and Figure 5.3, given by

� ¼ Aþ � A�

N
: ð5:20Þ

Uniform Input Distribution

Consider the case of a uniform quantizer, where the input is bounded with values

lying in the range ½A�; Aþ�. Further assume that the input is uniformly distributed

within that range. It is readily seen from Figure 5.3 that the quantizer error consid-

ered as the continuous random variable e has a uniform PDF in ½��=2; �=2�. This
is shown in Figure 5.4. Thus, the mean of the quantization error is

Efeg ¼ 0 ð5:21Þ

e(x)

x

 A− x1 x2 x3 x4 x5 x6 x7 A+

Overload Granular Overload

−∆/2

∆/2

Figure 5.3 Example of quantization error for a uniform quantizer with eight output levels.

148 SCALAR QUANTIZATION

with variance

varfeg ¼ Efe2g ¼ �2=12: ð5:22Þ
Equation (5.22) is equal to the expected value of the distortion if the mean-

squared error criterion is adopted. Therefore, to reduce the expected distortion,

the step size must be decreased, which is accomplished by increasing the quantizer

size N (see (5.20)). An excessively high N, however, requires a large amount of bits,

translating directly to higher coding cost.

5.3 OPTIMAL QUANTIZER

The primary goal of quantizer design is to select the reproduction levels and the

partition regions or cells so as to provide the minimum possible average distortion

for a fixed number of levels N, or equivalently a fixed resolution r. Here, condi-

tions for a quantizer to achieve optimality are given. These conditions will serve

as references to develop the optimization procedure required for quantizer design.

Definition 5.8: Optimal Quantizer. A quantizer Q of size N is said to be optimum

if it minimizes the expected value of the distortion

D ¼ E d x;QðxÞð Þf g ¼
XN
i¼1

ð
Ri

dðx; yiÞfxðxÞ dx; ð5:23Þ

with Ri the cells of the quantizer and fx(x) the PDF of the input random variable x.

Therefore, for optimal operation, it is necessary to specify the output points yi
and partition cells Ri for a given PDF of x so as to minimize D.

The Nearest-Neighbor Condition for Optimality

For a given codebook Y of size N, the optimal partition cells satisfy

Ri ¼ x : dðx; yiÞ
 dðx; yjÞ
�
 ð5:24Þ

fe(e)

 1 /∆

− ∆ / 2 ∆ / 2 e

Figure 5.4 Probability density function of the quantization error for uniform input

distribution.

OPTIMAL QUANTIZER 149

for all i 6¼ j. That is, Q(x) ¼ yi only if d(x,yi)
 d(x,yj). Hence,

dðx;QðxÞÞ ¼ min
i

dðx; yiÞ: ð5:25Þ

To show that (5.24) yields a minimum expected distortion D, consider the

relation

D ¼
ð
dðx;QðxÞÞfxðxÞ dx 	

ð
ðmin

i
dðx; yiÞÞfxðxÞ dx ð5:26Þ

and this lower bound is indeed attained when Q(x) performs the nearest-neighbor

mapping with the given codebook Y.

Definition 5.9: Centroid. We define the centroid cent(Ro), of any nonempty set

Ro 2 R, as the value yo (if it exists) that minimizes the expected distortion between

x and yo, given that x lies in Ro. Thus,

centðRoÞ ¼ fyo : Efdðx; yoÞjx 2 Rog
 Efdðx; yÞjx 2 Rogg; 8 y 2 R: ð5:27Þ

The Centroid Condition for Optimality

Given a partition fRi; i ¼ 1; . . . ; Ng; the optimal codewords satisfy

yi ¼ centðRiÞ: ð5:28Þ

The statement can be proved in the following manner. From (5.12), the average

distortion is written as

D ¼
XN
i¼1

P x 2 Rif gE dðx; yiÞjx 2 Rif g 	
XN
i¼1

P x 2 Rif gmin
y

E dðx; yÞjx 2 Rif g

ð5:29Þ

and the inequality becomes an equality if the yi are the centroids.

The Centroid Optimality Condition for Squared Error
Distortion Measure

Given a partition fRi : i ¼ 1; . . . ; Ng; if the distortion measure is the squared error

defined by

dðx; yiÞ ¼ x� yið Þ2; ð5:30Þ

150 SCALAR QUANTIZATION

then the optimal codewords satisfy

yi ¼ cent Rið Þ ¼ E xjx 2 Rif g ¼
Ð
Ri
xfxðxÞ dxÐ

Ri
fxðxÞ dx : ð5:31Þ

The result is obtained by writing the expected value of the distortion as

D ¼
XN
i¼1

P x 2 Rif gEf x� yið Þ2jx 2 Rig; ð5:32Þ

which can be minimized by choosing the appropriate codeword yi for each cell. The

value of yi that minimizes (5.32) is precisely given by the conditional mean

indicated in (5.31). See Exercise 5.6 for a proof.

5.4 QUANTIZER DESIGN ALGORITHMS

Given the codebook size N, it is desired to find the input partition cells and code-

words such that the average distortion D ¼ E dðx;QðxÞÞf g is minimized, with

x being the input random variable or the source with a given PDF.

The Lloyd Iteration for Codebook Improvement

It is possible to improve the quantizer by following the two iteration steps indicated

below, known as the Lloyd iteration.

Step 1. Given the codebook Ym ¼ fym;i; i ¼ 1; 2; . . . ;Ng; find the optimal partition

into quantization cells; that is, use the nearest-neighbor condition to form the

nearest-neighbor cells:

Rm;i ¼ x : dðx; ym;iÞ
 dðx; ym; jÞ
�

for all j 6¼ i.

Step 2. Using the centroid condition, find Ymþ1, the optimal reproduction

codewords for the cells just found. Note that the input PDF must be known in

order to compute the centroids.

The Lloyd Algorithm

The Lloyd iteration can be used to improve a quantizer starting from an initial

codebook. If the input PDF is not mathematically tractable, a sample distribution

QUANTIZER DESIGN ALGORITHMS 151

based on empirical observations is used instead. The actual algorithm of Lloyd for

quantizer design is stated as follow:

Step 1. Begin with an initial codebook Y1. Set m ¼ 1.

Step 2. Given the codebook Ym, perform the Lloyd iteration to generate the

improved codebook Ymþ1.
Step 3. Compute the average distortion for Ymþ1 (Dmþ1). If it has changed by a

small enough amount since the last iteration, stop. Otherwise, set mþ 1! m and

go to Step 2.

One reasonable stopping criterion is to use the fractional drop in distortion,

(Dm � Dmþ1)/Dm. The algorithm stops when the ratio is below a suitable threshold.

It can easily be shown that the algorithm will necessarily produce a sequence of

codebooks with monotone nonincreasing values of average distortion. If the

algorithm converges to a codebook in the sense that further iterations no longer

produce any changes in the set of reproduction values, then the resulting codebook

must simultaneously satisfy both necessary conditions for optimality.

Quantizer Design Based on Squared Error

Here, the Lloyd algorithm is adapted to squared error measure applied to a set of

training data. The theory presented so far is based on knowledge of the PDF of the

source to be quantized. In practice, the PDF of a given source is either unknown or

difficult to deal with analytically. Therefore, the common practice is to collect a

finite number of samples from the source of interest and use this set of data, known

as the training data set, to ‘‘train’’ the quantizer so as to reduce the average

distortion over the data set.

Consider the case where we want to design the quantizer for the random

variable x. Further assume that a total of Nt samples are available, denoted by

xk; k ¼ 0; 1; . . . ; Nt � 1;

where Nt is the size of the training data set. Based on the squared distortion measure

and assuming that the training data set is partitioned into N cells, then from (5.31)

the centroid of the ith cell is found to be

yi �

P
xk2Ri

xk
1
NtP

xk2Ri

1
Nt

¼ 1

Ni

X
xk2Ri

xk ð5:33Þ

with Ni the number of elements in the ith cell. In (5.33) the integrals are approxi-

mated by the sums and each element in the training data set has the same probabil-

ity of occurrence equal to 1/Nt. Thus, the centroid of Ri is given by the mean of the

elements pertaining to the cell.

152 SCALAR QUANTIZATION

The adapted version of Lloyd algorithm (also known as the k-means algorithm)

is specified as follows:

Step 1. Initialization: Elements of the initial codebook are selected randomly from

the training data set.

Step 2. Partition into nearest-neighbor cells: Given the codebook, partition the

training data set into cells based on the squared distortion criteria.

Step 3. Centroid calculation: Update the codebook by calculating the centroids

found from the cells obtained in Step 2. The centroid is the arithmetic mean of the

elements pertaining to a particular cell.

Step 4. Compute the distortion sum for the new codebook. If it has changed by a

small enough amount since the last iteration, stop. Otherwise go to Step 2.

The distortion sum in Step 4 is concerned with the total sum of differences

between the elements of the training set with respect to their quantized versions.

The average distortion sum is given by the distortion sum divided by Nt. Both

are valid indicators for the quality of the quantizer.

Example 5.2 Behavior of the Lloyd algorithm is illustrated here, where a quan-

tizer with a codebook size of N ¼ 8 is designed for a Gaussian source with zero

mean and unit variance. Size of the training data set is Nt ¼ 600. A histogram of

the training data is shown in Figure 5.5, where we can see that it assumes the shape

of the PDF corresponding to a normally distributed random variable. Figure 5.6

shows the distortion sum as a function of the iteration number; note how it rapidly

drops as the algorithm progresses. After ten iterations, it almost stabilizes to a

minimum value. Figure 5.7 displays the trajectories of the eight codewords, where

−5 0 5
0

50

100

x

Number
of samples

Figure 5.5 Histogram of the training data to be used in an experiment.

QUANTIZER DESIGN ALGORITHMS 153

the initial values are selected arbitrarily from the training data set. Like the distor-

tion sum, the codewords converge rapidly toward a stable value after ten iterations.

One fundamental issue for the Lloyd algorithm is the problem of the local mini-

mum, where there is no guarantee that the codewords after convergence can provide

the best possible solution, or global minimum. In practice, the algorithm converges

and gives a solution representing a local minimum. In general, the convergence

points of the codewords, and thus the final distortion sum, depend on the initial

codewords selected to start the training process. The situation is illustrated for

the case of Example 5.2, where a total of ten random initializations are performed

0 10 20
20

30

40

50

Dm

m

Figure 5.6 Distortion sum as a function of the number of iterations in a quantizer design

experiment.

0 10 20
−1

0

1

2

ym,5

ym,6

ym,7

ym,8

ym,2

ym,1

ym,3

ym,4

3

m

0 10 20
−3

−2

−1

0

1

m

Figure 5.7 Codeword trajectories in a quantizer design experiment.

154 SCALAR QUANTIZATION

with the results summarized in Table 5.1. The results include the distortion sum, the

signal-to-noise ratio for the training data set, and the signal-to-noise ratio for the

testing data set. The distortion sum reflects the total sum of squared error between

the training data set and the final codewords. The testing data set is derived from the

same source but is different from the training data set; its purpose is to verify the

generalization ability of the solution found by the algorithm: that is, to see whether

the quantizer can provide good performance for data outside the training data set

having the same statistical property as the source. In the present case, size of the

testing data set is the same as the size of the training data set.

Note that different initializations result in distinct solutions at convergence with

different performance. Also note that the SNR for the testing data set is consistently

below the SNR for the training data set, which is an expected result since the sum of

distortion is optimized for the training data set. It is not possible in general to

predict which initialization results in better solution. One simple approach in prac-

tice is to run the algorithm for a number of random initializations and pick the best

one as the final solution. A similar problem is associated with vector quantization,

and additional techniques to overcome this problem are explained in Chapter 7.

5.5 ALGORITHMIC IMPLEMENTATION

Traditionally, a scalar quantizer is implemented as electronic circuits using ampli-

fiers, comparators, and digital logic gates. The analog-to-digital converter, for

instance, is one form of scalar quantizer. With the availability of programmable

processors, software implementation becomes feasible. In software, parameters of

the quantizer can easily be modified, and the system is inherently more stable

against changing operating conditions, like temperature and supply voltage. Since

most programmable processors work in a sequential fashion, where instructions

contained in a program are executed one by one, we will consider two algorithmic

implementations suitable to any sequential machine.

TABLE 5.1 Results for Ten Random Initializations in a Quantizer Design Experiment

Initialization Distortion SNR�Training SNR�Testing

Number Sum (dB) (dB)

0 23.6 14.5 14.5

1 24.1 14.4 13.8

2 21.7 14.9 13.8

3 23.6 14.5 14.5

4 21.6 14.9 13.9

5 23.6 14.5 14.5

6 21.6 14.9 13.9

7 21.6 14.9 13.9

8 24.5 14.4 14.0

9 23.6 14.5 14.5

ALGORITHMIC IMPLEMENTATION 155

In the following we will assume that all cell boundary values �1 < x1 <
x2 < � � � < xN�1 <1 and the output levels y1 < y2 < � � � < yN are known.

Linear Search

One straightforward implementation is to compare the input value to the boundary

values starting from the lowest point x1. The idea is summarized with the following

pseudocode:

QUANTIZE(x)
1. for i 1 to N�1
2. if x
 xi return yi

4. return yN

Execution time of QUANTIZE(x) can be quantified with the number of compar-

ison operations required to return the output level. From the pseudocode we can see

that the shortest possible time is one single comparison operation and it happens

when x
 x1. In the worst case with x > xN�2, the number of comparison operations

is equal to N � 1. With the assumption that the input value x has an equal probabil-

ity of falling within any particular cell, then, on average, the number of comparison

operations is given by

Number of comparisons ¼ 1

N
þ 2

N
þ � � � þ N � 1

N
þ N � 1

N

¼ 1

N

XN�1
i¼1

iþ N � 1

N

¼ ðN � 1ÞðN þ 2Þ
2N

: ð5:34Þ

As N !1, the number of comparisons approaches N=2. Thus, the execution time

grows asymptotically with N.

Tree Search

Alternatively, the cell boundary values can be organized in a tree structure for

comparison purposes. Figure 5.8 shows a tree structure corresponding to the case

of N ¼ 8. To see how it works, assume that the input value x is such that

x3 < x
 x4. First x is compared to x4; since x
 x4, the path on the tree is to

move to the left and compare x with x2. Now, x > x2 and the algorithm moves

down one more level to compare x with x3. Since x > x3 and the bottom of the

tree is reached, output level y4 is returned as the quantized version of x.

The idea can be extended to any quantizer size. If the size is a power of two, then

regardless of the input x, the number of comparison operations is always equal to

156 SCALAR QUANTIZATION

lg N. Hence, the execution time of this quantizer is proportional to lg N. A compar-

ison between the number of operations required by the two implementations is

shown in Figure 5.9. Only sizes that are a power of two are considered. The quan-

tizer size ranges from 4 to 1024. The number of operations is taken to be the aver-

age number of comparisons for the two methods. As we can see, a tree search

requires far less operations to complete its task, which is especially true when

the size of the quantizer increases. At N ¼ 1024, or a resolution of 10 bits, the

y1 y2 y3 y4 y5 y6 y7 y8

x

x4

≤ >

x2 x6

≤ > ≤ >

x1 x3 x5 x7

≤ > ≤ > ≤ > ≤ >

Figure 5.8 A tree structure for scalar quantization with N ¼ 8.

1 10 100 1000 1 1041

10

100

1000

Size N

Number of
operations

Linear

Tree

Figure 5.9 Comparison of the number of operations for two implementations of scalar

quantizer.

ALGORITHMIC IMPLEMENTATION 157

tree search technique requires 10 operations while a linear search method needs

almost 513 operations! This case illustrates the fact that algorithms, like computer

hardware, are indispensable for the improvement of the overall system performance.

5.6 SUMMARY AND REFERENCES

In this chapter, the fundamental concepts of scalar quantization are introduced,

followed by an explanation of a uniform quantizer, which is widely used in practice

due to its simplicity. Conditions for optimal operation are given. These conditions

form the foundation for the derivation of algorithms for quantizer design. Software

implementation of a scalar quantizer is exemplified with two types of search;

performance is analyzed and compared in terms of the number of operations

required. The studied cases are based on the assumption that the quantizer is imple-

mented in a sequential machine, where instructions are executed one at a time.

Many modern processors provide a certain degree of parallelism, allowing an algo-

rithm to execute at a much faster pace. See Intel [1997] for an example of such a

processor.

The objective of scalar quantizer design is to specify the transfer characteristic,

which is completely determined by the boundaries of the cells and the correspond-

ing output levels. For uniform quantizers, input boundaries and output levels are

found directly from the minimum and maximum values of the source. In order to

minimize the average distortion, an optimization method, called the Lloyd algo-

rithm, is used to find the parameters of the quantizer. The algorithm is capable

of producing locally optimal solutions adapted to the statistical property of the

source.

Many theoretical issues concerning scalar quantization can be found in Gersho

and Gray [1995]. Also see Sayood [1996] for a comprehensive discussion of related

topics. For random variables and probability, see Papoulis [1991] and Peebles

[1993]. For a thorough discussion of algorithmic structure and computational

cost, see Cormen et al. [1990].

Vector quantization, the subject of Chapter 7, contains generalization of the

theory presented in this chapter.

EXERCISES

5.1 A symmetric quantizer satisfies

QðxÞ ¼ �Qð�xÞ:
A quantizer is midtread if it is regular and one of the output levels is zero; a

quantizer is midrise if it is regular and no output level is equal to zero. What is

the constraint for N, the number of output values of the quantizer, so that the

quantizer is midtread symmetric? Repeat for midrise symmetric.

158 SCALAR QUANTIZATION

5.2 Given a signal source x such that �1
 x
 3, design a uniform quantizer

with N ¼ 7 by specifying all input boundaries xi and output levels yi.

5.3 Prove that if Q is a quantizer whose codebook satisfies the centroid condition

and the distortion is measured with squared error, then:

(a) The mean of the quantizer output is the same as the mean of the input

EfQðxÞg ¼ Efxg:

(b) The quantizer output is uncorrelated with the quantizer error

EfQðxÞðQðxÞ � xÞg ¼ 0:

(c) The expected squared quantizer error is the difference of the second

moments of the input signal and the quantized output

Efðx� QðxÞÞ2g ¼ Efx2g � EfðQðxÞÞ2g:

(d) The second moment of the quantizer output is less than or equal to the

second moment of the input

EfðQðxÞÞ2g
 Efx2g:

5.4 Obtain a certain number of speech samples (say, 2000) and use them to train

scalar quantizers having sizes of 4, 8, 16, 32, 64, and 128. Plot the resultant

quantizer transfer characteristic in each case. Measure the distortion sum with

respect to the training data set and plot it as a function of the quantizer size.

Using another set of speech samples as the testing data set, measure the

performance of the resultant quantizers.

5.5 The following pseudocode implements a scalar quantizer based on the full

search method, where the distance between the input value x and each

codeword is calculated. The codeword producing the smallest distance is

returned as the quantized result.

QUANTIZE(x)
1. min 1
2. for i 1 to N

3. distance d(x, yi)

4. if distance < min

4. min distance

6. index i

7. return yindex

EXERCISES 159

Without counting the operations necessary for distance computation, how

many comparisons (Line 4) are required? Compare this approach with respect

to linear search and tree search. Comment on any advantage and/or dis-

advantage.

5.6 To find the optimal codewords under squared-error distortion measure, one

can differentiate the conditional expected distortion

Ef x� yið Þ2jx 2 Rig
with respect to yi and equating to zero. Show that the optimal codeword is

indeed the centroid of the cell Ri.

5.7 The linear search technique as explained in Section 5.5 can also be

implemented as a tree. Draw the corresponding tree for the case of N ¼ 8

and find the average number of comparisons assuming equal probability for

the input value to fall within any particular cell.

5.8 The adaptive quantizer design algorithm can be used as an alternative for

quantizer design under squared error.

Step 1. Initialization: Elements of the initial codebook are selected randomly

from the training data set.

Step 2. Centroid update: For each training data xk, find the associated codeword

yi, then modify the codeword according to

yi
yi � ajyi � xkj; yi > xk;

yi þ ajyi � xkj; yi < xk;

�

with a < 1 a constant. The purpose of this step is to move the codeword a

little closer to a certain training data.

Step 3. Compute the distortion sum for the new codebook. If it has changed

by a small enough amount since the last iteration, stop. Otherwise go back

to Step 2.

The logic of the algorithm is that by adjusting the codewords repeatedly

toward the associated training data (Step 2), the codebook should even-

tually converge to a local optimum. In practice, the constant a is often

reduced gradually as training progresses.

Implement the adaptive algorithm and compare its performance with the

Lloyd algorithm using a set of randomly generated training data.

5.9 Design the tree structure for a quantizer of size N ¼ 7. Assuming that the

input variable has an equal probability of falling within any particular cell,

what is the average number of comparison operations? Repeat for N ¼ 6.

160 SCALAR QUANTIZATION

CHAPTER 6

PULSE CODE MODULATION
AND ITS VARIANTS

Essentially, pulse code modulation (PCM) refers to the process of quantizing the

samples of a discrete-time signal, so that both time and amplitude are represented

in a discrete form. PCM is the most obvious method developed for the digital cod-

ing of waveforms. It is conceptually straightforward to understand and broadly

accepted as a comparison standard for other coders.

This chapter can be considered as an extension to Chapter 5, where scalar quan-

tization is discussed in detail with the material applied to any signal type. In this

chapter, however, the focus is on speech samples. The chapter is organized as fol-

lows: performance of uniform quantizers is first found, followed by standardized

nonuniform quantizers; the idea of differential PCM is given, and several adaptive

methods are spelled out at the end.

6.1 UNIFORM QUANTIZATION

Due to the convenience of binary code representation, a quantizer with an

even number of output values is often used for the quantization of speech samples.

Table 6.1 illustrates the case of 3-bit resolution, or a size of 8, where the binary

indices and output values are shown. For the output values, � represents the step

size. Negative indices are written in second-complement form, with the most sig-

nificant bit containing sign information. Second-complement representation is

widely used in most microprocessors, due to its convenience for arithmetic opera-

tions [Mano, 1993].

Figure 6.1 shows the transfer characteristic of the quantizer. Note that the zero

output level is present, and the number of negative output levels is equal to the

161

number of positive output levels plus one. All uniform quantizers considered in this

section adopt the described structure.

Loading Factor

Given a quantizer, the loading factor g is defined by

g ¼ A=s; ð6:1Þ

where s is the standard deviation of the input signal, and A is the peak signal

magnitude that can be quantized without incurring an excessive overload error.

For our uniform quantizer, A is defined to have the value of �x1. The loading factor

indicates how well the input is matched to the quantizer.

TABLE 6.1 Binary Index and Quantized Values for a
Uniform Quantizer with 3-bit Resolution

Binary Index Quantized Value

011 3�
010 2�
001 �
000 0

111 ��
110 �2�
101 �3�
100 �4�

Q(x)

y8

∆

x1 x2 x3 x5 x6 x7 x

y1

/2
∆

∆

Figure 6.1 Transfer characteristic of a uniform quantizer with eight output levels.

162 PULSE CODE MODULATION AND ITS VARIANTS

Uniform Input Distribution

For a uniformly distributed input variable x with standard deviation s, the PDF is

given by

fxðxÞ ¼
1

2
ffiffi
3
p

s
; jxj
 ffiffiffi

3
p

s;
0; otherwise;

�
ð6:2Þ

where zero mean is assumed. Expected distortion incurred with quantizing the vari-

able x using an N-point quantizer is given by (Chapter 5)

D ¼
XN
i¼1

ðxi
xi�1
ðx� yiÞ2fxðxÞ dx; ð6:3Þ

where the xi are the boundary points and the yi are the codewords. In (6.3), the

distortion measure considered is the squared error. The signal-to-noise ratio (SNR) is

SNR ¼ 10 log10ðs2=DÞ ð6:4Þ

and is the basic performance measure for the quantizer.

For uniform quantizers, separations between the (finite) boundary points are con-

stant and are also true for the codewords. Expected distortion can be solved directly

from (6.3) using numerical methods for the integral. By selecting a set of input stan-

dard deviation values s, one can solve D and hence SNR for each s. The resultant
curves (D or SNR versus s) allow us to assess the performance and behavior of the

quantizer.

Example 6.1 A uniform quantizer with N ¼ 16 (resolution equal to 4 bits) is

designed with x1 ¼ �1, leading to a step size � of 0.133. Figure 6.2 shows the

expected distortion and signal-to-noise ratio as a function of s, where s is varied

between 0.01 and 2. The input variable is uniformly distributed.

0.01 0.1 1 10

0.001

0.01

0.1

1

0.01 0.1 1 10
−10

0

10

20

30

σ σ

D SNR

Figure 6.2 Expected distortion (left) and signal-to-noise ratio (right) as a function of the

input standard deviation. Uniform quantization with 4-bit resolution and uniformly

distributed input.

UNIFORM QUANTIZATION 163

For small values of input standard deviation, the expected distortion is relatively

low and remains almost constant inside the range 0:1 < s < 0:7. It then grows

abruptly for s > 0:7. This behavior is explained as follows: for small s the quan-

tizer output is closed to zero, generating a small distortion value. As s increases,

the expected distortion remains almost constant, due to the fact that the quantizer’s

cells are uniform, and so does the input PDF. However, increasing the value of

s further drives the quantizer to its overload regions (Chapter 5), increasing greatly

the total distortion. From the SNR plot we can see that SNR & 0 dB for s < 0:05;
that is, the signal energy is near the noise energy. This is expected since the output

level is zero for low input, leading to an error level close to the input level.

For 0:05 < s < 0:7, SNR grows almost 6 dB per octave until the point where

overload noise is so severe that SNR decreases sharply.

Effects of Resolution

In analyzing the behavior of the quantizer, it is preferable to use relative quantities,

like signal-to-noise ratio and loading factor, instead of absolute quantities, such as

expected distortion and standard deviation. Relative parameters portray the beha-

vior of the system in a way that is independent of the signal level and hence is

more general. Figure 6.3 plots the SNR as a function of the loading factor for

four resolution values: r ¼ 3, 4, 5, and 6 bits. As we can see, SNR is elevated in

1 10 100

0

20

40

r = 6

5

4

3

γ

SNR

Figure 6.3 Signal-to-noise ratio as a function of the loading factor for four resolution

values. Uniform quantization and uniformly distributed input.

164 PULSE CODE MODULATION AND ITS VARIANTS

general for higher resolution. Roughly speaking, the peak SNR increases by 6 dB

for each additional bit. See Exercise 6.1 for a theoretical justification of this

behavior. A loading factor between 1.5 and 2 seems to be optimal since SNR is

maximized.

Probability Distribution Function of Speech Signals’ Amplitudes

As discussed in Chapter 5, the characteristic of a quantizer must adapt to the sta-

tistical distribution of the input itself in order to achieve optimality, with optimality

referring to the minimization of the average distortion. The PDF of speech samples

can be estimated by determining a histogram for a large number of samples. It is

commonly accepted that the Laplacian density

fxðxÞ ¼ 1ffiffiffi
2
p

s
e�

ffiffi
2
p jxj=s ð6:5Þ

is a good approximation to the actual distribution of speech samples [Rabiner and

Schafer, 1978]. Figure 6.4 shows the PDF plots for several values of the variance.

As we can see, the number of low-amplitude samples is higher than the number of

high-amplitude samples. Due to this distribution shape, use of uniform quantization

is suboptimal.

Figure 6.5 shows several SNR curves for Laplacian input PDF. In comparison to

the results of uniform input PDF (Figure 6.3), the curves are much smoother, with

no abrupt transition. This is due to the fact that the Laplacian PDF is a smooth con-

tinuous function (except at the origin). In addition, the SNR values in the present

case are in general lower for a particular resolution, as is evidenced by comparing

Figure 6.3 with Figure 6.5. Since uniform quantization is optimal for uniformly

distributed input, the SNR decreases for other input distribution functions at the

same resolution. From the shape of the Laplacian PDF, the SNR can be improved

if the quantizer is modified in such a way that a higher number of output levels are

assigned to low-amplitude input, effectively reducing the average distortion. This

technique is studied in the next section.

4 2−− 0 2 4
0

1

2

1

2

x

fx(x)

σ = 0.5

Figure 6.4 Plot of PDF for random variables with Laplacian distribution.

UNIFORM QUANTIZATION 165

6.2 NONUNIFORM QUANTIZATION

As shown in the last section, use of uniform quantization is suboptimal for speech

samples, mainly due to their statistical distribution, where the percentage of occur-

rence of a sample having a certain amplitude diminishes with an increase in mag-

nitude. Due to this property, a quantizer with a nonuniform transfer characteristic

yields higher performance. In this section, commonly used nonlinear quantization

schemes are analyzed; these schemes form the core of the ITU-T G.711 PCM

standard.

For a nonuniform quantizer, the input variable x is first transformed with a mem-

oryless monotonic nonlinearity f (�) to produce an output f(x). Then it is quantized

uniformly with the quantized values transformed by the inverse nonlinearity f�1(�).
Denoting the transfer characteristic of the uniform quantizer as Qu(x) (see

Figure 6.6), the transfer characteristic of the nonuniform quantizer, denoted by

Q(x), is given by

QðxÞ ¼ f�1ðQuð f ðxÞÞÞ: ð6:6Þ

1 10 100

0

10

20

30

γ

SNR

r = 6

5

4

3

Figure 6.5 Signal-to-noise ratio as a function of the loading factor for four resolution

values (input with Laplacian distribution).

166 PULSE CODE MODULATION AND ITS VARIANTS

The nonlinearity f (�) is usually designed to have a reduced slope for large input

amplitudes and vice versa, leading to compression effects.

Logarithmic Nonlinear Functions

Two logarithmic functions have become widely used as design guidelines for non-

uniform quantization of speech in digital telephony. The m-law characteristic is

given by

f ðxÞ ¼ A
lnð1þ m jxj=AÞ

lnð1þ mÞ sgnðxÞ; jxj
 A; ð6:7Þ

where A is the peak-input magnitude and m is a constant that controls the degree of

compression. The prevailing value used in practice is m ¼ 255. Figure 6.7 shows

0 1

0

1

0 1

0

1

0 1

−1

−1

−1

−1

−1

−1

−1

−1

0

1

0 1

0

1

x

x

x

x

Q(x)Qu(x)

Q(x)Q(x)

Figure 6.6 Transfer characteristic of a uniform quantizer of size 8 (top left). Transfer

characteristics of nonuniform quantizers designed based on the described uniform quantizer

and the m-law function, with m ¼ 2 (top right), m ¼ 4 (bottom left), and m ¼ 10 (bottom

right).

NONUNIFORM QUANTIZATION 167

some plots of the m-law characteristic. It is easy to show that the inverse function

for (6.7) is

f�1ðyÞ ¼ A

m
exp

lnð1þ mÞ � jyj
A

� �
� 1

� �
sgnðyÞ; jyj
 A: ð6:8Þ

The A-law characteristic is given by

f ðxÞ ¼
Aojxj

1þ lnAo
sgnðxÞ; jxj
 A

Ao

;

Að1þ lnðAojxj=AÞÞ
1þ lnAo

sgnðxÞ; A

Ao

 jxj
 A;

8>><
>>: ð6:9Þ

with Ao a constant that controls the degree of compression. In practice, Ao ¼ 87.6 is

a commonly used value. Some plots of A-law characteristic are shown in Figure 6.8.

The inverse of (6.9) is given by

f�1ðyÞ ¼
1þ lnAo

Ao

� �
y; jyj
 A

1þ lnAo

;

A

Ao

exp
1þ lnAo

A

� �
� jyj � 1

� �
sgnðyÞ; A

1þ lnAo

 y < A:

8>><
>>: ð6:10Þ

−1 −0.5 0 0.5 1
−1

0

1

x

f(x)

µ = 8

32

255

Figure 6.7 Plots of m-law characteristics with m ¼ 255, 32, and 8. A ¼ 1 for all cases.

−1 0.5 0 0.5 1
−1

0

1

x

f(x)

Ao = 8

20

87.6

Figure 6.8 Plots of A-law characteristics with Ao ¼ 87:6, 20, and 8. A ¼ 1 for all cases.

168 PULSE CODE MODULATION AND ITS VARIANTS

Example 6.2 A uniform quantizer with N ¼ 8 is designed with x1 ¼ �1; the
transfer characteristic Qu(x) is shown in Figure 6.6. Based on this design, several

nonuniform quantizers are found from (6.6) by combining with the m-law charac-

teristic, where A ¼ 1 and m ¼ 2, 4, and 10. Note that as m increases, the output levels

tend to gather more and more toward the low-amplitude zone, leading to a better

representation of low-level inputs; this is due to the fact that the amount of non-

linearity augments with m.

Example 6.3 Figure 6.9 shows the SNR curves when the nonuniform quantizer

uses m-law with m ¼ 255; the input has Laplacian distribution. From the SNR

curves, we can see that the nonuniform quantizer is capable of maintaining an

almost constant SNR for large variations in input signal variance, something not

achievable with uniform quantization. Figure 6.10 compares the SNR curves for

the uniform and nonuniform quantizers, at a resolution of 6 bits. Even though

the peak SNR values for the two cases are similar, the nonuniform quantizer can

sustain a high SNR value for a far wider input dynamic range. As we can see, while

the SNR of the uniform quantizer drops with increase of loading factor (decrease in

input variance), the SNR of the nonuniform quantizer remains near the peak. This

property allows the nonuniform quantizer to represent low-amplitude samples with

superior accuracy.

1 10 100 1000
−10

0

10

20

30

γ

SNR

r = 3

4

5

6

Figure 6.9 Signal-to-noise ratio as a function of the loading factor for four resolution

values (input with Laplacian distribution) for the case of nonuniform quantization using

m-law (m ¼ 255).

NONUNIFORM QUANTIZATION 169

For speech signals the energy may vary as much as 40 dB among speakers and

depending on transmission environment. In addition, for a given speaking environ-

ment, the amplitude of the speech signal varies considerably from voiced speech to

unvoiced speech, and even within voiced sounds. If a uniform quantizer is used, a

relatively high resolution must be employed in order to maintain good quality. High

resolution automatically translates into elevated bit-rate and cost. To reduce the

number of bits per sample, nonuniform schemes are desirable due to the fact that

high SNR can be sustained for large variations of input signal level. Figure 6.11

compares the peak SNR values for the quantization cases considered. Note that

they all increase approximately 6 dB per additional bit. For Laplacian distributed

input, peak SNR is higher for a nonuniform quantizer when the resolution is above

6 bits.

ITU-T Recommendation G.711

This is a nonuniform PCM standard recommended for encoding speech signals. The

recommendation is based on digitally linearizable companding, which permits a

precise control of quantization characteristics. The compression and expansion

characteristics are piecewise linear approximations to m- and A-law, with m ¼ 255

and Ao ¼ 87.56; 8 bits/sample is adopted, leading to a bit-rate of 64 kbps at 8 kHz

of sampling frequency. Within the standard [ITU, 1993], the nonlinear characteris-

tics, or input-to-output mappings, are explicitly expressed in the forms of a table,

where the inputs are 13- or 14-bit uniform PCM samples.

1 10 100 1000
0

10

20

30

γ

SNR

1

2

Figure 6.10 Comparison between (1) uniform and (2) nonuniform quantization at a

resolution of 6 bits.

170 PULSE CODE MODULATION AND ITS VARIANTS

5 10
0

20

40

60

80

Resolution (bits)

Peak
SNR

1

3

2

Figure 6.11 Comparison between the peak SNR achievable for a certain resolution for

three quantization situations: (1) uniform quantization of uniformly distributed input, (2)

uniform quantization of Laplacian distributed input, and (3) nonuniform quantization (m-law
with m ¼ 255) of Laplacian distributed input.

1 10 100 1�103

0

50

100

1

2

γ

SNR

Figure 6.12 Performance comparison between (1) uniform quantization at 14-bit resolution

and (2) nonuniform quantization at 8-bit resolution.

NONUNIFORM QUANTIZATION 171

It is important to note that the quality of 14-bit uniform quantization is higher

than 8-bit nonuniform quantization; therefore, by encoding through the nonlinear

quantizer, irreversible losses are introduced. Figure 6.12 compares the two

schemes, where the nonuniform quantizer is based on m-law with m ¼ 255. Peak

SNR for the uniform quantizer is around 66 dB, while for the nonuniform quantizer,

it is equal to 37.8 dB. Subjectively, G.711 provides toll quality acceptable for tele-

phone communication.

6.3 DIFFERENTIAL PULSE CODE MODULATION

Differential PCM (DPCM) is based on the notion of quantizing the prediction-error

signal. In many signal sources of interest, such as speech, the samples do not

change a great deal from one sample to the next; in other words, the samples are

correlated with their neighbors. If we can predict the current sample from the past

history, it is possible to form the prediction-error signal, with significantly lower

variance and dynamic range. By quantizing the prediction error, a higher signal-

to-noise ratio can be achieved for a given resolution. The technique is shown in

Figure 6.13, where the prediction error e[n] — obtained by subtracting the input

x[n] from the prediction xp[n] — is quantized. The indices at the output of the quan-

tizer’s encoder represent the DPCM bit-stream. The indices are entered into the

quantizer’s decoder to obtain the quantized prediction error, which is combined

with the prediction xp[n] to form the quantized input. The predictor takes the

quantized input samples to calculate the prediction. The DPCM decoder works in

a similar fashion to obtain the quantized samples from the indices.

x[n] i[n]

−

][̂ne
xp[n]

][ˆ nx

i[n]][ˆ nx

xp[n]

Encoder
(Quantizer)

Predictor

e[n]

Decoder
(Quantizer)

Predictor

Decoder
(Quantizer)

[]e nˆ

Figure 6.13 DPCM encoder (top) and decoder (bottom).

172 PULSE CODE MODULATION AND ITS VARIANTS

Note that prediction is based on the quantized signal samples, which is indeed

suboptimal since higher performance can be achieved using the original, unquan-

tized signal samples. The approach is utilized mainly because the decoder has no

access to the original input, and synchronization must be maintained between enco-

der and decoder.

Example 6.4 Consider the predictor defined with

xp½n� ¼ x̂½n� 1�; ð6:11Þ

that is, the prediction is the past sample. As an illustration we will measure the per-

formance of PCM and compare it with DPCM using the mentioned prediction

scheme.

The input signal is the sine wave shown in Figure 6.14. To design the uniform

PCM scheme for this signal, we only have to take into account the range of ampli-

tude. A size eight uniform quantizer is designed with codewords f�1;�0:75;�0:5;
�0:25; 0; 0:25; 0:5; 0:75g. Figure 6.15 shows the quantized signal and quantization

error, leading to a SNR of 16.1 dB.

For DPCM, we need to design the quantizer for the prediction error. Computing

the pseudo-prediction error as x½n� � x½n� 1� yields the conclusion that the signal is
roughly limited in ð�0:25; 0:25Þ. A size four uniform quantizer is designed with

codewords f�0:5;�0:25; 0; 0:25g. Figure 6.16 shows the quantized signal, quanti-

zation error, and prediction error (quantizer input). The resultant SNR is 20.3 dB.

As we can see in the above example, DPCM beats PCM by �4 dB, using half the
bit-rate. The performance is achieved by the use of a reduced-range quantizer, with

smaller step size leading to lower error. The reduction in range is possible because

the predictor diminishes the amplitude of the signal entering the quantizer by

0 50 100

−1

0

1

n

x[n]

Figure 6.14 An example of input signal to be quantized.

DIFFERENTIAL PULSE CODE MODULATION 173

removing redundancy. After all, there is no need to transmit if one can predict from

the past.

It is important to point out that the above example only serves the purpose of

illustration. One can rely on a fixed predictor only if the signal source is stationary.

Otherwise, the predictor must change with time to adapt to the input signal

0 50 100

−1

0

1

0 50 100
−0.5

0

0.5

n n

x[
n]

ˆ

ˆ

Figure 6.15 PCM quantized signal (left) with input from Figure 6.14, and quantization

error (right).

0 50 100

1

0

1

n

0 50 100

−

0

0.5

n

0 50 100

0

0.5

−0.5

−0.5

n

(a) (b)

(c)

x[
n]

ˆ

ˆ

Figure 6.16 DPCM quantized signal with (a) input from Figure 6.14, (b) quantization error,

and (c) prediction error.

174 PULSE CODE MODULATION AND ITS VARIANTS

properties. Principles of DPCM are applied not only to speech coding, but many

other signal compression applications as well.

DPCM with MA Prediction

The predictor in Figure 6.13 utilizes the past quantized input samples, therefore

obeying the AR model. An alternative is to base the prediction on the MA model

(Chapter 3), where input to the predictor is the quantized prediction-error signal, as

shown in Figure 6.17. Performance of the MA predictor is in general inferior; how-

ever, it provides the advantage of being more robust against channel errors.

Consider what happens in the DPCM decoder of Figure 6.13, when channel error

is present; the error not only affects the current sample but will propagate indefi-

nitely toward the future due to the involved loop. For the DPCM decoder of

Figure 6.17, however, a single error will affect the current decoded sample, plus

a finite number of future samples, with the number determined by the order of

the predictor. Thus, DPCM with MA prediction behaves better under noisy channel

conditions.

Often, in practice, the predictor combines the quantized input and quantized pre-

diction error to form the prediction. Hence, high prediction gain of the AR model is

mixed with high robustness of the MA model, resulting in an ARMA model-based

predictor (Chapter 3).

6.4 ADAPTIVE SCHEMES

In scalar quantization, adaptation is necessary for optimal performance when deal-

ing with nonstationary signals like speech, where properties of the signal change

x[n]
e[n] i[n]

−

xp[n]

][̂ne

i[n]
][̂ne

][ˆ nx

xp[n]

Encoder
(Quantizer)

Predictor

Decoder
(Quantizer)

Predictor

Decoder
(Quantizer)

Figure 6.17 Encoder (top) and decoder (bottom) of DPCM with MA prediction.

ADAPTIVE SCHEMES 175

rapidly with time. These schemes are often referred to as adaptive PCM (APCM)

and are the topics of this section.

Forward Gain-Adaptive Quantizer

Forward adaptation can accurately control the gain level of the input sequence to be

quantized, but side information must be transmitted to the decoder. The general

structure of a forward gain-adaptive quantizer is shown in Figure 6.18.

A finite number N of input samples (frame) are used for gain computation, where

N 	 1 is a finite number, known as the frame length. The estimated gain is quan-

tized and used to scale the input signal frame; that is, x½n�=ĝ½m� is calculated for all

samples pertaining to a particular frame. Note that a different index m is used for

the gain sequence, with m being the index of the frame. The scaled input is quan-

tized with the index ia[n] and ig[m] transmitted to the decoder. These two indices

represent the encoded bit-stream. Thus, for each frame, N indices ia[n] and one

index ig[m] are transmitted. If transmission errors occur at a given moment, distor-

tions take place in one frame or a group of frames; however, subsequent frames will

be unaltered. With sufficiently low error rates, the problem is not serious.

Many choices are applicable for gain computation. Some popular schemes are

g½m� ¼ k1 max
n
fjx½n�jg þ k2; ð6:12Þ

g½m� ¼ k1
X
n

x2½n� þ k2; ð6:13Þ

x[n] ia[n]

][ˆ mg

g[m]
ig[m]

ia[n]][ˆ nx

][ˆ mg

ig[m]

Amplitude
decoder

Gain
decoder

Gain
computation

Gain
encoder

Gain
decoder

Amplitude
encoder

(•)−1

Figure 6.18 Encoder (top) and decoder (bottom) of the forward gain-adaptive quantizer.

176 PULSE CODE MODULATION AND ITS VARIANTS

with the range of n pertaining to the frame associated with index m, and (k1, k2)

positive constants. As we can see, the purpose of the gain is to normalize the

amplitude of the samples inside the frame, so that high-amplitude frames and

low-amplitude frames are quantized optimally with a fixed quantizer. To avoid

numerical problems with low-amplitude frames, k2 is incorporated so that divisions

by zero are avoided.

For nonstationary signals like speech having a wide dynamic range, use of

APCM is far more efficient than a fixed quantizer. At a given bit-rate, the SNR

and especially the SSNR are greatly improved with respect to PCM (see

Chapter 19 for the definition of SSNR).

Backward Gain-Adaptive Quantizer

In a backward gain-adaptive quantizer, gain is estimated on the basis of the quan-

tizer’s output. The general structure is shown in Figure 6.19. Such schemes have the

distinct advantage that the gain need not be explicitly retained or transmitted since

it can be derived from the output sequence of the quantizer. A major disadvantage

of backward gain adaptation is that a transmission error not only causes the current

sample to be incorrectly decoded but also affects the memory of the gain estimator,

leading to forward error propagation.

Similar to the case of the forward gain-adaptive quantizer, gain is estimated so as

to normalize the input samples. In this way, the use of a fixed amplitude quantizer is

adequate to process signals with wide dynamic range. One simple implementation

consists of setting the gain g[n] proportional to the recursive estimate of variance

x[n] i[n]

g[n] y[n]

i[n]][ˆ nx
Amplitude

decoder

Gain
computation

Gain
computation

Amplitude
encoder

Amplitude
decoder

(•)−1

Figure 6.19 Encoder (top) and decoder (bottom) of the backward gain-adaptive quantizer.

ADAPTIVE SCHEMES 177

for the normalized-quantized samples, where the variance is estimated recursively

with

s2½n� ¼ as2½n� 1� þ ð1� aÞy2½n�; ð6:14Þ

where a < 1 is a positive constant. This constant determines the update rate of the

variance estimate. For faster adaptation, set a close to zero. The gain is computed

with

g½n� ¼ k1s2½n� þ k2; ð6:15Þ

where k1 and k2 are positive constants. The constant k1 fixes the amount of gain per

unit variance. The constant k2 is incorporated to avoid division by zero. Hence, the

minimum gain is equal to k2.

In general, it is very difficult to analytically determine the impact of various

parameters (a, k1, k2) on the performance of the quantizer. In practice, these para-

meters are determined experimentally depending on the signal source.

Adaptive Differential Pulse Code Modulation

The DPCM system described in Section 6.3 has a fixed predictor and a fixed quan-

tizer; much can be gained by adapting the system to track the time-varying behavior

of the input. Adaptation can be performed on the quantizer, on the predictor, or on

both. The resulting system is called adaptive differential PCM (ADPCM).

Figure 6.20 shows the encoder and decoder of an ADPCM system with forward

adaptation. As for the forward APCM scheme, side information is transmitted,

including gain and predictor information. In the encoder, a certain number of

samples (frame) are collected and used to calculate the predictor’s parameters.

For the case of the linear predictor, a set of LPCs is determined through LP analysis

(Chapter 4). The predictor is quantized with the index ip[m] transmitted.

As in DPCM, prediction error is calculated by subtracting x[n] from xp[n]. A

frame of the resultant prediction-error samples is used in gain computation,

with the resultant value quantized and transmitted. The gain is used to normalize

the prediction-error samples, which are then quantized and transmitted. Note that

the quantized quantities (samples of normalized prediction error, gain, and the

predictor’s parameters) are used in the encoder to compute the quantized input

x̂½n�, and the prediction xp[n] is derived from the quantized input. This is done

because, on the decoder side, it is only possible to access the quantized quantities;

in this way, synchronization is maintained between encoder and decoder since both

are handling the same variables.

As we will see, many speech coding algorithms use a scheme similar to the

forward-adaptive ADPCM. In many such algorithms, LP analysis is performed

with the resultant coefficients quantized and transmitted. Thus, a good understand-

ing of ADPCM allows a better digestion of the material presented in subsequent

chapters.

178 PULSE CODE MODULATION AND ITS VARIANTS

One shortcoming of the forward-adaptation scheme is the delay introduced due

to the necessity of collecting a given number of samples before processing can start.

The amount of delay is proportional to the length of the frame. This delay can be

critical in certain applications since echo and annoying artifacts can be generated.

Backward adaptation is often preferred in those applications where delay is cri-

tical. Figure 6.21 shows an alternative ADPCM scheme with backward adaptation.

Note that the gain and predictor are derived from the quantized-normalized

prediction-error samples; hence, there is no need to transmit any additional

parameters except the index of the quantized-normalized samples.

Similar to DPCM, the input is subtracted from the prediction to obtain the

prediction error, which is normalized, quantized, and transmitted. The quantized-

normalized prediction error is used for gain computation. The derived gain is

used in denormalization of the quantized samples; these prediction-error samples

are added with the predictions to produce the quantized input samples. The

x[n] ia[n]

−

ig[m]
ip[m]

xp[n]][ˆ nx

ia[n]][ˆ nx

ig[m]

ip[m]

Amplitude
decoder

Gain
decoder

Predictor
decoder

Predictor

Gain
computation

Amplitude
encoder

(•)−1 Amplitude
decoder

Gain
decoder

Gain
encoder

Predictor

Predictor
computation

Predictor
encoder

Predictor
decoder

Figure 6.20 Encoder (top) and decoder (bottom) of a forward-adaptive ADPCM quantizer.

ADAPTIVE SCHEMES 179

predictor is determined from the quantized input x̂½n�. Techniques for linear

predictor calculation are given in Chapter 4. Using recursive relations for the

gain calculation ((6.14) and (6.15)) and linear prediction analysis, the amount of

delay is minimized since a sample can be encoded and decoded with little delay.

This advantage is due mainly to the fact that the system does not need to collect

samples of a whole frame before processing. However, the reader must be aware

that backward schemes are far more sensitive to transmission errors, since they

not only affect the present sample but all future samples due to the recursive nature

of the technique.

6.5 SUMMARY AND REFERENCES

The major facts about PCM are presented in this chapter, where performance of

uniform quantization as a function of resolution is found. For resolution higher

x[n] i[n]

−

xp[n]][ˆ nx

i[n]][ˆ nx
Amplitude

decoder

Gain
computation

Predictor
computation

Predictor

Gain
computation

Amplitude
encoder

(•)-1

Amplitude
decoder

Predictor

Predictor
computation

Figure 6.21 Encoder (top) and decoder (bottom) of a backward-adaptive ADPCM

quantizer.

180 PULSE CODE MODULATION AND ITS VARIANTS

than 4 bits, increasing the resolution by 1 bit roughly increases the SNR by 6 dB.

Since the speech samples have a statistical distribution close to the Laplacian type,

nonuniform quantization with more low-amplitude output levels is better suited for

the quantization task. The m-law and A-law nonlinearities are introduced as com-

monly accepted rules for the design of nonuniform quantizers. Unlike uniform

quantizers, where good quality output is maintainable only for a relatively narrow

range of input level, nonuniform quantizers can sustain high SNR for a wider range

of input level. Therefore, it is more suitable for speech coding since the energy

level of the signal varies drastically with speakers, environments, equipment, and

so on.

For nonstationary signals like speech, use of some kind of adaptation can

achieve higher coding efficiency. Several schemes of APCM and ADPCM are pre-

sented. Forward adaptation is less sensitive to transmission errors, with higher delay

and lower coding efficiency when compared to backward schemes. In subsequent

chapters, the principles of adaptive methods are applied to speech coding algorithm

design.

Discussion of APCM and ADPCM has been limited to high-level concepts and

system structures, without entering into the details of implementation of any coding

standard. For ADPCM a well-known standard exists and is due to ITU. This spe-

cifies a 64-kbps nonuniform PCM (G.711) input, and four possible bit-rates are

available: 40, 32, 24, and 16 kbps. It is known as recommendation G.726 and is

based on backward adaptation. It utilizes a pole-zero or ARMA predictor with its

parameters updated through a gradient-based adaptive algorithm. Readers are

referred to ITU [1990] for details. Also, Jayant and Noll [1984] contains ample

descriptions of many PCM-related schemes, as well as early developments in

the field.

EXERCISES

6.1 In uniform quantization, consider the case when the size is large (high

resolution).

(a) Given the input is in a particular cell, argue why the conditional PDF

of the quantization error is uniform over the interval ð��=2;�=2Þ.
Show that the conditional variance of the quantization error is �2/12,

with � the quantizer’s step size.

(b) Argue why the unconditional average distortion is given approximately by

D ¼ �2=12:

(c) Show that

� � 2A=N

EXERCISES 181

and

D ¼ s2g22�2r=3

with N the quantizer’s size.

(d) Show that

SNR ¼ 6:02r þ 10 log10
3

g2

� �
;

that is, SNR increases approximately 6 dB for each additional bit used to

quantize an input sample.

6.2 Using a large amount of speech samples, construct the histogram and verify

the validity of the proposed Laplacian distribution.

6.3 Generate SNR curves (as a function of g) for nonuniform m-law quantization

using uniformly distributed input. Compare with uniform quantization in

terms of peak SNR.

6.4 Generate SNR curves (as a function of g) for A-law quantization. Compare

with m-law results.

6.5 In DPCM, assuming stationary input, show that

SNR ¼ s2
x

Efe2½n�g ¼ PG � QG

where

s2 ¼ input variance;

e½n� ¼ quantization error;

PG ¼ prediction gain;

QG ¼ quantizer gain;

and

PG ¼s2
x

s2
e

;

QG ¼ s2
e

Efðe½n� � ê½n�Þ2g :

6.6 Delta modulation is the 1-bit (or two-level) version of DPCM. In this scheme,

the prediction is given by the past quantized sample

xp½n� ¼ x̂½n� 1�
and the quantizer has only two levels

ê½n� ¼ �sgnðe½n�Þ;

182 PULSE CODE MODULATION AND ITS VARIANTS

where sgn(�) is the sign function, while � is the quantizer’s step size. Show

that

xp½n� ¼ �
Xn
i¼1

sgnðe½i�Þ;

assuming that the system is initialized at instant n ¼ 0 with xp[0] ¼ 0.

6.7 In Figure 6.5, the peaks of the SNR curves tend to shift toward higher values

of g for increasing resolution. Explain this phenomenon. Why isn’t the

situation occurring for uniformly distributed input (Figure 6.3)?

6.8 Draw the block diagrams of a DPCM system based on an ARMA predictor;

that is, the predictor takes as inputs the samples of the quantized input signal

and the quantized prediction-error signal.

6.9 Draw the block diagrams of the encoder and decoder for an ADPCM system

with forward gain adaptation and backward predictor adaptation. Repeat for

the case of backward gain adaptation and forward predictor adaptation.

6.10 Similar to Example 6.4, design a 2-bit DPCM-MA scheme using a first-order

predictor and compare its performance to 3-bit PCM. The predictor coeffi-

cient can be determined by trial-and-error. Develop a systematic way to find

the optimal predictor coefficient, when the quantizer is fixed.

EXERCISES 183

CHAPTER 7

VECTOR QUANTIZATION

Vector quantization (VQ) concerns the mapping in multidimensional space from a

(possibly continuous-amplitude) source ensemble to a discrete ensemble. The map-

ping function proceeds according to some distortion criterion or metric employed to

measure the performance of VQ. VQ offers several unique advantages over scalar

quantization, including the ability to exploit the linear and nonlinear dependencies

among the vector components, and is highly versatile in the selection of multidi-

mensional quantizer cell shapes. Due to these reasons, for a given resolution (mea-

sured in bits), use of VQ typically results in lower distortion than scalar quantization.

In VQ, vectors of a certain dimension form the input to the vector quantizer. At

both the encoder and decoder of the quantizer there is a set of vectors, having the

same dimension as the input vector, called the codebook. The vectors in this code-

book, known as codevectors, are selected to be representative of the population of

input vectors. At the encoder, the input vector is compared to each codevector in

order to find the closest match. The elements of this codevector represent the quan-

tized vector. A binary index is transmitted to the decoder in order to inform about

the selected codevector. Because the decoder has exactly the same codebook, it can

retrieve the codevector given its binary index.

Some materials in this chapter are natural generalizations of results in scalar

quantization. After all, scalar quantization is VQ with unit dimension. VQ has

become more and more significant for signal coding applications, mainly due to

its high performance. In subsequent chapters we will see how the technique is

applied to various speech coding standards; hence, it is imperative to acquire pro-

ficiency in the subject. In this chapter, the basic definitions involved with vector

quantization are given, followed by the conditions required for optimal quantiza-

tion; algorithms for quantizer design are described in detail. It is shown that optimal

184

VQ is highly costly to implement in practice. Therefore, several suboptimal

schemes with certain structure are explained in detail; these include multistage

VQ (MSVQ), split VQ, and conjugate VQ. These suboptimal schemes provide

good performance at a reasonable implementational cost, enabling the deployment

of VQ to many speech coding applications. Similar to DPCM in scalar quantization,

incorporation of prediction into the VQ framework leads to improved performance

in most cases; these schemes are discussed in a separate section, where predictive

VQ (PVQ) and PVQ-MA are introduced.

7.1 INTRODUCTION

The basic issues of vector quantization are introduced in this section. Many topics

are mere extensions of scalar quantization from one dimension to multiple dimen-

sions.

Definition 7.1: Vector Quantizer. Avector quantizer Q of dimensionM and size N

is a mapping from a vector x in M-dimensional Euclidean space RM into a finite set

Y containing N M-dimensional outputs or reproduction points, called codevectors or

codewords. Thus,

Q:RM ! Y;

where

x ¼ ½x1; x2; . . . ; xM�T ;
ðy1; y2; . . . ; yNÞ 2 Y;

yi ¼ ½yi1; yi2; . . . ; yiM�T ; i ¼ 1; . . . ;N:

Y is known as the codebook of the quantizer. The mapping action is written as

QðxÞ ¼ yi; i ¼ 1; . . . ;N: ð7:1Þ

Definition 7.2: Resolution. We define the resolution of a vector quantizer as

r ¼ lg N; ð7:2Þ

which measures the number of bits needed to uniquely address a specific codeword.

Definition 7.3: Cell. Associated with every N-point M-dimensional vector quanti-

zer is a partition of RM into N regions or cells, Ri; i ¼ 1; . . . ;N. The ith cell is

defined by

Ri ¼ fx 2 RM : QðxÞ ¼ yig ¼ Q�1ðyiÞ: ð7:3Þ

Definitions of granular cell and overload cell found in scalar quantization apply

directly to VQ.

INTRODUCTION 185

Definition 7.4: Encoder and Decoder. Avector quantizer can be decomposed into

two component operations, the vector encoder and the vector decoder. The encoder

E is the mapping from RM to the index set I ¼ f1; 2; . . . ;Ng, and the decoder D

maps the index set I into the reproduction set Y. Thus,

E:RM ! I;

D: I ! RM:

The task of the encoder is to identify in which of N geometrically specified

regions the input vector lies. On the other hand, the decoder is simply a table lookup

and is fully determined by specifying the codebook. The overall operation of VQ

can be regarded as the cascade or composition of two operations:

x̂ ¼ QðxÞ ¼ DðEðxÞÞ ¼ yi: ð7:4Þ

Figure 7.1 illustrates the concepts of encoder and decoder.

Definition 7.5: Distance or Distortion Measure. A distance or distortion measure

is an assignment of a nonnegative cost d(x,Q(x)) associated with quantizing any

input vector x with a reproduction vector Q(x):

dðx;QðxÞÞ ¼ 0; QðxÞ ¼ x;
>0; otherwise:

�
ð7:5Þ

Given such a measure we can quantify the performance of a system by the

expected value of d. Let X denote a continuously distributed random vector* in

RM with a specified PDF fX(x). Then the expected value of the distortion can be

expressed as

D ¼ EfdðX;QðXÞÞg ¼
ð
RM

dðx;QðxÞÞfXðxÞ dx: ð7:6Þ

x yi

i

Encoder
E(�)

Decoder
D(�)

Figure 7.1 Vector quantizer as the encoder followed by the decoder.

*Here, bold capital letters represent random vectors. InM-dimension, X ¼ ½x1; . . . ; xM �T , where the xi are
random variables. The sample outcome of X is the vector x ¼ ½x1; . . . ; xM �T. As we can see, bold

lowercase letters represent both vectors or random variables. The meaning of the symbol is normally

explicit from the context.

186 VECTOR QUANTIZATION

When the input vector has a discrete distribution, the probablility mass function

(PMF) pX(x) can be used instead:

D ¼ EfdðX;QðXÞÞg ¼
X
k

dðxk;QðxkÞÞpXðxkÞ; ð7:7Þ

with the xk being the outcomes of X with nonzero probability.

Assuming the input range to be partitioned into N cells, the expected distortion

can be expressed using probability terms coupled with conditional expectation as

follows:

D ¼
XN
i¼1

PfX 2 RigEfdðX; yiÞjX 2 Rig: ð7:8Þ

A widely used distortion measure is the squared error, given by

dðx; x̂Þ ¼ kx� x̂k2 ¼
XM
j¼1
ðxj � x̂jÞ2; ð7:9Þ

which is the squared Euclidean distance between two vectors.

Definition 7.6: Nearest-Neighbor Quantizer. Suppose that d(x, y) is a distortion

measure on the input/output vector space. We define a nearest-neighbor vector

quantizer as one whose partition cells are given by

Ri ¼ fx : dðx; yiÞ
 dðx; yjÞ; 8 j 2 Ig; i 2 I; ð7:10Þ

where I ¼ f1; 2; . . . ;Ng is the index set. Thus, for a nearest-neighbor encoder each

cell Ri consists of all points x that have less distortion when reproduced with code-

vector yi than with any other codevector.

Since most quantizers for coding applications are of the nearest-neighbor type,

only nearest-neighbor quantizers are considered in this book. The following pseu-

docode is a direct implementation of a nearest-neighbor quantizer:

QUANTIZE(x)
1. min 1
2. for i 1 to N
3. distance ¼ d(x,yi)
4. if distance < min
5. min distance

6. index i

7. return yindex

Running time of the algorithm specified before is proportional to N, the size of

the quantizer. Also note that a total of M � N locations are required to store the

INTRODUCTION 187

codebook, with M being the dimension of the quantizer. It is assumed that one

location is required to store one component of a vector.

7.2 OPTIMAL QUANTIZER

In this section, the optimal operation of a vector quantizer is defined. Conditions to

achieve optimality are explained. These conditions serve as the foundation in devel-

oping the optimization procedure used for quantizer design.

Definition 7.7: Optimal Quantizer. Assume that a particular distortion measure d

has been selected. The vector quantizer is said to be optimal if it minimizes the

expected value of the distortion ((7.6) or (7.7)).

Optimality can be achieved by selecting the codewords yi and partition cells Ri

for a given PDF of the source X so as to minimize the expected distortion.

Nearest-Neighbor Condition for Optimality

For a given codebook Y of size N, the optimal partition cells satisfy

Ri ¼ fx: dðx; yiÞ
 dðx; yjÞg; ð7:11Þ

where i; j ¼ 1; . . . ;N and i 6¼ j. That is, QðxÞ ¼ yi only if dðx; yiÞ
 dðx; yjÞ. Thus,
given the codebook Y, the encoder contains a minimum distortion or nearest-

neighbor mapping, with

dðx;QðxÞÞ ¼ min
i

dðx; yiÞ: ð7:12Þ

See Exercise 7.2 for a proof of the condition.

Definition 7.8: Centroid. We define the centroid cent(Ro), of any nonempty set

Ro 2 RM as the vector yo (if it exists) that minimizes the distortion between a point

X 2 Ro and yo, averaged over the probability distribution of X given X 2 Ro. Thus,

centðRoÞ ¼ fyo : EfdðX; yoÞjX 2 Rog
 EfdðX; yÞjX 2 Rogg; 8 y 2 RM : ð7:13Þ

Centroid Condition for Optimality

For a given partition fRi; i ¼ 1; . . . ;Ng, the optimal codevectors satisfy

yi ¼ centðRiÞ: ð7:14Þ

See Exercise 7.3 for a proof of the condition.

188 VECTOR QUANTIZATION

Definition 7.9: Boundary Set. Given the partition cells Ri; i ¼ 1; . . . ;N, the

boundary set is defined as

B ¼ fx: dðx; yjÞ ¼ dðx; yiÞ; i 6¼ jg ð7:15Þ

for all i; j ¼ 1; . . . ;N. Thus, the boundary consists of points that are equally close to
both yj and to some other yi and hence do not have a unique nearest neighbor.

Zero Probability Boundary Condition for Optimality

A necessary condition for a codebook to be optimal for a given source distribution

is

B ¼ �� : ð7:16Þ

That is, the boundary set must be empty. Alternatively, we can write

Pfx: dðx; yiÞ ¼ dðx; yjÞ; i 6¼ jg ¼ 0 ð7:17Þ

for all i; j ¼ 1; . . . ;N.
Suppose that the boundary set is not empty and hence there is at least one x that

is equidistant to the codevectors yi and yj. Mapping x to yi or yj will yield two

encoding schemes with the same average distortion. By including the nonzero prob-

ability input point x into either cell (Ri and Rj associated with yi and yj, respec-
tively) will necessarily modify the centroids of Ri and Rj, meaning that the

codebook is no longer optimal for the new partition.

7.3 QUANTIZER DESIGN ALGORITHMS

Given a codebook Y of size N, it is desired to find the input partition cells Ri and

codewords such that the average distortion D ¼ EfdðX;QðXÞÞg is minimized,

where X is the input random vector with a given PDF.

The Lloyd Iteration for Codebook Improvement

The Lloyd iteration as explained in Chapter 5 can be applied directly to VQ after

some notational changes. For the case of vectors, the centroid computation requires

the evaluation of multiple integrals (assume continuously distributed input) over a

complicated region and is generally impossible by analytical means. In practice, a

training vector set consisting of Nt vectors

xk; k ¼ 0; 1; . . . ;Nt � 1 ð7:18Þ

is used to optimize the vector quantizer. These vectors are sample outcomes of the

input random vector X. It is assumed that each sample vector has a probability mass

QUANTIZER DESIGN ALGORITHMS 189

of 1/Nt. If the value of Nt is sufficiently high, the statistical property of the training

set approaches the continuously distributed random vector X.
From the training set, the Lloyd iteration is described below.

Step 1. Given the codebook Ym ¼ fym;i; i ¼ 1; 2; . . . ;Ng, partition the training set

into cluster sets using the nearest-neighbor condition

Rm;i ¼ fxk : dðxk; ym;iÞ
 dðxk; ym; jÞg ð7:19Þ

for all i 6¼ j; k ¼ 0; . . . ;Nt � 1. To ensure zero probability boundary condition, a

tie-breaking rule is necessary. For instance, if dðxk; yiÞ ¼ dðxk; yiÞ, then a

random assignment can be arranged where xk is assigned arbitrarily to Ri or Rj.

Step 2. Using the centroid condition, compute the centroids for the cells just found

to obtain the new codebook Ymþ1. If an empty cell was generated in Step 1, an

alternative codevector assignment is made for that cell.

An empty cell is defined as the one where no training vector is assigned to it.

This situation can happen when the particular codeword of the cell is very far

away from the training vectors. Empty cells do not contribute toward lowering

the final distortion sum and therefore must be eliminated. A variety of heuristic

solutions have been proposed to handle the empty cell problem. One simple

approach is to split the biggest cell into two cells by adding the corresponding code-

word with random numbers having small variance, generating in this way two close

versions of the original codeword.

The Generalized Lloyd Algorithm

The generalized Lloyd algorithm (GLA) is a generalization of the Lloyd algorithm

discussed in Chapter 5 to the design of vector quantizers. In essence it follows the

exact same steps except for some notational changes. The GLA is also known in

literature as the LBG algorithm after Linde, Buzo, and Gray [1980].

Quantizer Design Based on Squared Euclidean Distance Measure

Consider the distance measure between two M-dimensional vectors given by

dðx; yÞ ¼ kx� yk2 ¼
XM
m¼1
ðxm � ymÞ2: ð7:20Þ

Using this measure, it can be shown (Exercise 7.4) that for xk 2 Ri, the centroid of

Ri, denoted by yi, is given by

yi ¼
1

Ni

X
xk 2Ri

xk ð7:21Þ

190 VECTOR QUANTIZATION

with Ni the number of elements in the ith cell. Thus, the centroid of Ri is given by

the mean of the elements pertaining to the cell.

Example 7.1 In this example, the GLA is applied to VQ design for 2-D vectors.

The quantizer size is N ¼ 8 and a total of Nt ¼ 500 training vectors are used. The

training vectors are obtained from random number generators. Figure 7.2 shows the

locations of the training vectors in the two-dimensional plane. Initial codewords are

selected randomly from the training vectors; that is, N vectors are selected ran-

domly from the training vector set to use as the initial codebook. Trajectories of

the codewords during training and codewords after convergence are recorded.

Note how the final codewords tend toward locations of the plane where density

of training vectors is higher; this is an expected result since the algorithm tries to

minimize the average distortion over the training data set. Figure 7.3 shows the dis-

tance sum as a function of the number of iterations, where convergence occurs

approximately at iteration number 40. Note that the curve decreases monotonically

with the number of iterations.

Similar to scalar quantization, the solution at convergence depends on the initial

codebook. The algorithm converges at local minimums, leading to differing levels

of performance. As was discussed in Chapter 5, a number of random initializations

can be employed so that the best codebook (with the minimum distortion sum) is

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

x2

Figure 7.2 Training vectors and codeword trajectories. Positions of training vectors are

marked with dots. Trajectories of codewords are joined with the updated codeword marked

with x. Positions of codewords after convergence are marked with o.

QUANTIZER DESIGN ALGORITHMS 191

selected as the final solution. An alternative technique is discussed next, which can

improve the performance after convergence.

Stochastic Relaxation

Stochastic relaxation is a method applied to vector quantizer design which is able to

avoid poor local minimums. The basic idea is to simultaneously perturb either all

encoder or all decoder parameters with an independent white noise process, whose

variance starts from a maximum and decreases gradually with the number of itera-

tions. After each perturbation, a Lloyd iteration is performed.

The heuristic justification of the approach is that by adding high levels of noise

at the beginning of the training process, the state of the quantizer is essentially ran-

domized. As the noise is reduced, the algorithm finds it more difficult to escape a

deep minimum in a single step, but a shallow local minimum will not confine the

state. Since the added noise goes to zero, it is much more probable that the final

state is in a deep minimum of the total distortion sum.

One proposed perturbation noise variance as a function of the iteration number m

is given by

s2
m ¼ Að1� ðm� 1Þ=IÞ3; m ¼ 1; . . . ; I;

0; m > I;

�
ð7:22Þ

where I is a constant defining the number of noisy iterations to run. In general, I

should be large enough so that random perturbation becomes effective. A is the

initial noise variance. According to (7.22), noise variance for perturbation is high

at the beginning and gradually decreases toward zero. The choice of A depends on

0 20 40
2

4

6

8

m

Dm

Figure 7.3 Distance sum as a function of the number of iterations.

192 VECTOR QUANTIZATION

the magnitude of the parameters to be disturbed. One version of the stochastic

relaxation algorithm, based on perturbing the training vector set, is outlined

below.

Step 1. Begin with an initial codebook Y1. Set m ¼ 1. The initial codebook can be

obtained by randomly selecting some training vectors as codewords.

Step 2. Perturb the training vector set. Generate noise samples with variance given

by (7.22). Add these noise samples to the training vector set.

Step 3. Perform a nearest-neighbor search with the perturbed training vector set to

form the cells Rm;i; i ¼ 1; . . . ;N. With N being the quantizer size, or the number

of codewords.

Step 4. Check for an empty cell: if some of the cells found in Step 3 are empty,

they should be removed to avoid problems with the centroid calculation in the

next step. One simple approach is to eliminate the codeword associated with the

empty cell and split the cell with the highest number of members into two

codewords according to

ye yb þ u;

yb yb � u;

where ye is the codeword associated with the empty cell, yb is the codeword

associated with the biggest cell, and u is a low-norm vector. The vector u can be

fixed or generated using a low-variance random number generator. The low-

norm requirement is to ensure that the two resultant codewords are not far from

the original yb, and hence the new ye and yb must take some of the members of

the biggest cell, splitting effectively into two nonempty cells. If none of the cells

from Step 3 is empty, the algorithm proceeds to the next step. If some of the cells

are empty, a cell-splitting procedure is performed and the algorithm has to go

back to Step 3 again for one nearest-neighbor search. Then Step 4 is executed

again to eliminate empty cells. Unless all cells are nonempty, the algorithm will

bounce between Steps 3 and 4.

Step 5. Compute the centroids using the uncorrupted training vectors for the cell

just found to obtain the new codebook Ymþ1.
Step 6. Compute the distortion sum for Ymþ1 ðDmþ1Þ. If it has changed by a small

enough amount since the last iteration, stop. Otherwise set m mþ 1 and go to

Step 2.

Example 7.2 A similar design situation as in Example 7.1 is considered here. A

total of 100 2-D training vectors are used with the quantizer size equal to 10. The

elements of the training vectors are between 0 and 1. Figure 7.4 shows the distance

sum curves for the GLA and stochastic relaxation (SR), after 500 iterations. In sto-

chastic relaxation, I ¼ 300 and A ¼ 1. At the end of the training section, the GLA

produces a distance sum of 1.576, while 1.407 is recorded for stochastic relaxation.

QUANTIZER DESIGN ALGORITHMS 193

Therefore, for this particular experiment, stochastic relaxation produces a better

result.

The price to pay for using stochastic relaxation is obvious: more training time. In

general, the constant I must be high enough so that random perturbation becomes

effective. The result at convergence also depends on the initial codebook as well as

the noise sequence used for perturbation. Therefore, stochastic relaxation can only

be viewed as an alternative training method, and there is no guarantee of achieving

global optimality. In practice, the amount of computation incurred in stochastic

relaxation might be comparable to running several GLA using different random

initializations, and the outcomes of the two approaches might be close. Thus, the

advantage of one method over the other is hard to determine or nonexistent.

7.4 MULTISTAGE VQ

A direct implementation of VQ having a reasonable resolution as presented in the

last sections requires a great deal of implementational costs—costs in terms of

space (storage needed for codebook, referred to as memory cost) and time (opera-

tions required to search for the best codeword, referred to as computational cost). In

order to lower the implementational costs, a certain structure can be imposed to

reduce either the space requirement, the time requirement, or both. In this section

we consider a structured scheme, known as multistage vector quantization

(MSVQ), which provides substantial savings in both space and time. The price

1 10 100 1000
1

10

100

1000

m

Dm

GLA

SR

Figure 7.4 Comparison between the distance sum curves for stochastic relaxation and the

GLA. Note that both horizontal and vertical scales are logarithmic.

194 VECTOR QUANTIZATION

paid for these advantages is the performance degradation when compared with an

equivalent unconstrained VQ. However, cost reduction often compensates for the

drop in performance in many practical applications.

Figure 7.5 shows the block diagrams of the encoder and decoder for MSVQ with

K stages. In the encoder, the input vector x is compared with

x̂ ¼ y
ð1Þ
i1
þ y

ð2Þ
i2
þ � � � þ y

ðKÞ
iK

; ð7:23Þ

where y
ðlÞ
i is the ith codevector from the lth stage codebook. That is, the first-stage

codebook Y1 of size N1 submits the codevector y
ð1Þ
i1
; the second-stage codebook Y2

of size N2 submits the codevector y
ð2Þ
i2
; and so on. Note that all codevectors have the

same dimension as the input vector. The decoders D1 to DK of the different stages

merely output the codevector using the input index.

By choosing different indices, the encoder seeks to minimize the distance

between x and x̂. The index set {i1, i2, . . . , iK} that minimizes the distance is

x

Q(x)

..
.

..
.

..
.

..
.

.

...

...

..
.

Distance
calculation

Minimization

DKiK

D2i2

D1

D1

D1

i1

iK

i2

i1

DK

yi1
(1)

yi1
(1)

yi2
(2)

yi2
(2)

yiK
(K)

yiK
(K)

Figure 7.5 MSVQ encoder (top) and decoder (bottom).

MULTISTAGE VQ 195

transmitted to the MSVQ decoder, where codevectors from different stages are

added together to form the quantized version of the input.

Resolution

We are given a K-stage MSVQ with codebook sizes N1;N2; . . . ;NK . The resolution

of each stage is given by

r1 ¼ lgN1; r2 ¼ lg N2; . . . ; rK ¼ lg NK

with an overall resolution of

r ¼
XK
l¼1

rl ¼
XK
l¼1

lg Nl ¼ lgð
YK
l¼1

NlÞ ð7:24Þ

bits.

Memory Cost

Assuming that one memory location is needed to store one codevector, the memory

cost (MC) for a K-stage MSVQ is given by

MC ¼
XK
l¼1

Nl ¼
XK
l¼1

2rl : ð7:25Þ

That is, MC memory locations are needed for codebook storage.

Example 7.3 Here, comparison is made between the memory cost of uncon-

strained VQ and MSVQ, for typical values of resolution. Table 7.1 shows some

numerical results. In the first column, resolution values are given. The second col-

umn contains the memory cost for an unconstrained VQ, calculated as 2r. The Third

column and fourth column contain the memory cost for an MSVQ having two

stages and three stages, respectively, together with the selected configuration within

parenthesis. For MSVQ, the memory cost depends on the resolution as well as the

TABLE 7.1 Comparison of Memory Cost for Typical Values of Resolution

Resolution (in bits) Unconstrained VQ MSVQ: Two Stages MSVQ: Three Stages

6 64 16 (3, 3) 12 (2, 2, 2)

8 256 32 (4, 4) 20 (2, 3, 3)

10 1024 64 (5, 5) 32 (3, 3, 4)

15 32768 384 (7, 8) 96 (5, 5, 5)

20 1048576 2048 (10, 10) 320 (6, 7, 7)

196 VECTOR QUANTIZATION

particular codebook configuration; for instance, in two stages, 10-bit resolution can

be configured as (1, 9) (r1 ¼ 1; r2 ¼ 9), (3, 7) (r1 ¼ 3; r2 ¼ 7), and so on; that is, as

long as the sum of the resolutions for the two codebooks is equal to the overall reso-

lution. A different codebook configuration, in general, produces different memory

cost.

Several observations can be drawn from Table 7.1. First, memory cost is far

lower for MSVQ, especially when the resolution increases. At 10-bit resolution,

for instance, unconstrained VQ needs 16 times the amount of memory required

by a two-stage MSVQ. On the other hand, a higher number of stages in an

MSVQ configuration usually need less memory.

In general, a more costly system requiring more memory provides higher perfor-

mance, mainly because more parameters are available for tuning. In many

instances, however, slight performance gain is obtained at a huge cost increase.

Thus, from a practical point of view, the small gain in system quality does not jus-

tify the excessive cost.

Example 7.4: Minimizing Memory Cost for a Fixed Resolution and Number
of Stages It is clear from (7.25) that different configurations of MSVQ having

the same overall resolution r (given by (7.24)) produce different costs. Table 7.2

shows an example of 6-bit resolution, where all possible costs for two-stage and

three-stage MSVQ are summarized. In this example, when a particular configura-

tion has the same size for all stages, the memory cost seems to be minimized ((3, 3)

vs. (1, 5) and (2, 4); (2, 2, 2) vs. (1, 1, 4) and (1, 2, 3)). Is the memory cost mini-

mized when the sizes of different stages are the same? The answer to the question is

yes and the reader is referred to Exercise 7.7 for a proof. Since one of the main

advantages in using MSVQ is space saving, it is common in practice to use stages

having the same size in order to minimize MC. The ultimate configuration, how-

ever, is decided by the required performance level and the amount of available

resources.

Search Procedure

Consider a K-stage MSVQ with codebook sizes N1, N2, . . . , NK. The task of the

encoder is to search for the best indices, grouped as the vector i ¼ ½i1; i2; . . . ; iK �
so as to minimize the quantization error. Various search strategies exist leading

TABLE 7.2 Memory Cost for MSVQ with
6-bit Resolution

Two Stages (K¼ 2) Three Stages (K¼ 3)

34 (1, 5) 20 (1, 1, 4)

20 (2, 4) 14 (1, 2, 3)

16 (3, 3) 12 (2, 2, 2)

MULTISTAGE VQ 197

to different design procedures, implementational complexities, and overall perfor-

mance. The determination of the optimal set of indices is a complex combinatorial

optimization problem that can only be solved in general by trying all sets of indices

(full search). Suboptimal sequential solutions are typically used in practice to

reduce the complexity.

Full Search

This is the optimal procedure and evaluates all possible combinations of indices to

find the best codeword. That is, i1, i2, . . . , iK are exhaustively searched to yield the

optimal index vector io¼ [io1, io2, . . . , ioK] such that

d x; y
ð1Þ
io1
þ y

ð2Þ
io2
þ � � � þ y

ðKÞ
ioK

� 	

 d x; y

ð1Þ
i1
þ y

ð2Þ
i2
þ � � � þ y

ðKÞ
iK

� 	
; 8 i 6¼ io; ð7:26Þ

where dð:; :Þ is the chosen distance or distortion measure.

Sequential Search

The sequential search procedure determines io¼ [io1, io2, . . . , ioK] in a sequential

manner. Starting from Stage 1, io1 is found so that

d x; y
ð1Þ
io1

� 	

 d x; y

ð1Þ
i1

� 	
; 8 i1 6¼ io1: ð7:27Þ

Next, for Stage 2, io1 is fixed and io2 is searched to reach

d x; y
ð1Þ
io1
þ y

ð2Þ
io2

� 	

 d x; y

ð1Þ
io1
þ y

ð2Þ
i2

� 	
; 8 i2 6¼ io2: ð7:28Þ

In general, for the jth stage,

d x; y
ð1Þ
io1
þ y

ð2Þ
io2
þ � � � þ y

ð jÞ
ioj

� 	

 d x; y

ð1Þ
io1
þ y

ð2Þ
io2
þ � � � þ y

ð jÞ
ij

� 	
; 8 ij 6¼ ioj: ð7:29Þ

Tree Search

Tree search is a generalization of the sequential search procedure in which more

than one index is passed on from one stage to the next. In the first stage, the set

of Ma (an integer) minimum distortion indices is determined. Denoting this set

by I1, we have

io1 2 I1 if and only if d x; y
ð1Þ
io1

� 	

 d x; y

ð1Þ
i1

� 	
; 8 i1 62 I1: ð7:30Þ

In the second stage, a joint search is performed with the added constraint that

the first index is from I1. The Ma minimum distortion sets of indices are

maintained from this search, and this set of (pairs of) indices is denoted by I2,

198 VECTOR QUANTIZATION

which satisfies

ðio1; io2Þ 2 I2 if and only if d x; y
ð1Þ
io1
þ y

ð2Þ
io2

�
Þ
 d x; y

ð1Þ
io1
þ y

ð2Þ
i2

� 	
;

8 io1 2 I1; ðio1; i2Þ 62 I2:
ð7:31Þ

Similarly, at the jth stage, the set of Ma indices Ij are defined by

ðio1; . . . ; iojÞ 2 Ij if and only if d x;
Xj�1
l¼1

y
ðlÞ
iol
þ y

ð jÞ
ioj

 !

 d x;

Xj�1
l¼1

y
ðlÞ
iol
þ y

ð jÞ
ij

 !
;

8 ðio1; . . . ; io; j�1Þ 2 Ij�1; ðio1; . . . ; ijÞ 62 Ij: ð7:32Þ
At the final stage, the minimum distortion set of indices from the set IK is chosen as

the overall optimum. It is important to emphasize that only Ma elements exist in the

index set Ij, j¼ 1 to K.

Example 7.5 Tree search is illustrated here for a three-stage MSVQ. Codebook

sizes are N1¼ 4, N2¼ 3, and N3¼ 2. Thus, i1¼ 1, 2, 3, 4; i2¼ 1, 2, 3; and i3¼ 1, 2.

A hypothetical search situation is shown in Figure 7.6 with Ma¼ 3. Search starts

with the first stage, where the input vector is compared with the four first-stage

codevectors; that is, these distances are calculated as

d1 ¼ d x; y
ð1Þ
1

� 	
; d2 ¼ d x; y

ð1Þ
2

� 	
;

d3 ¼ d x; y
ðlÞ
3

� 	
; d4 ¼ d x; y

ðlÞ
4

� 	
:

Stage 1 Stage 2 Stage 3

Figure 7.6 Illustration of a tree search; the best paths are indicated by filled blocks.

MULTISTAGE VQ 199

Assume that d1, d2, and d4 are all smaller than d3; then

I1 ¼ f1; 2; 4g:

Proceeding with the second stage the following pairs of indices (i1, i2) are consid-

ered:

ð1; 1Þ ð1; 2Þ ð1; 3Þ
ð2; 1Þ ð2; 2Þ ð2; 3Þ
ð4; 1Þ ð4; 2Þ ð4; 3Þ

and the bestMa pairs of indices are maintained. Assume that (1, 2), (1, 3), and (4, 2)

are the best (lowest distance among the nine pairs of indices); then

I2 ¼ fð1; 2Þ; ð1; 3Þ; ð4; 2Þg:

The final stage tests the following triplets of indices:

ð1; 2; 1Þ ð1; 2; 2Þ
ð1; 3; 1Þ ð1; 3; 2Þ
ð4; 2; 1Þ ð4; 2; 2Þ

In this example, we assume

I3 ¼ fð1; 2; 2Þ; ð1; 3; 2Þ; ð4; 2; 1Þg:

That is, the index triplets in I3 give the lowest distance among the six alternatives.

Finally, the set of indices from I3 that provides the lowest distortion is the desired

encoder output. The search process is illustrated graphically in Figure 7.6.

Computational Cost

Here, computational costs associated with various search procedures in MSVQ are

analyzed. For simplicity the cost is expressed as the number of distance computa-

tions required to complete the search.

Full Search

Since all possible combinations of indices among all stages are evaluated, a total of

CC ¼ N1N2 � � �NK ¼
YK
l¼1

Nl ð7:33Þ

distance computations are required.

200 VECTOR QUANTIZATION

Sequential Search

In this case, each stage is searched only once; thus, the number of distance compu-

tations is given by

CC ¼ N1 þ N2 þ � � � þ NK ¼
XK
l¼1

Nl: ð7:34Þ

Tree Search

In the general case, the number of distance computations is given by

CC ¼ N1 þminðN1;MaÞN2 þminðminðN1;MaÞN2;MaÞN3 þ � � � : ð7:35Þ

For the first stage, N1 distance computations are needed to locate Ma codevectors.

For the second stage, N2 distance computations are required for each of the Ma, or

N1 (depending which number is smaller), first-stage codevectors. Counting in this

way up to the Kth stage gives (7.35). The minimum operator min(.,.) compares two

numbers and returns the smallest.

Example 7.6 Figure 7.7 shows an example of computational cost where the

MSVQ consists of four stages having the same size of 4. That is, Nl¼ 4 for l¼ 1

0 5 10 15
10

100

1000

Ma

CC

FS

SS

TS

Figure 7.7 An example of computational cost comparison between three codebook search

methods under MSVQ: full search (FS), tree search (TS), and sequential search (SS), withMa

being the number of indices preserved at each stage. Note that the vertical scale is

logarithmic.

MULTISTAGE VQ 201

to 4. The cases considered are full search, sequential search, and tree search with

different Ma. Note that the maximum value of Ma is equal to 16 since a maximum

of 4� 4¼ 16 index sets are passed to the next stage. From this example we can see

that sequential search requires far fewer distance computations with respect to full

search. The cost involved with tree search is the same as with sequential search

when Ma¼ 1; indeed, the two methods are equivalent under that condition. For

higher values of Ma, the cost increases proportionately.

Since the full search procedure verifies all combinations of codevectors, its per-

formance is the best. However, it is demonstrated later that the performance of the

tree search technique with a moderate value of Ma can be close to a full search

approach, with the accompanying benefit of substantial cost reduction.

MSVQ Design Algorithms

Several algorithms for MSVQ codebook design are presented next. It is important

to note that they are only applicable to the case of squared Euclidean distance mea-

sure. We will consider exclusively this particular distance measure since it is widely

employed in speech coding applications. Differing strategies must be used for other

distance measures.

Sequential Codebook Design Algorithm

This method optimizes the current stage codebook under the assumption that all

subsequent stages are populated by zero vectors only. Hence, the training vector

set (7.18) is used to generate the first-stage codebook using the GLA. For the

second stage, a new training vector set is generated with

x
ð2Þ
k ¼ xk � Q1ðxkÞ; k ¼ 0; 1; . . . ;Nt � 1; ð7:36Þ

where Q1(�) is the first-stage quantization function. This training set is now used to

create the second-stage codebook. In general, the lth-stage codebook is generated

with the training set

x
ðlÞ
k ¼ x

ðl�1Þ
k � Ql�1ðxðl�1Þk Þ

¼ xk � Q1ðxkÞ � � � � � Ql�1ðxðl�1Þk Þ

¼ xk �
Xl�1
i¼1

QiðxðiÞk Þ; ð7:37Þ

where x
ð1Þ
k ¼ xk.

This codebook design procedure is suboptimal in the sense that it does not find

the best set of codebooks for sequentially encoding a vector stage-by-stage with the

multistage structure. It is, however, greedy in the sense that it finds the codebook for

the first stage that would be optimal if there were only one stage. Then it finds the

202 VECTOR QUANTIZATION

best codebook for the second stage given the first-stage codebook, assuming there

are only two stages. Similarly, each successive stage is optimal given all previous

stage codebooks and assuming that it is the last stage.

Example 7.7 Some properties of the sequential algorithm are illustrated here

through an actual design case. A group of 2-D vectors is selected for codebook

design. The group consists of 3000 vectors (Figure 7.8, top left) and a four-stage

MSVQ is designed, where all stages have the same size of four (overall

resolution¼ 8 bits). Initial codebooks are randomly initialized. As explained

before, the first stage with four codevectors is designed using the GLA with the

3000 input vectors. Then, the training data for the second stage is formed by com-

puting the difference between the input vectors and the corresponding quantized

versions from the first stage. These difference vectors form the training data for

the second stage. The process is repeated for each stage. Training vectors for the

four stages are shown in Figure 7.8. It is possible to point out two key observations

from this example:

� The arithmetic mean of the training vectors for Stages 2, 3, and 4 tend to be

the zero vector. This is evidenced from the fact that they gather around the

0 1

0

2

−0.5 0 0.5 1 1.5
−1

0

1

2

0 1

0

2

x1
(4)

x2
(4)

x2
(2)

x1
(2)

x1
(3)

x1

x2
(3)

x2

0 1

0

2

Figure 7.8 Example training data for a four-stage MSVQ. Original (top left), second stage

(top right), third stage (bottom left), and fourth stage (bottom right).

MULTISTAGE VQ 203

origin (Figure 7.8, top right, bottom left, and bottom right). Note that the mean

of the original training vector set is not zero (Figure 7.8, top left).

� The amplitude of the training vectors for successive stages tends to diminish.

In other words, the energy of the training vectors for successive stages is

smaller.

These two phenomena result from the operation of the VQ: training vectors for

successive stages are essentially quantization errors of previous stages. If the VQ is

well designed, the amplitudes of training vectors for successive stages should

become lower and lower, with an arithmetic mean approaching zero. Later in the

section, these properties are applied to develop the joint codebook design algorithm

for a tree search.

The way that the quantizer is designed also has important consequences regard-

ing performance under different search procedures. In the present case, the distance

sum for the input training set under full search is 5.28, while the minimum distance

sum under the tree search is 5.48. This represents a 3.8% performance degradation

by changing from full search to tree search. The computational cost for full search

is 256, while for the tree search (Ma¼ 4) it is 52. Thus, full search requires roughly

five times the amount of computation done by a tree search. As we can see in this

example, computation saving is huge with relatively low performance degradation

when full search is replaced by tree search.

Figure 7.9 shows the distance sum for the input training set for the full search

and tree search. Note how the tree search performance saturates rapidly as Ma

increases (Ma	 4). This characteristic is compared with other design approaches

later in the chapter.

0 5 10 15 20
5

5.5

6

Ma

D

FS

TS

Figure 7.9 Distance sum (D) for the training data set for full search (FS) and tree search

(TS) as a function of Ma.

204 VECTOR QUANTIZATION

Stacked Codebook Description of MSVQ

Notations are introduced here to describe the operation of MSVQ. The codebook of

the lth stage can be represented by the stacked stage codebook:

yðlÞ ¼

y
ðlÞ
1

y
ðlÞ
2

..

.

y
ðlÞ
Nl

2
666664

3
777775; l ¼ 1; . . . ;K; ð7:38Þ

formed by placing all Nl codevectors as a single MNl� 1 vector. Furthermore, by

stacking all K stacked stage codebooks, we form the overall stacked codebook:

y ¼

yð1Þ

yð2Þ

..

.

yðKÞ

2
66664

3
77775; ð7:39Þ

which is an M(N1þ N2þ � � � þ NK)� 1 vector.

To select a particular codeword of the lth-stage codebook, we multiply the cor-

responding stacked codebook with the selection matrix:

y
ðlÞ
i ¼ B

ðlÞ
i yðlÞ; i ¼ 1; . . . ;Nl; l ¼ 1; . . . ;K; ð7:40Þ

with B
ðlÞ
i an M� (MNl) matrix whose elements are one or zero. Figure 7.10 shows

the structure of the matrix. The multistage selection matrix is formed with

B ¼ B
ð1Þ
i1

B
ð2Þ
i2

� � � B
ðKÞ
iK

h i
; ð7:41Þ

which is an M�M(N1þ � � � þ NK) matrix. Equation (7.23) can now be expressed

as

x̂ ¼ B � y; ð7:42Þ

M

(i−1)M (Nl − i)MM

0 0

: :

0 0

.....

.....

0 0

: :

0 0

.....

.....

Figure 7.10 Structure of the selection matrix B
ðlÞ
i . The shaded area represents an M �M

identity matrix.

MULTISTAGE VQ 205

where B is the multistage selection matrix while y is the quantizer’s stacked code-

book. Given the indices i1, . . . , iK, the matrix B selects the corresponding

codewords from the stage codebooks y(1), . . . , y(K). Figure 7.11 shows the structure

of the multistage selection matrix.

Derivation of the Joint Codebook Design Algorithm

The goal of joint codebook design is to jointly optimize all codevectors over all

stages after each pass through the training set. The codebook design procedure

seeks to minimize the distance sum:

D ¼
X
k

kxk � x̂kk2: ð7:43Þ

Using the notation in (7.42),

D ¼
X
k

ðxk � BkyÞTðxk � BkyÞ

¼
X
k

xTk xk � 2yT
X
k

BT
k xk þ yT

X
k

BT
kBk

 !
y: ð7:44Þ

Let’s define

v ¼
X
k

BT
k xk; ð7:45Þ

which is an M(N1þ � � � þ NK)� 1 vector, and

Q ¼
X
k

BT
kBk: ð7:46Þ

which is an M(N1þ � � � þ NK)�M(N1þ � � � þ NK) symmetric matrix. Also define

Do ¼
X
k

xTk xk: ð7:47Þ

MN2 MNKMN1

...... M

(i1 − 1)M (i2 − 1)M (iK − 1)M

Figure 7.11 General form of the multistage selection matrix B. The shaded area represents

an M �M identity matrix.

206 VECTOR QUANTIZATION

Substituting (7.45), (7.46), and (7.47) in (7.44) leads to

D ¼ Do � 2yTvþ yTQy: ð7:48Þ
Differentiating the above equation with respect to y and equating the result to

zero gives

qD
qy
¼ �2vþ 2Qy ¼ 0: ð7:49Þ

Thus,

v ¼ Q � y ð7:50Þ
or

y ¼ Q�1v: ð7:51Þ
In general, the inverse of Q does not exist. Indeed, an infinite number of solu-

tions for the joint codebook exist since adding a constant vector to one stage while

subtracting the same constant vector from any other stage leads to the same ensem-

ble of possible codewords. Alternative techniques must be used to solve (7.50).

Before continuing with the solution of (7.50), let’s consider the general forms of

the various matrices involved in the derivation. The product BTB has the general

form shown in Figure 7.12. From Figure 7.12 we can understand the structure of

the Q matrix (7.46), which is a symmetric matrix. Note that the rows or columns

... ...

...

...

...

MN2

MN2

MNK

MNK

MN1

MN1

(i1 − 1)M

(i1 − 1)M

(i2 − 1)M

(i2 − 1)M

(iK − 1)M

(iK − 1)M

Figure 7.12 General form of the product BTB. The shaded areas represent an M �M

identity matrix.

MULTISTAGE VQ 207

of Q can be linearly dependent. Therefore, Q is usually not a full rank matrix; in

other words, the inverse does not exist. In addition, moving along the main diagonal

we can find that the Q matrix is comprised of diagonal submatrices of dimensions

MN1, MN2, . . . , MNK.

Another important observation about the structure of Q is that the main diagonal

will not contain any zero element if and only if all codewords from the stage code-

books are utilized at least once. That is, after passing the whole training set through

the system, all codewords from all stage codebooks must have been involved.

Multiplying BT by x creates the M(N1þ � � � þ NK)� 1 vector whose structure is

illustrated in Figure 7.13.

For simplicity, a projection method is utilized for the solution of (7.50). Note

that (7.39) can be written as

y ¼ yðlÞo þ Sly
ðlÞ; l ¼ 1; . . . ;K; ð7:52Þ

where

yðlÞo ¼

yð1Þ

..

.

yðl�1Þ

0ðlÞ

yðlþ1Þ

..

.

yðKÞ

2
666666666664

3
777777777775

ð7:53Þ

...

x

x

x

MN2

MNK

MN1

(i1 − 1)M

(i2 − 1)M

(iK − 1)M

Figure 7.13 General form of the vector BTx . The selection matrix B puts copies of the

vector x in the final product according to the indices i1; . . . ; iK .

208 VECTOR QUANTIZATION

with 0(l) a zero vector of length MNl. Sl is a shifting matrix of dimension

M(N1þ � � � þ NK)�MNl, and has the general form shown in Figure 7.14. Substi-

tuting (7.53) in (7.48) gives:

D ¼ Do � 2 yðlÞo þ Sly
ðlÞ

� 	T
vþ yðlÞo þ Sly

ðlÞ
� 	T

Q yðlÞo þ Sly
ðlÞ

� 	
ð7:54Þ

or

D ¼ Do � 2yðlÞTo vþ yðlÞTo QyðlÞo � 2yðlÞTSTl vþ 2yðlÞTSTl QyðlÞo þ yðlÞTSTl QSly
ðlÞ:

ð7:55Þ

Let’s define

DðlÞo ¼ Do � 2yðlÞTo vþ yðlÞTo QyðlÞo ; ð7:56Þ
vðlÞ ¼ STl v�QyðlÞo

� 	
; ð7:57Þ

QðlÞ ¼ STl QSl: ð7:58Þ

Substituting (7.56), (7.57), and (7.58) in (7.55) gives

D ¼ DðlÞo � 2yðlÞTvðlÞ þ yðlÞTQðlÞyðlÞ: ð7:59Þ

0 0

...
...

0 0

0 0

M(Nl +1 + ��� + NK)

M(N1 + ��� + Nl −1)

MNl

0 0

MNl

Figure 7.14 General form of the shifting matrix Sl. The shaded area represents an

M � Nl �M � Nl identity matrix.

MULTISTAGE VQ 209

Thus, to minimize D, we differentiate (7.59) with respect to y(l) and equate the

result to zero, leading to

vðlÞ ¼ QðlÞyðlÞ; ð7:60Þ

or

yðlÞ ¼ QðlÞ
h i�1

vðlÞ: ð7:61Þ

The existence of [Q(l)]�1 is investigated next. From (7.58) the effect of the

two selection matrices is to ‘‘truncate’’ the matrix Q into the MNl�MNl matrix

Q(l). The truncation is symmetrical along the main diagonal. This process is illu-

strated in Figure 7.15. From Figure 7.12 we can see that Q is comprised of K2

diagonal submatrices. Since STl selects the rows* M(N1þ � � � þ Nl�1)þ 1

to M(N1þ � � � þ Nl) while Sl selects the columns M(N1þ � � � þ Nl�1)þ 1 to

M(N1þ � � � þ Nl), we conclude that Q(l) is a diagonal matrix of dimension

MNl�MNl.

As discussed earlier, if all codewords in the lth stage have been utilized during

training, the elements on the main diagonal of Q(l) are nonzero. Therefore, the

inverse of Q(l) exists and is simple to find.

Once the stacked codebook y has been reoptimized, the training sequence is

again repartitioned using the new codebooks. This method is referred to as simul-

taneous joint design, since all codebooks are reoptimized simultaneously and

jointly after each pass over the training sequence. A step-by-step description of

the joint codebook design algorithm is presented at the end of the section.

*For an M�N matrix, the rows are counted from 1 to M, while the columns are counted from 1 to N.

Selects rows
M(N1 + ··· + Nl −1) + 1
to M(N1 + ··· + Nl)

Selects columns
M(N1 + ··· + Nl −1) + 1
to M(N1 + ··· + Nl)

Figure 7.15 Illustration of the product STl QSl.

210 VECTOR QUANTIZATION

Example 7.8 The same training vector set as in Example 7.7 is used to illus-

trate the properties of the joint codebook design algorithm. The same MSVQ con-

figuration is considered. The initial codebooks are randomly initialized. As in the

case of the GLA, the final performance depends on the initial codebook values.

Unlike the GLA, however, the distortion sum after each pass through the training

data might not decrease. Figure 7.16 shows an example distortion sum curve after

1000 passes through the training data set, where convergence to a minimum is

obtained. Small oscillations are observed after roughly 200 passes through the train-

ing data set.

Figure 7.17 plots the final codevectors together with the training vectors. The

256 codevectors are obtained by evaluating all possible combinations between

the codebooks from the four stages (full search). Unlike the GLA, where the final

codevectors upon convergence usually stay as centroids of the training data, in the

present case, some codevectors are clearly located far away from the training data,

implying therefore a loss in performance. Performance degradation is due to the

structure imposed on the MSVQ, a trade-off with respect to implementational costs.

Joint Codebook Design Algorithm and Tree Search

The joint design algorithm described before is done under the assumption that a full

search is used. If a sequential or tree search procedure is employed, the perfor-

mance may degrade. Theoretically, joint design combined with sequential search

may even result in worse performance than sequentially designed codebooks.

Note that if a full search is used, the ordering of the codebooks is unimportant since

1 10 100 1000
1

10

100

1000

Dm

m

Figure 7.16 Distance sum as a function of the number of iterations in an example of joint

codebook design.

MULTISTAGE VQ 211

it does not change the ensemble of reconstruction values. If a sequential or tree

search is used, the ordering may be very important.

Some empirical procedures are proposed next that can improve the performance

of MSVQ under a tree search designed using the joint algorithm. These procedures

are based on observations of the characteristics of the codebooks optimized using

the sequential algorithm.

Improvement 1. Begin with an initial codebook sequentially designed. Since the

final solution depends on the initial codevectors, by using the sequential

algorithm first and further optimizing with the joint codebook design algorithm,

it is expected that the solution at convergence will be better adapted for a

sequential or tree search.

Improvement 2. Remove the mean of all codewords of each codebook (except the

first codebook) so that

XNl

i¼1
y
ðlÞ
i ¼ 0 ð7:62Þ

for l¼ 2 to K, with 0 the zero vector. This step should be performed after each

update of the codewords in the joint codebook design algorithm. Since for both

sequential search and tree search, the codevectors from stage 2 to K contain

quantized versions of difference vectors, it is expected that the mean should be

−0.5
−0.5

0 0.5 1 1.5

0

0.5

1

1.5

x1

x2

Figure 7.17 Plot of the input training vectors (dots) and full-search codevectors (diamonds)

of the four-stage MSVQ.

212 VECTOR QUANTIZATION

close to zero. By removing the mean, the resultant codebooks are better adapted

to the natural structure required for a sequential or tree search. Indeed, this is a

property of sequentially designed codebooks, as shown in Example 7.7.

Improvement 3. Codebook reordering: Modify the order of the codebooks such that

the energy in y(j) is less than the energy in y(l) for all j> l. For all energy

computation, the mean is first removed. Thus,

½yð jÞ�Tyð jÞ
 ½yðlÞ�TyðlÞ; 8 j > l: ð7:63Þ

This step should be performed after each update of the codewords in the joint

codebook design algorithm.

Justification for the improvement propositions are as follows. During sequential

search or tree search each additional stage (except the first one) provides the differ-

ence vector that, when added with the codewords from previous stages, produces a

better approximation to the input vector. Hence, it is expected that the codewords

for successive codebooks in a MSVQ have lower and lower amplitude, or contain

less and less energy. By incorporating this reordering step, the resultant codebooks

are better suited for a sequential or tree search. This is another property observed in

sequentially designed codebooks, as shown in Example 7.7.

Example 7.9 This example provides an overview of the properties of MSVQ

designed with various algorithms. The same training data and quantizer configura-

tion as in Example 7.7 are considered (four stages, 2 bits per stage). Comparison is

made for the following schemes:

1. Design based on a sequential algorithm, same as Example 7.7.

2. Design based on a joint algorithm with randomly initialized codebook, same

as Example 7.8.

3. Design based on a joint algorithm, where the improvement propositions for

tree search as explained previously are incorporated. Initial codebooks are

randomly generated.

4. Same as 3 with the exception that the initial codebooks are designed using the

sequential algorithm.

Performance under full search is considered first. Table 7.3 shows the distance

sum under full search for the codebooks designed using the four schemes. The input

training data set is used to measure the distance sum. As we can see, Scheme 1

provides the worst performance since it is suboptimal for a full search. Schemes

2 and 3 give almost the same distance sum, implying that the optimization proce-

dure for a tree search has no significant effect on a full search performance. The

best result is obtained for Scheme 4, where the sequentially designed codebooks

are jointly optimized.

MULTISTAGE VQ 213

In the same table we can appreciate the performance of the four schemes under a

tree search, where the minimum distance sum, together with the minimum Ma to

achieve that value of distance sum, is recorded. Note that Scheme 4 again provides

the highest performance. Scheme 2 is the worst in this case since no optimization

for a tree search is incorporated.

Behavior under a tree search is better revealed by plotting the distance sum as a

function of Ma, shown in Figure 7.18. As we can see, Scheme 1 provides good per-

formance for a tree search; however, it is not as good as Scheme 4. Both these

approaches are relatively insensitive to changes in Ma, especially when Ma	 4.

Scheme 2 is the worst; its poor performance is due to the fact that no optimization

is performed for a tree search. For Schemes 1 and 4, the distance sum essentially

remains constant whenMa	 4. That is, no improvement is obtainable for additional

computation. Thus, good performance can be achieved at low cost.

In summary, Scheme 4 provides the best performance in both a full search and

tree search.

Summary of the Joint Codebook Design Algorithm

The following is a step-by-step description of the joint codebook design algorithm.

Optimization procedures for a tree search are incorporated.

TABLE 7.3 Performance Comparison for Four Design Schemes

Scheme Distance Sum (Full-Search) Distance Sum (Tree-Search)

1 5.282 5.483 (Ma¼ 4)

2 3.651 12.91 (Ma¼ 16)

3 3.817 9.407 (Ma¼ 16)

4 2.933 3.556 (Ma¼ 5)

0 5 10 15 20
1

10

100

1000

D

Ma

2

3

1

4

Figure 7.18 Performance comparison in a tree search for four MSVQ design schemes in an

experiment.

214 VECTOR QUANTIZATION

Step 1. Begin with an initial stacked codebook y. Set m¼ 1. The initial codebook is

designed using a sequential algorithm.

Step 2. Partition: For each vector xk, k¼ 0, . . . , Nt� 1, in the training set,

determine the codebook indices i1k, i2k, . . . , iKk that minimize the distortion (full

search). Keep a count on the number of times that a specific codeword is found

to minimize the quantization error.

Step 3. Check for underutilized codewords. If a particular codeword has not been

used after presenting the whole training set, it should be eliminated. The most

frequently used codeword in the same stage is split into two codewords by

addition with random numbers of small variance. Go back to Step 2 after

codeword splitting. If all codewords have been utilized at least once after Step 2,

proceed with Step 4.

Step 4. Compute:

v ¼
X
k

BT
k xk;

Q ¼
X
k

BT
kBk:

Then for l¼ 1 to K,

QðlÞ ¼ STl QSl;

vðlÞ ¼ STl

v�QyðlÞo

�
;

yðlÞ �
QðlÞ

��1
vðlÞ ðUpdate stacked stage codebookÞ;

uðlÞ ¼ 1

Nl

XNl

i¼1
y
ðlÞ
i ðMean computationÞ;

y
ðlÞ
i y

ðlÞ
i � uðlÞ; i ¼ 1; . . . ;Nl ðMean removalÞ;

eðlÞ ¼ �yðlÞ�TyðlÞ ðEnergy computationÞ:

Step 5. Codebook reordering: Sort the energy e(l) and reorder the codebooks by

reassigning the index l in such a way that

eð1Þ > eð2Þ > � � � > eðKÞ:

During reordering, the orders of the mean vectors u(l) and stacked stage

codebooks y(l) are changed accordingly.

Step 6. Mean recovery for first stage codebook:

y
ð1Þ
i y

ð1Þ
i þ uð1Þ; i ¼ 1; 2; . . . ;N1:

Step 7. Compute the distance sum for y. If it has changed by a small enough

amount since the last iteration, stop. Otherwise set m mþ 1 and go to Step 2.

Note that distance sum is calculated using the full search procedure.

MULTISTAGE VQ 215

7.5 PREDICTIVE VQ

A predictive scheme can be deployed to take advantage of the correlation between

consecutive vectors entering the quantizer. The basic scheme is a straightforward

extension to DPCM or predictive quantization in the scalar case (Chapter 6).

The Basics of PVQ

Figure 7.19 shows the block diagrams of the encoder and decoder for PVQ and is

typically applied to those sequences of vectors with a high degree of redundancy.

That is, between the current vector and the past vectors, for instance, the vector ele-

ments have some degree of correlation. During encoding, the difference vector or

prediction-error vector

e½n� ¼ x½n� � xp½n� ð7:64Þ
is quantized. The quantized version of the input vector is given by

x̂½n� ¼ ê½n� þ xp½n�; ð7:65Þ
where ê½n� is the quantized difference vector and xp[n] the prediction vector. Pre-

diction is usually based on a small number of past quantized results. On the decoder

side, the index i[n] is used to recover the quantized difference vector, which is com-

bined with the prediction vector to form the quantization result.

Design Methodologies with Known Predictor

In PVQ design, it is necessary to determine the predictor as well as the VQ code-

book for the population of prediction-error vectors. Several techniques for VQ

x[n] i[n]

−

][ˆ ne
xp[n]

][ˆ nx

i[n]
][ˆ ne

][ˆ nx

xp[n]

Encoder
(Quantizer)

Decoder
(Quantizer)

Predictor

Predictor

Decoder
(Quantizer)

Figure 7.19 PVQ encoder (top) and decoder (bottom).

216 VECTOR QUANTIZATION

codebook design are explained here; in all these techniques, the predictor is

assumed to be known and fixed.

Open-Loop Method

Given the set of training vectors, and by knowing the predictor, a corresponding set

of prediction-error vectors can be generated, with the assumption of no quantiza-

tion. These vectors, in turn, can be used to design a VQ using the GLA. Combining

the predictor with the VQ yields a complete PVQ system.

Closed-Loop Method

It is possible to modify the GLA so as to produce a PVQ design technique as

follows:

Step 1. Begin with the initial codebook Y1. Set m¼ 1. The initial codebook can be

designed using the open-loop method explained before.

Step 2. Encode the set of training vectors using Ym; perform Lloyd iteration to

generate the improved codebook Ymþ 1.

Step 3. Compute the average distortion for Ymþ 1. If it has changed by a small

enough amount since the last iteration, stop. Otherwise set mþ 1!m and go to

Step 2.

For the specified procedure, it is assumed that a set of training vectors is avail-

able; also, an initial VQ codebook exists (Y1), and the predictor is known. Note that

the training sequence x[n] is used in each iteration to generate a prediction-error

sequence e[n], which depends on the previous codebook. The sequence e[n] is

used in the design of the next codebook. That is, an attempt is made to design a

codebook from a prediction-error sequence that depends on the previous codebook;

implying that the training sequence on which the Lloyd iteration is based changes

constantly; therefore, the procedure is suboptimal and the distortion is not guaran-

teed to decrease monotonically. In practice, however, it has been found to be an

effective algorithm and a substantial coding gain can be achieved over the open-

loop design approach.

It is assumed in the described procedure that a single Lloyd iteration step is

applied after completing each encoding step. In actual implementation, multiple

iterations can be executed at Step 2 before encoding the training vectors again.

This latter approach might lead to faster convergence.

PVQ-MA

By utilizing the principle of MA prediction, higher robustness against channel error

is achieved (see Chapter 6). Figure 7.20 shows the block diagrams of the system,

referred to as PVQ-MA. We consider the design of PVQ-MA, which consists of

finding the optimal VQ codebook and the predictor, with the predictor being the

linear type with prediction order equal to M.

PREDICTIVE VQ 217

The design procedure can be separated into two parts: VQ codebook and predic-

tor. When the VQ codebook is updated, the predictor is left intact and vice versa.

The actual procedure is specified below.

Step 1. Start with the initial codebook Y1, and the initial predictor b1¼ [b1,1,

b1,2, . . . , b1,M]
T, with b1,i, i¼ 1 to M, being the MA coefficients. Set m¼ 1.

Step 2. Encode the set of training vectors using Ym and bm; perform Lloyd iteration

to generate the improved codebook Ymþ 1.

Step 3. Encode the set of training vectors using Ymþ 1 and bm; find the new set of

MA coefficients bmþ 1.

Step 4. Compute the average distortion for Ymþ 1 and bmþ 1. If it has changed by a

small enough amount since the last iteration, stop. Otherwise set mþ 1!m and

go to Step 2.

Both the VQ codebook and the predictor can be randomly initialized. In fact, the

initial MA coefficients can be set to zero; in that case, the prediction is always zero

and hence the prediction error is equal to the input. In Step 2, after encoding the

input training vectors, a set of prediction-error vectors is generated, used by the

GLA for codebook generation.

After updating the VQ codebook, the set of input vectors is encoded using the

new codebook and optimization is performed on the MA coefficients. The objective

is to minimize

D ¼
X
n

kx½n� � x̂½n�k2

¼
X
n

x½n� � ê½n� þ
XM
i¼1

bi ê½n� i�
 !�����

�����
2

ð7:66Þ

x[n]
e[n]

i[n]

−

xp[n]

][ˆ ne

i[n]
][ˆ ne

][ˆ nx

xp[n]

Encoder
(Quantizer)

Predictor

Decoder
(Quantizer)

Predictor

Decoder
(Quantizer)

Figure 7.20 PVQ-MA encoder (top) and decoder (bottom).

218 VECTOR QUANTIZATION

by selecting the appropriate MA coefficients b, with the range of n covering the

whole training data set. Differentiating (7.66) with respect to bk, k¼ 1, 2, . . . , M,

gives

qD
qbk
¼ �2

X
n

ê½n� k�Tðx½n� � ê½n�Þ �
XM
i¼1

bi ê½n� k�T ê½n� i�
 !

: ð7:67Þ

Equating (7.67) to zero leads to

XM
i¼1

bi
X
n

ê½n� k�T ê½n� i� ¼
X
n

ê½n� k�T x½n� � ê½n�ð Þ; k ¼ 1; 2; . . . ;M;

ð7:68Þ

which is a set of M linear equations. Written in matrix form, we have

A � b ¼ c; ð7:69Þ

where

A ¼P
n

ê½n� 1�k k2 P
n

ê½n� 1�T ê½n� 2� � � � P
n

ê½n� 1�T ê½n�M�
P
n

ê½n� 2�T ê½n� 1� P
n

ê½n� 2�k k2 � � � P
n

ê½n� 2�T ê½n�M�

..

. ..
. . .

. ..
.

P
n

ê½n�M�T ê½n� 1� P
n

ê½n�M�T ê½n� 2� � � � P
n

ê½n�M�k k2

0
BBBBBBBB@

1
CCCCCCCCA
;

ð7:70Þ
b ¼ ½b1b2 . . . bM�T ; ð7:71Þ

c ¼
X
n

ê½n� 1�Tðx½n� � ê½n�Þ
X
n

ê½n� 2�Tðx½n� � ê½n�Þ � � �
"

�P
n

ê½n�M�Tðx½n� � ê½n�Þ
�T

: ð7:72Þ

Solving (7.69) leads to the set of optimal MA coefficients.

7.6 OTHER STRUCTURED SCHEMES

As shown in previous sections, by imposing a certain structure on the basic VQ

framework, it is possible to obtain schemes that are highly efficient, with some

OTHER STRUCTURED SCHEMES 219

quality degradation. Deterioration in quality is often acceptable in practice since

VQ schemes are in general far superior to scalar quantization at similar resolution.

In this section, we study two additional structured techniques widely applied in

practice that offer similar advantages as MSVQ.

Split VQ

This method is also known as partitioned VQ. The simplest and most direct way to

reduce the search and storage complexity in coding a high-dimensional vector is

simply to split the vector into two or more subvectors. In the case of a two splitting,

the input vector

x ¼ ½x1; x2; . . . ; xM�T

is partitioned into

xa ¼ ½x1; x2; . . . ; xK �T ;

a K-dimensional vector with K<M and

xb ¼ ½xKþ1; xKþ2; . . . ; xM�T

a vector of dimension M � K.

Assuming squared-error measure, we have

kx� x̂k2 ¼ kxa � x̂ak2 þ kxb � x̂bk2: ð7:73Þ

Thus, the encoder must simply find the nearest codevector to xa in the codebook Ya
and, as a separate and independent task, the nearest codevector to xb in the code-

book Yb. Furthermore, the optimal codebook design procedure is to derive two

separate training vector sets of K- and (M � K)-dimensional vectors to generate

Ya and Yb, respectively.

Conjugate VQ

In the transmission of VQ indices through noisy channels, a bit error can cause

severe distortion to the decoded output since a completely different output vector

is decoded. One remedy is to use several codebooks for quantization purposes,

where the decoded codevector is obtained by a combination of vectors from various

codebooks, addressed by different indices. In this way, if one index is contaminated,

the final combination of vectors from various codebooks might still be near to the

original one, alleviating the damage caused by a mistaken index.

The use of two codebooks having the same dimensions as the input vector is an

effective way to reduce the quantization distortion for a noisy channel. The scheme

is named conjugate VQ since the relationship of the two codebooks is ‘‘conjugate’’

220 VECTOR QUANTIZATION

in some sense. Assume, for instance, that the output vector is obtained as the sum of

the codevectors from the two codebooks. If one of the codevectors has channel

errors, then although it may be quite different from the intended codevector, the

sum of the two codevectors is not so different from the desired output vector.

Hence, the effects of bit errors in the complete vector are reduced.

The conjugate VQ scheme is essentially a two-stage MSVQ under full search.

Thus, it is possible to utilize the same training algorithm to find the codebook ele-

ments for the case of Euclidean distance measure. The conjugate structure is a sub-

optimal scheme; its advantages are robustness against channel errors and lower

memory cost. However, under error-free conditions, its output has lower quality

than a single codebook at the same equivalent size. This is expected since at the

same size of N, a single codebook requires N codevectors, while for two codebooks

the total number of codevectors is 2
ffiffiffiffi
N
p

(each has the same size of
ffiffiffiffi
N
p

), leading to

a reduced capability for information storage.

7.7 SUMMARY AND REFERENCES

Vector quantization is introduced in this chapter, where many basic concepts are

mere extensions of the scalar counterpart. Conditions for optimal quantization

are given, which serve as the foundation for the development of quantizer design

algorithms. The generalized Lloyd algorithm is then derived for quantizer optimi-

zation; stochastic relaxation is introduced as an alternative to avoid poor local

minimums. The price to pay for this benefit is additional computational burden.

Unconstrained VQ is relatively complex to implement in practice due to the

required memory and computational costs. For cost reduction, structure is added

to the codebook, with MSVQ being one of the most versatile strategies. It is shown

that substantial saving in memory and computation can be obtained, with some

performance degradation that can be tolerated in many practical circumstances.

Several design algorithms and search procedures for MSVQ are then presented

and their properties are illustrated through actual design situations. As demon-

strated, performance level of MSVQ under a tree search with a relatively small

Ma can actually be close to a full search when the codebooks are designed using

the appropriate scheme; that is, by applying a sequential algorithm first and then

optimizing the resultant codebooks using a joint algorithm. Thus, low comp-

utational complexity is obtainable with a tree search, with a small penalty in

performance.

PVQ explores the redundancy present among the input vectors so as to improve

the performance of the quantization system. The technique has been applied suc-

cessfully for the quantization of line spectral frequencies, covered in Chapter 15.

See Chang and Gray [1986] for gradient algorithms in PVQ design. Two additional

structured schemes are introduced: the split VQ method separates a high-

dimensional vector into two or more lower-dimensional vectors and quantizes

them separately, and the conjugate VQ technique utilizes two codebooks with the

goal of increasing robustness against channel errors.

SUMMARY AND REFERENCES 221

Many theoretical issues concerning VQ can be found in Gersho and Gray [1995],

which also contains discussions of many other structured VQ schemes. Additional

theoretical framework for MSVQ can be found in Chan et al. [1992]. Application of

MSVQ to the quantization of linear prediction coefficients is found in LeBlanc et al.

[1993]. See Paliwal and Atal [1993] for split VQ of linear prediction coefficients.

The idea of conjugate VQ was proposed by Moriya [1992]; it was used later for the

design of a conjugate-structure code-excited linear prediction (CS-CELP) speech

coder [Kataoka et al., 1996] and ultimately led to the ITU-T G.729 CS-ACELP

standard [Salami et al., 1998], covered in Chapter 16.

Unlike scalar quantization, a transmission error in VQ can cause serious errors at

the decoder side, since a totally different vector is recovered. It is possible to opti-

mize the index assignment so as to improve performance under channel errors. See

Hedelin et al. [1995a, 1995b] for the theoretical framework and practical solutions.

The problem of achieving global optimality in VQ design is still a challenging

problem. The reader is referred to the latest literature for additional information.

EXERCISES

7.1 Consider a 2-D VQ, where each component of the input vector X¼ [x1, x2]
T

is quantized using an identical uniform scalar quantizer. If 0
 xi
 1, plot the

cells and codewords in the 2-D plane when the size of the scalar quantizers is

equal to four.

7.2 Prove that when the nearest-neighbor condition for optimality (7.12) is

satisfied, the expected distortion is minimized. Hint: The proof is similar to

the scalar quantization case.

7.3 Prove that when the centroid condition for optimality (7.14) is satisfied, the

expected distortion is minimized. Hint: The proof is similar to the scalar

quantization case.

7.4 Prove the centroid relation under squared Euclidean distance measure (7.21).

Hint: From the expression of average distortion differentiate with respect to

the codeword.

7.5 Split VQ Design Algorithm. This is an alternative method for quantizer design

and is outlined as follows:

Step 1. Begin with a codebook of size one. The codeword is found as the

centroid of the training data set.

Step 2. Codeword splitting: Each codeword in the codebook is split into two

by addition with a low-norm vector. That is, if y is the original codeword,

two codewords are created with yþ u and y� u, with u a low-norm

vector (u can be fixed or randomly generated). Size of the quantizer is now

doubled.

Step 3. Run the GLA over the newly found codebook until convergence.

Step 4. Go back to Step 2 if the target codebook size has not been reached;

otherwise stop.

222 VECTOR QUANTIZATION

Implement the split algorithm and compare its performance with the GLA

using a set of randomly generated 2-D training vectors.

7.6 The stochastic relaxation algorithm presented was based on random perturba-

tion of the training vector set. Without perturbing the training vector set,

develop a scheme where the codebook is perturbed. Implement the method

and make a performance comparison. Is there any advantage on using this

scheme?

7.7 For a two-stage MSVQ, memory cost is given by

MC ¼ N1 þ N2 ¼ 2r1 þ 2r2:

Assume that

r1 þ r2 ¼ r

with r constant. Prove that MC is minimum when

r1 ¼ r2 ¼ r=2:

Extend the proof to a higher number of stages.

7.8 We are given the following configurations of vector quantizers, all having the

same resolution of 10 bits:

Unconstrained VQ r¼ 10

Two-stage MSVQ (r1, r2)¼ (3, 7)

Two-stage MSVQ (r1, r2)¼ (5, 5)

Three-stage MSVQ (r1, r2, r3)¼ (2, 2, 6)

Three-stage MSVQ (r1, r2, r3)¼ (3, 3, 4)

Four-stage MSVQ (r1, r2, r3, r4)¼ (1, 1, 1, 7)

Four-stage MSVQ (r1, r2, r3, r4)¼ (2, 2, 3, 3)

Calculate the memory cost for each configuration. Sort the vector quantizers

in terms of relative performance under a full search. Explain your results.

7.9 In the expression for the computational cost (CC) for a tree search, assume

that the minimum operator min(. , .) always returns Ma. How can we rewrite

CC?

7.10 Iterative Sequential Search. The iterative sequential search procedure begins

with the indices provided by the sequential search method and reoptimizes

each index assuming all other indices are fixed. Index ioj is determined to

satisfy

d x;
XK

l¼1;l 6¼j
y
ðlÞ
iol
þ y

ð jÞ
ioj

 !

 d x;

XK
l¼1;l 6¼j

y
ðlÞ
iol
þ y

ð jÞ
ij

 !
; 8 ij 6¼ ioj; j ¼ 1; . . . ;K:

EXERCISES 223

Design an MSVQ codebook using a training vector set. Compare the perfor-

mance of the sequential search and iterative sequential search. Is there any

significant improvement between the two methods?

7.11 Iterative Sequential Algorithm for Codebook Design. For the iterative

sequential algorithm, the training set for the lth stage of a K-stage MSVQ

is given by

x
ðlÞ
k ¼ xk �

XK
i¼1;i 6¼l

QiðxðiÞk Þ:

In this approach, all other stages are assumed fixed and known, and the

technique is to reoptimize the lth stage. Once an initial set of codebooks is

obtained, each stage can be optimized given the other stages. Thus, the final

error is minimized rather than the error after each stage.

Implement the algorithm and compare its performance with respect to the

sequential algorithm.

7.12 Squared Euclidean Distance Measure with Weighting. Consider the distance

measure given by

dðx; x̂Þ ¼ ðx� x̂ÞTWðx� x̂Þ;
whereW is a diagonal matrix that may depend on x.W is a weighting matrix

that is incorporated so as to control the contribution of each vector

component to the final measure. If W¼ I (identity matrix), it reduces to

the squared Euclidean distance measure.

Derive the joint codebook design algorithm using this distance measure

by minimizing the distance sum

D ¼
X
k

ðxk � x̂kÞTWkðxk � x̂kÞ:

7.13 Translate the design algorithm for PVQ-MA, where the codebook and the

predictor are updated sequentially, to the case of PVQ. Write down the steps

and equations involved.

7.14 Consider a split VQ scheme where two codebooks are employed. The first

codebook has size N1 with K-dimensional codevectors and the second

codebook has size N2 with (M � K)-dimensional codevectors. What is the

overall size of the resultant scheme? Find the memory cost in terms of the

required storage space for each vector element and compare to that of

the optimal case.

7.15 Consider the same split VQ scheme as described in Exercise 7.14, where

each subvector (after splitting) is quantized by searching each codebook

exhaustively in an independent manner. Show that the corresponding

224 VECTOR QUANTIZATION

computational complexity expressions for distance computation over all

codevectors are

#sums ¼ N1ð2K � 1Þ þ N2ð2ðM � KÞ � 1Þ;
#squares ¼ N1K þ N2ðM � KÞ

where #squares is the total number of square operations (�)2, and #sums

includes addition and subtraction. For N1¼ 212, N2¼ 212, M¼ 10, and

K¼ 4, evaluate #sums and #squares. Compare the results with the case of

a full search with a codebook size of N1N2.

7.16 Consider the conjugate VQ scheme where the codebooks Y1 and Y2

contain the codevectors y
ð1Þ
i and y

ð2Þ
i , respectively, with i¼ 1, . . . , No; that

is, the two codebooks have the same size of No. Under Euclidean distance

measure, the quantized vector is

x̂ ¼ y
ð1Þ
i þ y

ð2Þ
j ;

where i and j are selected in such a way that

d ¼ kx� x̂k2 ¼ kx� ðyð1Þi þ y
ð2Þ
j Þk2 ð7:74Þ

is minimized for all combinations of i and j.

(a) What are the computational costs when (7.74) is evaluated directly? The

answers should be expressed as #sums and #squares (see Exercise 7.15),

and in terms of No (codebook size) and M (vector dimension).

(b) Find the memory cost involved in storing the two codebooks. Give the

answer in terms of the number of vector elements.

(c) Show that (7.74) is equivalent to

d ¼ kxk2 � 2xT y
ð1Þ
i þ y

ð2Þ
j

� 	
þ y

ð1Þ
i þ y

ð2Þ
j

��� ���2: ð7:75Þ

Consider the alternative distance expression

d0 ¼ �2xT
yð1Þi þ y
ð2Þ
j

�þ ��yð1Þi þ y
ð2Þ
j

��2: ð7:76Þ

Can we use (7.76) for codebook search? Justify your answer.

(d) Consider an encoding scheme based on (7.76), where
��yð1Þi þ y

ð2Þ
j

��2;
i; j ¼ 1 to No, are precomputed and stored. Find the memory cost and

computational cost for this scheme.

(e) Consider an encoding scheme based on (7.76), where
��yð1Þi þ y

ð2Þ
j

��2 and
y
ð1Þ
i þ y

ð2Þ
j ; i; j ¼ 1 to No, are precomputed and stored. Find the memory

EXERCISES 225

cost and computational cost for this scheme. Note that there is no need to

store y
ð1Þ
i and y

ð2Þ
j .

(f) With No¼ 26 and M¼ 10, compare the implementational costs of (a)

and (b), with (d) and (e). Which scheme would you choose?

7.17 Moriya (1992) proposed the use of the distance measure

d ¼ m x� y
ð1Þ
i þ y

ð2Þ
j

� 	��� ���2þð1� mÞ x� y
ð1Þ
i

2

�����
�����
2

þ x� y
ð2Þ
j

2

�����
�����
2

8<
:

9=
; ð7:77Þ

for codebook design in conjugate VQ, where 0
 m
 1 is a constant known

as the redundancy control parameter. What happens when m¼ 1? And

m¼ 0? How do we choose m if higher robustness against channel errors is

desired? How do we choose m if lower distortion under error-free conditions

is preferred?

226 VECTOR QUANTIZATION

CHAPTER 8

SCALAR QUANTIZATION OF LINEAR
PREDICTION COEFFICIENT

Most LP-based speech coding algorithms transmit the LPC as information on the

signal frames. Before transmission can take place, the LPC must be quantized. As

in any quantization scheme, it is a requirement to reduce the distortion as much as

possible. In the case of the LPC, it is also required that the synthesis filter remain

stable after quantization of the respective coefficients. Direct scalar quantization of

the LPC is usually not done since small quantization errors in the individual coeffi-

cients can produce relatively large spectral errors and can lead to instability for the

synthesis filter. Because of these problems, the LPC is usually transformed to another

representation so that stability of the synthesis filter is ensured after quantization.

In this chapter, the distance measure known as spectral distortion is defined,

which is a widely used parameter to quantify the performance of a given LPC quan-

tizer. Alternative representations of LPC, including reflection coefficient (RC), log

area ratio (LAR), and line spectral frequency (LSF), are introduced. These repre-

sentations are used in many coding standards for quantization purposes. Interpola-

tion of the LPC is described at the end of the chapter. Note that only scalar

quantizers are discussed here, and they are generally the technique of choice for

coders standardized prior to 1994. For standards adopted after that year, some

form of vector quantization is normally incorporated due to its superior perfor-

mance. VQ of the LPC is discussed in Chapter 15.

8.1 SPECTRAL DISTORTION

In this section, the commonly accepted objective performance measure in quantiza-

tion of the LPC, known as spectral distortion (SD), is defined. Based on SD, the

227

requirements for transparent quantization are specified. A spectral sensitivity func-

tion is given with the purpose of measuring the magnitude change in spectral

distortion due to variation of one of the defining parameter of the PSD.

Defining Spectral Distortion

Given two sets of LPCs a1;i and a2;i; i ¼ 1; 2; . . . ;M, we define the polynomials

A1ðzÞ ¼ 1þ
XM
i¼1

a1;iz
�i; ð8:1Þ

A2ðzÞ ¼ 1þ
XM
i¼1

a2;iz
�i; ð8:2Þ

where M is the prediction order. The above polynomials represent the system func-

tions of two AR process analyzers having different parameters (Chapter 3). Thus,

the PSDs of the two AR signals represented above, assuming unit variance input

white noise, are given by

S1ðejoÞ ¼ 1=jA1ðejoÞj2; ð8:3Þ
S2ðejoÞ ¼ 1=jA2ðejoÞj2: ð8:4Þ

The spectral distortion between S1 and S2 is defined by

SD2 ¼ 1

2p

ð2p
0

½10 log10ðS1ðejoÞÞ � 10 log10ðS2ðejoÞÞ�2do

¼ 1

2p

ð2p
0

10 log10
jA2ðejoÞj2
jA1ðejoÞj2
 !" #2

do; ð8:5Þ

where the result is directly expressed in decibels. Equivalently, if fs is the sampling

frequency, we have

SD2 ¼ 1

fs

ðfs
0

½10 log10ðS1ðej2pf ÞÞ � 10 log10ðS2ðej2pf ÞÞ�2df : ð8:6Þ

The integrals in (8.5) and (8.6) can be approximated in practice by sampling the

PSDs using N points:

SD2 ¼ 1

n1 � n0

Xn1�1
n¼n0
½10 log10ðS1ðej2pn=NÞÞ � 10 log10ðS2ðej2pn=NÞÞ�2; ð8:7Þ

228 SCALAR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

where 0 � n0 < n1 � N. Typically, for fs ¼ 8 kHz, n0 ¼ 4; n1 ¼ 100, and N ¼ 256,

so that only the spectrum values between 125 Hz and approximately 3.1 kHz are

taken into account for the computation of SD. Thus, only the most perceptually

sensitive part of the spectrum is considered.

Example 8.1 The following two sets of LPCs are used to illustrate the concept of

SD:

a1;1 ¼ �0:6; a1;2 ¼ 1:205; a1;3 ¼ �1:588; a1;4 ¼ 1:153; a1;5 ¼ �1:427;
a1;6 ¼ 1:018; a1;7 ¼ �0:536; a1;8 ¼ 0:352; a1;9 ¼ �0:314; a1;10 ¼ �0:055;
a2;1 ¼ �0:56; a2;2 ¼ 1; a2;3 ¼ �1:4; a2;4 ¼ 1:153; a2;5 ¼ �1:427;
a2;6 ¼ 1; a2;7 ¼ �0:536; a2;8 ¼ 0:352; a2;9 ¼ �0:3; a2;10 ¼ 0:

The PSDs of the two sets of LPCs are plotted in Figure 8.1, where we can see

that even though they have similar shapes, they are not the same. The spectral dis-

tortion, according to (8.5), is equal to 3.03 dB (the integral can be solved directly

using numerical methods; in the present case, it is solved using Mathcad [MathSoft,

2001]). To evaluate the validity of (8.7), n0 is set at zero while n1 ¼ N. Figure 8.2

shows the SD results from (8.7) when N changes from 100 to 300. Note how the

values of SD from the sum converge toward the exact value of 3.03 dB as the

number of frequency sampling points increases.

Requirements for Transparent Quantization of LPC

By ‘‘transparent’’ it means that the LPC quantization does not introduce any per-

ceptible audible distortion in the coded speech; that is, two versions of coded

speech—the one obtained by using an unquantized LPC and the other by using a

quantized LPC—are indistinguishable through listening.

The average spectral distortion has been used extensively to measure the perfor-

mance of LPC quantizers. For instance, an average SD of 1 dB has been found as a

satisfactory limit to establish transparent quantization. That is, if the average SD is

ω/π

S

0 0.2 0.4 0.6 0.8 1
0.01

0.1

1

10

100

()e
jω

Figure 8.1 Plot of two PSDs corresponding to two different sets of LPCs.

SPECTRAL DISTORTION 229

less than 1 dB, the quantizer is said to have achieved transparent quantization. In

practice, however, it has been observed that too many outlier frames in the speech

utterance having large SD can cause audible distortion, even though the average SD

is 1 dB. Therefore, it is highly desirable to reduce both the average SD as well as

the number of outlier frames. The following conditions are good guidelines as

requirements for transparent quantization [Paliwal and Atal, 1993]:

� An average spectral distortion of less than 1 dB.

� Less than 2% outliers having a spectral distortion above 2 dB.

� No outliers with spectral distortion larger than 4 dB.

Note, however, that SD does not account for the frequency-domain or time-domain

masking effects of the human auditory system. Therefore, it should be considered

as an objective quality, which might not totally correlate with subjective evaluation

results.

Spectral Sensitivity Function

Consider the power spectral density denoted by Sðejo; xÞ, which is a function of

the frequency o as well as the parameter x. The parameter x controls the PSD;

in the present case it can be one of the LPCs or other related variable. To understand

the impact of variation of one parameter on spectral distortion, the function

cðxoÞ ¼ lim
�x!0

SDðxo; xo þ�xÞ
�x

����
����; ð8:8Þ

SD(N)

100 200 300
3

3.05

3.1

N

Figure 8.2 Plot of spectral distortion as a function of the number of frequency samples.

230 SCALAR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

known as the spectral sensitivity function, is defined. Spectral distortion (SD) in the

above equation is written as

SD2ðxo; xo þ�xÞ ¼ 1

2p

ð2p
0

ð10 log10ðSðejo; xoÞÞ � 10 log10ðSðejo; xo þ�xÞÞÞ2do:
ð8:9Þ

Thus, the spectral sensitivity function measures the magnitude of change in spectral

distortion due to variation of one of the defining parameters of the PSD.

Example 8.2 Spectral sensitivity with respect to the reflection coefficients is

illustrated for a typical case. The following set of RCs is used:

k1 ¼ 0:639; k2 ¼ 0:0667; k3 ¼ 0:232; k4 ¼ 0:147; k5 ¼ 0:294;

k6 ¼ 0:106; k7 ¼ �0:123; k8 ¼ �0:182; k9 ¼ �0:153; k10 ¼ �0:0748:

Spectral sensitivity with respect to k1 is considered first. Since the synthesis filter is

stable only when the magnitudes of the RCs are less than one, the range considered

is (�1, 1). To compute the spectral sensitivity values, k1 is modified with the rest of

the coefficients intact. In the present case, 19 different values of k1 are utilized, with

k1 ¼ �0:9;�0:8; . . . ; 0:9. As shown in (8.8), a small enough step �k1 must be

selected. We use �k1 ¼ k1=100, and when k1 ¼ 0;�k1 ¼ 0:001. To compute spec-

tral sensitivity at k1 ¼ �0:9, for instance, the set of RCs (with k1 ¼ �0:9) is first
transformed to LPCs (Chapter 4); then with k1 ¼ �0:9� 0:009 ¼ �0:909, the new
set of RCs is again transformed to LPCs. The two sets of LPCs are then plugged

into (8.8) to compute the spectral sensitivity value. This step is repeated for every

value of k1. Figure 8.3 shows the spectral sensitivity results with respect to k1, and

the procedure is repeated for k5 as well. As we can see, sensitivity is much higher

when the magnitude of the RC approaches one. This fact is used for quantizer

design later on.

Prototype Spectral Sensitivity Curve with Respect to RC

After experimenting with a large amount of speech data, Viswanathan and Makhoul

(1975) found that the spectral sensitivity curves with respect to RC possess a similar

shape, where high sensitivity is developed when the magnitudes of the coefficients

are close to one. Furthermore, the shapes of the curves are similar regardless of the

order of the coefficients. By averaging a large number of sensitivity curves, it was

found that the resultant curve can be reasonably approximated with

cðkÞ ¼ 1

cð1� k2Þ ; ð8:10Þ

SPECTRAL DISTORTION 231

where c is a constant. The above equation is known as the prototype spectral sen-

sitivity curve with respect to RC. Figure 8.4 plots the curve when c ¼ 1.

8.2 QUANTIZATION BASED ON REFLECTION COEFFICIENT
AND LOG AREA RATIO

In scalar quantization of the LPC, each parameter or its alternative form is quan-

tized independently of each other. From the definition of SD, we see that it is a

ψ (k)

k

1− 0 1
0

5

10

Figure 8.4 Prototype spectral sensitivity curve with respect to reflection coefficients.

ψ (k)

k

1− 0 1
5

10

15

20

k1

k 5

Figure 8.3 Examples of spectral sensitivity curves with respect to reflection coefficients.

232 SCALAR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

function of the entire set of parameters. Thus, scalar quantization applied to the

LPC is suboptimal with respect to SD, in the sense that SD is not minimized in

the best possible way when each parameter is quantized separately. Due to its sim-

plicity, however, scalar quantization is used in various speech coding standards.

In a scalar quantization scheme, the coefficient to be quantized is compared with

a codebook where the quantized values, or codewords, are stored. The codeword

closest to the coefficient is selected as the quantized coefficient, with the distance

measure given by the squared difference. Thus, as long as the codebook sizes for

various coefficients increase, the average spectral distortion will decrease. In prac-

tice, by using a set of test data, it is possible to measure the performances of the

quantizers at different resolutions and select the ones that provide low enough aver-

age SD to meet the requirements of transparent quantization. To design the code-

books, one can rely on the Lloyd algorithm (Chapter 5) and use a set of training

data to minimize the sum of squared error. Note, however, that the procedure

does not directly minimize the average SD.

The reflection coefficient is a good candidate for quantization, since stability of

the synthesis filter can easily be verified from the magnitude. Thus, to design an

RC-based LPC scalar quantizer, a set of training coefficients obtained from a

speech database is used. The Lloyd algorithm is applied so as to obtain the resultant

codebooks.

The problem with the design procedure is that spectral sensitivity functions for

the RC tend to have large values when the magnitudes of the coefficients are close

to one (Example 8.2). This will lead to problems when magnitudes of the coeffi-

cients approach one, making the attempt to satisfy the transparent quantization

requirements difficult. What is needed is a quantizer that is much more sensitive

(smaller step size) when the magnitudes of the coefficients are near one than

when they are near zero. That is, the transfer characteristic of the quantizer is non-

uniform. The use of a quantizer having nonuniform characteristic is equivalent to

uniform quantization of a transformed coefficient through a nonlinear function;

that is,

g ¼ f ðkÞ; ð8:11Þ

where k represents the value of the reflection coefficient, f ð�Þ is a nonlinear func-

tion, and g represents the value of the transformed coefficient. Figure 8.5 illustrates

the necessary shape of the nonlinear function. Note that uniform quantization inter-

vals on the vertical axis (g) create nonuniform intervals on the horizontal axis (k);

with the horizontal intervals shortened as the magnitude of the input coefficient

approaches one. Hence, the quantizer is more sensitive for reflection coefficients

having magnitudes close to one.

Viswanathan and Makhoul (1975) proposed the function

f ðkÞ ¼ log
1þ k

1� k

� �
; ð8:12Þ

QUANTIZATION BASED ON REFLECTION COEFFICIENT AND LOG AREA RATIO 233

which is plotted in Figure 8.6. As we can see, the function satisfies the quantization

requirements. The RC transformed by (8.12) is known as the log area ratio (LAR).

The term of area ratio comes from the association of the RC with the acoustic tube

model for speech production, where the areas of the tubes are related to the coeffi-

cients themselves. The inverse relation, with g ¼ f ðkÞ, is given by

k ¼ 10g � 1

10g þ 1
: ð8:13Þ

g

k

∆ k1

∆k2

∆g

∆g

Figure 8.5 Illustration of a nonlinear mapping applied to reflection coefficients.

k

1−
−

0 1
2

0

2

f (k)

k

Figure 8.6 Nonlinear function associated with the log area ratio. The identity line is

superimposed.

234 SCALAR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

From (8.12) we note that for a stable synthesis filter ðjkj < 1Þ, the log area ratios

take on values in the region �1 < g <1, which is essentially unbounded. This

wide dynamic range implies a big amount of bits for encoding. In practice, how-

ever, the coefficient values seldom surpass certain limits; for instance, (�2, 2) is a
practical range over which to limit the LAR.

The plot in Figure 8.6 compares the nonlinear function together with the identity

function. Note that for values of k less than 0.7 in magnitude, the LAR curve is

almost linear. Therefore, if the magnitude of a given RC has a high probability

of being less than 0.7, the quantization performance in the RC domain and LAR

domain using a uniform quantizer is similar. In practice, it is found that RCs of

order greater than three ðk1; i > 3Þ have in general magnitudes less than 0.7. This

fact can be utilized for quantizer design.

Example 8.3 The RCs from Example 4.5 in Chapter 4 are transformed to LARs,

with the histograms plotted in Figure 8.7, where g1; g2; g3; g6; g7, and g10 are

displayed. Note that as the order increases, the LARs tend to decrease in magnitude.

Example 8.4 Spectral sensitivity with respect to the LAR is illustrated using the

same set of RCs as in Example 8.2. Spectral sensitivity with respect to g1 is

considered first. The range for the LAR is given by (�2, 2). To compute the spectral

sensitivity values, g1 is modified with the rest of the coefficients remaining intact.

Nineteen different values of g1 are utilized, with g1 ¼ �1:9;�1:7; . . . ; 1:9. As
shown in (8.8), a small enough step �g1 must be selected. We use �g1 ¼
g1=100. To compute spectral sensitivity at g1 ¼ �1:9, it is first converted to k1
using (8.13); then the set of RCs is transformed to LPCs. Now with

g1 ¼ �1:9� 0:019 ¼ �1:919, it is again converted to k1 and the whole set of

RCs are transformed to LPCs. The two sets of LPCs are then plugged into (8.8)

to compute the spectral sensitivity value. This step is repeated for every value of

g1. Figure 8.8 shows the spectral sensitivity results with respect to g1, and the pro-

cedure is repeated for g5 as well. Comparing to the spectral sensitivity curves in

Figure 8.3, we can see that spectral distortion is far less sensitive with respect to

changes in the LAR domain. Thus, high sensitivity for high-magnitude coefficients

is eliminated.

Linear Approximation to the LAR Transformation Function

The LAR transformation is relatively complex to implement in practice due to the

division as well as the log operations. In practice, a piecewise linear approximation

function is often used. See Exercise 8.13 for procedures to find an optimal function.

ETSI (1992a) proposed the use of a three-piece approximation function; see

Exercise 8.14 for details. Use of the linear approximation significantly reduces

the computational load, as well as facilitates fixed-point implementation; a draw-

back is the introduction of some distortion that is tolerable in many practical

situations.

QUANTIZATION BASED ON REFLECTION COEFFICIENT AND LOG AREA RATIO 235

Bit Allocation

In a scalar quantization scheme where each coefficient or parameter is quantized

independently, it is not advisable to use an equal number of bits for the quantization

of different parameters, since each parameter contributes differently to the average

spectral distortion.

During the actual design of scalar quantizer, where a set of training data is avail-

able, the following procedure can be used to optimize the bit allocation process.

%

0 2
0

10

20

.
hlar2

m

1201
100

int
m

0 2
0

10

20

.
hlar6

m

1201
100

int
m

0 2
0

10

20

.
hlar10

m

1201
100

int
m

%

g2

g
6

g10

%

%

0 2
0

10

20

int
m

0 2
0

10

20

int
m

2− 2−

2− 2−

2− 2−

0 2
0

10

20

int
m

g1

g
3

g
7

%

%

Figure 8.7 Histogram plots of some log area ratios, obtained from 1300 frames of speech

material. The vertical axis is the percentage of occurrence while the horizontal axis is the

value of the coefficients.

236 SCALAR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

The procedure assigns one bit to a particular quantizer when it offers the minimum

average spectral distortion and iterates until the required number of bits is met. The

end results depend on the training data set itself; in general, bit allocation for

different parameters is nonuniform.

Step 1. Initialization: Set m ¼ 0. Start with zero resolution r0 ¼ 0. All quantizer-

mapping functions are equal to zero; that is,

Qm;lðxÞ ¼ Q0;lðxÞ ¼ 0; l ¼ 1; 2; . . . ;M:

Step 2. Set m mþ 1. Increase the number of allocated bits by 1:

rm ¼ rm�1 þ 1:

If rm exceeds the available number of bits, stop.

Step 3. For l ¼ 1; 2; . . . ;M:

� Design the quantizer Qm;lðxÞ with resolution rm;l ¼ rm�1;l þ 1.

� Find the average spectral distortion SDm;l using Qm;lðxÞ and Qm�1;n
ðxÞ; n 6¼ l.

Step 4. Choose the index l in such a way that SDm;l is minimized. Then the quan-

tizers for the mth iteration are

Qm;lðxÞ;
Qm;nðxÞ ¼ Qm�1;nðxÞ; n 6¼ l:

Go back to Step 2.

g
2− 0 2

0

5

10

ψ (g)

g1

g5

Figure 8.8 Examples of spectral sensitivity curves with respect to log area ratios.

QUANTIZATION BASED ON REFLECTION COEFFICIENT AND LOG AREA RATIO 237

The above procedure is often referred to as greedy, where the solution is always

selected from the one that looks best at the moment. That is, it makes a locally

optimal choice in the hope that it will lead to a globally optimal solution. Greedy

algorithms do not always yield optimal solutions; however, due to its simplicity it is

applied to solve many practical optimization problems.

TIA IS54 VSELP

This algorithm uses a frame length of 160 samples (20 ms) and a prediction order of

10 to capture the spectral envelope. The ten RCs k1 to k10 are quantized using 6, 5,

5, 4, 4, 3, 3, 3, 3, and 2 bits, respectively, leading to a total of 38 bits/frame. Note

that the resolution of the quantizers is reduced for higher-order coefficients

since they are less important for the definition of the spectrum. By directly quanti-

zing the RC, the cost associated with the LAR computation is eliminated.

ETSI GSM 6.10 RPE-LTP

The frame length of this coder is equal to 160 samples (20 ms), and a prediction

order of 8 is used. The RC is converted to the LAR through a piecewise linear func-

tion (Exercise 8.14). Due to their different dynamic ranges and amplitude distribu-

tions, different uniform quantizers having different limits are used. Since spectral

distortion becomes less dependent on higher-order coefficients, resolutions of the

quantizers can gradually decrease as the order increases. The eight LARs g1 to g8
are quantized using 6, 6, 5, 5, 4, 4, 3, and 3 bits, respectively, leading to a total of

36 bits/frame.

FS1015 LPC

This coder uses a frame length of 180 samples (22.5 ms) and classifies each frame

as voiced or unvoiced according to the periodicity present in the frame. A tenth-

order predictor is used for voiced frames, but only a fourth-order predictor is

used for unvoiced frames. This is done since, for unvoiced frames, a lower-order

predictor is sufficient to describe the spectral envelope.

To quantize the LPC, scalar quantization is used in both the LAR and RC

domains. Bit allocation is summarized in Table 8.1. As we can see, only the first

two parameters are quantized in the LAR domain. This is because, statistically, only

the first two RCs have a significant probability of having magnitudes close to one.

In fact, as illustrated in the histogram plots (Figure 8.7), the magnitude tends to

diminish as the order of the coefficient increases. Also, when the magnitude of

the RC is less than 0.7, performances of quantization in the RC and LAR domains

are similar, due to the fact that the transformation function associated with the LAR

is relatively linear under that condition. Limiting LAR quantization to the first two

coefficients has the advantage of computational saving. Uniform quantization is

used for all quantizers. A maximum of 41 bits/frame is used for the transmission

of the LPC information.

238 SCALAR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

8.3 LINE SPECTRAL FREQUENCY

Line spectral frequency (LSF) was first introduced by Itakura (1975) as an alterna-

tive representation of LPC. Due to many desirable properties, the LSF has received

widespread acceptance in speech coding applications. In this section, the origin of

LSF is explained, a procedure to convert LPC to LSF is given, and properties of this

alternative representation are described.

Definition of Line Spectral Frequency

We are given the prediction-error filter with system function

AðzÞ ¼ 1þ a1z
�1 þ � � � þ aMz

�M ¼
YM
i¼1
ð1� ziz

�1Þ; ð8:14Þ

where zi denotes the zeros or roots of AðzÞ. Since the LPCs are real, the zi either are
real or form complex conjugate pairs. Note that (8.14) is a polynomial in z�1 of

order M. We can form two polynomials according to

PðzÞ ¼ AðzÞ 1þ z�ðMþ1Þ
Aðz�1Þ
AðzÞ

� �
¼ AðzÞð1þ GðzÞÞ; ð8:15Þ

QðzÞ ¼ AðzÞ 1� z�ðMþ1Þ
Aðz�1Þ
AðzÞ

� �
¼ AðzÞð1� GðzÞÞ ð8:16Þ

TABLE 8.1 Bit Allocation for LPC Quantization
of the FS1015 Codera

Resolution

——————————————

Parameter Voiced Unvoiced

g1 (LAR) 5 5

g2 (LAR) 5 5

k3 (RC) 5 5

k4 (RC) 5 5

k5 (RC) 4 —

k6 (RC) 4 —

k7 (RC) 4 —

k8 (RC) 4 —

k9 (RC) 3 —

k10 (RC) 2 —

aData from Tremain [1982], Figure 8.

LINE SPECTRAL FREQUENCY 239

with

GðzÞ ¼ z�ðMþ1Þ
Aðz�1Þ
AðzÞ : ð8:17Þ

Then

AðzÞ ¼ ðPðzÞ þ QðzÞÞ=2: ð8:18Þ

The LSFs are defined as those values of frequency o such that

fojPðejoÞ ¼ 0 or QðejoÞ ¼ 0; 0 < o < pg: ð8:19Þ

That is, they are the frequency values associated to the unit-magnitude zeros of PðzÞ
or QðzÞ. Since we are interested only in polynomials with real coefficients, the zeros

occur in complex conjugate pairs. Therefore, only the positive frequency values

need be considered, with the corresponding negative frequency values obtained

through sign inversions.

Line spectral frequency is also known as line spectral pair (LSP) in the literature.

However, there has been some confusion on the naming convention; for instance,

some sources refer to cos(o) as the LSP and o as the LSF. In fact, many authors

disagree on this matter; in Soong and Juang [1984], o is called the LSP; while in

Kabal and Ramachandran [1986] it is called the LSF. In this book we assume that

the two are referring to the same parameter o, with LSF the preferred term since the

underlying quantities are frequency values.

Symmetric and Antisymmetric Properties

The polynomials PðzÞ and QðzÞ can be written as

PðzÞ ¼ AðzÞ þ z�ðMþ1ÞAðz�1Þ; ð8:20Þ

QðzÞ ¼ AðzÞ � z�ðMþ1ÞAðz�1Þ; ð8:21Þ

or

PðzÞ ¼ 1þ ða1 þ aMÞz�1 þ ða2 þ aM�1Þz�2 þ � � � þ ða1 þ aMÞz�M þ z�ðMþ1Þ;
ð8:22Þ

QðzÞ ¼ 1þ ða1 � aMÞz�1 þ ða2 � aM�1Þz�2 þ � � � � ða1 � aMÞz�M � z�ðMþ1Þ;
ð8:23Þ

240 SCALAR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

denoting the polynomials by

PðzÞ ¼
XMþ1
i¼0

piz
�i; ð8:24Þ

QðzÞ ¼
XMþ1
i¼0

qiz
�i: ð8:25Þ

Comparing (8.22), (8.23) with (8.24), (8.25) we conclude that the coefficients pi and

qi are given by

p0 ¼ pMþ1 ¼ 1; ð8:26aÞ
pi ¼ pM�iþ1 ¼ ai þ aM�iþ1; ð8:26bÞ
q0 ¼ �qMþ1 ¼ 1; ð8:27aÞ
qi ¼ �qM�iþ1 ¼ ai � aM�iþ1; ð8:27bÞ

with i ¼ 1; . . . ;M. Due to this structure in the coefficients, PðzÞ is known as a

symmetric polynomial while QðzÞ is known as an antisymmetric polynomial.

For M odd, we have

pðMþ1Þ=2 ¼ 2aðMþ1Þ=2; ð8:28Þ
qðMþ1Þ=2 ¼ 0: ð8:29Þ

Zeros at z ¼ �1
The zeros of PðzÞ and QðzÞ at z ¼ �1 are found as follows:

For M even : PðzÞ has zero at z ¼ �1;QðzÞ has zero at z ¼ 1:
For M odd : QðzÞ has zeros at z ¼ �1:

See Exercise 8.2 for a proof of the above claims.

Order Reduction

Since we are not interested in the zeros at z ¼ �1ðo ¼ 0 or o ¼ pÞ, the order of the
polynomials PðzÞ and QðzÞ can be reduced by removing these zeros. This can be

done with polynomial divisions as follows:

P0ðzÞ ¼ PðzÞ
1þ z�1

; Q0ðzÞ ¼ QðzÞ
1� z�1

; for M even; ð8:30aÞ

P0ðzÞ ¼ PðzÞ; Q0ðzÞ ¼ QðzÞ
1� z�2

; for M odd: ð8:30bÞ

LINE SPECTRAL FREQUENCY 241

For M even, P0ðzÞ is an Mth-order polynomial with the following form:

P0ðzÞ ¼
XM
i¼0

p0iz
�i: ð8:31Þ

Performing the division described in (8.30a), it is possible to show that the coeffi-

cients p0i are given by (Exercise 8.3)

p00 ¼ 1;

p01 ¼ p1 � 1 ¼ p1 � p00;

p02 ¼ p2 � p1 þ 1 ¼ p2 � p01;

..

.

p0M�1 ¼ pM�1 � p0M�2 ¼ p1 � 1;

p0M ¼ pM � p0M�1 ¼ 1;

ð8:32Þ

where relation (8.26) is used. Thus, we have

p00 ¼ 1; ð8:33aÞ
p0i ¼ pi � p0i�1; ð8:33bÞ

for i ¼ 1; . . . ;M. Q0ðzÞ is another Mth-order polynomial with the following form:

Q0ðzÞ ¼
XM
i¼0

q0iz
�i: ð8:34Þ

Performing the division in (8.30a) shows that

q00 ¼ 1;

q01 ¼ q1 þ 1 ¼ q1 þ q00;

q02 ¼ q2 þ q1 þ 1 ¼ q2 þ q01;

..

.

q0M�1 ¼ qM�1 þ q0M�2 ¼ q1 þ 1;

q0M ¼ qM þ q0M�1 ¼ 1;

ð8:35Þ

where relation (8.27) is used. Hence,

q00 ¼ 1; ð8:36aÞ
q0i ¼ qi þ q0i�1; ð8:36bÞ

for i ¼ 1; . . . ;M.

242 SCALAR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

For M odd, P0ðzÞ is equal to PðzÞ, which is a ðM þ 1Þst-order polynomial:

P0ðzÞ ¼
XMþ1
i¼0

p0iz
�i ¼

XMþ1
i¼0

piz
�i: ð8:37Þ

Q0ðzÞ is an ðM � 1Þst-order polynomial written as

Q0ðzÞ ¼
XM�1
i¼0

q0iz
�i: ð8:38Þ

Performing the division described in (8.30b) gives

q00 ¼ 1;

q01 ¼ q1;

q02 ¼ q2 þ 1 ¼ q2 þ q00;

..

.

q0M�2 ¼ qM�2 þ q0M�4 ¼ q1;

q0M�1 ¼ qM�1 þ q0M�3 ¼ 1:

ð8:39Þ

Thus,

q00 ¼ 1; ð8:40aÞ
q01 ¼ q1; ð8:40bÞ
q0i ¼ qi þ q0i�2; ð8:40cÞ

for i ¼ 2; . . . ;M � 1. From these results it follows that both Q0ðzÞ and P0ðzÞ are
symmetric polynomials of even order. Let the order of the polynomials P0ðzÞ and
Q0ðzÞ be 2M1 and 2M2, respectively. Then

M1 ¼ M=2; M2 ¼ M=2; M even; ð8:41aÞ
M1 ¼ ðM þ 1Þ=2; M2 ¼ ðM � 1Þ=2; M odd: ð8:41bÞ

Hence, P0ðzÞ contributes M1 pairs of conjugate zeros while Q0ðzÞ contributes

M2 pairs of conjugate zeros. Together this gives a total of M1 þM2 ¼ M pairs of

conjugate zeros on the unit circle.

LINE SPECTRAL FREQUENCY 243

Evaluating the polynomials at z ¼ ejo gives

P0ðejoÞ ¼
X2M1

i¼0
p0ie
�ijo

¼ e�joM1 ½p00ejoM1 þ p01e
joðM1�1Þ þ p02e

joðM1�2Þ þ � � � þ p02M1
e�joM1 �

¼ e�joM1 ½2p00cosðM1oÞ þ 2p01cosððM1 � 1ÞoÞ þ � � � þ 2p0M1�1cosoþ p0M1
�;

ð8:42Þ

Q0ðejoÞ ¼
X2M2

i¼0
q0ie
�ijo

¼ e�joM2 ½q00ejoM2 þ q01e
joðM2�1Þ þ q02e

joðM2�2Þ þ � � � þ q02M2
e�joM2 �

¼ e�joM2 ½2q00cosðM2oÞ þ 2q01cosððM2 � 1ÞoÞ þ � � � þ 2q0M2�1cosoþ q0M2
�:

ð8:43Þ

The values of LSFs are found by locating the roots of (8.42) and (8.43), that is,

values of o with 0 < o < p such that P0ðejoÞ ¼ 0 or Q0ðejoÞ ¼ 0. In order to find

the LSF, we only have to consider the following two functions of o:

PoðoÞ ¼ 2cosðM1oÞ þ 2p01cosððM1 � 1ÞoÞ þ � � � þ 2p0M1�1cosoþ p0M1
; ð8:44Þ

QoðoÞ ¼ 2cosðM2oÞ þ 2q01cosððM2 � 1ÞoÞ þ � � � þ 2q0M2�1cosoþ q0M2
: ð8:45Þ

Example 8.5: Solving the LSF when M ¼10 For M ¼ 10 : M1 ¼ M2 ¼ 5. The

function (8.44) reduces to

PoðoÞ ¼ 32cos5oþ 16p01cos
4o

þ ð8p02 � 40Þcos3oþ ð4p03 � 16p01Þcos2o
þ ð2p04 � 6p02 þ 10Þcosoþ p05 � 2p03 þ 2p01: ð8:46Þ

The corresponding expression for QoðoÞ can be obtained by replacing ‘‘p’’ with

‘‘q’’ in the above equation. Note that elementary trigonometric relations are used

to derive (8.46) (Exercise 8.4). Since the coefficients p
0
i and q

0
i are found directly

from the LPC, PoðoÞ and QoðoÞ can be solved using a root-finding algorithm, lead-

ing to the LSFs.

Summary of the LPC-to-LSF Conversion Procedure

Given the set of LPCs ai; i ¼ 1; . . . ;M, the objective is to convert them to the

alternative LSF representation, denoted by oi; i ¼ 1; . . . ;M, with 0 < oi < p.
The procedure is summarized below.

244 SCALAR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

� Find the polynomial coefficients.

For M even: M1 ¼ M2 ¼ M=2:
For M odd: M1 ¼ ðM þ 1Þ=2; M2 ¼ ðM � 1Þ=2:

pi ¼ ai þ aM�iþ1; i ¼ 1; . . . ;M1;

qi ¼ ai � aM�iþ1; i ¼ 1; . . . ;M2;

p00 ¼ 1;

p0i ¼ pi � p0i�1; i ¼ 1; . . . ;M1:

For M even:

q00 ¼ 1;

q0i ¼ qi þ q0i�1; i ¼ 1; . . . ;M2:

For M odd:

q00 ¼ 1; q01 ¼ q1;

q0i ¼ qi þ q0i�2; i ¼ 2; . . . ;M2:

� Construct the functions PoðoÞ and QoðoÞ ((8.44) and (8.45)) and solve for

roots, that is, the frequency values when PoðoÞ ¼ 0 or QoðoÞ ¼ 0, for

0 < o < p. These frequency values are the LSFs.

Note that the functions PoðoÞ and QoðoÞ depend on the order M and must be

found for each order of interest. For the commonly used value of M ¼ 10, for

instance, the functions are derived in Example 8.5. For practical implementation,

the cosine calculation is relatively expensive to deploy. Thus, it is convenient to

make the substitution x ¼ cosðoÞ so that during root solving, the root values in x

are found first. Denoting the roots as xi, the LSFs are given by

oi ¼ cos�1ðxiÞ: ð8:47Þ

The two frequency functions for M ¼ 10 are rewritten below using the substitu-

tion x ¼ cosðoÞ

PoðxÞ ¼ 32x5 þ 16p01x
4 þ 8ðp02 � 5Þx3 þ 4ðp03 � 4p01Þx2

þ 2ðp04 � 3p02 þ 5Þxþ p05 � 2p03 þ 2p01; ð8:48Þ

QoðxÞ ¼ 32x5 þ 16q01x
4 þ 8ðq02 � 5Þx3 þ 4ðq03 � 4q01Þx2

þ 2ðq04 � 3q02 þ 5Þxþ q05 � 2q03 þ 2q01: ð8:49Þ

LINE SPECTRAL FREQUENCY 245

Example 8.6 Consider the first set of LPCs in Example 8.1. Following the LPC-

to-LSF conversion procedure results in the coefficients:

p01 ¼ �1:655; p02 ¼ 2:546; p03 ¼ �3:782; p04 ¼ 4:399; p05 ¼ �4:808;
q01 ¼ 0:455; q02 ¼ 1:974; q03 ¼ 0:034; q04 ¼ 1:723; q05 ¼ �0:722:

The resultant frequency functions are

PoðoÞ ¼ 32cos5o� 26:5cos4o� 19:6cos3oþ 11:4cos2oþ 3:52coso� 0:554;

QoðoÞ ¼ 32cos5oþ 7:28cos4o� 24:2cos3o� 7:14cos2oþ 1:60cosoþ 0:12:

These functions are plotted in Figure 8.9, where the LSF values are found from the

intersections with the frequency axis. Using the mapping x ¼ cosðoÞ, the equiva-

lent functions are plotted in Figure 8.10, with �1 < x < 1. The resultant LSFs are

found to be

o1 ¼ 0:143; o2 ¼ 0:529; o3 ¼ 0:840; o4 ¼ 1:374; o5 ¼ 1:449;

o6 ¼ 1:632; o7 ¼ 1:956; o8 ¼ 2:089; o9 ¼ 2:183; o10 ¼ 2:388:

0 0.5 1 1.5 2 2.5

0

ω

Po(ω)

Qo (ω)

Figure 8.9 Plot of some example frequency functions. LSF values are marked on the

horizontal axis.

1 0.5 0 0.5 1
5

−
−

0

5

Po(x)

Q o(x)

x

−

Figure 8.10 Plot of some example frequency functions with x ¼ cosðoÞ.

246 SCALAR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

Note that o1;o3;o5;o7, and o9 are from PoðoÞ, while the even-indexed parameters

are from QoðoÞ. This example illustrates an important property of the LSF:

namely, the zeros of PoðoÞ and QoðoÞ are interlaced with each other, in the sense

that

o1 > o2 > o3 > o4 > � � � > o10

and this property is satisfied as long as the LPCs are from a minimum-phase system.

A formal statement about this property is given at the end of the section.

Root Finding Routine

The method included here for root location is proposed in Soong and Juang [1984],

and a similar approach is described in Kabal and Ramachandran [1986], where the

interlacing property is taken into account for efficient computation. The roots of

PoðxÞ and QoðxÞ can be found by searching incrementally for intervals in which

the sign changes. The search proceeds backward from x ¼ 1 since PoðxÞ has the

first root close to x ¼ 1. The location of the root in an interval containing a sign

change is refined by successive bisection of the root interval. Given the interlacing

property of the roots, the search for a root of QoðxÞ starts from the position of the

root of PoðxÞ just found.
The initial evaluation interval d must be sufficiently small so that two or more

roots of the same function do not occur in the same interval. Let the roots be

y ← 1; i ← 1

xi ← root(Po, y)

y ← xi

i++

xi ← root(Qo, y)

y ← xi

i++

End

 Start

 i > M
+

-

Figure 8.11 Flowchart of the main routine for root finding.

LINE SPECTRAL FREQUENCY 247

denoted by fxig for i ¼ 1; 2; . . . ;M, and let them be ordered such that xi > xi�1.
The roots of PoðxÞ (xi with i odd) interlace with the roots of QoðxÞ (xi with i

even). Then the initial evaluation interval must satisfy

d < min
i
ðxi � xi�2Þ

In practice, d ¼ 0:02 is sufficiently small to avoid missing sign changes.

The main routine for root finding is shown in Figure 8.11. The routine makes use

of the function root(P, y), which solves for the root of the function P with a starting

value of y. Since for M odd, PoðxÞ has one more root than QoðxÞ, the maximum

count is checked after finding the root of PoðxÞ. Figure 8.12 shows the flowchart

of the root function.

−

a ← x

i ← 1

x ← x δ

a ← a δ/2i

i ++

a ← a δ/2i-1

Return(a δ/2i)

root(P, x)

sgn(P(x)) +
= sgn(P(x-

-

-

-

-

-

-

-

δ))

+ sgn(P(a))
= sgn(P(a δ/2i))

i > 4

 +

+ sgn(P(a))
 = sgn(P(a δ/2i-1))

−

−

Figure 8.12 Flowchart of the root function. The function sgn(x) returns the sign of the

variable x.

248 SCALAR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

As we can see, the root function bisects a given interval sequentially to search

for a sign change. In Figure 8.12 the shortest interval applied is d=16; by increasing

the number of iterations through the loop, it is possible to augment the precision

to a higher level. The function returns the linearly interpolated value of the final

interval. After all the roots are found, the LSFs are given by (8.47).

LSF-to-LPC Conversion

Given the set of LSFs oi; i ¼ 1; . . . ;M, ordered in the form 0 < o1 < o2 < � � � <
oM < p, the objective is to find the set of LPCs ai; i ¼ 1; . . . ;M. The method

explained for LPC-to-LSF conversion can be applied in reverse to accomplish

the task. First, the LSFs are transformed according to

xi ¼ cosoi; i ¼ 1; . . . ;M;

so that

x1 > x2 > � � � > xM:

For i odd, the xi are the zeros of PoðxÞ (8.48), and for i even, the xi are the zeros of

QoðxÞ (8.49). Substituting the values of xi into the respective function of x, one can

solve the coefficients of PoðxÞ and QoðxÞ. For the case of M ¼ 10, the results are

p01 ¼ �2ðx1 þ x3 þ x5 þ x7 þ x9Þ; ð8:50Þ
p02 ¼ 4ðx1x3 þ x1x5 þ x3x5 þ x1x7 þ x3x7 þ x5x7 þ x1x9 þ x3x9

þ x5x9 þ x7x9Þ þ 5; ð8:51Þ
p03 ¼ �8ðx1x3x5 þ x1x3x7 þ x1x5x7 þ x3x5x7 þ x1x3x9 þ x1x5x9 þ x3x5x9

þ x1x7x9 þ x3x7x9 þ x5x7x9Þ þ 4p01; ð8:52Þ
p04 ¼ 16ðx1x3x5x7 þ x1x3x5x9 þ x1x3x7x9 þ x1x5x7x9 þ x3x5x7x9Þ

þ 3p02 � 5; ð8:53Þ
p05 ¼ �32x1x3x5x7x9 � 2p01 þ 2p03; ð8:54Þ
q01 ¼ �2ðx2 þ x3 þ x6 þ x8 þ x10Þ; ð8:55Þ
q02 ¼ 4ðx2x10 þ x4x10 þ x2x4 þ x6x10 þ x2x6 þ x4x6 þ x8x10 þ x2x8

þ x4x8 þ x6x8Þ þ 5; ð8:56Þ
q03 ¼ �8ðx2x4x10 þ x2x6x10 þ x4x6x10 þ x2x4x6 þ x2x8x10 þ x4x8x10

þ x2x4x8 þ x6x8x10 þ x2x6x8 þ x4x6x8Þ þ 4q01; ð8:57Þ
q04 ¼ 16ðx2x4x6x10 þ x2x4x8x10 þ x2x6x8x10 þ x4x6x8x10 þ x2x4x6x8Þ

þ 3q02 � 5; ð8:58Þ
q05 ¼ �32x2x4x6x8x10 � 2q01 þ 2q03: ð8:59Þ

LINE SPECTRAL FREQUENCY 249

Then, from (8.33),

p00 ¼ 1; ð8:60aÞ
pk ¼ p0k þ p0k�1; ð8:60bÞ

for k ¼ 1; . . . ;M1.

For M even using (8.36),

q00 ¼ 1; ð8:61aÞ
qk ¼ q0k � q0k�1 ð8:61bÞ

for k ¼ 1; . . . ;M2.

For M odd using (8.40),

q00 ¼ 1; ð8:62aÞ
q1 ¼ q01; ð8:62bÞ
qk ¼ q0k � q0k�2; ð8:62cÞ

for k ¼ 2; . . . ;M2.

Once the polynomials’ coefficients are found, the LPC can be solved from (8.26)

and (8.27):

ai ¼ pi þ qi

2
; ð8:63aÞ

aM�iþ1 ¼ pi � qi

2
ð8:63bÞ

for M even and i ¼ 1; . . . ;M1. For M odd, (8.63) applies with no modification for

i ¼ 1; . . . ;M2, and

aM1
¼ pM1

=2: ð8:64Þ

Some Properties of the LSF

As defined before, the LSFs are those frequency values inside the interval (0, p),
where PðejoÞ ¼ 0 or QðejoÞ ¼ 0, or equivalently PoðoÞ ¼ 0 or QoðoÞ ¼ 0. Two

important properties of the LSF are given below.

PROPERTY 1: If A(z) is minimum-phase, then all zeros of P(z) and Q(z) are on the

unit circle.

This property guarantees the existence of the LSF when the system AðzÞ (8.14) is
minimum-phase.

PROPERTY 2: If A(z) is minimum-phase, then the zeros of P(z) and Q(z) are inter-

laced with each other.

This property allows the verification of the minimum-phase status, and hence the

stability of the underlying synthesis filter. Therefore, if the LSFs are modified by

250 SCALAR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

some operator—like quantization—stability of the resultant synthesis filter is guar-

anteed if the interlacing property is preserved. See Appendix B for proof of the

above properties.

Another benefit of using the LSF is that the PSD at a particular frequency value

tends to depend on the close-by LSF. In other words, a LSF of a certain frequency

value affects mainly the PSD at the same frequency value. This is sometimes known

as the localization property, where modifications to the LSF have a local effect on

the PSD. This is in contrast to other parameters, like the LPC or RC, where changes

to one particular parameter affect the whole spectrum. The localization property is

highly desirable in quantization since distortion at a certain frequency range can be

predicted from the values of the LSFs; thus, more bits can be allocated to those LSF

values that tend to be more sensitive to a human listener, for example, between 200

and 2000 Hz. As we will study later, some quantization schemes take advantage

of the localization property and put more emphasis on the sensitive frequency

regions. The localization property is also due to the simple fact that the LSF para-

meters are themselves frequency values directly linked to the signal’s frequency

description.

Example 8.7 The same set of LPCs as in Example 8.6 is used, where a10 is chan-

ged from �0.055 to �0.4. This modification causes the three zeros of AðzÞ to have

magnitude greater than one and hence are outside the unit circle. The functions

PoðxÞ and QoðxÞ are plotted in Figure 8.13. We can see that only nine zero crossings

are present; therefore, some zeros of PðzÞ and QðzÞ are not located on the unit circle
(Property 1 is not satisfied). On the other hand, the interlacing property is also

violated.

Example 8.8 The localization property of the LSF is illustrated in this example.

The same set of LSFs as in Example 8.6 is used. First, o4 is modified by 1% with

the rest of the parameters intact; the squared magnitude difference between the

original transfer function and the modified transfer function is calculated, which

is given by

ðjHðejoÞj � jH0ðejoÞjÞ2; ð8:65Þ

x

1 0.5 0 0.5 1
1

0

1

Po(x)

Qo(x)

−
− −

Figure 8.13 Plot of frequency functions for a non-minimum-phase system.

LINE SPECTRAL FREQUENCY 251

where H is defined using the original set of parameters with H0 is defined using the

new set of parameters. Plotting the above equation reveals the spectrum difference

between the two transfer functions. Figure 8.14 shows the results, where the experi-

ment is repeated for o8. Note that the highest spectrum distortion incurred by mod-

ifying a certain LSF happens in a frequency range close to the value of the LSF

itself. Thus, changes in the LSF have a local effect on the spectrum.

8.4 QUANTIZATION BASED ON LINE SPECTRAL FREQUENCY

Line spectral frequency, as presented in the last section, possesses several desirable

features that make it attractive as an alternative LPC representation. First, the

minimum-phase property of the associated synthesis filter is preserved after quan-

tization, as long as the interlacing condition is satisfied. On the other hand, the

values of the LSFs directly control the property of the signal in the frequency

domain, and changes of one parameter have a local effect on the spectrum. Also,

the LSFs are bounded: they are located inside the (0, p) interval and hence are

highly suitable for fixed-point implementation. By using the LSF, stability of the

synthesis filter can be restrained easily and the amount of distortion in a different

frequency zone can be regulated. Use of the LSF has also been found to be advan-

tageous in interpolation, a topic discussed at the end of the chapter. In this section,

the method adopted in the FS1016 CELP coder (Chapter 12) is explained, which

consists of scalar quantization of the LSF parameters.

As described in the previous section, the LSF is first found in the cosine domain

x ¼ cosðoÞ; x 2 ½�1; 1� and later is mapped to the frequency domain o ¼ cos�1ðxÞ;
o 2 ½0; p�. For the purpose of quantization, the parameters are sometimes directly

0 0.5 1
2

0

2

4

6

ω /π

-
e

(|
H

(e
j ω

)|
|H

′
j ω

)|
)2

ω4 ω8

due to ω4 due to ω8

Figure 8.14 Squared magnitude difference between the original transfer function and a

modified transfer function, with the modification due to a 1% change in one of the LSFs.

252 SCALAR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

quantized in the cosine domain, since the mapping using cos�1 represents extra

computation, and the interlacing property can be verified in both domains.

Example 8.9 The LPCs from Example 4.5 in Chapter 4 are transformed to LSFs,

with the histograms plotted in Figure 8.15. Note how the individual parameter has

its own range within the interval (0, p).

ω /π

ω /π

ω /π

ω /π

ω /π

0 0.5 1
0

5

10

15

0 0.5 1
0

10

0 0.5 1
0

5

10

15

%

%

%

ω1

ω2

ω5 ω6

0 0.5 1
0

5

10

15

0 0.5 1
0

5

10

15

%

%

ω3

ω4

ω7

ω8

ω 9

ω10

Figure 8.15 Histogram plots of some line spectral frequencies, obtained from 1300 frames

of speech material. The vertical axis is the percentage of occurrence while the horizontal axis

is the value of the parameters.

QUANTIZATION BASED ON LINE SPECTRAL FREQUENCY 253

FS1016 CELP

This algorithm uses a frame length of 240 samples (30 ms). A tenth-order LP ana-

lysis is performed. The LPCs are quantized as LSFs, where ten different nonuni-

form quantizers are used. The codewords are summarized in Figure 8.16. Note

that more bits are allocated for the second to fifth parameters, due to the fact

0 5 10
0

0.5

1

1.5

2

2.5

3

i

ω

Figure 8.16 Plot of LSF quantization codewords for the FS1016 coder. Data from National

Communications System [1992], Table 8.

254 SCALAR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

that the frequency range covered by these four parameters is the most sensitive for a

human listener. The ten LSFs o1 to o10 are quantized using 3, 4, 4, 4, 4, 3, 3, 3, 3,

and 3 bits, respectively, leading to a total of 34 bits/frame.

Conversion of LPC to Quantized LSF

For the LPC quantizer of the FS1016 CELP coder, we denote the codewords by fi; j,

where i ¼ 1 to 10 indicates the quantizer number; and j ¼ 1 to ai indicates the

codeword number, with ai ¼ 8 for i ¼ 1 and i ¼ 6 to 10, and ai ¼ 16 for i ¼
2 to 5. These codewords are first converted to

xi;j ¼ cos
2pfi; j
fs

� �
: ð8:66Þ

The root function, as described in Section 8.3 for the conversion of the LPC to

the LSF, can be simplified due to the fact that the final LSF values are fixed and

known: they are already contained in Figure 8.16. Thus, availability of the table

implies saving in computation during LPC-to-LSF conversion. The flowchart of

the new root routine is shown in Figure 8.17; in this case, however, the index of

the quantizer i is passed to the routine as an input parameter.

In this routine, the function type (P or Q), initial search value x, and the index of

the quantizer i are input parameters. In the first loop, the codeword that is just smal-

ler than the initial search value x is determined. Then in the next loop, a sign change

is detected by going through the remaining codewords one at a time. The routine is

 root(P,x, i)

xi,j > x +

 sgn(P(x)) =
 sgn(P(xi,j))

+

j ← αi

j--

-

-

x ← xi,j

j

Return xi,j

--

Figure 8.17 Flowchart of the root function, applicable when the quantized LSF values are

known.

QUANTIZATION BASED ON LINE SPECTRAL FREQUENCY 255

obviously much simpler than the one presented in Figure 8.12, with much lower

complexity.

8.5 INTERPOLATION OF LPC

It is common for LP-based speech coding schemes to perform a LP analysis pro-

cedure for each frame and quantize the resultant LPC as information on the frame.

Since the length of a frame is relatively long (20 to 30 ms), changes to the LPC for

adjacent frames can introduce undesired transients in the synthesized speech signal.

To alleviate the problem, the LPC parameters are often interpolated so as to smooth

out the transition. Interpolation is frequently done within the frame/subframe

context (Chapter 4), where the LPCs of each subframe are obtained through inter-

polation from two adjacent frames. Some interpolation schemes adopted by various

standards are described in this section.

TIA IS54 VSELP

This coder has a frame length of 160 samples, divided into four subframes having

40 samples each (5 ms). LP analysis is performed using a Hamming window

(Figure 8.18). The RCs are quantized, with the quantized coefficients converted

to LPCs. Combining with the LPCs of the previous frame, interpolation is done

using the weights shown in Figure 8.19. As an example, consider Subframe 0 of

Subframe 0 Subframe 1 Subframe 2 Subframe 3

100%

Figure 8.19 Interpolation weights for the TIA IS54 VSELP coder: previous LPC in grey

and current LPC in white. Data from Macres [1994].

 LP analysis window

Sf 0 Sf 1 Sf 2 Sf 3 Sf 0 Sf 1 Sf 2 Sf3

Previous frame Current frame

Figure 8.18 Positions of frame, subframe, and LP analysis window for the TIA IS54

VSELP coder.

256 SCALAR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

the current frame. Its LPCs are obtained by the sum of two products: previous LPCs

by 3/4, and current LPCs by 1/4. The weights are adjusted accordingly for other

subframes depending on their relative positions with respect to the frame.

Interpolating directly using the LPC can result in an unstable filter; therefore, the

resulting coefficients must be checked for stability. For a stability check, the inter-

polated LPCs of Subframes 0, 1, and 2 are converted to RCs (Subframe 3 need not

be considered, why?); if any of the resulting RCs have magnitudes greater than 1,

the associated filter is unstable. To remedy the situation, the LPCs for the subframe

are replaced by the original, noninterpolated LPCs. The replacement rules are

specified as follows:

� Subframe 0: Use the previous LPC.

� Subframe 1: If the energy of the previous frame is greater than or equal to that

of the current frame, use the previous LPC; otherwise use the current LPC.

� Subframe 2: Use the current LPC.

ETSI GSM 6.10 RPE-LTP

This coder has the same frame and subframe lengths as the TIA VSELP coder.

Positions of the frame, subframe, and LP analysis window are also identical

(Figure 8.18). The LPCs corresponding to an eighth-order predictor are transformed

to the LAR. Interpolation is done with the quantized LAR, with the same weights as

shown in Figure 8.19.

FS1016 CELP

The FS1016 coder has a frame length of 240 samples, divided into four subframes

having 60 samples each (7.5 ms). LP analysis is performed once per frame using a

Hamming window, where thewindow is centered at the end of the frame (Figure 8.20).

The LPCs are transformed to quantized LSFs and are linearly interpolated to form

an intermediate set for each of the four subframes. The interpolation is done

from two sets of LSFs. For the case of the ‘‘current frame’’ in Figure 8.20, the first

set of LSFs is obtained from the analysis window centered at the end of the previous

frame, or the beginning of the current frame. The second set of LSFs is obtained

 LP analysis window

Previous Current

Sf0 Sf1 Sf2 Sf3 Sf0 Sf1 Sf2 Sf3 Sf0 Sf1 Sf2 Sf3

Previous frame Current frame Next frame

Figure 8.20 Positions of frame, subframe, and LP analysis window for the FS1016 CELP

coder.

INTERPOLATION OF LPC 257

from the analysis window centered at the end of the current frame, or the beginning

of the next frame. The interpolation weights are summarized in Figure 8.21.

Note that the positions of the frame and LP analysis window introduce an extra

half-frame delay, since the coder must wait for an addition of one-half frame in order to

begin LP analysis to find out the LPCs of each subframe in the current frame.

Discussion

In general, it is preferable not to use the LPCs directly for interpolation, since the

stability of the resultant synthesis filter cannot be ensured. Other LPC representa-

tions having a one-to-one correspondence to the LPC can be used for interpolation,

including the RC, LAR, and LSF parameters. The advantage of these parameters is

the fact that stability is maintained after interpolation. Though each of these repre-

sentations provides equivalent information, their performances under interpolation

differ. Experimental results from Paliwal and Kleijn [1995] show that the LSF pro-

vides the best interpolation performance, leading to the lowest average SD. In addi-

tion, it always results in a stable synthesis filter, if the original filters are stable

(Exercise 8.9). For the LSF, interpolation in the cosine domain and frequency

domain is essentially equivalent in practice, with negligible difference in perfor-

mance. Due to the many advantages of the LSF, it is the dominant LPC representa-

tion for modern speech coders.

8.6 SUMMARY AND REFERENCES

Several alternative LPC representations are introduced in this chapter, with their

performances in quantization discussed. Spectral distortion is defined as an objective

measure of quantization performance, a commonly used reference for comparison

among different schemes. Most of the earlier speech coders use scalar quantization;

for higher performance, however, VQ is becoming the method of choice.

To conclude this chapter, some experimental data from Paliwal and Kleijn

[1995] are presented to illustrate the performance of various quantization schemes.

The experiment is performed in the following way: 1200 s of speech is used for

training while 160 s of speech is used for testing; the signal was collected from

Subframe 0 Subframe 1 Subframe 2 Subframe 3

100%

Figure 8.21 Interpolation weights for the FS1016 CELP coder: previous LSF in grey and

current LSF in white. Data from National Communications System [1992].

258 SCALAR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

FM radio programs. Prediction order is equal to ten with a 20-ms analysis window.

The results are plotted in Figure 8.22, where the following five schemes are

included:

1. Scalar quantization of the RC.

2. Scalar quantization of the LAR.

3. Scalar quantization of the LSF.

4. MSVQ of the LSF using squared Euclidean distance.

5. MSVQ of the LSF using weighted squared Euclidean distance.

Percent

of outliers
> 4 dB

20 30 40
0.5

1

1.5

2

,,,,b1i1 b2i2 b3i3 b4i4 b5i5

20 30 40
0

10

20

30

40

OUT11i1

OUT12i2

OUT13i3

OUT14i4

OUT15i5

,,,,b1i1 b2i2 b3i3 b4i4 b5i5

20 30 40
0

0.5

1

1.5

2

Resolution Resolution

Avg
SD

Percent

of outliers

2 to 4 dB
1

3

2

4

5 1

2

3

4

5

Resolution

1

2

3

(a) (b)

(c)

Figure 8.22 Plots of quantization performance for five different schemes: (a) average SD,

(b) percentage of outliers having SD between 2 and 4 dB, and (c) percentage of outliers

having SD > 4 dB. Data from Paliwal and Kleijn [1995], Tables 2, 3, 5, 8, and 9.

SUMMARY AND REFERENCES 259

All scalar quantizers are designed using the Lloyd algorithm and therefore are non-

uniform. The bit allocation procedure, as explained in Section 8.2 is applied. In the

multistage vector quantization (MSVQ) schemes, two stages are used; see Chapter 15

for details on MSVQ design. From Figure 8.22 we can see that the average SD

result for scalar quantization of the RC is the highest, while Schemes 2 and 3 are

close to each other. In MSVQ of the LSF, use of weighting in the distance calcula-

tion roughly saves 2 bits/frame. Compared to scalar quantization, the saving by

using MSVQ is more than 10 bits/frame. Plots of the percentage of outliers also

show the superiority of MSVQ. VQ is the dominant LPC quantization technique

for most modern coders; see Chapter 15 for details of this topic.

EXERCISES

8.1 Inverse sine is a proposed nonlinear transformation method to desensitize the

reflection coefficient in a similar way as for log area ratio. The transformation

function is given by

g ¼ f ðkÞ ¼ sin�1ðkÞ:

(a) Plot the above function and compare it with the LAR function.

(b) Discuss any possible advantage/disadvantage of using the above function.

(c) Repeat Example 8.4 using inverse sine. Is there any major difference with

respect to the LAR?

8.2 Given the polynomials PðzÞ and QðzÞ ((8.22) and (8.23)), show the following:

(a) For M even: PðzÞ has zero at z ¼ �1;QðzÞ has zero at z ¼ 1.

(b) For M odd: QðzÞ has zeros at z ¼ �1.
Hint: Use the expressions of PðzÞ and QðzÞ directly together with

symmetric and antisymmetric properties of the coefficients.

8.3 Perform the polynomial divisions (8.30) to find the relationships for p0i and q0i
((8.32), (8.35), and (8.39)).

8.4 Using the trigonometric relations

cos 2x ¼ 2cos2x� 1;

cos 3x ¼ 4cos3x� 3cosx;

cos 4x ¼ 8cos4x� 8cos2xþ 1;

cos 5x ¼ 16cos5x� 20cos3xþ 5cos x:

Derive the expression for PoðoÞ (8.46) from (8.44).

8.5 Using a procedure similar to the one used to derive (8.46), find the expres-

sions of PoðoÞ for M ¼ 8 and M ¼ 9.

260 SCALAR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

8.6 The root function as shown in Figure 8.12 will work only if the input LPCs

correspond to a stable synthesis filter. In other words, the interlacing property

of the LSF is satisfied. Modify the flowchart in such a way that an error status

is returned when the interlacing property is false.

8.7 Derive the LSF-to-LPC conversion procedure for M ¼ 8 and M ¼ 9.

8.8 Given the reflection coefficients jk1j < 1 and jk2j < 1, show that

jak1 þ ð1� aÞk2j < 1;

where 0 � a � 1 is a constant. This result indicates that interpolating the RCs

from two stable synthesis filters generates a stable synthesis filter, since the

magnitudes of the resultant RCs are less than one.

8.9 Given the LSF parameters o1 > o2 and oa > ob, show that

ao1 þ ð1� aÞoa > ao2 þ ð1� aÞob;

where 0 � a � 1 is a constant. The result indicates that interpolating the LSFs

from two stable synthesis filters generates a stable synthesis filter, since the

interlacing property is preserved.

8.10 Soong and Juang (1990) proposed the use of LSF differences for quantization,

defined by

�oi ¼ oiþ1 � oi; i ¼ 1 to 10;

with o11 ¼ p. The advantage of using this scheme instead of the LSF is that

the variability of the parameters is reduced; thus, the quantizers can be

deployed more efficiently. Using a set of LSF data from a speech source, find

the corresponding LSF differences and plot the histograms; compare to the

histograms of the original LSF.

8.11 The zeros or roots of the polynomial (8.14) can be considered as an alternative

LPC representation employable for quantization purposes, since there is a

one-to-one mapping between the LPC and the zeros. Elaborate a list of

advantages/disadvantages of using this approach. Consider the aspects of

computational complexity, filter stability, and interpolation.

8.12 Draw the flowchart of the procedure required for LPC interpolation for the

TIA IS54 VSELP coder. Inputs to the algorithm are the sets of LPCs (previous

and current) with outputs being the four sets of LPCs corresponding to the

four subframes.

8.13 Consider the linear approximation to the LAR transformation function using

two slopes; that is, the approximation is of form

foðkÞ ¼
a1k; jkj < k1

sgnðkÞða2jkj � a3Þ; k1 � jkj < 1:

(

EXERCISES 261

The constants a1; a2; a3, and k1 must be found so as to minimize the approx-

imation error

J ¼
ð1
0

ðf ðkÞ � foðkÞÞ2dk:

Assuming that k1 is known:

(a) Prove that

a1 ¼ 2

k21

ðk1
0

f ðkÞ dk

(b) Under the constraint that foðkÞ is continuous at k ¼ k1, show that

a3 ¼ k1ða2 � a1Þ:

(c) Prove that

a2 ¼
Ð 1
k1
ðf ðkÞ � a1k1Þðk � k1Þ dk

1
3
k31 � k21 þ k1 � 1

3

(c) The above relations can be solved repeatedly for a range of k1 values,

with the approximation error found for each k1, and the optimal set of

constants determined. What is the optimal value of k1? The integrals can

be solved numerically with math software such as Mathcad [MathSoft,

2001].

8.14 ETSI (1992a) proposed the use of a three-slope linear approximation function

for the LAR transformation, with the input interval k 2 ½�1; 1� partitioned
into jkj < 0:675; 0:675 � jkj < 0:950, and 0:950 � jkj � 1. Extend the two-

slope methodology described in Exercise 8.13 to the three-slope case and find

all parameters for the linear approximation problem.

8.15 In some applications the RC-to-LAR transformation function is defined with

the natural logarithm instead of the base-10 logarithm. Show that this

alternative function is related to the original by a scaling constant. What is

the value of the scaling constant?

262 SCALAR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

CHAPTER 9

LINEAR PREDICTION CODING

Based on a highly simplified model for speech production, the linear prediction

coding (LPC) algorithm is one of the earliest standardized coders that works at

low bit-rate. At 2.4 kbps, the FS1015 LPC coder [Tremain, 1982] is a breakthrough

in speech coding development; even though the quality of the decoded speech is

low, it is quite intelligible. The name ‘‘linear prediction coding’’ has since been

linked to any algorithm utilizing the LPC model of speech production, with the

FS1015 standard being the most outstanding representative.

Originally developed for military applications of secure communication, the

FS1015 coder is characterized by its synthetic output speech that often requires

trained operators for reliable usage. Although most modern LP-based speech coders

achieve higher performance at similar bit-rate, their operating principles are derived

from LPC, with modifications to improve quality and coding effectiveness. Thus, a

good understanding of LPC helps in the comprehension of more complex coders

covered in subsequent chapters.

In this chapter, the speech production model that the LPC coder relies on is

described. Detail structures of the algorithm are given, which essentially incorpo-

rates the speech production model at its core. One important component of the LPC

coder is the voicing detector; its design is thoroughly explained. The main features

of the FS1015 coder are highlighted for reference purposes. At the end of the

chapter, the shortcomings of the LPC coder are depicted; these flaws are targets

for correction by the next generation of speech coders.

263

9.1 SPEECH PRODUCTION MODEL

Linear prediction coding relies on a highly simplified model for speech production,

with the block diagram shown in Figure 9.1. The model is inspired by observations

of the basic properties of speech signals and represents an attempt to mimic the

human speech production mechanism. The combined spectral contributions of

the glottal flow, the vocal tract, and the radiation of the lips are represented by

the synthesis filter. The driving input of the filter or excitation signal is modeled

as either an impulse train (voiced speech) or random noise (unvoiced speech).

Therefore, depending on the voiced or unvoiced state of the signal, the switch is

set to the proper location so that the appropriate input is selected. Energy level

of the output is controlled by the gain parameter.

How does the model fit into the context of speech coding? Consider speech

samples separated into nonoverlapping frames. For a short enough length of the

frame, properties of the signal essentially remain constant. In each frame, para-

meters of the model are estimated from the speech samples; in the present case,

these parameters are as follows:

� Voicing: whether the frame is voiced or unvoiced.

� Gain: mainly related to the energy level of the frame.

� Filter coefficients: specify the response of the synthesis filter.

� Pitch period: in the case of voiced frames, time length between consecutive

excitation impulses.

The parameter estimation process is repeated for each frame, with the results

representing information on the frame. Thus, instead of transmitting the PCM

samples, parameters of the model are sent. By carefully allocating bits for each

parameter so as to minimize distortion, an impressive compression ratio can be

achieved. For instance, the bit-rate of 2.4kbps for the FS1015 coder is 53.3 times

lower than the corresponding bit-rate for 16-bit PCM. The price to pay is an

Pitch
period Speech

 Voicing Gain Filter
 coefficients

Impulse
train generator

White noise
generator

Voiced/
unvoiced

switch

Synthesis
filter

Figure 9.1 The LPC model of speech production.

264 LINEAR PREDICTION CODING

irreversible loss of quality. However, high-quality reproduction is not required in

many practical applications.

Estimating the parameters is the responsibility of the encoder. The decoder takes

the estimated parameters and uses the speech production model to synthesize

speech. The approach of utilizing noise to generate the output signal is somehow

mystifying. How can the scheme work if the output waveform is completely dif-

ferent from the original? In fact, output waveforms using the same set of parameters

and filter initial conditions are different since the white noise generator is random.

The point to note is that the power spectral density of the original speech is captured

by the synthesis filter; therefore, the PSD of the synthetic speech is close to the

original due to the flat spectrum of input excitation. The approach throws away

all phase information of the original waveform, preserving only the magnitude of

the frequency spectrum. The synthetic waveform sounds like the original because,

for a human listener, phase has a relatively lower rank than magnitude information.

This phenomenon is the reason why signal-to-noise ratio is a poor, and sometimes,

senseless measure of speech quality.

As shown in Chapter 4, linear prediction is a practical method of spectrum

estimation, where the PSD can be captured using a few coefficients. These coef-

ficients or linear prediction coefficients (LPCs, not to be confused with the coding

acronym!) can be used to construct the synthesis filter. The synthesis filter shapes

the flat spectrum of the noise input so that the output imitates the envelope of the

original spectrum. It is important to note that this is true only for noise excitation in

the unvoiced case; for the voiced case, however, the input is an impulse train—a

sequence of regularly spaced impulses—violating therefore the basic assumptions

of the AR model (Chapter 3). Recall that in an AR model, the excitation signal has

a flat spectrum, which is satisfied by white noise or a single impulse. For a train of

impulses, the corresponding spectrum is roughly flat only when the distance

between impulses is sufficiently high. This violation of the AR model for voiced

signal is one of the fundamental limitations of the LPC model for speech production

and is analyzed in more detail at the end of the chapter. The impulse train for

excitation is given by

X1
i¼�1

d½n� iT � ð9:1Þ

with

d½n� ¼ 1; if n ¼ 0;
0; otherwise;

�
ð9:2Þ

and T a positive constant being the period. The use of a periodic impulse train is to

create periodicity in the output waveform, so that the resulting signal possesses a

PSD that resembles voiced signals.

Since the coefficients of the synthesis filter must be quantized and transmitted,

only a few of them are calculated so as to maintain low bit-rate. As indicated in

SPEECH PRODUCTION MODEL 265

Chapter 4, a prediction order of ten is in general enough to capture the spectrum

envelope. This prediction order is adequate for unvoiced frames; for voiced frames,

however, a much higher order is required due to correlation of distant samples. The

LPC coder solves this by using an impulse train input: if the period of the input

excitation matches the original pitch, periodicity is introduced to the synthetic

speech with a PSD that is similar to the original. In this manner, high prediction

order is avoided, thus achieving the low bit-rate objective.

Besides implementing the model as a discrete-time system, it is interesting to

mention that mechanical and electrical means were used for its realization. See

Deller et al. [1993] for an engaging discussion of speech modeling efforts starting

in the 1930s.

Example 9.1 Validity of the LPC model for speech production is illustrated here

using some typical speech waveforms. Figure 9.2 shows an unvoiced frame having

180 samples (in accordance with the FS1015 coder). The original samples are LP

analyzed, with the resultant LPC used for speech synthesis based on the described

model. Since the frame is unvoiced, white noise with uniform distribution is used as

excitation. The generated white noise has unit variance, with the gain estimated

using a method described in the next section. Gain estimation sets the energy levels

to be the same for the two frames. As we can see, in the time domain the two wave-

forms are completely different. They sound similar because the power spectral

densities have similar shapes, which are plotted in Figure 9.3.

Waveforms for a voiced frame are shown in Figure 9.4. The pitch period is

roughly equal to 75. Synthetic speech is generated using a train of impulses with

unit amplitude. This unit-amplitude impulse train is scaled by a gain term (see the

s n[]

s[n]

n

0 50 100 150
5000

0

5000

k

0 50 100 150
5000

0

5000

n

Figure 9.2 Plots of unvoiced frames. Top: Original; bottom: synthetic.

266 LINEAR PREDICTION CODING

next section for gain computation) so that the energy level of the synthetic speech

matches the original. In the frequency domain we can see that the periodograms of

the two frames have similar appearance (Figure 9.5). Presence of harmonic compo-

nents due to periodicity of the frame is also evident from the regularly separated

peaks in the periodograms. For the original signal, however, the structure of the har-

monics looks more irregular and randomized, while for the synthetic case, a more

regular structure appears. The harmonic structure for the synthetic voiced frame is

ω /π
0 0.5 1

100

1000

4

5

6

7

1 10

1 10

1 10

1 10

1 108

Is(e jω)

ω /π

100

1000

4

5

6

7

1 10

1 10

1 10

1 10

1 108

0 0.5 1

Is(e jω)

Figure 9.3 Plots of periodograms for an unvoiced frame. Left: Original; right: synthetic.

The PSD using the estimated LPC is superimposed (dotted line).

n

n

s[n]

s n[]

0 50 100 150

0

0 50 100 150
−2 10

4

−2 10
4

0

2 10
4

2 10
4

Figure 9.4 Voiced frames plots. Top: Original; bottom: synthetic.

SPEECH PRODUCTION MODEL 267

created mainly by the input excitation, which is a train of impulses with separation

given by the pitch period.

9.2 STRUCTURE OF THE ALGORITHM

In this section, the structure of a speech coding algorithm that utilizes the LPC

model of speech production is presented. The structure closely resembles the

FS1015 coder but is not identical.

Encoder

Figure 9.6 shows the block diagram of the encoder. The input speech is first

segmented into nonoverlapping frames. A pre-emphasis filter is used to adjust

the spectrum of the input signal; its purpose was already explained in Chapter 4.

The voicing detector, discussed in the next section, classifies the current frame as

voiced or unvoiced and outputs one bit indicating the voicing state.

The pre-emphasized signal is used for LP analysis, where ten LPCs are derived.

These coefficients are quantized (Chapter 8) with the indices transmitted as

information of the frame. The quantized LPCs are used to build the prediction-error

filter, which filters the pre-emphasized speech to obtain the prediction-error signal

at its output (internal prediction, Chapter 4).

Pitch period is estimated from the prediction-error signal if and only if the frame

is voiced. Methods already described in Chapter 2 can be used for the task. By

using the prediction-error signal as input to the pitch period estimation algorithm,

a more accurate estimate can be obtained since the formant structure (spectrum

envelope) due to the vocal tract is removed.

Example 9.2 Pitch period estimation using the magnitude difference function

over the prediction-error signal is illustrated where the same frame as in

ω /π
0 0.5 1

1000

1 104

1 105

1 106

1 107

1 108

1 109

0 0.5 1
1000

1 104

1 105

1 106

1 107

1 108

1 109

ω /π

Is(e
jω) I es

jω

Figure 9.5 Plots of periodograms for a voiced frame. Left: Original; right: synthetic. The

PSD using the estimated LPC is superimposed (dotted line).

268 LINEAR PREDICTION CODING

Input
PCM
speech

LPC Power Pitch period Voicing
 index index index

LPC
bit-stream

Frame
segmentation Pre-emphasis

Voicing
detector

LP
analysis

Prediction-
error filter

Pitch period
estimation

LPC
encoder

LPC
decoder

Power
computation

Power
encoder

Pitch period
encoder

Pack

Figure 9.6 Block diagram of the LPC encoder.

DFM [l , 1500]

0 50 100 150
1 10

5

2 10
5

3 10
5

4 10
5

l

Figure 9.7 Magnitude difference values obtained from a voiced frame. Prediction error is

used for its computation.

STRUCTURE OF THE ALGORITHM 269

Chapter 2 is considered. Here, however, the prediction error is first calculated by LP

analyzing the frame with a prediction order of ten. The frame is then filtered with

the resultant prediction-error filter. Figure 9.7 shows the plot of the magnitude dif-

ference function when the lag is changed from 20 to 150. Comparing with the result

in Chapter 2, the curve is less oscillatory, and transition toward the minimum is

more abrupt, thus leading to a more accurate pitch period estimate.

Power Calculation

Power of the prediction-error sequence is calculated next, which is different for

voiced and unvoiced frames. Denoting the prediction-error sequence as e½n�; n 2
½0;N � 1�, with N being the length of the frame, we have for the unvoiced case

p ¼ 1

N

XN�1
n¼ 0

e2½n�: ð9:3Þ

For the voiced case, power is calculated using an integer number of pitch periods:

p ¼ 1

bN=TcT
XbN=TcT�1
n¼ 0

e2½n� ð9:4Þ

with b�c the floor function (returns the greatest integer less than or equal to the

operand). It is assumed that N > T, and hence use of the floor function ensures

that the summation is always performed within the frame’s boundaries. The use

of an integer number of pitch periods to compute the power is largely motivated

by the objective of synchronizing with the pitch period. The limits in the sum-

mation are selected so as to facilitate gain computation on the decoder side.

The voicing bit, pitch period index, power index, and LPC index are packed

together to form the bit-stream of the LPC coder.

Decoder

Figure 9.8 shows the block diagram of the decoder and is essentially the LPC model

of speech production with parameters controlled by the bit-stream. It is assumed

that the output of the impulse train generator is comprised of a series of unit-

amplitude impulses, while the white noise generator has unit-variance output.

Gain computation is performed as follows. For the unvoiced case, the power of

the synthesis filter’s input must be the same as the prediction error on the encoder

side. Denoting the gain by g, we have

g ¼ ffiffiffi
p
p

; ð9:5Þ

since the white noise generator has unit-variance output.

270 LINEAR PREDICTION CODING

For the voiced case, the power of the impulse train having an amplitude of g and

a period of T, measured over an interval of length bN/TcT, must equal p. Carrying

out the operation yields

g ¼
ffiffiffiffiffiffi
Tp

p
: ð9:6Þ

Finally, the output of the synthesis filter is de-emphasized to yield the synthetic

speech.

9.3 VOICING DETECTOR

The purpose of the voicing detector is to classify a given frame as voiced or

unvoiced. In many instances, voiced/unvoiced classification can easily be accom-

plished by observing the waveform: a frame with clear periodicity is designated

as voiced, and a frame with noise-like appearance is labeled as unvoiced. In other

instances, however, the boundary between voiced and unvoiced is unclear; this

happens for transition frames, where the signal goes from voiced to unvoiced or

vice versa. The necessity to perform a strict voiced/unvoiced classification is indeed

one of the fundamental limitations of the LPC model.

In this section we discuss some measurements that a voicing detector relies on to

accomplish its task. For reliable operation, the detector must take into account as

many parameters as possible so as to achieve a high degree of robustness. These

LPC
bit-stream

 Pitch period Voicing Power LPC
 index index index

Synthetic
 speech

Impulse train
generator

White noise
generator

Voiced/
unvoiced

switch

Pitch period
decoder

Power
decoder

Gain
computation

LPC
decoder

Synthesis
filter

De-emphasis

Unpack

Figure 9.8 Block diagram of the LPC decoder.

VOICING DETECTOR 271

parameters are input to a linear classifier having binary output. The voicing detector

is one of the most critical components of the LPC coder, since misclassification of

voicing states can have disastrous consequences on the quality of the synthetic

speech.

Energy

This is the most obvious and simple indicator of ‘‘voicedness.’’ Typically, voiced

sounds are several order of magnitude higher in energy than unvoiced signals. For

the frame (of length N) ending at instant m, the energy is given by

E½m� ¼
Xm

n¼m�Nþ 1

s2½n�: ð9:7Þ

For simplicity, the magnitude sum function defined by

MSF½m� ¼
Xm

n¼m�N þ 1

js½n�j ð9:8Þ

serves a similar purpose.

Since voiced speech has energy concentrated in the low-frequency region, due to

the relatively low value of the pitch frequency, better discrimination can be

obtained by lowpass filtering the speech signal prior to energy calculation. That

is, only energy of low-frequency components is taken into account. A bandwidth

of 800 Hz is adequate for the purpose since the highest pitch frequency is around

500 Hz.

Zero Crossing Rate

The zero crossing rate of the frame ending at time instant m is defined by

ZC½m� ¼ 1

2

Xm
n¼m�Nþ 1

jsgnðs½n�Þ � sgnðs½n� 1�Þj; ð9:9Þ

with sgn(�) the sign function returning �1 depending on the sign of the operand.

Equation (9.9) computes the zero crossing rate by checking the samples in pairs to

determine where the zero crossings occur. Note that a zero crossing is said to occur

if successive samples have different signs.

For voiced speech, the zero crossing rate is relatively low due to the presence of

the pitch frequency component (of low-frequency nature), whereas for unvoiced

speech, the zero crossing rate is high due to the noise-like appearance of the signal

with a large portion of energy located in the high-frequency region.

272 LINEAR PREDICTION CODING

Prediction Gain

Prediction gain was already defined in Chapter 4 as the ratio between the energy of

the signal and the energy of the prediction error

PG½m� ¼ 10 log10

Pm
n¼m�N þ 1

s2½n�
Pm

n¼m�Nþ 1

e2½n�

0
BB@

1
CCA: ð9:10Þ

Voiced frames on average achieve 3 dB or more in prediction gain than unvoiced

frames, mainly due to the fact that periodicity implies higher correlation among

samples, and thus more predictability. Unvoiced frames, on the other hand, are

more random and therefore less predictable. For very low-amplitude frames, predic-

tion gain is normally not calculated to avoid numerical problems; in this case, the

frame can be assigned as unvoiced just by verifying the energy level.

Example 9.3 Figure 9.9 shows an example of a speech waveform together with

its magnitude sum function, zero crossing, and prediction gain; all these parameters

are calculated using a frame length of 180 samples. The parameters are assumed to

be constant within the frame, and that is the reason why plots of the parameters take

on a step appearance.

−

n

MSF [n]

ZC[n]

0 2000
2 104

0

2 104

n

0 1000 2000 3000
0

5 105

1 106

0 1000 2000 3000
0

50

100

150

0 2000
0

20

40

i

n

n n

s[n]

PG [n]

Figure 9.9 Top left: A speech waveform. Top right: Magnitude sum function. Bottom left:

Zero crossing rate. Bottom right: Prediction gain.

VOICING DETECTOR 273

Roughly speaking, the signal is voiced for n < 2200, and unvoiced beyond that

limit; for n < 1000, the signal has low amplitude but is periodic. The calculated

parameters reflect this property of the signal. For n < 1000, the magnitude sum

and zero crossing rate are low, with high prediction gain, typical of a low-amplitude

voiced frame. For 1000 < n < 2200, the energy is high, and the zero crossing rate is

low with medium prediction gain, common for most voiced frames. For n > 2200,

energy and prediction gain are low with high zero crossing rate, typical chara-

cteristics of unvoiced frames. Thus, by deciphering the information of these

parameters, one can make the proper voicing decision.

Voicing Detector Design

A voicing detector can rely on the parameters discussed so far (energy, zero cross-

ing rate, etc.) to make the proper decision. A simple detector can be implemented

by using just one parameter as input. For instance, the zero crossing rate can be

used for voicing detection in the following manner: if the rate is lower than a certain

threshold, the frame is declared voiced; otherwise, it is unvoiced. The design

problem is therefore to find the proper threshold so that a voicing decision can

be accomplished reliably. By analyzing a large amount of speech signals, it is

possible to come up with a reasonable value of a decision threshold so as to

minimize the total classification error.

Relying on just one parameter, however, limits the robustness of the system. For

the voicing detector using the zero crossing rate alone, noise contamination can

increase the rate in such a way that voiced frames are classified as unvoiced frames.

Thus, using more parameters of the frame is necessary to improve the reliability in

voicing detection.

Consider the parameters of the frame grouped into a vector of form

x½m� ¼ ½x1½m� x2½m� � � � xM½m��T ; ð9:11Þ

corresponding to the frame ending at time instant m. Elements of the vector are

parameters of the frame, which could be any of the quantities described so far.

The voicing detector utilizes the elements of the vector to make the proper decision.

This situation corresponds to a pattern classification problem, where the pattern

vector is classified in two different ways: voiced and unvoiced.

A pattern classifier based on a linear combiner is a simple and effective method

to accomplish the voicing detection task. In this approach, the frame ending at time

m is classified according to

w0 þ
XM
k¼ 1

xk½m�wk > 0: ð9:12Þ

That is, if the quantity is greater than zero, the frame is declared voiced; otherwise

it is unvoiced. The problem of voicing detector design reduces to finding the proper

set of weights wk, k ¼ 0, . . . , M. The design procedure for pattern classifier based

274 LINEAR PREDICTION CODING

on a linear combiner is covered in Appendix D. Here, the way to obtain the training

data or exemplars is described.

By analyzing a large amount of speech data on a frame-by-frame basis, the para-

meters of interest are extracted and stored. Each frame is classified as voiced or

unvoiced by a human observer; that is, by visual evaluation of the waveform, the

human operator decides about the voicing status. The decisions of the human opera-

tor constitute the desired response on which the pattern classifier is designed.

Hence, the extracted parameters (pattern vectors) together with voicing decision

(desired response) form the training exemplars. These exemplars are used to design

the pattern classifier, which basically consists of finding the set of weights in (9.12).

Readers are referred to Appendix D for details related to pattern classifier design.

9.4 THE FS1015 LPC CODER

Highlights are provided for the FS1015 LPC coder, with some of the most

important aspects explained. Readers must be aware that in order to implement a

bit-stream compatible version of the coder, consultation with official documentation

is mandatory.

Speech Input and Pre-emphasis

The 8-kHz sampled speech is quantized to uniform PCM with 12 bits/sample.

It is then pre-emphasized with the first-order filter having system function

(1� 0.9375z�1).

LP Analysis

A covariance method with stabilization is the official approach used by the FS1015

for LP analysis. However, most modern coders are in favor of the autocorrelation

method, explained in Chapter 4, due to its computational efficiency and ease of

stability check.

The FS1015 coder incorporates a pitch synchronous approach during LP

analysis. In this method, 130 samples are windowed from the current frame, with

the position of the window adjusted with respect to a certain reference point of the

waveform, like the beginning of a pitch cycle. By doing so, smoothness is added to

the synthesized speech, especially during voiced frame synthesis, since variations

of the LPC for consecutive voiced frames are diminished. See Exercise 9.5 for

additional details.

Quantization of the LPC is covered in Chapter 8.

Pitch Period Estimation

For pitch period estimation, 60 values of pitch period are considered, given by T ¼
20, 21, . . . , 39, 40, 42, . . . , 78, 80, 84, . . . , 156. These values of pitch period

THE FS1015 LPC CODER 275

correspond to the frequency range between 50 and 400 Hz. The magnitude differ-

ence function is applied to a pseudo-prediction-error signal obtained by lowpass

filtering the speech signal and inverse filtering by a second-order filter.

Voicing Detector

A linear pattern classifier (Section 9.3) is used to perform the voicing determination

task. The pattern vectors are comprised of the following parameters:

� Low-band energy (Section 9.3).

� Peak to bottom ratio of the magnitude difference function. This parameter

indicates the amount of periodicity of the frame. For voiced frames the ratio is

in general much higher than for unvoiced frames.

� Zero crossing rate (Section 9.3).

The situation where a single voiced frame is located between unvoiced frames

can cause annoying artifacts in the synthetic speech. To prevent this from happen-

ing, voicing decisions of neighboring frames are taken into consideration in the

final decision.

Bit Allocation

Table 9.1 summarizes the bit allocation scheme for the FS1015 coder. The 60 pitch

period values are jointly encoded with the voicing state using 7 bits. Power is

encoded using 5 bits. Details of LPC encoding are presented in Chapter 8. Synchro-

nization is an alternating one/zero pattern. Error protection is provided for unvoiced

frames only, where 21 bits are transmitted. The scheme utilizes a total of 54 bits per

frame; for a frame length of 22.5 ms, the bit-rate of 2400 bits per second (bps)

results.

TABLE 9.1 Bit Allocation for the FS1015 Codera

Resolution

————————————

Parameter Voiced Unvoiced

Pitch period / voicing 7 7

Power 5 5

LPC 41 20

Synchronization 1 1

Error protection — 21

————————————

Total 54 54

aData from Tremain [1982], Figure 8.

276 LINEAR PREDICTION CODING

9.5 LIMITATIONS OF THE LPC MODEL

The overly simplistic model that the LPC coder relies on has relatively low com-

putational cost and makes the low bit-rate speech coder a practical reality. The

uncomplicated model, however, is also highly inaccurate in various circumstances,

creating annoying artifacts in the synthetic speech. In this section, fundamental

limitations of the LPC model are analyzed. These limitations are targets for

improvement by the next generation of speech coders.

LIMITATION 1: In many instances, a speech frame cannot be classified as strictly

voiced or strictly unvoiced.

Indeed, there are transition frames (voiced to unvoiced and unvoiced to voiced)

that the LPC model fails to correctly sort. This inaccuracy of the model generates

annoying artifacts such as buzzes and tonal noises.

LIMITATION 2: The use of strictly random noise or a strictly periodic impulse train

as excitation does not match practical observations using real speech signals.

The excitation signal can be observed in practice as prediction error and is

obtained by filtering the speech signal using the prediction-error filter. In general,

the excitation for unvoiced frames can be reasonably approximated with white

noise. For voiced frames, however, the excitation signal is a combination of a qua-

siperiodic component with noise. Thus, the use of an impulse train is a coarse approx-

imation that degrades the naturalness of synthetic speech. In addition, the

quasiperiodic excitation component often displays a changing period, and the shape

of the pulse is not exactly an impulse. For the FS1015 coder, the excitation pulses

are obtained by exciting an allpass filter using an impulse train.

The above discussion is applicable for a typical prediction order of ten, such as

the case of the FS1015 coder.

LIMITATION 3: No phase information of the original signal is preserved.

As we have seen, no phase information is captured by the LPC model: neither

voiced nor unvoiced frames have explicit parameters containing clues about the

phase. The synthetic speech sounds like the original because the magnitude

spectrum, or power spectral density, is similar to the original signal. Even though

a human listener is relatively insensitive to the phase, retaining some phase

information adds naturalness to the synthetic speech, leading to an improvement

in quality.

It is important to note that during speech synthesis of the LPC decoder, phase

information for unvoiced frames can generally be ignored, since noise perception

is practically phaseless. Not quite for voiced frames where a nonsmooth pitch

period contour is perceived as being unnatural and distorted. Thus, voiced

LIMITATIONS OF THE LPC MODEL 277

frames synthesis requires the maintenance of a (ideally) continuous pitch contour so

that transitions (normally of differing pitch periods) become as transparent as

possible. This can be achieved by controlling the timing of the excitation pules

(Exercise 9.4) while decoding. Therefore for voiced frames, even though the origi-

nal phase is lost, the relative phase or position among the excitation pulses must be

re-created in such a way that transition is smooth between frames with the smallest

amount of artifacts introduced.

LIMITATION 4: The approach used to synthesize voiced frames, where an impulse

train is used as excitation to a synthesis filter with coefficients obtained by LP

analysis, is a violation of the foundation of AR modeling.

The violation introduces spectral distortion into the synthetic speech, which

becomes more and more severe as the pitch period decreases. This is the reason

why the LPC coder does not work well for low-pitch-period or high-pitch-

frequency talkers, like women and children. For the typical male, however, spectral

distortion is moderate, and reasonable quality can be obtained with the LPC coder.

Recall from Chapter 3 that the AR model is based on flat-spectrum excitation.

The flat-spectrum requirement is satisfied by white noise, but a single impulse also

meets this constraint since the spectrum is constant for this latter case. For a

periodic train of impulses, the spectrum is not flat in general; thus, the basic

assumption of the AR model is not fulfilled. In fact, the spectrum becomes more

oscillatory with decreasing period. Figure 9.10 shows the periodograms of

some impulse trains, where we can see that oscillations exist. The amplitude of

the oscillation increases when the period decreases.

Example 9.4 An experiment is used to illustrate the behavior of LP analysis when

the excitation to a synthesis filter is an impulse train. The setup is shown in

Figure 9.11. A set of reference LPCs is selected and corresponds to a stable synth-

esis filter. The synthesis filter is excited with its output used for LP analysis, which

generates a set of estimated LPCs. Using enough samples and the appropriate

I (e
jω

)

ω /π

I (e
jω

)

ω /π

0 0.5 1
1 10 6

1 10 5

1 10 4

0.001

0.01

0.1

1

0 0.5 1
1 10 6

1 10 5

1 10 4

0.001

0.01

0.1

1

Figure 9.10 Plots of periodograms for impulse trains with a period of 50 (left) and a period

of 33 (right). The impulses have unit amplitude and a Hamming window of length equal to

180 samples is used.

278 LINEAR PREDICTION CODING

excitation signal (white noise or a single impulse), the estimated LPCs found from

LP analysis closely match the reference LPC (system identification, Chapter 4). The

degree of closeness can be found by comparing the estimated and reference coeffi-

cients. Figure 9.12 shows the filter’s output when the input is an impulse train; the

synthesis filter has a prediction order of ten. As we can see, the filter’s output con-

sists of a periodic signal, formed by the superposition of impulse responses of the

filter. Since the filter is stable, its impulse response decays with time. For a long

enough period, interference between consecutive impulse responses is negligible.

For a short period, however, the impulse responses overlap.

Figure 9.13 shows the experimental results, where the distance measure between

the estimated and reference LPC is plotted as a function of the period. For

simplicity, the sum of squared error between the two sets of coefficients is used

as the distance measure. As we can see, the estimation is quite good for high values

of period, say, T> 30, with low distance between coefficients. As the period

decreases, estimation error increases rapidly. This is because the impulse responses

overlap, thus distorting the autocorrelation values on which the LP analysis proce-

dure relies. For high period values, the impulse responses are well separated, and

the autocorrelation values are close to that obtained with single impulse excitation.

We conclude from the experiment that the LP analysis procedure, applied to

a synthesis filter excited by a periodic impulse train, will not perform well—as a

system identification tool—when the period of the impulse train decreases past a

certain threshold. The threshold depends on the decay rate of the filter’s impulse

n

s[n]

100 200
2

0

2

n

2

s[n]

100 200

0

2

Figure 9.12 Output of a synthesis filter excited by an impulse train. Left: Period equal to

59. Right: Period equal to 30.

Excitation Distance

 Reference LPC

Synthesis
filter

LP
analysis

Distance
calculation

Figure 9.11 Setup of an experiment in LP analysis.

LIMITATIONS OF THE LPC MODEL 279

response. It is important to emphasize the fact that failure of LP analysis is due to

violation of the assumptions for the AR model, since the excitation signal is invalid.

9.6 SUMMARY AND REFERENCES

Principles of linear prediction coding are presented in this chapter beginning with

the speech production model, followed by structure of the algorithm, and finishing

with the main limitations. The LPC coder provides intelligible reproduction at low

bit-rate. However, the use of only two kinds of excitation signal gives an artificial

quality to the synthetic speech. This approach also suffers when used in noisy envir-

onments since the encoder can be confused by the background noise, declaring a

frame as unvoiced even though it is voiced.

The LPC coder pertains to the class of parametric coders (Chapter 1) where the

synthetic speech does not assume the shape of the original signal in the time

domain. For these types of coders, the speech signal is characterized in terms of

a set of model parameters, where the quality of the synthetic speech depends largely

on the accuracy of the model. Also, measurement of SNR is meaningless, having

poor correlation with subjective quality. The LPC coder can also be classified as a

source-controlled multimode coder, with the coding technique adapted to the local

properties of the signal. That is, depending on whether the signal frame is voiced or

unvoiced, different methodologies are applied.

Due to the poor quality of the LPC coder, it is no longer active for communica-

tion purposes. However, there are still applications where the LPC principle is

appropriate, such as low-quality reproduction and speech synthesis. As we will

0 20 40 60 80

1 10
5

0.001

0.01

0.1

T

SSE

Figure 9.13 Sum of squared error (SSE) between the estimated and reference LPC as a

function of the period of the excitation impulse train in a single experiment. The dotted line

represents the SSE obtained from a single impulse input.

280 LINEAR PREDICTION CODING

see in subsequent chapters, the principles of the LPC coder can be refined so as to

create coders with higher performance. The code-excited linear prediction (CELP)

coder, for instance, utilizes a long-term and short-term synthesis strategy to avoid

voiced/unvoiced decision, and phase information is partially retained (Chapter 11).

On the other hand, the mixed excitation linear prediction (MELP) coder employs a

more sophisticated excitation signal to improve naturalness of the synthetic speech

(Chapter 17).

Major contributions of the LPC coder can be summarized as follows:

� Demonstration of low bit-rate speech coding based on linear prediction.

� Use of a simple speech production model to achieve high coding efficiency.

� Provision of a reference framework for next generation speech coders.

See Deller et al. [1993] for early development of speech production modeling.

Incomplete information on the FS1015 coder can be found in Tremain [1982]. A

more robust voicing detector is presented in Campbell and Tremain [1986] and

is incorporated in an enhanced version of the coder known as LPC-10E. See

Exercise 9.4 for guidelines on coder implementation.

EXERCISES

9.1 Consider the unit-amplitude impulse train

x½n� ¼
X1

i¼�1
d½n� iT �;

with T > 0 the period. Prove that the PSD is given by

SxðejoÞ ¼ 2p
T2

X1
k¼�1

d o� 2pk
T

� �
:

Hence, the PSD of an impulse train is another impulse train in the frequency

domain with amplitude 2p/T2 and period 2p/T.

9.2 Using some speech signal, calculate the magnitude difference function on a

frame-by-frame basis. Use a frame length of 180 samples and a lag in the

range of 20 to 150 (Chapter 2). Determine the maximum and minimum in

the resultant functions and compute their ratios. What conclusion can be

obtained regarding the magnitude of the ratio and voicing state?

9.3 The first reflection coefficient is included in the enhanced version of the

FS1015 coder for voicing detection. The parameter reflects the spectral tilt of

the speech waveform. Voiced frames typically have a significant tilt of

decreasing magnitude with increasing frequency. Using some speech signal,

obtain the first reflection coefficient by LP analyzing on a frame-by-frame

basis. What conclusion can be obtained for the first reflection coefficient and

voicing state?

EXERCISES 281

9.4 Below are the steps to follow for the implementation of the LPC coder. First,

the encoder is constructed without the quantizers (parameter encoders); then,

the decoder is constructed without the parameter decoders. Functionality

of the encoder/decoder constructed in this way is tested; if the system is

working properly, the parameter encoders and decoders are incorporated to

evaluate the final system.

1. Encoder.

� Pre-emphasis filter: This is a first-order difference equation (Chapter 4).

� Voicing detector: Before exploring a multiparameter detector, a simple

detector based on just one parameter, like the zero crossing rate, can

easily be implemented. In this case, find out the threshold value that

seems to do a reasonably good job in voiced/unvoiced classification by

using some speech material.

� LP analysis: See Chapter 4 for details regarding autocorrelation estima-

tion and algorithms to solve the normal equation. Prediction order is

equal to ten.

� Prediction-error filter and power computation: The filter is a difference

equation with coefficients given by LP analysis. Power computation

makes use of the prediction error.

� Pitch period estimation: The magnitude difference function (Chapter 2)

can be used.

� Integration: The blocks from previous steps are joined together follow-

ing the diagram of Figure 9.6. However, no quantization or encoding of

an individual parameter is considered yet. The decoder is first built to

perform a system test.

2. Decoder.

� Impulse train generator: Given a period value, a train of impulses is

generated, with each impulse having unit amplitude. The instant when

the first impulse appears can be adjusted for consecutive voiced frames

so that variation of the pitch period across frame boundaries is mini-

mized.

� White noise generator: This is essentially a random number generator.

Uniform distribution is appropriate. Most programming languages have

a built-in random number generator. Many issues exist in the design of a

random number generator; as a reference, see Banks and Carson [1984].

To reduce computational load, an array of random numbers can be used;

that is, a long sequence of random numbers is stored in memory as an

array. To generate the sequence of white noise, one single random

number is created and is used to index the first element of the sequence

from the array. That is, instead of generating N numbers, only one

number is generated per frame. This method was found to work well in

practice.

� Synthesis filter: This is a tenth-order difference equation.

282 LINEAR PREDICTION CODING

� De-emphasis filter: This is a first-order difference equation.

� Integration: From the diagram in Figure 9.8, join the different blocks to

form the decoder.

3. Test of encoder–decoder operation.

� Using the system developed so far, speech is input to the encoder with

the resultant parameters processed by the decoder. Verify the intellig-

ibility of the synthetic speech. Note that this step is done without any

quantization of individual parameters. If the quality of synthetic speech

is as expected, proceed to the next steps. Otherwise, review the different

blocks to discover the problem.

4. Incorporation of parameter-quantizers.

� LPC: See Chapter 8 for options and ideas. You can opt for the same

technique as used by the FS1015 or methods adopted by other

standards, as well as creating your own scheme.

� Power: Uniform quantization can be used for a first test. However,

nonuniform quantization will definitely provide higher quality. This can

be designed using the Lloyd algorithm with training data collected from

real speech signals (Chapter 5).

� Pitch period: Many options are possible. For instance, with 7-bit

encoding, 128 values of pitch period are covered; the interval of [20,

147] is reasonably good in practice. A scheme similar to FS1015 can

also be applied.

� Integration (encoder): Encoders for the various parameters can be

integrated into the encoder according to Figure 9.6; outputs are packed

together as the LPC bit-stream.

� Integration (decoder): Decoders for the various parameters are inte-

grated to the decoder according to Figure 9.8. The LPC bit-stream is

unpacked with the indices directed to the right places.

5. Overall test and system improvement.

� The system is tested again for correct operation and quality. For quality

improvement, more bits can be allocated to a particular quantizer, at the

expense of a higher bit-rate. After the basic system is working properly,

the different blocks can be modified individually. For instance, a more

sophisticated voicing detector using multiple parameters can be devel-

oped or a better LPC quantization scheme can be utilized.

9.5 A 130-sample block is selected for pitch-synchronous LP analysis within each

180-sample voiced frame, specified with n 2 [0, 179]. The 130-sample block

is indicated with a starting position no 2 [�20, 50]; that is, the interval on

which LP analysis is performed is given by n 2 [no, no þ 129]. The starting

position is generally found in such a way that consecutive frames rely on

approximately the same cycle of the waveform to perform LP analysis. In this

way, synchronization is maintained. Design an algorithm to determine no
based on peak location. Propose alternative realizations to boost robustness.

EXERCISES 283

9.6 To improve robustness in voicing detection, a smoothing stage is often

deployed so as to process the voicing state data with the objective of elimi-

nating spurious parameters that might compromise the quality of synthetic

speech. The smoothing mechanism operates by examining the past and future

to come up with the final voicing decisions. Propose some schemes to achieve

the objective of smoothing. What is the disadvantage, if any, for the incor-

poration of such a mechanism?

9.7 Time-scale modification consists of expanding or compressing the time length

of a signal, with minimum effect on the perception of its frequency content. A

time-scale-expanded signal takes longer to play while a time-scale-

compressed signal takes lesstime to play. In both cases the signals have

frequency contents similar to the original and thus are perceived as originating

from the same speaker. One application of the technique is in speech synthesis

where the duration of the signal or ‘‘speed’’ can be modified at will. Do you

think that the basic LPC decoding scheme supports time-scale modification?

That is, what happens when the length of a frame is modified during

decoding? How would you improve the quality of the synthetic speech under

variable frame-length decoding?

9.8 Many speech coding algorithms rely on interpolation to ensure a smooth

transition between frames during decoding. That is, the actual parameters

used for decoding are obtained through interpolation of two sets of para-

meters: past and present frames. For the case of the LPC coder, the parameters

are pitch period, voicing, power, and LPC. Which of these parameters are not

suitable for interpolation? Propose some interpolation schemes that would

work reasonably well for signal decoding.

284 LINEAR PREDICTION CODING

CHAPTER 10

REGULAR-PULSE
EXCITATION CODERS

The idea of DPCM, as presented in Chapter 6, is based on the quantization of

prediction error, instead of quantizing the signal itself. DPCM yields far better qual-

ity than plain PCM at the same bit-rate since the dynamic range of prediction error,

for a well-designed predictor, is often much lower than that of the original signal.

Reduced dynamic range lowers the quantization error since step size of the quanti-

zer can be decreased. It is possible to apply the same principle to speech; however,

due to its nonstationary nature, adaptation is required. ADPCM has achieved var-

ious levels of success at bit-rates greater than or equal to 16 kbps and is the core

technology of several speech coding standards, like the ITU-T G.726 [ITU, 1990].

Within the context of LP, prediction error is obtained by filtering the speech

signal using the prediction-error filter. The original signal can be reconstructed

by passing the prediction-error sequence through the synthesis filter, with the synth-

esis filter and prediction-error filter the inverse of each other. Thus, using LP (with

the coefficients updated on a frame-by-frame basis), an ADPCM system can be

designed by quantizing the samples of the prediction error.

Atal and Remde (1982) observed that it was not necessary to encode all

prediction-error samples in order to achieve good quality for the reconstructed

speech. In fact, many prediction-error samples have relatively low amplitudes.

Typically, by preserving only 10% of the samples (i.e, the other 90% are set to

zero), different kinds of speech sounds can be generated with little perceptual

distortion. The resultant approach is called the multipulse excitation model since

the excitation sequence is formed by scattered pulses, with most of the samples

set to zero. The biggest challenge for the model to become practical is the devel-

opment of an efficient procedure for determining the pulses so as to minimize

distortion of the synthetic speech. The genesis of the multipulse model was also

285

aroused by the LPC coder, where utilization of only two classes of excitation is to

be avoided for quality improvement (Chapter 9).

In this chapter, the multipulse excitation model is presented, followed by the

most successful coder in the multipulse class, namely, the regular-pulse-excited–

long-term prediction (RPE-LTP) coder. The principle of the coder is utilized by

the GSM 6.10 standard, adopted by the ETSI for digital mobile radio applications

[Vary et al., 1988; ETSI, 1992a].

10.1 MULTIPULSE EXCITATION MODEL

Consider the following speech coding method. The speech signal is segmented into

frames, with each frame LP analyzed, and the resultant LPC used to construct the

prediction-error filter, where samples of prediction error are derived. These samples

are quantized and then transmitted to the decoder together with the LPC. On the

decoder side, by filtering the quantized prediction error with the synthesis filter

constructed with the received LPC, a waveform that is closed to the original speech

is generated.

The mentioned scheme is essentially an ADPCM system, where the predictor is

made adaptive. Even though the method is practical, it is highly redundant in the

sense that unnecessary information is being sent as part of the bit-stream, need-

lessly increasing the resultant bit-rate. The main source of redundancy is from

the prediction-error signal itself; since many samples are low amplitude in nature,

their elimination from the bit-stream causes diminutive perceptual distortion.

The multipulse excitation model is based on the observation that only a small

percentage of nonzero samples are necessary to excite the synthesis filter so as to

produce good quality speech. The nonzero samples are encoded by their amplitudes

and positions. The problem is therefore the finding of a set of pulses that minimizes

distortion. The number of pulses per frame is directly related to bit-rate and quality

and must be selected to satisfy the constraints of an application. Many methods

have been proposed to solve the problem of multipulse excitation; in general,

they can be classified as open loop and closed loop, explained next.

Open-Loop Method

Figure 10.1 shows the block diagram of a coding system based on the multipulse

model, with the pulses selected via an open-loop approach. The input speech is LP

analyzed to obtain the LPCs, which are used to construct the prediction-error filter.

The resultant prediction-error sequence is processed by the pulse selection block,

where a certain criterion is applied to eliminate the majority of samples. The

selected samples are encoded by their amplitudes and positions. The decoder

recovers the information, regenerates the excitation sequence, and passes it through

the synthesis filter to obtain the synthetic speech.

Many criteria can be used in the pulse selection block. A simple scheme can

be based on the magnitude of the pulses, where the samples are first sorted

286 REGULAR-PULSE EXCITATION CODERS

accordingly, and only a fixed number of the highest magnitude samples are retained.

This approach, however, requires the coder to take note of the amplitude as well

as position of every selected pulse. One popular method is the regular-pulse excita-

tion scheme, illustrated in Figure 10.2. In this approach, the prediction-error

Prediction
Input error
PCM
speech Pulse

 position Bit-stream
and amplitude

 LPC

Pulse position
and amplitude Synthetic

speech
Bit-stream

LPC

Prediction-
error filter

LP
analysis

Pulse
selection

Encode
and
pack

Unpack
and

decode

Excitation
generator

Synthesis
filter

Figure 10.1 Encoder (top) and decoder (bottom) of an open-loop multipulse coder.

x[n]

x1[n]

x2[n]

x3[n]

x4[n]

Figure 10.2 Illustration of regular-pulse excitation, using a down-sampling factor of 4. The

original prediction-error sequence x½n� is down-sampled to four different sequences.

MULTIPULSE EXCITATION MODEL 287

sequence is down-sampled to a number of different sequences, with the highest

energy sequence selected. In this way, only the amplitude of the pulses and the

sequence number need to be encoded, thus reducing the number of bits needed

to carry information.

Closed-Loop Method

Figure 10.3 shows the encoder of a closed-loop system. In this approach, the exci-

tation sequence is selected through a feedback loop, where the difference between

input speech and synthetic speech is minimized. Note that speech synthesis is actu-

ally performed during encoding; hence, the method is also known as analysis-by-

synthesis, due to the fact that the signal is analyzed by synthesizing a replica for

comparison. This is an important concept that will be revisited in subsequent

chapters.

Within the loop, parameters of the signal are determined so as to minimize error.

In the present case, the parameters are the amplitudes and positions of the pulses

that constitute the excitation sequence.

Comparison

Since the closed-loop method optimizes the excitation sequence, lower error (with

respect to the open-loop method) is normally achievable, at the expense of higher

computational load. The open-loop method has the advantage of being relatively

simple; and for the case of regular-pulse excitation, it is highly efficient for encod-

ing as well, since only one position is required per group of samples.

In 1987 [Vary et al., 1988], the Groupe Special Mobile (GSM) of the Conference

of European Posts and Telephones (CEPT) was searching for an appropriate coder

for use by the pan-European digital mobile radio system. Initially, more than 20

different proposals were under consideration. Among them was the regular-pulse

excitation coder and other coders of the multipulse family. The effort led to the

standardization of the GSM 6.10 regular-pulse-excited–long-term prediction

Input LPC
PCM
speech Synthetic

 speech Bit-stream

Error

Pulse amplitude
and position

Synthesis
filter

LP
analysis

Excitation
generator

Encode
and
pack

Error
minimization

Figure 10.3 Encoder of a closed-loop multipulse coder.

288 REGULAR-PULSE EXCITATION CODERS

(RPE-LTP) coder in 1988 [ETSI, 1992a]. The success was due to a combination of

advantages, like low computational cost, high-quality reproduction, robustness

against channel errors, and coding efficiency. In addition to digital cellular tele-

phony, this coder has since been used for many additional applications, such as

messaging, because of its low complexity.

The rest of the chapter is dedicated exclusively to the study of the RPE-LTP

coder.

10.2 REGULAR-PULSE-EXCITED–LONG-TERM PREDICTION

Structural details of the GSM 6.10 RPE-LTP coder are presented in this section.

The coder is essentially an ADPCM system, where a predictor is computed from

the signal, with the prediction error found, and is subsequently quantized using

an adaptive scheme. The predictor is implemented as a cascade connection of

short-term and long-term predictors; inclusion of the long-term predictor, as shown

in Chapter 4, greatly increases the average prediction gain, thus elevating the over-

all performance. Readers must be aware that in order to implement a bit-stream

compatible version of the coder, consultation with official documentation is

mandatory.

Encoder

Figure 10.4 shows the block diagram of the encoder, where parameters of each

frame/subframe are extracted and packed to form the bit-stream. Like other coders,

the encoder divides the input speech samples into frames for further processing. In

the present case, each frame has a length of 160 samples (20 ms) and is subdivided

into four subframes of 40 samples each. Functions of each block in the encoder

structure are explained as follows.

Preprocessing

The filter with system function (1� z�1)/(1� 0.999z�1) is used to highpass filter

the input speech so as to eliminate any zero-frequency (DC) component. The resul-

tant signal is pre-emphasized (Chapter 4) using a filter with system function

1� 0.86z�1.

LP Analysis

LP analysis is performed on every 160-sample frame. A prediction order of eight is

employed. Nine autocorrelation values are calculated from the frame using a rec-

tangular window. The autocorrelation values are solved to obtain eight reflection

coefficients.

LPC Quantization and Interpolation

The RCs are transformed to LARs through a piecewise linear function and are then

scalar quantized using 36 bits. An index of the quantized LPCs is transmitted as

REGULAR-PULSE-EXCITED–LONG-TERM PREDICTION 289

part of the bit-stream. The quantized LARs are interpolated to four different sets to

be used by the four 40-sample subframes (Chapter 8).

Prediction-Error Filter

The interpolated LARs are transformed back to RCs, which are used to form the

prediction-error filter. This filter is implemented in lattice form (Chapter 2).

The filter produces the (short-term) prediction-error signal (internal prediction,

Chapter 4) at its output.

Long-Term LP Analysis, Filtering, and Coding

The ‘‘long-term LP analysis, filtering, and coding’’ block of Figure 10.4 is redrawn

in Figure 10.5, where all details are shown. Note that the operations described

below are repeated once every subframe, or every 40 samples. The short-term

Input
PCM
speech

 Long-term Sample
 LPC gain Pitch Peak magnitude amplitude
index index period Position index index

RPE-LTP bit-stream

Frame
segmentation Preprocessing

LP
analysis

Prediction-
error filter

Long-term LP
analysis,

filtering, and
coding

LPC
encoder

LPC
interpolation

Excitation
generator

APCM
decoder

Pack

LPC
decoder

Weighting
filter

Position
selection

APCM
encoder

Figure 10.4 Block diagram of the RPE-LTP encoder.

290 REGULAR-PULSE EXCITATION CODERS

prediction error d from the (short-term) prediction-error filter together with the

reconstructed prediction error d0 are used for long-term LP analysis. First, the

cross-correlation function R[T] is calculated according to

R T½ � ¼
X
n

d n½ �d0 n� T½ � ð10:1Þ

for T ¼ 40 to 120; that is, a total of 81 pitch period values are utilized, encodable

with 7 bits. In (10.1), the range of n corresponds to the subframe under considera-

tion and takes into account 40 samples. Thus, the range of T is selected in such a

way that the delayed samples (from d0) used in the cross-correlation calculation are

outside the current subframe. Pitch period of the subframe is defined as the one that

maximizes (10.1). Once the pitch period of the subframe is found, the long-term

gain is calculated as

b ¼ � R T½ �P
n

d0½n� T�ð Þ2 : ð10:2Þ

Note the differences between the long-term LP analysis procedure of the present

approach and that of Chapter 4. First, the reconstructed prediction error d0 is
involved with the correlation calculation; since d0 is the actual sequence employed

for speech synthesis, its usage yields higher performance due to the fact that both

encoder and decoder can operate using the exact same signals. Second, instead of

using the full expression to evaluate the sum of squared prediction error, a relatively

simple cross-correlation expression is deployed. The use of (10.2) is suboptimal in

the sense that the overall prediction error may not be minimized within the range

of interest. Also, only negative long-term gain is considered in the present case

d e

d ′′

d ′ e ′

Pitch synthesis filter

Long-term
LP analysis

Long-term
gain encoder

Long-term
gain decoder

Long-term
predictor

Pitch
period

Long-term
gain index

Figure 10.5 Implementation of the long-term LP analysis, filtering, and coding block.

REGULAR-PULSE-EXCITED–LONG-TERM PREDICTION 291

since the peak of R[T] is in general positive; restricting the sign of the gain limits

the maximum achievable prediction gain. The present approach, however, has a

much-reduced computational cost.

Since the pitch period values are between 40 and 120, they are transmitted

directly as binary values using 7 bits. Long-term gain is quantized with 2 bits result-

ing in four quantized values; these are {�0.1, �0.35, �0.65, �1} assigned to the

intervals b 2 [�0.2,1), [�0.5, �0.2), [�0.8, �0.5), and (�1, �0.8), respectively.
The pitch synthesis filter takes the reconstructed overall prediction error e0 to

generate the reconstructed short-term prediction error d0

d0½n� ¼ e0½n� þ d00½n�; ð10:3Þ

where d00 is the prediction given by

d00½n� ¼ �b̂d0½n� T �: ð10:4Þ

Note that the quantized long-term gain is used to calculate the prediction. The over-

all prediction error is then

e½n� ¼ d½n� � d00½n�: ð10:5Þ

It is interesting to note how the relatively simple long-term processing scheme

described in Chapter 4 is modified to accommodate all the quantization blocks and

quantized signals in the RPE-LTP coder. The changes are necessary for improved

accuracy and reduced computational cost.

Weighting Filter

The overall prediction-error sequence of the current subframe is filtered by an

11-tap FIR filter. Plots of impulse response and frequency response are shown

in Figure 10.6. As we can see, the filter is lowpass in nature. Its incorporation

0 0.5 1
0.01

0.1

1

10

0 5 10
0.5−

0

0.5

1

ω/π

h[n]

n

|H(ejw)|

Figure 10.6 Impulse response (left) and frequency response (magnitude, right) of the

weighting filter. Data from ETSI [1992a], Table 4.4.

292 REGULAR-PULSE EXCITATION CODERS

smoothes out variations between samples, suppresses high-frequency noise, and

makes transitions between subframes smoother, thus improving the subjective

quality of the synthetic speech.

Convolution between the 40-sample sequence e[n] and the 11-sample sequence

h[n] (impulse response) produces 40þ 11� 1¼ 50 samples. In the present case,

however, only the 40 middle samples of the convolution are calculated. For the

40-sample error sequence e[n], n¼ 0, . . . , 39, the convolution operation is described
by

x½n� ¼
X10
k¼0

h½k�e½nþ 5� k� ð10:6Þ

for n¼ 0, . . . , 39. The operation is done under the assumption that the current

subframe is isolated through a rectangular window; that is, e[nþ 5� k]¼ 0 for

nþ 5� k< 0 and nþ 5� k> 39.

Position Selection

The filtered prediction-error sequence is down-sampled by a ratio of 3, resulting in

four interleaved sequences with regularly spaced pulses. These are defined with

xm½n� ¼ x½mþ 3n�; m ¼ 0; 1; 2; 3; n ¼ 0; 1; . . . ; 12: ð10:7Þ

The above equation defines four sampling grids illustrated in Figure 10.7. The best

candidate sequence xm[n] is selected by verifying the energy

Em ¼
X12
n¼0

x2m½n�; m ¼ 0; 1; 2; 3; ð10:8Þ

with the one producing the highest energy selected. The resultant grid position m is

coded with 2 bits.

 0 1 2 3 4 5 6 39

m = 0

m = 1

m = 2

m = 3

Figure 10.7 Sampling grids used in position selection.

REGULAR-PULSE-EXCITED–LONG-TERM PREDICTION 293

APCM

The selected subsequence xm[n] is quantized using a forward gain-adaptive quantizer

(Chapter 6). For each 13-sample sequence, the peak magnitude is determined with

g ¼ max
n

xm½n�j j; ð10:9Þ

which is quantized using a nonlinear (logarithmic) quantizer having 6 bits. The

quantized peak magnitude is used to normalize the samples

x0m½n� ¼ xm½n�=ĝ ð10:10Þ
and are quantized using a 3-bit uniform quantizer.

Excitation Generator

The quantized samples of the normalized sequence are denormalized with the

quantized peak magnitude. The resultant sequence is up-sampled by a ratio of 3

by inserting zero samples according to the grid position. The final signal is denoted

by e0, as shown in Figure 10.5.

Decoder

Figure 10.8 shows the block diagram of the RPE-LTP decoder. Its operation is quite

obvious after studying the encoder. It is left as an exercise for readers to figure out

the equations and operational details.

RPE-LTP
bit-stream

Peak Sample Long-term Pitch LPC
 Position magnitude amplitude gain period index

index index index

Synthetic speech

APCM
decoder

Excitation
generator

Long-term
gain decoder

Pitch
synthesis filter

LPC
decoder

De-emphasis

Unpack

Formant
synthesis filter

LPC
interpolation

Figure 10.8 Block diagram of the RPE-LTP decoder.

294 REGULAR-PULSE EXCITATION CODERS

Bit Allocation

Table 10.1 summarizes the bit allocation scheme for the GSM 6.10 RPE-LTP coder.

Details of LPC encoding are presented in Chapter 8. The scheme utilizes a total of

260 bits/frame, resulting in a bit-rate of 13,000 bits per second (frame length equal

to 20 ms).

10.3 SUMMARY AND REFERENCES

Concepts of the multipulse excitation model are presented in this chapter, with

emphasis on the RPE-LTP coder, which is by far the most triumphant coder of

the family. This coder is designated as GSM ‘‘full rate’’ and is essentially an

ADPCM system. It can be classified as belonging to the hybrid type since it is based

on a parametric model, with an attempt to match the waveform.

Generally, full potential of a multipulse coder is achieved only when all combi-

nations of pulse amplitudes and positions are taken into account. This approach,

however, is computationally too expensive to implement in practice. Several

suboptimal methods have been proposed but failed to receive widespread accep-

tance. This is partly because of the relatively high computational burden, as well

as coding inefficiency, since the amplitude and position of each pulse must be trans-

mitted. See Singhal and Atal [1989] for some studies on the topic. The idea of

encoding the prediction error was evaluated in many studies in the past, like Un

and Magill [1975]. The main ideas of regular-pulse excitation were published in

Kroon et al. [1986].

ETSI published a series of recommendations, known as the GSM recommenda-

tions, in 1992. They set the standards in many aspects of telecommunication sys-

tems, including speech processing and coding, correction for channel errors, voice

activity detection, and others. Readers are referred to the bibliography at the end of

this book for reference on some of the documents.

In general, the RPE-LTP coder provides good quality and is quite robust under

various channel errors and noise conditions. Due to its open-loop operational nat-

ure, however, full potential has not been achieved. As we can see, a large amount of

TABLE 10.1 Bit Allocation for the GSM 6.10 RPE-LTP Codera

Parameter Number per Frame Resolution Total Bits per Frame

LPC 8 6, 6, 5, 5, 4, 4, 3, 3 36

Pitch period 4 7 28

Long-term gain 4 2 8

Position 4 2 8

Peak magnitude 4 6 24

Sample amplitude 4 �13 3 156

——————

Total 260

aData from ETSI [1992a], Table 1.1a.

SUMMARY AND REFERENCES 295

bits are allocated to the excitation signal, which is quite inefficient due to the scalar

quantization technique involved. As we will see in subsequent chapters, the CELP

type of algorithm improves on this by utilizing vector quantization schemes. In the

early 1990s, the RPE-LTP coder was designated for replacement, and in 1996, the

GSM EFR (Enhanced Full Rate) coder was standardized. This latter coder operates

at 12.2 kbps and is based on the ACELP algorithm (Chapter 16).

EXERCISES

10.1 Plot the magnitude response of the preprocessing filter with system function

ð1� z�1Þ=ð1� 0:999z�1Þ. From the response, what purpose does the filter

serve?

10.2 During position selection in RPE-LTP encoding, energy values of the four

subsampled sequences must be calculated. However, two of the sequences

share most of the samples. Develop an efficient energy calculation procedure

based on this fact.

10.3 Modify the basic open-loop RPE-LTP scheme to develop a closed-loop

coder. In this case, all four grid positions are evaluated by synthesizing the

corresponding speech sequence and comparing to the original, with the grid

position resulting in the lowest error energy selected. Draw the block

diagram of the encoder and specify the relevant procedures and equations.

What does the decoder look like?

10.4 Suggestions for the implementation of an RPE-LTP coder: First, the encoder

is constructed without the quantizers (parameter encoders). Then the decoder

is constructed without the parameter decoders. Functionality of the encoder/

decoder constructed in this way is tested; if the system is working properly, the

parameter encoders and decoders are incorporated to evaluate the final system.

1. Encoder.

� Preprocessing: Two filters are involved in this stage, the DC-cancella-

tion filter and the pre-emphasis filter.

� LP analysis: See Chapter 4 for details regarding autocorrelation

estimation and algorithms to solve the normal equation. Prediction

order is equal to eight.

� Prediction-error filter: For the first trial, the filter can be implemented

using the coefficients obtained from the last step with neither quantiza-

tion nor interpolation.

� Long-term LP analysis, filtering, and coding: This involves the cross-

correlation calculation, finding of the peak and hence the pitch period,

followed by a long-term gain calculation. Three more signals must be

calculated: reconstructed short-term prediction error, predicted short-

term prediction error, and overall prediction error. The procedure is

repeated for every subframe.

296 REGULAR-PULSE EXCITATION CODERS

� Weighting error: This is not important in the first try and can be omitted

completely.

� Position selection: This involves down-sampling and energy calcu-

lation. The sequence with the highest energy is selected.

� Excitation generator: The selected down-sampled sequence is up-

sampled and zero-padded at the right position, resulting in the recon-

structed overall prediction-error signal.

� Integration: The blocks from previous steps are joined together follow-

ing the diagram of Figure 10.4. However, no quantization or encoding

of individual parameters is considered yet. The decoder is first built to

perform a system test.

2. Decoder.

� Excitation generator: Same functionality as for the encoder.

� Pitch synthesis filter: This filter involves long-term gain and pitch

period delay. See Chapter 4 for details.

� Formant synthesis filter: This filter requires the interpolated RC and is

implemented in lattice form.

� De-emphasis filter: This is a first-order difference equation.

� Integration: From the diagram in Figure 10.8, join the different blocks

to form the decoder.

3. Test of encoder–decoder operation.

� Using the system developed so far, speech is input to the encoder with

the resultant parameters processed by the decoder. Verify the intellig-

ibility of the synthetic speech. Note that this step is done without any

quantization of individual parameters. If the quality of synthetic speech

is as expected, proceed to the next steps. Otherwise, review the

different blocks to discover the problem.

4. Incorporation of parameter quantizers.

� LPC: See Chapter 8 for the approach utilized by the GSM standard.

Note, however, that other methods are also applicable. Transform the

resultant RC to the LAR, and apply interpolation according to the rules.

The resultant coefficients are used to implement the prediction-error

filter in lattice form (Chapter 2).

� Long-term gain: A 2-bit quantizer is specified in the GSM standard.

� Peak magnitude and sample amplitude: Uniform quantization can

be used for a first test. However, nonuniform quantization will

definitely provide higher quality. This can be designed using the Lloyd

algorithm with training data collected from real speech signals

(Chapter 5).

� Integration (encoder): Encoders and decoders for the various para-

meters can be integrated into the encoder according to Figures 10.4 and

10.5; outputs are packed together as the LPC bit-stream.

EXERCISES 297

� Integration (decoder): Decoders for the various parameters are inte-

grated to the decoder according to Figure 10.8. The RPE-LTP bit-

stream is unpacked with the indices directed to the right places.

5. Overall test and system improvement.

� The system is tested again for correct operation and quality. Using a bit

allocation scheme similar to the GSM specification, the system should

be able to generate good quality synthetic speech. Parameters of

various blocks can be modified according to needs.

10.5 The amplitude optimization procedure proposed by Singhal and Atal [1989]

can be applied to the RPE-LTP coder in the following way. After determin-

ing the grid position (m ¼ 0, 1, 2, or 3), the amplitudes of the pulses are

found so that the sum of squared error between the synthetic speech and

input speech is minimized. This problem is solved by differentiating the sum

of squared error with respect to the pulse amplitudes and manipulating the

resultant linear equations. Derive the corresponding equations to implement

the technique. What changes must be introduced to the encoder?

10.6 The GSM 6.10 standard is modified in such a way that a down-sampling

factor of 2 is applied, with only two possible grid positions. Thus, the two

interleaved sequences are defined with

xm½n� ¼ x½mþ 2n�; m ¼ 0; 1; n ¼ 0; 1; . . . ; 19;

with the assumption that the rest of the coder is not modified. What is the

bit-rate of this modified RPE-LTP coder? Repeat for the case of a down-

sampling factor of 4, with the four interleaved sequences being

xm½n� ¼ x½mþ 4n�; m ¼ 0; 1; 2; 3; n ¼ 0; 1; . . . ; 9:

298 REGULAR-PULSE EXCITATION CODERS

CHAPTER 11

CODE-EXCITED
LINEAR PREDICTION

The idea of code-excited linear prediction (CELP) was born as another attempt to

improve on the existent LPC coder (Chapter 9). The acronym of CELP* itself was

first created by Schroeder and Atal in their 1985 paper. Among the core ideas are

the utilization of long-term and short-term linear prediction models for speech

synthesis (Chapter 4), thus avoiding the strict voiced/unvoiced classification of

LPC, and the incorporation of an excitation codebook, which is searched during

encoding to locate the best excitation sequence. The name of ‘‘code-excited’’

comes from the excitation codebook, containing the ‘‘code’’ to ‘‘excite’’ the synth-

esis filters. The high complexity of CELP coders was originally thought to be an

impractical proposition; throughout the years, however, researchers have found

many ways to speed up the encoding process, making CELP a practical reality.

CELP is among one of the most influential ideas in speech coding. Its principles

lay the foundation for many standardized coders. In this chapter, generic techniques

of CELP are given; the architecture, functionality, and constraint are described

without referring to any particular standard. Thorough understanding of the materi-

al in this chapter is crucial for later chapters, where details of several CELP-based

standards are described. The chapter begins with the speech production model,

followed by an explanation of the principle of analysis-by-synthesis; operations

of the encoder and decoder are described. Two important components—excitation

codebook search and the postfilter—are analyzed in different sections.

*It is pronounced as either ‘‘KELP’’ or ‘‘SELP.’’ The recommendation is to be flexible regarding the

sound and to be ready to adapt to the other party’s preference to show civility and politeness. When in

doubt, spell out the acronym letter-by-letter or use the entire name.

299

11.1 THE CELP SPEECH PRODUCTION MODEL

The CELP coder relies on the long-term and short-term linear prediction models,

which are thoroughly explained in Chapter 4. Figure 11.1 shows the block diagram

of the speech production model, where an excitation sequence is extracted from the

codebook through an index. The extracted excitation is scaled to the appropriate

level and filtered by the cascade connection of pitch synthesis filter and formant

synthesis filter to yield the synthetic speech. The pitch synthesis filter creates per-

iodicity in the signal associated with the fundamental pitch frequency, and the for-

mant synthesis filter generates the spectral envelope.

What type of signal is contained in the excitation codebook? The codebook can

be fixed or adaptive and can contain deterministic pulses or random noise. For sim-

plicity, we assume for now that the codebook is fixed and contains white noise sam-

ples. Thus, the excitation index selects a white noise sequence from the codebook

as input to the cascade connection of the synthesis filters. The speech production

model that the CELP coder relies on consists simply of a white noise source excit-

ing the synthesis filters. What are the advantages of this model? The following can

be pointed out when compared with other coders.

� A strict voiced/unvoiced classification, as for the LPC coder, is eliminated.

As explained in Chapter 9, rigid classification of a speech frame is one of the

main limitations of the LPC coder and is responsible for major artifacts in the syn-

thetic speech. Use of the two synthesis filters in cascade allows an efficient and

accurate modeling of transition frames with smoothness and continuity, producing

a much more naturally sounding synthetic speech.

� Partial phase information of the original signal is preserved.

As explained in Chapter 9, the LPC model does not retain any phase information

of the original signal. The CELP model captures some phase information through a

closed-loop analysis-by-synthesis method (described later). In this approach, the

best excitation sequence from the codebook is selected, where ‘‘best’’ means the

particular sequence is capable of generating the synthetic speech that is as close

as possible to the original, where ‘‘closeness’’ is often measured using time-domain

techniques, such as signal-to-noise ratio. By doing so, the synthetic speech is not

Speech

Excitation Gain Long-term Short-term
index parameters parameters

Excitation
codebook

Pitch
synthesis

filter

Formant
synthesis

filter

Figure 11.1 The CELP model of speech production.

300 CODE-EXCITED LINEAR PREDICTION

only matched in the magnitude spectrum domain (captured by the linear prediction

coefficients) but also in the time domain, where a difference in phase plays an

important role. Even though a human listener is relatively insensitive to the phase,

retaining some phase information adds naturalness to the synthetic speech, leading

to an improvement in quality.

Note the resemblance between the CELP model and the RPE-LTP coder

described in Chapter 10, where both rely on the cascade connection of synthesis

filters. The RPE-LTP coder, however, encodes samples of the prediction error

through an adaptive scalar quantization scheme, which are then decoded and

used as excitation to the synthesis filters. Even though the approach is quite effec-

tive for the synthesis of high-quality speech, it is not efficient in the sense that a

relatively large number of bits must be allocated to accomplish the task. This is

the reason why the approach works well only at a relatively high bit-rate of 13 kbps.

The CELP coder works effectively in the mid bit-rate region and is achieved by

encoding the excitation sequence through a codebook, which in a sense is a vector

quantization approach, where the whole sequence is encoded using a single index.

CELP pertains to the hybrid-type coders, where an underlying model is utilized

and, at the same time, attempts are made to approximate the original waveform.

11.2 THE PRINCIPLE OF ANALYSIS-BY-SYNTHESIS

In a speech coder, the speech signal is represented by a combination of parameters:

gain, filter coefficients, voicing strengths, and so on. In an open-loop system, the

parameters are extracted from the input signal, which are quantized and later

used for synthesis. This is the principle in several coders studied in separate chap-

ters, like LPC (Chapter 9), RPE-LTP (Chapter 10), and MELP (Chapter 17).

A more effective method is to use the parameters to synthesize the signal during

encoding and fine-tune them so as to generate the most accurate reconstruction.

Conceptually, this is a closed-loop optimization procedure, where the goal is to

choose the best parameters so as to match as much as possible the synthetic speech

with the original speech. Figure 11.2 shows the block diagram of an encoder with

Input
speech

 Bit-stream

Error
minimization

Parameter
selection &
encoding

Decoder
Synthetic
speech

Error

Figure 11.2 Block diagram showing an encoder based on the analysis-by-synthesis

principle.

THE PRINCIPLE OF ANALYSIS-BY-SYNTHESIS 301

the closed-loop approach. Since the signal is synthesized during encoding for

analysis purposes, the principle is known as analysis-by-synthesis (abbreviated as

AbS in some of the literature).

Theoretically, all parameters of the speech coder can be optimized jointly so as

to yield the best result. This approach, however, is too complex due to the compu-

tation involved. In practice, only a subset of parameters is selected for closed-loop

optimization, while the rest are determined through an open-loop approach. The

CELP coder is based on the analysis-by-synthesis principle, where the excitation

sequences contained in a codebook are selected according to a closed-loop method.

Other parameters, such as the filter coefficients, are determined in an open-loop

fashion. Figure 11.3 illustrates a simplified block diagram of the CELP encoder.

A commonly used error criterion, such as the sum of squared error, can be applied

to select the final excitation sequence; hence, waveform matching in the time

domain is performed, leading to a partial preservation of phase information.

Since the model requires frequent updating of the parameters to yield a good

match to the original signal, the analysis procedure of the system is carried out

in blocks. That is, the input speech is partitioned into suitable blocks of samples

to determine the time-varying filter parameters; with these parameters fixed, the

excitation is optimized. The excitation sequence and other parameters are then

encoded to form the compressed bit-stream. The length of the analysis block or

frame affects the bit-rate of the coding scheme.

11.3 ENCODING AND DECODING

CELP is an analysis-by-synthesis method, where the excitation signal is selected by

a closed-loop search procedure and applied to the synthesis filters. The synthesized

waveform is compared to the original speech segment, the distortion is measured,

and the process is repeated for all excitation codevectors stored in a codebook. The

Input
speech

 Synthetic
 speech

Error
minimization

Excitation
codebook

Synthesis
filter

Spectral
analysis

Gain
calculation

Figure 11.3 Block diagram showing the key components of a CELP encoder.

302 CODE-EXCITED LINEAR PREDICTION

index of the ‘‘best’’ excitation sequence is transmitted to the decoder, which

retrieves the excitation codevectors from a codebook identical to that at the encoder.

In this section, generic structures of the CELP encoder and decoder are described.

Perceptual Weighting

The analysis-by-synthesis loop that the CELP encoder is based on is shown in

Figure 11.4, where the system function of the formant synthesis filter is (Chapter 4)

Hf zð Þ ¼ 1

AðzÞ ¼
1

1þPM
i¼1 aiz�i

; ð11:1Þ

with A(z) denoting the system function of the formant analysis filter. Assume that

the size of the excitation codebook is L; that is, it contains a total of L excitation

codevectors. The encoder will pass through the loop L times for each short segment

of input speech; a mean-squared error value is calculated after each pass. The exci-

tation codevector providing the lowest error is selected at the end. Dimension of the

codevector depends on the length of the speech segment under consideration; for

most CELP coders, the length is equal to that of the subframe (Chapter 4). For

the FS1016 coder (next chapter), for instance, the subframe consists of 60 samples

(7.5 ms), with a codebook size of L ¼ 512. Thus, the excitation codebook can be

considered as a matrix of dimension 512� 60.

The masking phenomenon in the human auditory system can be explored to

yield a more suitable error measure. It is well known that we can tolerate much

more noise in frequency regions where the speech has significant energy. Therefore,

the noise components in these regions can have higher energy relative to the com-

ponents in low-energy regions without increasing the perceptual distortion. In other

words, frequency regions where the speech signal has high energy can cover or

‘‘mask’’ a proportionately higher amount of noise, whereas in low-energy regions,

the amount of tolerable noise is proportionately lower. Therefore, in a typical

speech spectrum, the amount of noise at the peaks can be higher than the amount

of noise at the valleys. A simple way of controlling the noise spectrum is by filtering

 Input speech

 Synthetic
speech

Excitation generator

Error

Excitation
codebook

Pitch
synthesis

filter

Formant
synthesis

filter

Error
minimization

Gain

Figure 11.4 Analysis-by-synthesis loop of a CELP encoder.

ENCODING AND DECODING 303

the error signal through a weighting filter before minimization. One efficient way to

implement the weighting filter is by using the system function

WðzÞ ¼ AðzÞ
Aðz=gÞ ¼

1þPM
i¼1 aiz

�i

1þPM
i¼1 aigiz�i

; ð11:2Þ

with g being a constant in the interval [0, 1]. Position of this filter within the loop is

indicated in Figure 11.5. The constant g determines the degree to which the error is

de-emphasized in any frequency region. The filter amplifies the error signal spec-

trum in nonformant regions of the speech spectrum, while attenuating the error

signal spectrum in formant regions. Hence, an error signal whose spectral energy

is concentrated in formant regions of the input spectrum is considered better than

one whose spectral energy is not located under formants.

From (11.2) we can see that as g! 1, WðzÞ ! 1, and hence no modification of

the error spectrum is performed. On the other hand, if g! 0, WðzÞ ! AðzÞ, which
is the formant analysis filter. The constant g introduces a broadening effect (band-

width expansion) to the error weighting filter. The most suitable value of g is

selected subjectively by listening tests, and for 8-kHz sampling, g is usually

between 0.8 and 0.9.

Example 11.1 Consider the following LPCs:

a1 ¼ �1:286; a2 ¼ 1:138; a3 ¼ �1:047; a4 ¼ 0:691; a5 ¼ �0:304;
a6 ¼ 0:373; a7 ¼ �0:071; a8 ¼ 0:012; a9 ¼ 0:048; a10 ¼ 0:064:

Magnitudes of the transfer functions for the formant synthesis filter and the formant

analysis filter are plotted in Figure 11.6, with the characteristics of the correspond-

ing perceptual weighting filter shown in Figure 11.7 for various values of g. Note
that the weighting filter attenuates the error energy around the peaks of the spec-

trum envelope in the formant synthesis filter. Thus, by using this filter to process the

error signal, the error energy corresponding to the valleys of the input spectrum

 Input speech

Synthetic
 speech

Error

Excitation
generator

Pitch
synthesis

filter

Formant
synthesis

filter

Error
minimization

Perceptual
weighting

filter

−

Figure 11.5 Analysis-by-synthesis loop of a CELP encoder with perceptual weighting.

304 CODE-EXCITED LINEAR PREDICTION

receives higher weighting. This is important from a perceptual point of view, since

error in the spectrum peaks is easily masked due to the high signal energy at these

points; while at the spectrum valleys, error becomes more noticeable due to the low

signal energy in such regions.

Complexity Issues

Due to the linearity of the weighting filter, it is possible to translate it so as to obtain

the equivalent systems shown in Figure 11.8. Since the formant synthesis filter and

the weighting filter are in cascade, they can be merged to form the modified formant

synthesis filter with system function

Hf z=gð Þ ¼ 1

Aðz=gÞ ¼
1

1þPM
i¼1 aigiz�i

: ð11:3Þ

The system of Figure 11.8 is computationally more efficient than the equivalent

system of Figure 11.5 and is due to the fact that computation within the loop is

reduced. In Figure 11.5, each excitation codevector is filtered by two synthesis

0 0.5 1
0.1

1

10

100

0 0.5 1
0.01

0.1

1

10

ω/π ω/π

1/|A(ejω)| |A(ejω)|

Figure 11.6 Magnitude plots of an example formant synthesis filter (left) and associated

formant analysis filter (right).

0 0.2 0.4 0.6 0.8 1
0.01

0.1

1

10

γ = 0.1

0.5

0.9

ω/π

|W(e jω)|

Figure 11.7 Magnitude plots of the perceptual weighting filter associated with Figure 11.6.

ENCODING AND DECODING 305

filters, with the error processed by the weighting filter. In Figure 11.8, however,

there is no need to filter the difference signal. And since typically there are a rela-

tively high number of excitation codevectors, the computation saving is quite sig-

nificant (Exercise 11.1).

Encoder Operation

A block diagram of a generic CELP encoder is shown in Figure 11.9. This encoder

is highly simplistic and serves only as an illustration. Subsequent chapters contain

the details of operation of different standard CELP coders. The encoder works as

follows:

� Input speech signal is segmented into frames and subframes. As explained in

Chapter 4, the scheme of four subframes in one frame is a popular choice.

Length of the frame is usually around 20 to 30 ms, while for the subframe it is

in the range of 5 to 7.5 ms.

� Short-term LP analysis is performed on each frame to yield the LPC.

Afterward, long-term LP analysis is applied to each subframe (Chapter 4).

Input to short-term LP analysis is normally the original speech, or pre-

emphasized speech; input to long-term LP analysis is often the (short-term)

 Input speech

 Input speech

Excitation
generator

Pitch
synthesis

filter
1/A(z)

Error
minimization

W(z)

W(z)

Excitation
generator

Pitch
synthesis

filter

Error
minimization

1/A(z/γ)

W(z)

Figure 11.8 Equivalent realizations of the system in Figure 11.5. Top: By translating the

perceptual weighting filter. Bottom: After merging the formant synthesis filter with the

perceptual weighting filter.

306 CODE-EXCITED LINEAR PREDICTION

prediction error. Coefficients of the perceptual weighting filter, pitch synthesis

filter, and modified formant synthesis filter are known after this step.

� The excitation sequence can now be determined. The length of each excitation

codevector is equal to that of the subframe; thus, an excitation codebook

search is performed once every subframe. The search procedure begins with

the generation of an ensemble of filtered excitation sequences with the

corresponding gains; mean-squared error (or sum of squared error) is

computed for each sequence, and the codevector and gain associated with

the lowest error are selected.

� The index of excitation codebook, gain, long-term LP parameters, and LPC

are encoded, packed, and transmitted as the CELP bit-stream.

Decoder Operation

A block diagram of the CELP decoder is shown in Figure 11.10. It basically

unpacks and decodes various parameters from the bit-stream, which are directed

to the corresponding block so as to synthesize the speech. A postfilter is added at

the end to enhance the quality of the resultant signal; structure of this filter is

described in Section 11.5.

Input
PCM
speech

LPC Gain Excitation Long-term
index LP parameters

Frame /
subframe

segmentation

Prediction-
error filter

LP
analysis

(short-term)

Perceptual
weighting

filter

Gain
computation

Pitch
synthesis

filter

Error
minimization

Encode & pack

Excitation
codebook

LP
analysis

(long-term)

Modified
formant

synthesis filter

CELP bit-stream

Figure 11.9 Block diagram of a generic CELP encoder.

ENCODING AND DECODING 307

11.4 EXCITATION CODEBOOK SEARCH

Excitation codebook search is the most computationally intensive part of CELP

coding. Throughout the years, many ideas have been proposed and tested surround-

ing the topic, with the sole purpose of accelerating the search process without com-

promising significantly the output quality. In this section, the precise mathematical

framework is provided to describe the search procedure.

Preliminaries

A step-by-step procedure for excitation codebook search, described superficially in

the last section, is explained in more detail below.

1. Filter the input speech subframe with the perceptual weighting filter.

2. For each codevector in the excitation codebook:

� Calculate the optimal gain (described later) and scale the codevector using

the value found.

� Filter the scaled excitation codevector with the pitch synthesis filter.

� Filter the pitch synthesis filter’s output with the modified formant synthesis

filter.

� Subtract the perceptually filtered input speech from the modified formant

synthesis filter’s output; the result represents an error sequence.

� Calculate the energy of the error sequence.

3. The index of the excitation codevector associated with the lowest error energy

is retained as information on the input subframe.

The above procedure is repeated for every input subframe. It is possible to

improve computational efficiency by exploring the redundancies in the search

loop. In particular, by decomposing the filters’ responses in zero-state and

CELP
bit-stream

 Excitation Gain Long-term LPC
index LP parameters

 Synthetic speech

Unpack & decode

Excitation
codebook

Pitch
synthesis

filter

Formant
synthesis

filter

Postfilter

Figure 11.10 Block diagram of a generic CELP decoder.

308 CODE-EXCITED LINEAR PREDICTION

zero-input (Chapter 2), substantial computational savings are obtained. Figure

11.11 shows the system under consideration, where a one-tap pitch synthesis filter

is connected in cascade with the modified formant synthesis filter. The difference

equations of the system are

y n½ � ¼ d n½ � �
XM
i¼1

air
iy n� i½ �; ð11:4Þ

d n½ � ¼ x n½ � � bd n� T½ �; ð11:5Þ

where

M ¼ Prediction order ðshort-termÞ;
ai ¼ LPC ðshort-termÞ;
b ¼ Long-term gain;

T ¼ Pitch period:

Equations (11.4) and (11.5) are used to compute the filters’ outputs.

State-Save Method

This and the next method are already described in Chapter 2; however, the discus-

sion is only for the case of a single-stage filter. Here, the difference equations (11.4)

and (11.5) are applied to each of the finite-length input subframes xr½n�, n ¼ 0 to

N � 1 in the following way (r > 0):

dr½n� ¼ dr�1½nþ N�; �T
 n
 �1; ð11:6Þ
dr½n� ¼ xr½n� � bdr½n� T �; 0
 n
 N � 1; ð11:7Þ
yr½n� ¼ yr�1½nþ N�; �M
 n
 �1; ð11:8Þ

yr n½ � ¼ dr n½ � �
XM
i¼1

aigiyr n� i½ �; 0
 n
 N � 1: ð11:9Þ

Note that the subframe timing notation, as explained in Chapter 2, is employed

for signal description.

d[n]
x[n] y[n]

Pitch
synthesis

filter Hp(z)

Modified formant
synthesis filter

Hf (z /γ)

Figure 11.11 Cascade connection of pitch synthesis filter and modified formant synthesis

filter.

EXCITATION CODEBOOK SEARCH 309

Zero-Input Zero-State Method

This method computes the total response by calculating separately the zero-input

response and zero-state response. These two responses are added to form the overall

response. The signals involved are depicted in Figure 11.12. Details for each signals

are explained below.

� Zero-state response of pitch synthesis filter (d1):

d1r n½ � ¼ 0; �T
 n
 �1; ð11:10Þ
d1r n½ � ¼ xr n½ � � bd1r n� T½ �; 0
 n
 N � 1: ð11:11Þ

In (11.11), the beginning T samples can be computed without the product due

to the zero-state condition. Hence, we can rewrite the equation as

d1r n½ � ¼ xr n½ �; 0
 n
 T � 1; ð11:12Þ
d1r n½ � ¼ xr n½ � � bd1r n� T½ �; T
 n
 N � 1: ð11:13Þ

We assume here that T < N. If T 	 N, then the zero-state response is equal to

the input signal.

� Zero-input response of pitch synthesis filter (d2):

d2r n½ � ¼ dr�1 nþ N½ �; �T
 n
 �1; ð11:14Þ
d2r n½ � ¼ �bd2r n� T½ �; 0
 n
 N � 1: ð11:15Þ

� Total response of pitch synthesis filter (d):

dr n½ � ¼ d1r½n� þ d2r n½ �; 0
 n
 N � 1: ð11:16Þ

y3

d2 y2

 d

x d1 y1 y

Hf (z/γ)

Hf (z/γ)

Hf (z/γ)

(Zero)
Hp(z)

Hp(z)
(Zero) (Zero)

Figure 11.12 Block diagram showing the signals involved in the zero-input zero-state

method for the computation of output signal from a cascade connection of pitch synthesis

filter and modified formant synthesis filter.

310 CODE-EXCITED LINEAR PREDICTION

� Total zero-state response: zero-state response of the pitch synthesis filter,

filtered by the formant synthesis filter in zero-state (y1):

y1r n½ � ¼ 0; �M
 n
 �1; ð11:17Þ

y1r n½ � ¼ d1r n½ � �
XM
i¼1

aigiy1r n� i½ �; 0
 n
 N � 1: ð11:18Þ

� Zero-input response of pitch synthesis filter, filtered by the formant synthesis

filter in zero-state (y2):

y2r n½ � ¼ 0; �M
 n
 �1; ð11:19Þ

y2r n½ � ¼ d2r n½ � �
XM
i¼1

aigiy2r n� i½ �; 0
 n
 N � 1: ð11:20Þ

� Zero-input response of formant synthesis filter (y3):

y3r n½ � ¼ yr�1 nþ N½ �; �M
 n
 �1; ð11:21Þ

y3r n½ � ¼ �
XM
i¼1

aigiy3r n� i½ �; 0
 n
 N � 1: ð11:22Þ

� Total response (formant synthesis filter):

yr½n� ¼ y1r½n� þ y2r½n� þ y3r½n�; 0
 n
 N � 1: ð11:23Þ

See Exercise 11.2 for a summary of the amount of computation required for each

method.

Computational Cost

Consider the problem of calculating the L total responses using the two described

methods, with L being the total number of codevectors, or size of the excitation

codebook. Further assume that subframe length (N), prediction order (M), and pitch

period (T) are known. For the state-save method,

#sums ¼ #products ¼ ðM þ 1ÞN � L; ð11:24Þ

while for the zero-input zero-state method,

#sums ¼ ðNðM þ 2Þ � TÞLþ ð2M þ 1ÞN; ð11:25Þ
#products ¼ ðNðM þ 1Þ � TÞLþ ð2M þ 1ÞN: ð11:26Þ

The above equations are obtained from the results of Exercise 11.2, and by rea-

lizing that for the latter procedure, only d1, y1, and y need be computed L times.

EXCITATION CODEBOOK SEARCH 311

The rest of the signals (d2, d, y2, and y3) are calculated just once per excitation

codebook search, since they are associated with the zero-input responses. Note

also that for y, half of the sums are done outside the loop (y2þ y3), while the other

half are done inside the loop (y1þ (y2þ y3)). Equations (11.25) and (11.26) are

valid only when T
 N. For T > N, we have

#sums ¼ ðM þ 1ÞN � Lþ ð2M þ 1ÞN; ð11:27Þ
#products ¼ M � N � Lþ ð2M þ 1ÞN; ð11:28Þ

since in this case, d1 needs no operation at all (d1 ¼ x, see (11.12)).

For fixedM and N, (11.24), (11.25), (11.26), (11.27), and (11.28) are linear func-

tions of the excitation codebook size L and represent the number of operations

required to exhaustively search the entire excitation codebook once. For very low

values of L (small codebook), the state-save method is less costly to implement; as

the codebook size increases, the zero-input zero-state method becomes more and

more attractive. The reduced computational load is associated with the zero-state

response of the pitch synthesis filter (d1, Figure 11.12), where the first T samples

need no operation at all (see (11.12)). Less computation is required for higher

values of T; however, if T > N, no further reduction is obtainable ((11.27) and

(11.28)).

Table 11.1 shows some typical numbers for the two methods, assuming a 9-bit

excitation codebook. As we can see, the number of sums for the state-save method

requires slightly fewer additions but more products. Since traditionally multiplica-

tion is a huge speed bottleneck for most processors, the saving in the number of

multiplications is very attractive, and the zero-input zero-state method has since

been widely adopted for excitation codebook search in CELP. Exercise 11.3 con-

tains an alternative zero-input zero-state method with even less computation.

Error Calculation and Optimal Scaling

So far we have seen the procedure to compute an ensemble of output sequences

from the cascade connection of two filters. In order to complete the excitation code-

book search process, it is necessary to take into account the input speech signal so

as to obtain an error sequence, based on which the excitation codevector is selected.

TABLE 11.1 Computational Cost (per Codebook Search) with M¼ 10, N¼ 60,
and L¼ 512

Zero-Input Zero-State,a Zero-Input Zero-State,a

State-Save T ¼ 50 T ¼ 80

#Sums 337920 344300 (þ1.9%) 339180 (þ0.4%)

#Products 337920 313580 (�7.2%) 308460 (�8.7%)

a Percentage change with respect to the state-save method is shown for the zero-input zero-state method.

312 CODE-EXCITED LINEAR PREDICTION

The target system is shown in Figure 11.13 and is obtained by inserting the scheme

of Figure 11.12 into Figure 11.8.

The excitation codebook is fixed and consists of L codevectors of dimension

equal to N, denoted by

vðlÞ½n�; l ¼ 0; . . . ; L� 1; n ¼ 0; . . . ;N � 1:

These vectors are scaled by the gain gðlÞ, computed individually for each l. The

scaled codevectors are utilized as inputs to the filters.

As explained in previous sections, the input speech subframe s½n� is filtered by

the perceptual weighting filter WðzÞ, the output is subtracted from the zero-input

responses y3 and y2, and finally combined with the zero-state response y1ðlÞ, result-
ing in an error sequence with energy

eðlÞ ¼
XN�1
n¼0

u½n� � y1ðlÞ½n� � y2½n� � y3½n��2: ð11:29Þ

The index l resulting in the lowest eðlÞ is transmitted as information on the

subframe. To complete the search procedure, we need to find the gain gðlÞ. Let

y1ðlÞo ½n� ¼ y1ðlÞ½n�=gðlÞ; n ¼ 0; . . . ;N � 1 ð11:30Þ

the zero-state response to the lth excitation codevector with no scaling (unity gain),

and

uo½n� ¼ u½n� � y2½n� � y3½n�: ð11:31Þ

s u

y3

d2 y2

 d

v(l) d1(l) y1(l)

g(l)

ε(l)

Hf (z/γ)

Hf (z/γ)
(Zero)

Hp(z)

Hp(z)
(Zero)

Hf (z/γ)
(Zero)

W(z)

Energy
computation

Excitation
codebook

Figure 11.13 Signals involved in the excitation codebook search.

EXCITATION CODEBOOK SEARCH 313

Using the new terminology in (11.29), we have

eðlÞ ¼
XN�1
n¼0

uo½n� � gðlÞy1ðlÞo ½n�

�2
: ð11:32Þ

The gain gðlÞ is calculated so as to minimize eðlÞ. Standard optimization proce-

dure calls for differentiating (11.32) and equating the result to zero, leading to the

optimal scaling factor of

gðlÞ ¼
PN�1

n¼0 uo½n�y1ðlÞo ½n�PN�1
n¼0 y1

ðlÞ
o ½n�

� 	2 : ð11:33Þ

It is left to the reader as an exercise to prove the following relations:

eðlÞ ¼
XN�1
n¼0

uo½n�ð Þ2
 !

� PðlÞ; ð11:34Þ

where

PðlÞ ¼

PN�1

n¼0 uo½n�y1ðlÞo ½n�
�2

PN�1
n¼0 y1

ðlÞ
o ½n�

� 	2 : ð11:35Þ

Note that minimization of eðlÞ is equivalent to the maximization of (11.35)

(Why?). In practice, it is preferable to use (11.35) to find the optimal index, since

the final result can be located with less computation. Figure 11.14 shows the signal

flow graph of the excitation codebook search procedure, where the signal calcula-

tion steps are put into order. Two parameters are returned upon its completion: the

index lopt for the excitation codevector and the associated gain gðloptÞ.

Calculating the Zero-State Response Using the Convolution Sum

From Chapter 2 the zero-state response y1ðlÞ½n� can be calculated with the convolu-

tion sum

y1ðlÞ½n� ¼ gðlÞ
XN�1
k¼0

h½n� k�vðlÞ½k�; 0
 n
 N � 1; ð11:36Þ

with h[n] being the impulse response of the cascade connection of filters (pitch

synthesis and formant synthesis). Consider the vectors

y1ðlÞ ¼ �y1ðlÞ½0� y1ðlÞ½1� � � � y1ðlÞ½N � 1��T

314 CODE-EXCITED LINEAR PREDICTION

and

vðlÞ ¼ �vðlÞ½0� vðlÞ½1� � � � vðlÞ½N � 1��T :
Equation (11.36) can be written in matrix form:

y1ðlÞ ¼ gðlÞHvðlÞ ð11:37Þ

+

+

Get speech
subframe s

u, y3, d2

y2

uo= u−y2−y3

l ← 0,
max ← 0,
lopt ← 0

g(l), P(l)

max←P(l)

lopt← l
P(l) > max

l++

l = L

y = y1(lopt) + y2 + y3

y1(lopt) = g(lopt)y1o
(lopt)

d1(lopt) = g(lopt)d1o
(lopt)

d = d2 + d1(lopt)

Next
subframe

d1o , y1o
(l)(l)

Figure 11.14 Signal flow graph illustrating the excitation codebook search procedure.

EXCITATION CODEBOOK SEARCH 315

with H being the N � N impulse response matrix. Similarly, the error expression

(11.29) can be written as

eðlÞ ¼ ��u� y1ðlÞ � y2� y3
��2 ¼ ��uo � gðlÞHvðlÞ

��2 ð11:38Þ

with kxk denoting the Euclidean norm* of the vector x. The optimal gain gðlÞ is the
one that minimizes (11.38) and can be found with

qeðlÞ

qgðlÞ
¼ q

qgðlÞ
uo � gðlÞHvðlÞ
� 	T

uo � gðlÞHvðlÞ
� 	� �

¼ �2uToHvðlÞ þ 2gðlÞ
��HvðlÞ

��2 ¼ 0; ð11:39Þ

leading to

gðlÞ ¼ uToHvðlÞ��HvðlÞ
��2 ; ð11:40Þ

and represents the optimal gain. Expanding (11.38) gives

eðlÞ ¼ kuok2 1� gðlÞ

kuok2
2uToHvðlÞ � gðlÞ

��HvðlÞ
��2� 	" #

: ð11:41Þ

Substituting the expression for optimal gain ((11.40) into (11.41)) leads to

eðlÞ ¼ kuok2 1�

uToHvðlÞ

�2
kuok2

��HvðlÞ
��2

" #
¼ kuok2 � PðlÞ; ð11:42Þ

where

PðlÞ ¼ uToHvðlÞ

 �2��HvðlÞ

��2 : ð11:43Þ

The convolution sum represents an alternative way to find the zero-state

response. In Chapter 2, it is shown that for typical circumstances, the computational

cost involved with the convolution is higher than utilizing the difference equation

directly; thus, it seems senseless to even mention this approach. Readers are invi-

ted to refer to the next chapter, where the federal standard version of CELP is

presented, with the advantages of the convolution method exposed.

*The Euclidean norm of x ¼ ½x0 x1 � � � xN�1�T is given by kxk ¼
P x2i
�1=2

; see Lancaster and

Tismenetsky [1985].

316 CODE-EXCITED LINEAR PREDICTION

11.5 POSTFILTER

As shown in Section 11.3, subjective quality of a CELP coder can be improved by

incorporating a weighting filter into the error minimization procedure. This weight-

ing filter reduces the noise components in spectral valleys but increases the noise

components at spectral peaks. To further improve the subjective quality of the

synthetic speech, a postfilter can be added so as to attenuate the components in

the spectral valleys, thus enhancing the overall spectrum.

The frequency response of an ideal postfilter should follow the peaks and valleys

of the spectral envelope of speech without giving an overall spectral tilt. In a

predictive speech coder employing linear prediction, the synthesis filter has a

frequency response that closely follows the spectral envelope of the input speech.

Therefore, it is natural to derive the postfilter from the linear predictor. In this sec-

tion, postfilter design is considered. It is shown that there are various forms of fil-

tering topologies suitable for this purpose, with different levels of complexity; the

choice of a particular filter is often decided by the desired level of quality and the

amount of available resources.

Short-Term Postfilter

Consider a postfilter consisting of the bandwidth expanded LP synthesis filter

H1 zð Þ ¼ 1

1þPM
i¼1 aiaiz�i

ð11:44Þ

with 0 < a < 1 a constant. Figure 11.15 shows the frequency response for this form

of postfilter for various values of a (same LPC as in Example 11.1). Such a post-

filter does reduce the perceived noise level. However, noise reduction is accompa-

nied by muffled speech. This is due to the fact that the frequency response of this

postfilter generally has a lowpass spectral tilt, as can be seen in Figure 11.15. To

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

ω /π

H1(e jw)

α = 0.9

0.8

0.5

Figure 11.15 Examples of magnitude responses of an all-pole postfilter for different

values of a.

POSTFILTER 317

reduce the spectral tilt of the all-pole postfilter described in (11.44), M zeros can be

added so as to create the postfilter with system function

H2 zð Þ ¼ 1þPM
i¼1 aib

iz�i

1þPM
i¼1 aiaiz�i

ð11:45Þ

with 0 < b < a < 1. The magnitude of the frequency response in a logarithmic

scale is given by

20 log
1

1þPM
i¼1 aiaiz�i

�� ��
 !

� 20 log
1

1þPM
i¼1 aib

iz�i
�� ��
 !

; ð11:46Þ

that is, it is the difference between the frequency responses of two bandwidth-

expanded LP synthesis filters. The values of a and b are determined based on sub-

jective listening test results. From Figure 11.15, we see that the response of (11.44)

for a ¼ 0:8 has both spectral tilt and formant peaks (although greatly smoothed),

while the response for a ¼ 0:5 has spectral tilt only. Hence, with a ¼ 0:8 and

b ¼ 0:5 in (11.46), we can remove the spectral tilt to a large extent by subtracting

the response for a ¼ 0:5 from the response for a ¼ 0:8.
Even though the lowpass effect is reduced significantly with the addition of zeros

(as in H2), slight spectral tilt is still present. To further mitigate the lowpass effect, a

first-order filter with a system function of (1� mz�1) can be added in cascade. A

value of m ¼ 0:5 has been found to provide good results. This filter is the same

as the pre-emphasis filter (Chapter 4) and provides a highpass spectral tilt to com-

pensate the lowpass effect. The overall system function of the postfilter is given by

H3ðzÞ ¼ 1� mz�1

 � 1þPM

i¼1 aib
iz�i

1þPM
i¼1 aiaiz�i

: ð11:47Þ

Figure 11.16 plots the magnitude responses of the three postfilters, where we can

see that the spectral tilt of H1 is reduced for H2 and is further decreased for H3, but

0 0.2 0.4 0.6 0.8 1
−10

10

0

ω /π

|H(ejω)|

α = 0.8, β = 0.5, µ = 0.5

H2,

H3,

α = 0.8,

H1, α = 0.8

β = 0.5

Figure 11.16 Some postfilter configurations and their magnitude responses.

318 CODE-EXCITED LINEAR PREDICTION

the peaks and valleys of the original spectrum are largely preserved. The postfilter

with system function given by (11.47) is included (with slight modification) by var-

ious standard CELP coders, such as the FS1016 (Chapter 12) and IS54 (Chapter 13).

Since only the short-term LPCs are used, it is often referred to as the short-term

postfilter.

Automatic Gain Control

To neutralize the power changes introduced by the postfilter, it is common to deploy

a power normalization block within the architecture of the postfilter. Figure 11.17

shows the block diagram of the postfilter with automatic gain control. Power of the

input noisy speech s[n] and the filtered signal x[n] are estimated with

s2
s ½n� ¼ �s2

s ½n� 1� þ ð1� �Þs2½n� ð11:48Þ

and

s2
x ½n� ¼ �s2

x ½n� 1� þ ð1� �Þx2½n�; ð11:49Þ

respectively. Equations (11.48) and (11.49) act as first-order smoothers to the

signals’ power. A value of � ¼ 0:99 gives an adequate adaptation time for an 8-kHz

sampling rate. For smaller values of �, faster adaptation is obtained; however,

severe distortion can be introduced. The power estimates are updated on a sample-

by-sample basis. For each sample, the gain

r½n� ¼
ffiffiffiffiffiffiffiffiffiffiffi
s2
s ½n�

s2
x ½n�

s
ð11:50Þ

is calculated, and the enhanced speech is found with

y½n� ¼ r½n�x½n�: ð11:51Þ

Noisy x[n] Enhanced
 speech speech

s[n] y[n]
ρ[n]

H3(z)

Gain
estimator

Gain
estimator

Compute
gain

Figure 11.17 Block diagram of the postfilter.

POSTFILTER 319

Thus, for each sample, a division and a square root operation are necessary to com-

pute the gain. One simplification is given by

ss½n� ¼ �ss½n� 1� þ ð1� �Þ s½n�j j; ð11:52Þ
sx½n� ¼ �sx½n� 1� þ ð1� �Þ x½n�j j: ð11:53Þ

In this case, the magnitude is estimated instead of power. The scaling factor or gain

can be calculated directly as the division

r½n� ¼ s2
s ½n�

s2
x ½n�

: ð11:54Þ

This scheme eliminates the need for the square root operation.

Adaptive Spectral Tilt Compensation

As stated earlier, the purpose of the (1� mz�1) term in (11.47) is to compensate

the tilt of the transfer function so as to reduce the lowpass effect. Since the tilt is

variable with the signal, it is possible to enhance the filter by making m adaptive.

In one proposition [Chen, 1995], m is made proportional to the first reflection

coefficient k1:

m ¼ 0:5 k1; ð11:55Þ

where k1 can be derived from the LPCs ai. For highly correlated voiced frames,

k1 ¼ R½1�=R½0� is close to one since R½0� � R½1� (Chapter 4). Note that R[0] and

R[1] are the autocorrelation values of the signal being analyzed. In this case, the

resultant postfilter has essentially the same property as in (11.47). For unvoiced

frames, however, the magnitude of k1 tends to decrease, and k1 might change

from positive to negative; this is due to the fact that correlation among adjacent

samples is weakened; also, the spectra of unvoiced frames tend to develop a high-

pass spectral tilt. Therefore, it is better to either diminish the amount of compensa-

tion or even change to lowpass filtering in order to cancel the high-pass tilt.

Figure 11.18 shows the magnitude responses of HðzÞ ¼ 1� mz�1 for various values
of m. Subjectively, it is found that the proposed adaptation provides better enhance-

ment to the quality of the processed speech when compared to a fixed coefficient.

Long-Term Postfilter

Detailed operation of the postfilter for the ITU-T G.728 LD-CELP coder (covered

in Chapter 14) is described here. In this implementation, a long-term postfilter is

incorporated to improve the subjective quality of the synthetic speech. Note that

this coder utilizes a 20-sample frame, divided into four 5-sample subframes.

320 CODE-EXCITED LINEAR PREDICTION

The postfilter has the same topology as in Figure 11.17, with the exception that

H3ðzÞ consists of the cascade connection of two filters: short-term filter HsðzÞ and
long-term filter HlðzÞ. The short-term filter has the same system function as (11.47),

with prediction order M ¼ 10, a ¼ 0:75, b ¼ 0:65, and m ¼ 0:15 k1. The coeffi-

cients ai and k1 are updated once per frame, with the update taking place in the first

subframe.

The long-term postfilter is a comb filter with its spectral peaks located at

multiples of the fundamental frequency of the speech to be processed. Its purpose

is to attenuate frequency components between pitch harmonic peaks, enhancing the

periodicity of the signal. System function of the filter is

Hl zð Þ ¼ 1

1þ b
1þ bz�T

 �

; ð11:56Þ

where the parameters b and T are updated once every four subframes, with the

actual updates occurring at the third subframe.

Figure 11.19 shows the magnitude responses of (11.56) for several values of b

and T ¼ 12. Parameter b controls the amount of attenuation, and an adequate range

is b 2 ½0; 1�. In the extreme case of b ¼ 0, HlðzÞ ¼ 1 and the filter is allpass. As b

increases, attenuation becomes higher and higher. The factor 1=ð1þ bÞ normalizes

the filter response in such a way that the peak magnitude is always equal to one.

Operations involved in the finding of the filter’s parameters are summarized in

Figure 11.20.

0 0.5 1
0.5

1

1.5

ω π/

|H(ejω)|

µ = 0.5

0.1

−0.1

Figure 11.18 Plots of the magnitude of the system function HðzÞ ¼ ð1� mz�1Þ for three
values of m.

POSTFILTER 321

Pitch Period Estimation

The G.728 coder utilizes a highly efficient method for pitch period estimation. It

first performs a coarse search on a reduced-resolution domain, followed by a search

near the neighborhood around the coarse estimate. The final result is obtained by

comparison with the past pitch period for multiplicity check (Chapter 2).

The prediction-error signal e[n] is stored in the form shown in Figure 11.21; it is

obtained by filtering the noisy speech s[n] with the tenth-order prediction-error

0 0.5 1
0

0.5

1

ω π/

|Hl(e
jω)|

Figure 11.19 Magnitude responses of the long-term filter with T ¼ 12 and b ¼ 0:05 (top),

0.2 (middle), and 1 (bottom).

b T µ, β iai, α iai

Noisy
speech

Told ai k1

Long-term
filter coefficient

calculation

Short-term
parameters
calculation

Prediction-
error
filter

Pitch
period

estimation

Figure 11.20 Operations involved in the computation of the postfilter’s parameters.

322 CODE-EXCITED LINEAR PREDICTION

filter. Pitch period is found once per frame and is extracted at the third subframe

(sf2). The pitch analysis window utilizes 100 samples and a range of pitch period

from 20 to 140 samples. The overall procedure is illustrated in Figure 11.22.

The prediction error is decimated by a factor of four and is done with a third-

order elliptic filter having a cutoff of 1 kHz, followed by down-sampling [Oppen-

heim and Schafer, 1989]. A first estimation is found in the decimated domain,

where the autocorrelation

Rd l½ � ¼
X25
n¼1

d½n�d½n� l�; l ¼ 5; 6; . . . ; 35; ð11:57Þ

is computed, with d denoting the decimated prediction-error signal. Note that the

range of l corresponds to 20 to 140 samples in the original domain. The lag l ¼ Td
maximizes (11.57) and represents a coarse pitch period estimate.

The next step is to search around Td in the original domain so as to yield a more

accurate estimation. This is done by computing

Re l½ � ¼
X100
n¼1

e½n�e½n� l�; l ¼ 4 Td � 3 to 4 Td þ 3: ð11:58Þ

Past frame Current frame

 sf3 sf0 sf1 sf2
e[n]

−139 0 81 85 90 95 100

d[n]

−34 0 21 25

Figure 11.21 The prediction-error array (top) and its decimated version (bottom).

Prediction
error

T
Told

Find pitch
period in

decimated
domain: Td

Decimator

Find first
pitch period
candidate:

T0

Pitch period
multiplicity

check

Figure 11.22 The pitch period estimation procedure.

POSTFILTER 323

The lag l ¼ T0 maximizes (11.58) and represents a first pitch period estimation with

e denoting the prediction-error signal. This value may turn out to be a multiple of

some fundamental pitch period. More processing is necessary to minimize this

possibility.

First, T0 is compared with Told (the value from a past frame), if T0 2 ½Told � 6,

Told þ 6]; that is, the first estimate is in the neighborhood of Told, then the desired

result is settled with T ¼ T0. Otherwise, (11.58) is evaluated for l ¼ Told � 6 to

Told þ 6, with l ¼ T1 the lag that maximizes the correlation within the interval.

T1 is a candidate for the final result. T0 and T1 are then compared using the normal-

ized autocorrelation values:

Ri ¼
P100

n¼1 e½n�e½n� Ti�P100
n¼1 e2½n� Ti�

; i ¼ 0; 1: ð11:59Þ

The resultant autocorrelation values are clamped between 0 and 1; that is,

Ri
0; if Ri
 0

1; if Ri 	 1; i ¼ 0; 1:

Ri; otherwise;

8<
: ð11:60Þ

Then the final pitch period T is given by

T ¼ T0; if R1
 0:4R0;

T1; otherwise:

�
ð11:61Þ

Long-Term Filter Coefficient Calculation

Assuming that the noisy speech is stored in the array s½n�, n ¼ �239 to 5, with the

current subframe residing in n ¼ 1 to 5, then the normalized autocorrelation value

RT ¼
P0

n¼�99 s½n�s½n� T �P0
n¼�99 s2½n� T� ð11:62Þ

is calculated, which is a periodicity measure of the signal. The long-term filter coef-

ficient is found with

b ¼
0; if RT < 0:6;

0:15RT ; if 0:6
 RT
 1;

0:15; if RT > 1:

8<
: ð11:63Þ

In general, the closer RT is to one, the more periodic is the speech waveform. For

RT < 0:6, which corresponds roughly to unvoiced frames, b ¼ 0, implying that the

long-term postfilter is turned off. For 0:6
 RT
 1, the postfilter is turned on, with

the degree of comb filtering determined by RT. For RT > 1, b is limited to 0.15 so as

to avoid excessive filtering.

324 CODE-EXCITED LINEAR PREDICTION

11.6 SUMMARY AND REFERENCES

CELP is essentially an improved LPC coder, with the incorporation of a pitch

synthesis filter to avoid the strict voiced/unvoiced classification, and an excitation

codebook to preserve phase information. Problems observed in LPC coders, such as

poor performance in the reproduction of background noise, are greatly rectified,

leading to a far more robust and sturdy system. The superiority is a direct result

of a more sophisticated speech production model, as well as the closed-loop

analysis-by-synthesis approach contributing toward optimal adaptation to many

different signal types.

At the algorithm level, the CELP encoder is an excellent illustration of how dif-

ferent strategies applied to the computation of various signals of the system have a

great impact on computational complexity. Careful choice of methodologies and

thorough understanding of their effects are indispensable for successful deployment

in practice.

The core idea of CELP was first presented in Schroeder and Atal [1985]. Since

the largest computational burden is the excitation codebook search process, many

ideas have been proposed in the literature to tackle the problem; see Trancoso and

Atal [1986] for some discussion on fast search methods. The search of the excita-

tion codevector is in a sense a vector quantization process, where the index of the

best codevector is found based on error criteria. Hence, it is possible to use the var-

ious complexity reduction techniques found in different suboptimal VQ schemes

(Chapter 7) so as to speed up the search process; in Ahmed and Al-Suwaiyel

[1993], several structures are proposed for the excitation codebook to achieve sub-

stantial computational reduction. It is possible to improve performance further by

training the fixed excitation codebook using a representative set of speech signals.

See Exercise 11.11 for a training algorithm based on a gradient-descent approach.

Unlike audio coding [Painter and Spanias, 2000], where structure of the coder is

designed around the various well-known psychoacoustic phenomenon, such as sig-

nal masking and absolute threshold, speech coding seldom utilizes any perceptual

modeling. This is partly because of the high computational demand involved with

the approach. On the other hand, there is indication that perception of speech is very

different from other nonspeech signals; in fact, there is evidence of a brain specia-

lization where an isolated part of the brain is in charge of speech [Moore, 1997].

The CELP coder presented in this chapter takes advantage of simple psychoacous-

tic facts, which are found in the perceptual weighting filter as well as the postfilter,

where the spectrum is shaped adaptively to improve the subjective quality. A more

general form of perceptual weighting filter is used in some CELP coders, such as

LD-CELP covered in Chapter 14. The idea of a postfilter is described in Chen and

Gersho [1987], with a more complete work given in Chen and Gersho [1995],

where additional techniques and experimental data are presented.

The CELP coder has been highly prosperous in practice and has spawned a ser-

ies of standardized coders based on the same fundamental principles. Many of these

coders are included in the next few chapters of this book. Despite its widespread

acceptance, CELP is not free of limitations. One of the criticisms is that it does

SUMMARY AND REFERENCES 325

not behave well for audio signals, in general, but rather is highly specialized and

adapted to speech signals. This leads to high efficiency in the representation of

speech, but poor performance when presented with music signals having complex

spectrum shapes. Designing an efficient coder that works well for both speech and

general audio is indeed one of the goals that speech coding researchers crave to attain.

EXERCISES

11.1 Consider the analysis-by-synthesis loop described in Figures 11.5 and 11.8.

We are given the parameters:

L: Size of excitation codebook,

N1: Number of operations required by the pitch synthesis filter per excitation

codevector,

N2: Number of operations required by the (modified) formant synthesis filter

per excitation codevector,

N3: Number of operations required by the perceptual weighting filter per

excitation codevector.

Further assume that the number of operations required by other components of

the loop is negligible. Compare the total number of operations needed to

perform one complete codebook search (i.e., L passes through the loop) for the

case of Figure 11.5 and compare to that of Figure 11.8. Which scheme is more

efficient?

11.2 By counting the number of additions and multiplications, show that for the

state-save method, the number of sums and number of products are as shown

in Table 11.2, with N being the length of the subframe and M the prediction

order (short-term); while the computational cost for the zero-input zero-state

method is as shown in Table 11.3. To count the number of multiplications,

assume that air
i, i ¼ 1 to M are readily available, that is, no additional

operations are involved with these modified coefficients.

11.3 An alternative zero-input zero-state method is shown in Figure 11.23. Write

down the difference equations relating the signals. Using the same parameter

values as in Table 11.1, calculate the numbers of sums and products. Is this

approach more efficient? If so, explain.

TABLE 11.2 Computational Cost for the State-Save
Method

#Sums #Products

Signal (per Subframe) (per Subframe)

d N N

y MN MN

Total ðM þ 1ÞN ðM þ 1ÞN

326 CODE-EXCITED LINEAR PREDICTION

11.4 Plot the number of products per excitation codebook search for the state-save

method and the zero-input zero-state method, with M ¼ 10, N ¼ 60, and

T ¼ 50, as a function of L, where L ranges from 8 to 1024 (3 to 10 bits

codebook). For what range of L is the zero-input zero-state method more

efficient? Repeat for T ¼ 80.

11.5 From the signal flow graph of Figure 11.14, find out the number of sums

(#sums), the number of products (#products), and the number of divisions

(#divisions) required to perform one complete codebook search.

11.6 From the system function of the postfilter (11.47), find out the difference

equation relating the filter’s input/output. Using the difference equation, plot

the first 30 samples of the impulse response of the filter when a ¼ 0:8,
b ¼ 0:5, m ¼ 0:5, and the set of LPCs from Example 11.1.

11.7 Use some input speech signal to test the power estimation equation (11.48)

for different values of � in the interval [0, 1]. What conclusion can be

reached as far as the adaptation rate of the power estimator as a function

of �? Repeat for the estimator specified by (11.52).

11.8 For the gain equations (11.50) and (11.54), a low signal level might cause

numerical instability due to the division involved. Devise a mechanism to

avoid this type of situation by detecting the signal level.

TABLE 11.3 Computational Cost for the Zero-Input
Zero-State Method

#Sums #Products

Signal (per Subframe) (per Subframe)

d1 N � T N � T

d2 0 N

d N 0

y1 MN MN

y2 MN MN

y3 ðM � 1ÞN MN

y 2N 0

Total 3ðM þ 1ÞN � T ð3M þ 2ÞN � T

d2 y2

d

x d1 y1 s

Hf (z/γ)

Hf (z/γ)

Hp(z)

Hp(z)
(Zero) (Zero)

Figure 11.23 Block diagram showing an alternative zero-input zero-state method.

EXERCISES 327

11.9 Assuming that the zero-state response is calculated through the convolution

sum approach, modify the signal flow graph of Figure 11.14 so as to

accommodate this alternative technique. Note that the impulse response of

the filter cascade must be computed before performing any convolution

operation.

11.10 For the postfilter of the G.728 coder:

(a) Plot the magnitude response of the short-term filter using the LPC of

Example 11.1 and k1 ¼ 0:8.

(b) Plot the magnitude response of the long-term filter with T ¼ 30 and

b ¼ 0:15.

(c) Plot the magnitude response of the cascade connection between the two

filters.

11.11 Excitation codebook training based on gradient-descent. The purpose

of this exercise is to develop a technique to train the excitation codebook

so as to improve performance. Given the function f, the gradient is an

N-dimensional vector given by

rf ¼ qf
qx0

qf
qx1

� � � qf
qxN�1

� �T

with xi being the variables affecting f. The gradient has a very important

property: if we move along the gradient direction from any point in N-

dimensional space, the function value increases at the fastest rate [Rao,

1996]; hence, the direction of the gradient is called the direction of steepest

ascent. The negative of the gradient vector denotes the direction of steepest

descent. Thus, any method that makes use of the gradient vector can be

expected to give the minimum point faster than one that does not make use

of the gradient vector.

Based on the principle, follow the steps below to design a training algo-

rithm for CELP.

(a) In encoding, after the optimal codevector is located, show that the

derivatives of the error energy eðlÞ—the function we seek to minimize—

with respect to the elements of the excitation codevector vðlÞ½n� are
qeðlÞ

qvðlÞ½n� ¼ 2gðlÞ
XN�1
k¼n

h½k � n� y1ðlÞ½k� � uo½k�
� 	

ð11:64Þ

for n ¼ 0 to N � 1.

(b) Once the derivatives are known, we can travel in the direction of

negative gradient with

vðlÞnew½n� ¼ vðlÞ½n� � m
qeðlÞ

qvðlÞ½n� ð11:65Þ

328 CODE-EXCITED LINEAR PREDICTION

where m is a constant known as the step-size parameter. This constant

determines how fast the training is going to be. A low m implies slow

training while high m can lead to instability.

The training algorithm works as follows: for each input speech

subframe from the training set, parameters of the CELP model are

found; the gradient with respect to the chosen excitation codevector is

calculated, which is then updated through gradient-descent. After

presenting the training material for a long period of time, the excitation

codebook is optimized, with an expected improvement in performance.

Prepare a detailed step-by-step procedure for excitation codebook

training based on gradient-descent. Include all equations.

11.12 The automatic gain control mechanisms proposed for the postfilter can be

tested by utilizing the system of Figure 11.24. Implement this system by

following the equations presented in Section 11.5. If the proposition works,

the power of y½n� should be close to that of s[n]. For test purposes, steady

sine waves can be used for both s[n] and x[n]. Perform the test for the two

described schemes of automatic gain control.

11.13 Assume that the pitch period T is uniformly distributed inside the interval

[20, 147]. Calculate the average computational cost (per codebook search)

with M ¼ 10, N ¼ 60, and L ¼ 512 for the state-save method and the zero-

input zero-state method.

s[n]

x[n]
ρ[n]

y[n]

Power
estimate

Power
estimate

Gain

Power
estimate

Figure 11.24 A system for automatic gain control tests.

EXERCISES 329

CHAPTER 12

THE FEDERAL STANDARD
VERSION OF CELP

In 1984, the U.S. Department of Defense (DoD) initiated a program to develop a

new secure voice communication system to supplement the existing FS1015 LPC

coder. Between 1988 and 1989, the 4.8-kbps CELP coder, jointly developed by the

DoD and Bell Labs, was selected. Numerous tests confirmed the superiority of the

coder, providing reasonable quality and robustness in acoustic noise, channel errors,

and tandem coding conditions [Campbell et al., 1991]. The coder became an official

federal standard in 1991 [National Communications System, 1992] and is known as

FS1016.

Besides the basic principles of CELP coding, the FS1016 contains features and

modifications to improve both the speech quality as well as the computational effi-

ciency. Even though this coder has largely been replaced by the more recent MELP

standard (Chapter 17), which produces almost the same quality at half the bit-rate,

the clever design of the FS1016 set a milestone in speech coding development. Its

core structure has exerted a strong influence on other CELP-based algorithms, as

we will see in future chapters.

It is expected that readers have knowledge of the essential ideas of CELP coding,

such as the material presented in Chapter 11. In this chapter, the attempt to improve

the long-term predictor by utilizing a closed-loop analysis-by-synthesis approach is

explained; this gave birth to the concept of the adaptive codebook. The incorpora-

tion of the adaptive codebook to the framework of CELP is shown; the structure of

the stochastic codebook with fixed random samples is examined, followed by code-

book search techniques. The chapter ends with an overview of the operations of the

encoder and decoder.

330

12.1 IMPROVING THE LONG-TERM PREDICTOR

CELP algorithms rely on the long-term predictor or pitch synthesis filter to take

advantage of the periodicity of the (voiced) speech signal so as to achieve efficient

encoding. The parameters of the long-term predictor—pitch period (or lag) and

long-term gain (or long-term LPC)—are necessary for the algorithm to operate,

and they are estimated during the actual encoding process.

As indicated in Chapter 11, a long-term LP analysis procedure can be performed

on the short-term prediction-error signal (Chapter 4). In this approach, the

parameters are found to minimize the energy of the overall prediction error. The

resultant parameters reflect the statistical property of the particular signal subframe;

however, the goal of the procedure does not coincide exactly with CELP, since for

this coder, the main purpose is the minimization of the weighted difference between

the input speech and the synthetic speech. Hence, improvement is possible by using

an estimation technique that directly targets the weighted difference.

Since the objective of the CELP encoder is to reduce the energy of the percep-

tually weighted difference between the input speech and the synthetic speech, in

principle it is possible to augment the contribution of the long-term predictor by

determining its parameters so as to minimize the mentioned weighted difference

signal. Using the same notation as in Chapter 11, the energy of the weighted

difference for the rth subframe is written as

eðlÞr ¼
XN�1
n¼0

ur½n� � yðlÞr ½n�
� 	2

¼
XN�1
n¼0

ur½n� � y1ðlÞr ½n� � y2r½n� � y3r½n�
� 	2

: ð12:1Þ

To minimize the above quantity, we need to find the optimal set of parameters: exci-

tation vector v(l), excitation gain g(l), pitch period T, and long-term gain b, with the

assumption that the parameters of the formant synthesis filter are already known.

Although these variables can be obtained by exhaustively searching for all gain,

excitation, and the long-term predictor’s parameters, the procedure becomes very

computationally intensive, and suboptimal solutions are often used.

One way of reducing the search complexity is by obtaining the long-term pre-

dictor’s parameters (pitch period and gain) and the excitation codevector (including

gain) in two steps. First, we assume zero excitation gain and calculate the long-term

predictor’s parameters such that the error is minimized. Next, the long-term predic-

tor is held constant and the optimal excitation plus gain is searched. The problem

can be stated as follows: find b and T so that the sum of squared error

Jr ¼
XN�1
n¼0

ur½n� � y2r½n� � y3r½n�ð Þ2 ð12:2Þ

IMPROVING THE LONG-TERM PREDICTOR 331

is lowered as much as possible. Minimization can be conducted in the standard way

of differentiation: find the derivative of J with respect to b and equate that to zero.

Appendix E contains all the details of the procedures; only highlights of the results

are provided here.

The derivative of J can be found from the derivative of y2, given by the convolu-

tion sum

qy2r½n�
qb

¼
Xn
k¼0

h½k� q
qb

d2r½n� k�; 0
 n
 N � 1; ð12:3Þ

with h[n] being the impulse response of the modified formant synthesis filter.

The trick is to note that in order to find the derivative of d2, it is necessary to

express it as a function of the samples from the past—the (r� 1)st subframe and

further into the past, since d2 for the present subframe is not yet known. In fact,

the rth subframe depends on b and T—the set of parameters for which we are

searching.

From Chapter 11, we have

d2r½n� ¼ �b � d2r½n� T �; 0
 n
 N � 1; ð12:4Þ

which is the zero-input response of the pitch synthesis filter. To express the current

subframe of d2 in terms of the past samples, it is necessary to consider the range of

T. For instance, if T 	 N, then no modification is needed for (12.4), since all d2

samples on the right-hand side of the equation have negative time index and hence

belong to the past. This is not quite the case when N/2
 T < N, where

d2r½n� ¼
�bd2r½n� T �; 0
 n
 T � 1;

b2d2r½n� 2T�; T
 n
 N � 1;

�
ð12:5Þ

and for N/3
 T < N/2, we have

d2r½n� ¼
�bd2r½n� T �; 0
 n
 T � 1;

b2d2r½n� 2T�; T
 n
 2T � 1;

�b3d2r½n� 3T�; 2T
 n
 N � 1:

8><
>: ð12:6Þ

Note that (12.5) and (12.6) are derived from (12.4) with the simple purpose of

setting the time index of the samples to negative values on the right-hand side of

the equation.

From (12.4), (12.5), and (12.6), we see that for shorter and shorter values of the

pitch period, the expression of d2 becomes more and more complex. Appendix E

shows that a closed-form solution for b can be obtained for the case of T 	 N. For

N/2
 T < N, it becomes a cubic expression. And when N/3
 T < N/2, it is so

complex that it isn’t even worth considering, since the computation load is too

high. Hence, the proposed method for finding the long-term predictor’s parameters

is not very practical after all.

332 THE FEDERAL STANDARD VERSION OF CELP

In this section, an attempt to improve the long-term predictor is described, but it

ultimately leads to a dead end because of the computational burden. Even though

the initiative is sound, and the performance should be much better than using the

open-loop long-term LP analysis procedure, it is practically difficult, if not impos-

sible, to implement. Readers might want to ask: What is the point of evaluating an

inadequate approach? Well, throughout the history of research and development, a

plethora of ideas and proposals have appeared; only a few of these propositions

made it to mainstream engineering, with the rest left as a reminder of the

various paths that researchers had examined. Evaluating some of the failed attempts

helps us to comprehend why such a system is deployed in the way it is. As a matter

of fact, ideas in this section generated the concept of the adaptive codebook: the

main component that improved the quality of many practical CELP coders. The

whole deal is like the old Chinese saying: ‘‘Failure is the mother of success.’’

12.2 THE CONCEPT OF THE ADAPTIVE CODEBOOK

In the last section, we saw that our attempt to find the long-term predictor’s para-

meters so as to minimize the weighted difference can get rather complex, when the

pitch period is less than the length of the subframe. The complexity is due to the

operation of the pitch synthesis filter: the way the zero-input response d2 (12.4) is

defined.

The concept of the adaptive codebook was developed as a modification to

reduce complexity, but still utilize the same principle to minimize the weighted

difference through a closed-loop analysis-by-synthesis approach. In other words,

some ‘‘cheating’’ to overcome the computational barrier is employed. In this

proposition, the operation of the pitch synthesis filter is redefined with

d2r½n� ¼ �b

d2r½n� T �; 0
 n < T ;

d2r½n� 2T�; T
 n < 2T ;

d2r½n� 3T�; 2T
 n < 3T ;

..

. ..
.

8>>>><
>>>>:

ð12:7Þ

The effect is illustrated in Figure 12.1 for a typical case of T < N. Obviously, the

adaptive codebook definition does not coincide with the original pitch synthesis

d2[n]

...

−T −1 0 T 2T 3T N−1 n

Figure 12.1 Extracting a codevector from the adaptive codebook when T < N: only the

samples from �T to �1 are used and are periodically replicated to form the codevector.

THE CONCEPT OF THE ADAPTIVE CODEBOOK 333

filter. For T 	 N, the two definitions match; for T < N, however, the response

following the adaptive codebook definition is produced by a periodic extension

of the past, multiplied by the long-term gain. By ‘‘cheating’’ in this manner, the

zero-input response (with unit scaling) of the current subframe is completely deter-

mined from the history, thus eliminating the burden associated with the higher

power of b found in the concept of the regular pitch synthesis filter ((12.5) and

(12.6)). Of course, the two definitions still match when b ¼ 1. According to this

reformulation, b can be solved by searching through the values of T using simple

procedures.

The limitation of the adaptive codebook approach is that the pitch pulses in a

subframe maintain the same amplitude from one pulse to another when T < N.

However, it has been observed that the procedure is subjectively very similar to

the original formulation of the pitch synthesis filter. That is, in terms of subjective

quality, little is lost or gained in using the modified method.

Operation of the Adaptive Codebook

The reason why the formulation is named adaptive codebook is due to the fact that

the search procedure for the optimal pitch period can be considered as the evalua-

tion of a codebook with overlapping codevectors. That is, adjacent codevectors

have common samples, where each is indexed by the pitch period T. The codebook

is adaptive because it is changed from subframe to subframe.

Consider the structure of the adaptive codebook shown in Figure 12.2. The code-

book is represented as a 1-D array with Tmax elements, with Tmax being the max-

imum value of the pitch period. For convenience the elements of the codebook are

denoted as d[�Tmax] to d[�1], and the subframe index r is dropped by now.

Codevectors derived from this codebook are denoted by

d2ðtÞo ¼ ½d2ðtÞo ½0� � � � d2ðtÞo ½N � 1��T ; t ¼ Tmin to Tmax:

d[n]

−Tmax −N −1 n

d2o t < N

1 d2o
(N)

(t)

d2o
(Tmax−1)

d2o
(Tmax)

N

Figure 12.2 Illustration of the structure of an adaptive codebook.

334 THE FEDERAL STANDARD VERSION OF CELP

Equation (12.7) can now be used to define the elements of the codevector as

follows:

d2ðtÞo ½n� ¼

d½n� t�; 0
 n < t;

d½n� 2t�; t
 n < 2t;

d½n� 3t�; 2t
 n < 3t;

..

. ..
.

8>>>><
>>>>:

ð12:8Þ

if t < N, and

d2ðtÞo ½n� ¼ d½n� t� ð12:9Þ

if t 	 N, for 0
 n
 N�1. Thus, the codebook can be searched for all index t to

yield the best codevector d2
ðtÞ
o together with the optimal long-term gain b. Once

these variables are known, the scaled codevector

d2ðtÞ ¼ b � d2ðtÞo ð12:10Þ

represents the optimal zero-input response of the modified pitch synthesis filter. The

search procedure is similar to the one described in the last chapter for excitation

codebook search and is outlined in Section 12.5.

Codebook Update

After d2(t) is located, the total response of the pitch synthesis filter is

d½n� ¼ d1ðlÞ½n� þ d2ðtÞ½n�; n ¼ 0 to N � 1; ð12:11Þ

where d1(l)[n] is the zero-state response found by searching through the excitation

codebook (or stochastic codebook, Section 12.4). The adaptive codebook is then

updated with this signal according to

d½n� d½nþ N�; n ¼ �Tmax;�Tmax þ 1; . . . ;�1: ð12:12Þ

From the point of view of an array, the operation is basically a left shift of N

samples. The codebook is now ready to be searched in the next subframe.

A Summary

The adaptive codebook contains a history of the total response of the pitch synthesis

filter; codevectors within the codebook are overlapped. The pitch period (t) indexes

the codevector containing the best block of excitation from the past for use in

THE CONCEPT OF THE ADAPTIVE CODEBOOK 335

the present. For t less than the subframe length N, a full vector does not exist and the

short vector is replicated (periodic extension) to the full vector length to form the

codevector.

For the FS1016, N ¼ 60, T max ¼ 147, with the index t ranging from 20 to 147,

leading to a total of 128 values encodable using 7 bits. Figure 12.3 shows some

examples of codevectors derived from the adaptive codebook, where we can clearly

see the periodically extended sequence when t < 60.

12.3 INCORPORATION OF THE ADAPTIVE
CODEBOOK TO THE CELP FRAMEWORK

In the last section, operation of the long-term predictor was modified to that of an

adaptive codebook. Here, we consider the problem of assembling the adaptive

codebook into the framework of a CELP encoder, already described in

Chapter 11. An adaptive codebook can be incorporated directly into the block dia-

gram of a standard CELP encoder, with the signal relations shown in Figure 12.4.

The excitation codebook, as it is known in Chapter 11, is renamed the stochastic

codebook; at this moment we assume that it contains samples with fixed values

originating from a white noise source.

The fundamental principles of the encoder are the same as described in

Chapter 11, except that the long-term predictor’s parameters—pitch period and

long-term gain—are determined in a closed-loop analysis-by-synthesis basis.

That is, the pitch period t (or adaptive codebook index) and the long-term gain b

(or adaptive codebook gain) are found to minimize

JðtÞ ¼
XN�1
n¼0

u½n� � y2ðtÞ½n� � y3½n�
� 	2

: ð12:13Þ

−100 0
−0.4

−0.2

0

0.2

0.4

−100 0
n n

dd(t)[n]

−0.4

−0.2

0

0.2

0.4

dd(t)[n]

Figure 12.3 Examples of signals involved with the adaptive codebook. Samples from

n ¼ �147 to �1 form the codebook, with the actual codevector located from n ¼ 0 to 59.

Left : t ¼ 70: Right : t ¼ 24.

336 THE FEDERAL STANDARD VERSION OF CELP

Once the parameters of the adaptive codebook are known, one can search the

stochastic codebook so that

eðlÞ ¼
XN�1
n¼0

u½n� � y1ðlÞ½n� � y2ðtÞ½n� � y3½n�
� 	2

ð12:14Þ

is minimized. This is exactly the two-step suboptimal approach described in

Section 12.1, where the adaptive codebook is searched first assuming the gain of

the stochastic codebook to be zero; afterward, the stochastic codebook is examined

to locate its parameters.

Further simplification to the encoder is possible by noting that the pitch synthesis

filter (Hp(z)) with no initial condition has no effect when the pitch period is greater

s u

y3

u3
d2o

(t) d2(t)

b(t)

uo

d

v(l)

g(l)

y1(l)

W(z)

(Zero)

Hf(z /γ)

Hf(z /γ)

Hf(z /γ)

(Zero)
Hp(z)
(Zero)

Energy
computation

Stochastic
codebook

Adaptive
codebook

Delay by
1 subframe

Energy
computationJ(t)

d1(l)

FS1016

y2(t)

ε(l)

Figure 12.4 Signals involved in a CELP encoder with adaptive codebook. For the FS1016

coder, the pitch synthesis filter is bypassed.

INCORPORATION OF THE ADAPTIVE CODEBOOK TO THE CELP FRAMEWORK 337

than the subframe length (T > N). Observe this fact from the difference equation

describing its operation:

d1ðlÞ½n� ¼ 0; �T
 n
 �1; ð12:15Þ
d1ðlÞ½n� ¼ gðlÞvðlÞ½n� � bðtÞd1ðlÞ½n� T�; 0
 n
 N � 1: ð12:16Þ

Thus, if T > N, d1(l)[n] ¼ g(l)v(l)[n] for 0
 n < N. That is, the pitch synthesis filter

has no effect at all since the output is identical to the input. For T
 N, d1(l)[n]

contains sample values that are the result of addition between two random samples

separated T apart, resulting in another random sequence with slightly different

statistical property (Problem 12.1).

In practice, voiced excitation is largely due to the contribution of the adaptive

codebook or, in the original formulation, the zero-input response of the pitch synth-

esis filter. On the other hand, the encoding process is an analysis-by-synthesis pro-

cedure: it is always possible to find an optimal excitation sequence that minimizes

the sum of squared error. Thus, for simplicity, the pitch synthesis filter is removed

from the stochastic codebook search loop, and the scaled adaptive codevector is

added to the scaled stochastic codevector directly; the resultant sequence is used

as excitation for the modified formant synthesis filter. This new proposition is

already indicated in Figure 12.4, where the Hp(z) block is bypassed. It has been

observed that this method is subjectively very similar to the original formulation.

The equations governing these signals are already described in Chapter 11 and

previous sections of this chapter.

12.4 STOCHASTIC CODEBOOK STRUCTURE

The standard excitation codebook for the CELP algorithm, as explained in

Chapter 11, consists of L N-dimensional codevectors organized essentially as an

L� N matrix. This type of structure is referred to as nonoverlapping and is

illustrated in Figure 12.5. One problem with this codebook structure is the size

of memory required to store the codevectors. The amount of memory locations

needed to store the entire codebook is given by NL.

To overcome this problem, samples of the codebook are stored in a one-

dimensional array, where most of the N samples of two consecutive vectors are

common. The structure is known as overlapping codebook. An overlapping code-

book with a shift value of S is shown in Figure 12.6. One can easily show that for an

S-shift codebook, the amount of memory required is S(L � 1) þ N. Therefore, an

overlapping codebook offers substantial reduction in memory requirements. Note

that the standard codebook can be considered as an N-shift overlapping codebook,

where S ¼ N.

Denoting the entire codebook as a single array, we have

v½n�; n ¼ 0; . . . ; SðL� 1Þ þ N � 1:

338 THE FEDERAL STANDARD VERSION OF CELP

Then each codevector can be identified with

vð0Þ½n� ¼ v½nþ ðL� 1ÞS�;
vð1Þ½n� ¼ v½nþ ðL� 2ÞS�;

..

.

vðL�1Þ½n� ¼ v½n�;

ð12:17Þ

for n ¼ 0 to N�1. It is straightforward to show that

vðlþ1Þ½n� ¼ vðlÞ½n� S�; S
 n
 N � 1: ð12:18Þ

:
:
:
:
v(L−1)

v(1)

v(0)

L

:
:

N

Figure 12.5 Structure of a nonoverlapping stochastic codebook.

S(L−1) + N

Sv(L−1)

v(1)

v(0)

Figure 12.6 Structure of an overlapping stochastic codebook.

STOCHASTIC CODEBOOK STRUCTURE 339

Subjectively, no significant difference is found between overlapping and non-

overlapping codebooks. This is expected since in principle the codebooks contain

uncorrelated white noise samples, and shifted white noise sequences are also uncor-

related, satisfying the fundamental randomness assumption.

For the FS1016 coder, 9 bits is reserved to index the stochastic codebook, lead-

ing to L ¼ 29 ¼ 512 codevectors; the codebook is overlapped with a shift of S ¼ 2,

which sometimes is referred to as a ‘‘�2 shift’’ since the codevectors are ordered

from right to left. With a codevector dimension of N ¼ 60, the overlapping

codebook requires a total of 1082 locations, an order of magnitude saving when

compared with the nonoverlapping codebook (NL ¼ 30720).

Another important advantage of overlapping codebook is the computational

saving through the application of recursive convolution. As shown in Chapter 2,

recursive convolution allows huge computational savings since the zero-state

response of a given excitation codevector can be found from the response asso-

ciated with the shifted version of the excitation. See Exercise 12.2 for numerical

results on computational advantages.

So far, we haven’t worried about the actual content of the codebook and have

mentioned that the codebook samples are obtained from a white noise source.

The FS1016 utilizes a special form of random samples, derived from a zero-

mean unit-variance white Gaussian source, center clipped at 1.2 and ternary level

quantized to {�1, 0, þ1}. The National Communications System [1992] gives the

actual 1082 codebook elements, which are plotted in Figure 12.7. Approximately

77% of the samples are zeros. This type of codebook is compact, causes little degra-

dation in speech quality relative to other types of codebooks, and significantly

reduces computational burden since products during convolution calculation are

eliminated completely. (See Exercise 12.6 for an algorithm that takes advantage

of these features.) In fact, experiments show that a codebook having a high

percentage of zero samples performs almost the same as a codebook with less

percentage of zeros [Davidson and Gersho, 1986].

0 200 400 600 800 1000

−1

0

1

n

v[n]

Figure 12.7 Plot of the elements of the FS1016 stochastic codebook. Data from [National

Communications System, 1992], Table 11.

340 THE FEDERAL STANDARD VERSION OF CELP

12.5 ADAPTIVE CODEBOOK SEARCH

The basic idea and structure of the adaptive codebook are discussed in previous sec-

tions. Here, we study the procedure to search for the optimal adaptive codevector,

the use of fractional delay, and encoding of related parameters.

Integer Pitch Period

As explained in Section 12.3, the adaptive codebook is searched in a closed-loop

analysis-by-synthesis manner, where the index of the best codevector, t ¼ Tmin,

Tminþ 1, . . ., Tmax, is located. Seven bits is allocated to this index, leading to

27 ¼ 128 values ranging from Tmin ¼ 20 to Tmax ¼ 147. The procedure to search

the adaptive codebook is based on the same principles presented in Chapter 11 for

the excitation codebook search. Only highlights are provided here; it is left as an

exercise for readers to verify the validity of the equations.

The zero-state response of the modified formant synthesis filter is given by

y2ðtÞ ¼ H � d2ðtÞ ¼ bðtÞH � d2ðtÞo ; ð12:19Þ

with H being the impulse response matrix of the synthesis filter. Equation (12.13) is

rewritten as

JðtÞ ¼ ku� y2ðtÞ � y3k2; ð12:20Þ

which is our target for minimization. Defining

u3 ¼ u� y3; ð12:21Þ

we have

JðtÞ ¼ ku3� bðtÞH � d2ðtÞo k2: ð12:22Þ

It can be shown that the optimal adaptive codebook gain that minimizes (12.22) is

bðtÞ ¼ u3TH � d2ðtÞo
kH � d2ðtÞo k2

; ð12:23Þ

and the optimal codebook index is the one that maximizes

QðtÞ ¼
u3TH � d2ðtÞo
� 	2
kH � d2ðtÞo k2

ð12:24Þ

for t ¼ Tmin to Tmax. Since the adaptive codebook is essentially an overlapping

codebook with unit shift, recursive convolution can be incorporated to achieve

efficient computation (Chapter 2).

ADAPTIVE CODEBOOK SEARCH 341

Fractional Pitch Period

Fractional pitch period is already introduced in Chapters 2 and 4. Its introduction

reduces both the reverberant distortion related to pitch multiplication, as well as the

roughness of speakers with short pitch period. Noise perceived in synthetic speech

is lowered since performance associated with long-term prediction is increased,

which decreases the noisy stochastic excitation component.

To obtain the adaptive codevector with fractional delay, the FS1016 specifies an

interpolation* technique based on a 40-point Hamming windowed sinc function{,

defined as follows:

woðnÞ ¼ 0:54þ 0:46 cos
2pn
40

� �
; ð12:25Þ

w n; fð Þ ¼ wo nþ fð Þ sin nþ fð Þpð Þ
nþ fð Þp ; ð12:26Þ

for n ¼ �20, �19, . . . , 19, with f being the fractional part of the pitch period. Only

five fractional values are used: f ¼ 1
4
, 1
3
, 1
2
, 2
3
, 3
4
. Figure 12.8 shows plots of the

*Interpolation is a standard technique for sampling rate augmentation and fractional delay generation. The

topic is covered in many DSP textbooks; see, for instance, Oppenheim and Schafer [1989] or Defatta et al.

[1988]. A more dedicated textbook on multirate systems is the one by Vaidyanathan [1993].
{ sinc(x) � sin(px)/(px). See Stremler [1990].

−10 0 10
−0.5

0

0.5

1

n

w(n,f)

f = 3/4 f = 1/4

Figure 12.8 The Hamming windowed sinc function used for interpolation.

342 THE FEDERAL STANDARD VERSION OF CELP

interpolation window. To obtain the codevector associated with the pitch period

t þ f, where t is the integer part while f is the fractional part, we first consider

the signal

ddðtÞ½n� ¼ d½n�; �147
 n < 0;

d2
ðtÞ
o ½n�; 0
 n < 60;

(
ð12:27Þ

then

d2ðtþf Þo ½n� ¼
X19
k¼�20

wðk; f ÞddðtÞ½n� t þ k�; ð12:28Þ

for n ¼ 0 to 59. The above equation essentially creates fractionally delayed versions

of the codevectors. Figure 12.9 shows some examples. After obtaining the codevec-

tors with fractional delay, (12.24) can be used directly to choose the best codevector

and (12.23) to find the gain.

Encoding of Pitch Period

FS1016 utilizes a total of 256 pitch period values in the interval [20, 147]. Within

the interval, different resolutions are assigned in the following manner: 1
3
for [20,

25 2
3
] and [34, 79 2

3
], 1

4
for [26, 33 3

4
], and 1 for [80, 147]. Note that the finest resolu-

tion is in the range of [26, 33 3
4
], since for typical female speakers, it is more likely

to fall inside this interval. The scheme is efficient in the sense that resources are

allocated to where it is needed most.

After finding the integer part t and fractional part f of the pitch period, they are

mapped to 8 bits through table lookup.

0 20 40 60
−0.2

0.2

0

0 20 40 60
n n

d2o[n]

−0.2

0.2

0d2o[n]

Figure 12.9 Adaptive codevector at t ¼ 25. The signal is derived from the same codebook

samples as in Figure 12.3. Two fractional delay values are considered: 1
4
(left) and 3

4

(right). The original codevector with no fractional delay is plotted for comparison (dotted

line).

ADAPTIVE CODEBOOK SEARCH 343

Subframe Encoding Strategy

FS1016 utilizes different numbers of bits to encode the pitch period, with the num-

ber depending on the position of the subframe. For the first and third subframes,

8 bits are allocated and the encoding scheme is as explained previously. For the

second and fourth subframes, however, only 6 bits are employed. These 6 bits indi-

cate a relative shift with respect to the pitch period of prior subframe, ranging from

31 codes lower to 32 codes higher, both integer and fractional values considered

altogether.

The scheme provides higher encoding efficiency (smaller number of bits), as

well as reduces computational load (shorter search range); the advantages come

with negligible reduction in the quality of the synthetic speech since, in most

instances, pitch periods of adjacent subframes do not differ significantly.

Encoding of Adaptive Codebook Gain

Gain of the adaptive codebook is encoded using 5 bits, with the quantized values

ranging from �1 to 2.

12.6 STOCHASTIC CODEBOOK SEARCH

The stochastic codebook search shares identical techniques with the adaptive code-

book. Equations involved in the process are summarized as follows.

Zero-state response of the modified formant synthesis filter is given by

y1ðlÞ ¼ gðlÞH � vðlÞ: ð12:29Þ

Equation (12.14) is rewritten as

eðlÞ ¼ u� y1ðlÞ � y2� y3
�� ��2¼ uo � gðlÞHvðlÞ

�� ��2; ð12:30Þ

where

uo ¼ u� y2� y3: ð12:31Þ

The optimal stochastic codebook gain that minimizes (12.30) is

gðlÞ ¼ uToH � vðlÞ
H � vðlÞk k2

; ð12:32Þ

and the optimal codebook index is the one that maximizes

PðlÞ ¼ uToH � vðlÞ

 �2
H � vðlÞk k2

ð12:33Þ

344 THE FEDERAL STANDARD VERSION OF CELP

for l ¼ 0 to L�1, where L ¼ 512 is the size of the stochastic codebook. As indicated

in Section 12.4, the stochastic codebook is overlapping with a shift of 2; hence,

recursive convolution can be used to achieve high efficiency. Also, the ternary

nature of the codebook elements allows the convolution to be implemented without

multiplication.

Modified Stochastic Codebook Gain

The FS1016 coder, while able to provide fairly good speech quality, has actually

one major weakness: the stochastic codebook with its ternary quantized samples

introduces noisy components to the synthetic speech, diminishing the achievable

quality. These noisy components cannot be completely removed by the synthesis

filter and postfilter. This limitation is indeed a target of improvement for other

CELP-based coders, such as the IS54 covered in Chapter 13; as shown in that chap-

ter, the IS54 coder utilizes a more sophisticated excitation codebook to achieve

higher quality.

Within the context of FS1016, it is possible to improve the subjective quality by

modifying the gain of the stochastic codebook. The technique consists of adaptively

attenuating the stochastic codebook gain when the long-term predictor is efficient.

This increases the relative adaptive codebook gain by attenuating the stochastic

codebook gain; subjective quality is improved because this reduces roughness

and quantization noise in sustained voiced segments. When long-term prediction

is inefficient, the stochastic codebook gain is increased, thus providing a more sub-

jectively pleasing match between the unvoiced speech segments of the input and

synthetic speech. Efficiency of long-term prediction can be measured with the nor-

malized cross-correlation

R ¼ u� y3ð ÞT u� y3� y2ðtÞ

 �
u� y3k k : ð12:34Þ

The more efficient the long-term predictor, the shorter the norm of the vector

ðu� y3� y2ðtÞÞ, leading to a smaller R. A scale factor is defined with

sf Rð Þ ¼
0:2; jRj < 0:04;

1:4
ffiffiffiffiffiffijRjp

; jRj > 0:81;ffiffiffiffiffiffijRjp
; otherwise:

8><
>: ð12:35Þ

Figure 12.10 shows the plot of the above function. The modified gain g0 is given by

g0 ¼ sf ðRÞ � gðlÞ: ð12:36Þ

Thus, for low R (long-term predictor is highly efficient), the original stochastic

codebook gain is attenuated. On the other hand, when R is high, the original gain is

amplified. Equation (12.35) is obtained empirically and confirmed to deliver higher

STOCHASTIC CODEBOOK SEARCH 345

subjective quality through listening tests. Since the modification is introduced after

completing the stochastic codebook search loop, the increase in computation is

insignificant.

Finally, gain of the stochastic codebook is quantized with 5 bits.

12.7 ENCODER AND DECODER

This section provides an overview of the operations of the encoder and decoder for

the FS1016. Figure 12.11 shows the block diagram of the encoder. Several blocks

are already discussed in previous sections and are not repeated here.

LP Analysis

LP analysis is performed once per frame; each frame consists of 240 samples hav-

ing a duration of 30 ms. Eleven autocorrelation values are calculated from the frame

using a Hamming window. The autocorrelation values are solved to obtain ten

LPCs. The resultant coefficients are bandwidth expanded with a constant of g ¼
0.994 (Chapter 4). The LPCs are quantized and interpolated for use by each 60-

sample subframe (Chapter 8).

Perceptual Weighting Filter

A weighting factor of g ¼ 0.8, together with the quantized and interpolated LPCs

are used for the perceptual weighting filter (Chapter 11). That is, its coefficients are

updated every subframe.

0 0.5 1
0

0.5

1

1.5

|R|

sf (R)

Figure 12.10 Scale factor as a function of the normalized cross-correlation used to modify

the stochastic codebook gain.

346 THE FEDERAL STANDARD VERSION OF CELP

Total Response

This block computes the total excitation (d, Figure 12.4) and total response of the

formant synthesis filter (y1 þ y2 þ y3), which are stored as history of the system to

be used by the next subframe.

Bit Allocation

Table 12.1 summarizes the bit allocation scheme of the FS1016 coder. The synchro-

nization bit alternates between zero and one from frame to frame, with the first

transmitted frame starting at zero. Four bits per frame are assigned to error protec-

tion, with focus on the adaptive codebook index, since it plays the most important

role in the quality of the synthetic speech. Finally, 1 bit is reserved for future

Input
PCM
speech

Pitch period
(adaptive codebook)

index
LPC

index

Adaptive
codebook
gain index

Stochastic
codebook

index

Stochastic
codebook gain
index

CELP bit-stream

Frame /
subframe

segmentation

Perceptual
weighting

filter

LP
analysis

Impulse
response of
m. f. s. f.

LPC
encoder

Gain
encoder

Gain
decoder

Pack

LPC
decoder and

interpolation

Gain
modification

Gain
encoder

Gain
decoder

Zero-input
response of
m. f. s. f.

Adaptive
codebook

search

Stochastic
codebook

search

Total response,
update of

system’s state

Pitch period
encoder

Figure 12.11 Block diagram of the FS1016 CELP encoder (m. f. s. f. means modified

formant synthesis filter).

ENCODER AND DECODER 347

upgrades of the coder. As we can see, a total of 144 bits are allocated per frame;

with a frame length of 30 ms, the bit-rate is 4800 bps.

Decoder Operations

Figure 12.12 shows the block diagram of the decoder. The stochastic codevector

addressed by the bit-stream index is scaled by the quantized gain value. The index

TABLE 12.1 Bit Allocation for the FS1016 CELP Codera

Number per Total Bits per

Parameter Frame Resolution Frame

LPC 10 3, 4, 4, 4, 4, 3, 3, 3, 3, 3 34

Pitch period (adaptive 4 8, 6, 8, 6 28

codebook index)

Adaptive codebook gain 4 5 20

Stochastic codebook index 4 9 36

Stochastic codebook gain 4 5 20

Synchronization 1 1 1

Error correction 4 1 4

Future expansion 1 1 1

—————

Total 144

a Data from Campbell et al. [1991], Table 1.

CELP
bit-stream

Synthetic
speech

LPC decoding
and

interpolation

Interpolation

Formant
synthesis

filter
Postfilter

Gain
decoder

Gain
decoder

Adaptive
codebook

Stochastic
codebook

Pitch period
decoder

Unpack

Pitch
period
index

LPC
index

Adaptive
codebook

gain index

Stochastic
codebook

index

Stochastic
codebook

gain index

Figure 12.12 Block diagram of the FS1016 CELP decoder.

348 THE FEDERAL STANDARD VERSION OF CELP

of the pitch period is used to find the integer part and the fractional part; if the frac-

tional part is nonzero, interpolation is performed on the adaptive codevector. The

recovered adaptive codevector is scaled by the quantized gain and added to the

scaled stochastic codevector, serving as the update to the adaptive codebook as

well as input excitation to the formant synthesis filter. See Chapter 11 for postfilter

structure.

12.8 SUMMARY AND REFERENCES

Principles of the FS1016 CELP coder are described in this chapter. The idea of the

adaptive codebook forms the core of many CELP-based standard coders since a

closed-loop analysis-by-synthesis procedure produces far better quality than

open-loop methods, such as long-term LP analysis. Due to the overlapping nature

of the codebook, recursive convolution can be incorporated to yield high computa-

tional efficiency. The resultant quality can be further elevated with fractional delay,

where the codevector is interpolated to increase time resolution.

The stochastic codebook is also overlapping in nature, allowing the use of recur-

sive convolution. The ternary-valued samples provide adequate quality and permit

further reduction in computation since multiplication is eliminated during the con-

volution sum. This is a perfect example of how imposing a certain structure on the

codebook helps reduce complexity, with little loss of performance.

In essence, the adaptive codebook contains the predictable part of the excitation,

that is, the component that can be obtained from the past; while the stochastic code-

book contains the unpredictable component, or innovation. The scheme is highly

efficient and well adapted to the nature of speech signals.

The FS1016 operating at 4.8 kbps definitely preserves far more naturalness of

the original speech signal than the FS1015 LPC coder (Chapter 9) operating at

2.4 kbps. But the speech quality still contains many artifacts and in certain instances

is considered inadequate to be used for general purpose telephone communications.

Listening tests reveal that its quality is roughly equivalent to the MELP coder

(Chapter 17), which operates at 2.4 kbps.

Major contributions of the FS1016 CELP coder can be summarized as follows:

� Demonstration of low bit-rate capability for the CELP algorithm.

� Introduction of fractional delay in the adaptive codebook search.

� Use of overlapping fixed codebook with ternary-valued samples to achieve

high efficiency.

Technical details of the FS1016 are well documented [National Communications

System, 1992]. The idea of modifying the stochastic codebook gain to increase

subjective quality was proposed in Shoham [1991] with additional results. More

theoretical results concerning CELP development is found in LeBlanc [1992].

See Chapter 16 for variations in adaptive codebook implementation.

SUMMARY AND REFERENCES 349

EXERCISES

12.1 Given the WSS white noise process x[n] with autocorrelation function

(Chapter 3)

Rx½l� ¼ s2
xd½l�;

find the autocorrelation function of the new process

y½n� ¼ ax½n� þ bx½n� T �;
where a and b are real constants and T is an integer. Prove that

Ry½l� ¼ ða2 þ b2ÞRx½l� þ abRx½l� T � þ abRx½lþ T �:
What can be said about the statistical property of y½n�?

12.2 This exercise considers the computational costs of three methods for the

calculation of the L zero-state responses of the modified formant synthesis

filter during CELP encoding. These methods are the difference equation,

convolution, and recursive convolution. SeeChapters 2 and 11 for background.

(a) For the difference equation method, show that

#sums ¼ #products ¼ L �M � N;
with M being the prediction order and N the subframe length.

(b) In the convolution sum, each response is found by performing an

independent convolution operation with the input codevector. Show that

#sums ¼ LðN � 1ÞN=2þ ðM � 2ÞðM � 1Þ=2þ ðN �MÞðN � 1Þ;
#products ¼ LNðN þ 1Þ=2þ ðM � 2ÞðM � 1Þ=2þ ðN �MÞM:

In the above relations, the cost involved with finding the N-sample

impulse response from the LPC is also accounted for.

(c) For recursive convolution, show that

#sums ¼ ðN � 1ÞN=2þ ðM � 2ÞðM � 1Þ=2þ ðN �MÞðN � 1Þ
þ SðL� 1Þð2N � S� 1Þ=2;

#products ¼ NðN þ 1Þ=2þ ðM � 2ÞðM � 1Þ=2þ ðN �MÞM
þ SðL� 1Þð2N � Sþ 1Þ=2:

(d) Using parameters of the FS1016 coder, find the cost involved with the

three methods. Which one is the best? For recursive convolution,

consider the cases of S ¼ 1 and S ¼ 2:

12.3 The interpolation equation presented in Section 12.5 implies that the same

procedure must be applied for every sample (n ¼ 0 to 59). This is true only

when t > N. For t < N, however, the codevector is obtained through

periodic extension; thus, the interpolation equation need not be applied to

350 THE FEDERAL STANDARD VERSION OF CELP

all samples. Based on this observation, design a computationally efficient

procedure to perform interpolation.

12.4 Elaborate a step-by-step procedure for the adaptive codebook search,

including all equations and decision strategies. Take into account the integer

and fractional parts of the pitch period, as well as the number of subframes.

Consider the following cases of search strategies:

(a) Full search: Every possible codevector is computed with the best

returned.

(b) Suboptimal search: The integer part of the pitch period is first located,

followed by a fractional refinement near its neighbor.

Estimate the computational cost in each case.

12.5 Count all period values available for the FS1016 coder to prove that there

are a total of 256 distinct values.

12.6 To compute the convolution sum

y½n� ¼ h½n� � v½n� ¼
XN�1
k¼0

h½n� k�v½k�;

with h½n� the impulse response of a causal system ðh½n� ¼ 0 if n < 0), we can

rely on the following procedure:

1. for n 0 to N�1
2. y[n] 0
3. for k 0 to N�1
4. if n�k 	 0
5. y[n] y[n] + h[n�k] v [k]
6. else break

When v½n� is ternary-valued, we can actually save some computation by

using the procedure below:

1. for n 0 to N�1
2. y[n] 0
3. for k 0 to N�1
4. if n�k 	 0
5. if v[k]¼0 continue
6. else
7. if v[k]¼1
8. y[n] y[n] þ h[n�k]
9. else

10. y[n] y[n]�h[n�k]

Thus, no multiplication is required. However, note that more comparison is

necessary. Traditionally, multiplication is much more expensive to deploy

EXERCISES 351

than comparison, and hence a codebook with ternary-valued samples is very

attractive.

Extend these ideas to recursive convolution and elaborate the step-by-step

procedure following a similar approach.

12.7 Consider a pitch period encoding scheme where the differences between the

values of consecutive subframes are transmitted. Give some advantages and

disadvantages of the proposition.

12.8 We learned that an overlapping codebook has the advantage of low memory

cost. This cost can be further reduced by utilizing a circular overlapping

structure. In this case a codevector is extracted with

vðlÞ½n� ¼ v½ðnþ ðL� 1� lÞSÞ mod P�
for n ¼ 0 to N � 1; l ¼ 0 to L� 1, and P the number of elements in the v

array. The inclusion of the modulo operator allows the elements of the

codevector to be read from the beginning of the v array in case the boundary

is passed. Show that P ¼ S � L. This is an interesting result since the number

of elements in the v array is independent of the dimension of the codevector.

What happens when N < L and N 	 L? Compare the memory cost of a

circular overlapping codebook with that of an ordinary overlapping code-

book for the case of the FS1016. Is recursive convolution applicable in

this case? This type of structure is adopted by the IS96 coder, covered in

Chapter 18.

12.9 This exercise is concerned with storage of the stochastic codebook.

(a) It is said that samples of the stochastic codebook have three values,

f�1; 0; 1g; hence, each sample can be represented with 2 bits since

22 ¼ 4 > 3. How many bits are required to store the whole codebook?

(b) Assume that two samples of the codebook are jointly encoded. In this

case there are a total of 32 ¼ 9 possibilities: f�1;�1g; f�1; 0g;
f�1; 1g; f0;�1g; f0; 0g; f0; 1g; f1;�1g; f1; 0g; and f1; 1g. How many

bits are needed for each sample pair? How many bits for the whole

codebook?

(c) Repeat (b) for the cases when three, four, five, and six samples are

jointly encoded. Which scheme is most economical in storage?

352 THE FEDERAL STANDARD VERSION OF CELP

CHAPTER 13

VECTOR SUM EXCITED
LINEAR PREDICTION

The vector sum excited linear prediction (VSELP) coder is derived from the princi-

ples of a standard CELP coder (Chapter 11); indeed, it is a CELP coder with a

particular codebook structure having reduced computational cost. There are at least

three standard coders based on the same principles of VSELP, all originally

developed by Motorola Inc. These standards are:

� TIA IS54. Standardized by the TIA in 1989 for time division multiple access

(TDMA) digital cellular telephony in North America. It is a part of Interim

Standard 54 (IS54) and operates at 7.95 kbps.

� ETSI GSM 6.20. This was created in order to double the capacity of the GSM

cellular system. The coder works at 5.6 kbps.

� RCR STD�27B. This was standardized by the Research and Development

Center for Radio Systems (RCR) for TDMA digital cellular telephone service

in Japan.

In this chapter, the focus is placed on the study of the TIA IS54 coder. Like the

FS1016 (Chapter 12), the IS54 utilizes the exact same principle of the adaptive

codebook. Excitation vectors from the stochastic codebook, however, are obtained

through linear combination of a number of fixed basis vectors—hence the name of

vector sum excitation. The VSELP coder was designed to achieve the highest

possible quality with reasonable computational complexity while providing robust-

ness to channel errors, essential requirements for cellular telephony applications.

To understand the material in this chapter, readers need to have a general know-

ledge of the operation of CELP coding, such as the material in Chapter 11. Also,

there are some common architectural features between the IS54 and FS1016; these

353

were already presented in Chapter 12 and will not be repeated here. Concepts from

linear algebra are used throughout the chapter and are covered in Appendix F. The

chapter begins with the core encoding structure of the VSELP coder, followed by

the structure of the stochastic codebook and search methodologies. Gain quantiza-

tion is explained next, followed by an analysis of the structure of the encoder and

decoder. Performance of the coder and comparison among the various standards are

included in the summary section.

13.1 THE CORE ENCODING STRUCTURE

Structurally, the IS54 algorithm closely resembles the FS1016 coder. The difference

lies in the form and structure of the stochastic codebook. In the FS1016 coder, an

overlapping codebook with ternary-quantized random samples is used, whereas for

the IS54 coder, two separate codebooks are used to generate the space of candidate

vectors. Thus, the codebook search procedure of the FS1016 corresponds to two

codebook searches in the IS54. Figure 13.1 shows the core encoding structure.

For this coder, a frame consists of 160 samples, and a subframe contains 40 samples.

s

u

d2o
(t) d2(t)

b
v1(l1)

d

g1

g0 Error
energy

y2(t)

y1(l1)

y0(l0)

v0(l0)

Energy
computation

W(z)

Hf (z /γ)

Hf (z /γ)
(Zero)

Stochastic
codebook 1

Adaptive
codebook

Delay by
1 subframe

Stochastic
codebook 0

Figure 13.1 Signals involved in the IS54 encoder.

354 VECTOR SUM EXCITED LINEAR PREDICTION

A total of 27 ¼ 128 codevectors are included in each stochastic codebook, with

each codevector having 40 elements.

Basis Vectors

The 27 codevectors of each stochastic codebook are spanned from seven basis

vectors. For codebook 1 we write

v1ðl1Þ ¼
X6
i¼ 0

yðl1Þi a1i ð13:1Þ

for l1 ¼ 0; . . . ; 27 � 1; where

yðl1Þi ¼ 1; if ith bit of l1 ¼ 1;

�1; if ith bit of l1 ¼ 0;

�
ð13:2Þ

for i ¼ 0 to 6. Hence, each codevector is constructed as a linear combination of the

seven basis vectors: a10 to a16, with the weights of the linear combination defined

by y. In linear algebra terms, the space of the codevectors is spanned by seven basis

vectors (Appendix F). At this point, we assume that the elements of the basis

vectors are white noise samples.

Note that if the bits forming the index l1 are complemented (logically inverted,

1 to 0, and vice versa), the resultant codevector becomes the negative of the original.

Therefore, for every codevector, its negative is also a codevector in the codebook.

These pairs are called complementary codevectors and can be explored to improve

computational efficiency. The chosen structure requires minimum storage (low

memory cost) and enables fast search techniques.

Robustness against channel errors is also elevated when compared to the FS1016

coder. For instance, a single bit error in the codebook index changes the sign of only

one of the basis vectors; the resulting codevector is still similar to the original.

Zero-State Response

During codebook search, the zero-state response of the synthesis filter for each of

the codevectors must be found. In principle, 128 convolution operations must be

done per codebook. However, due to the special structure imposed, a great deal

of simplification is possible. From Figure 13.1,

y1ðl1Þ ¼ g1 �H � v1ðl1Þ ð13:3Þ

with H being the impulse response matrix. Substituting (13.1),

y1ðl1Þ ¼ g1
X6
i¼ 0

yðl1Þi H � a1i ¼ g1
X6
i¼ 0

yðl1Þi f1i; ð13:4Þ

THE CORE ENCODING STRUCTURE 355

with

f1i ¼ H � a1i; i ¼ 0; . . . ; 6 ð13:5Þ

being the filtered basis vectors of the codebook. Similarly, for codebook 0,

y0ðl0Þ ¼ g0
X6
i¼ 0

yðl0Þi f0i: ð13:6Þ

Therefore, for each stochastic codebook, only seven convolution operations are

needed since the rest of the responses are spanned from the filtered basis vectors.

13.2 SEARCH STRATEGIES FOR EXCITATION CODEBOOKS

Different methods to search the three excitation codebooks—adaptive, stochastic 1,

and stochastic 0—are described in this section.

Sequential Search: The FS1016 Style

Following a similar approach as for the FS1016, the three codebooks are searched

sequentially in the following manner.

� Adaptive Codebook. This codebook is searched so that

JðtÞ ¼ ��u� y2ðtÞ
��2 ð13:7Þ

is minimized, where

y2ðtÞ ¼ H � d2ðtÞ ¼ b �H � d2ðtÞo : ð13:8Þ

For this coder, 20
 t
 147 is encoded with 7 bits. Thus, the adaptive

codebook is searched with the assumption that g1 and g0 are equal to zero.

� Stochastic Codebook 1. This codebook is searched so that

e1ðl1Þ ¼ ��u� y1ðl1Þ � y2ðtÞ
��2 ð13:9Þ

is minimized, with y1 given by (13.3). That is, stochastic codebook 1 is

searched after knowing the parameters of the adaptive codebook, with the

assumption that g0 ¼ 0.

� Stochastic Codebook 0. This codebook is searched so that

e0ðl0Þ ¼ ��u� y0ðl0Þ � y1ðl1Þ � y2ðtÞ
��2 ð13:10Þ

356 VECTOR SUM EXCITED LINEAR PREDICTION

is minimized, with

y0ðl0Þ ¼ g0 �H � v0ðl0Þ: ð13:11Þ

Thus, stochastic codebook 0 is searched after knowing the parameters of the

adaptive codebook as well as stochastic codebook 1.

Based on the description given before, standard codebook search procedures

such as the one specified for the FS1016 can be applied with little modification.

The outcomes, of course, are suboptimal in the sense that the resultant performance

is far from the global optimum, obtainable only through a simultaneous search of

the three codebook indices and the three codebook gains. Since the global optimum

is expensive to reach, an alternative suboptimal approach is described next, which is

better than the explained sequential search method.

An Improved Procedure: Joint Gain Optimization

It is possible to improve the performance of the coder by using this alternative

procedure. First, the adaptive codebook is searched and the index t determined.

Next, stochastic codebook 1 is searched to determine the index l1. Then stochastic

codebook 0 is searched to arrive at a value for the index l0. Finally, the three gain

values are found jointly to minimize the total error; hence, the gain values are left

‘‘floating’’ until all codebook indices are obtained.

How can this be done? From Chapter 12 we learned that in order to search an

excitation codebook, its index completely fixes the gain, and vice versa; therefore,

changing the gain value would likely deteriorate the quality. The approach in IS54

is to orthogonalize the vectors before examination, so that sequential search can be

done independently from prior results; after the directions (codebook indices) of

the vectors are known, the gains are found jointly from a VQ codebook. Details

of the technique are described in the next two sections.

13.3 EXCITATION CODEBOOK SEARCHES

The improved search procedure, briefly explained in the last section, is fully

described here. Concepts from linear algebra are necessary to understand some

of the topics. Readers are invited to read Appendix F for a review.

Adaptive Codebook Search

The optimal index for the adaptive codebook is found by maximizing

PðtÞ ¼

uTH � d2ðtÞo

�2��H � d2ðtÞo ��2 ; ð13:12Þ

for t ¼ 20 to 147. See Chapter 12 for the derivation of the above equation.

EXCITATION CODEBOOK SEARCHES 357

Some Linear Algebra Results

Before continuing with the rest of the excitation codebooks, two results from linear

algebra are derived.

Lemma 13.1. Given the vectors x, y, and z, we have

x� y� zk k2¼ x� yk k2þ x� zk k2� xk k2 ð13:13Þ

if y and z are orthogonal. See Exercise 13.1 for the proof of the above result.

Lemma 13.2. If x and y are orthogonal to z,

xTz ¼ yTz ¼ 0;

then ax þ by is also orthogonal to z,

axþ byð ÞTz ¼ axTzþ byTz ¼ 0;

with a and b two scalars. This result can be extended in a straightforward manner to

the sum of any number of vectors.

Search of Stochastic Codebook 1

Since the index of the adaptive codebook is known, we can search stochastic code-

book 1 so as to minimize ��u� y1ðl1Þ � y2ðtÞ
��2: ð13:14Þ

As explained in last section, the gain values are left ‘‘floating’’; hence, error

expression (13.14) cannot be evaluated, in general, unless there is a way to separate

the error contribution between the adaptive codebook (y2) and the stochastic code-

book 1 (y1). Consider what happens if y1(l1) is orthogonal to y2(t) for all values
of l1. From Lemma 13.1,

��u� y1ðl1Þ � y2ðtÞ
��2 ¼ ��u� y1ðl1Þ

��2 þ ��u� y2ðtÞ
��2 � uk k2: ð13:15Þ

The sum of squared error is minimized when the first two positive norm terms

on the right-hand side are minimized, which are related to the adaptive code-

book and the first stochastic codebook. Also note from (13.15) that minimization

of a particular norm term can be done independently from the other; thus, error

contributions from the two excitation sources are separated.

The next obvious question is how to obtain a y1 vector that is orthogonal to y2.
This can be done by following the same principle of the Gram–Schmidt algorithm

(Appendix F). Denoting y10 as the vector derived from y1 that is orthogonal to y2,
we seek to minimize

e10ðl1Þ ¼ u� y10ðl1Þ
�� ��2; ð13:16Þ

358 VECTOR SUM EXCITED LINEAR PREDICTION

with

y10 ðl1Þ ¼ g10
X6
i¼ 0

yðl1Þi f1
0
i ¼ g10y1

0ðl1Þ
o : ð13:17Þ

To obtain the response y10, it is necessary to orthogonalize the y1 vector with

respect to y2; since there are a total of 27 y1 vectors, the proposition is rather expen-
sive. Since the y1 vectors are spanned by the seven filtered basis vectors f1, it is
only necessary to orthogonalize these seven vectors. From Lemma 13.2, the linear

combination of these vectors will also be orthogonal to y2. The orthogonalization is
done by a procedure similar to the Gram–Schmidt algorithm:

f1
0
i ¼ f1i � y2ðtÞT f1i

y2ðtÞTy2ðtÞ
y2ðtÞ ð13:18Þ

for i ¼ 0 to 6. The codebook is searched in such a way that

P1ðl1Þ ¼

uTy1

0ðl1Þ
o

�2��y10ðl1Þo

��2 ð13:19Þ

is maximized.

Search of Stochastic Codebook 0

In this case we seek to minimize

��u� y0ðl0Þ � y1ðl1Þ � y2ðtÞ
��2: ð13:20Þ

Following the same reasoning as before, we orthogonalize y0 with respect to y10

and y2, leading to the conclusion that the error expression we need to deal with is

e00ðl0Þ ¼ ��u� y00ðl0Þ
��2; ð13:21Þ

where

y00ðl0Þ ¼ g00
X6
i¼ 0

yðl0Þi f0
0
i ¼ g00y0

0ðl0Þ
o ð13:22Þ

and

f0
0
i ¼ f0i � y2ðtÞT f0i

y2ðtÞTy2ðtÞ
y2ðtÞ � y1

0ðl1ÞT
o f0i

y1
0ðl1ÞT
o y1

0ðl1Þ
o

y1
0ðl1Þ
o ; ð13:23Þ

EXCITATION CODEBOOK SEARCHES 359

which is the corresponding orthogonalization expression. The codebook is searched

in such a way that

P0ðl0Þ ¼

uTy0

0ðl0Þ
o

�2��y00ðl0Þo

��2 ð13:24Þ

is maximized.

About Orthogonalization

From a geometrical point of view, the search procedure finds the angle or direction

of the adaptive codevector that minimizes the error. Length of the codevector is left

floating since the final excitation vector is formed by the addition of two more con-

stituent vectors (from stochastic codebooks) that could possess components in the

same direction as for the selected adaptive codevector.

To search stochastic codebook 1, we want to orthogonalize the codevectors with

respect to the selected adaptive codevector; since the direction of the adaptive code-

vector is already known, further searching into the same direction is not likely to be

productive. By orthogonalizing, we focus the search on all other directions except

the one of the adaptive codevector.

For stochastic codebook 0, the principle is similar: look into those directions not

specified by the adaptive codevector and the first stochastic codevector. In this man-

ner, three directions (indices) are determined from the three excitation codebooks;

lengths (gains) of these codevectors are found jointly so as to minimize the final

error (Section 13.4).

Fast Search Procedure Based on Gray Code

Structures of the stochastic codebooks for the VSELP coders are designed to allow

high efficiency. Here, the procedure for the stochastic codebook is described. As

shown earlier, search procedures for the two stochastic codebooks are virtually

identical after orthogonalization, both look into the maximization of the quantity

PðlÞ ¼ CðlÞ

 �2
GðlÞ

¼ uTyðlÞ

 �2��yðlÞ��2 : ð13:25Þ

For codebook 1, l ¼ l1 and y ¼ y1
0
o; while for codebook 0, l ¼ l0 and y ¼ y0

0
o. A

full search requires evaluating all values of P(l) for all index values l. Due to the

structure of the codebook, it is possible to search in a rather efficient manner.

Note that

CðlÞ ¼ uTyðlÞ ¼
X6
i¼ 0

yðlÞi uT f
0
i ð13:26Þ

360 VECTOR SUM EXCITED LINEAR PREDICTION

and

GðlÞ ¼ ��yðlÞ��2 ¼X6
i¼ 0

X6
j¼ 0

yðlÞi yðlÞj f
0T
i f

0
j ð13:27Þ

with f0 ¼ f00 or f10 being the orthogonalized filtered basis vector. Since

yðlÞi yðlÞj ¼ 1 ð13:28Þ
for i ¼ j, we have

GðlÞ ¼
X6
i¼ 0

f
0T
i f

0
i þ 2

X6
i¼ 1

Xi�1
j¼ 0

yðlÞi yðlÞj f
0T
i f

0
j: ð13:29Þ

Consider now two indices l1 and l2 that differ only in 1 bit at position k (k ¼ 0

to 6). That is,

yðl1Þk ¼ �yðl2Þk ð13:30Þ
and

yðl1Þi ¼ yðl2Þi ; i 6¼ k: ð13:31Þ
From (13.26),

Cðl2Þ ¼ uTyðl2Þ

¼
X6
i¼ 0

yðl2Þi uT f
0
i

¼
X6
i¼ 0

yðl1Þi uT f
0
i þ 2yðl2Þk uT f

0
k:

Thus,

Cðl2Þ ¼ Cðl1Þ þ 2yðl2Þk uT f
0
k: ð13:32Þ

That is, the correlation C at index l2 can be found from the corresponding value at

index l1, plus additional values that can be calculated with little effort. Similarly

from (13.29),

Gðl2Þ ¼
X6
i¼ 0

f
0T
i f

0
i þ 2

X6
i¼ 1

Xi�1
j¼ 0

yðl2Þi yðl2Þj f
0T
i f

0
j

¼
X6
i¼ 0

f
0T
i f

0
i þ 2

X6
i¼ 1

Xi�1
j¼ 0

yðl1Þi yðl1Þj f
0T
i f

0
j þ 4

X6
i¼ 0; i 6¼ k

yðl2Þi yðl2Þk f
0T
i f

0
k

or

Gðl2Þ ¼ Gðl1Þ þ 4
X6

i¼ 0;i 6¼ k

yðl2Þi yðl2Þk f
0T
i f

0
k: ð13:33Þ

EXCITATION CODEBOOK SEARCHES 361

If codebook search is structured such that the index of a successive codeword

differs from the previous one in only one bit position, (13.32) and (13.33) can

be used to update C(l) and G(l) in a very efficient manner. Sequencing of the code-

words in this way is accomplished using the Gray code. Table 13.1 shows the four-

bit Gray code; note how the sequential code differs only by one bit position. See

Exercises 13.2 and 13.3 for conversion methods between binary and Gray codes.

Note that complementary indices produce the same values for (13.25); hence,

only half of the codevectors need to be evaluated (26 ¼ 64). The sign of C(l) is

checked to determine which of the complementary codevectors yields a positive

gain:

gðlÞ ¼ CðlÞ

GðlÞ
: ð13:34Þ

That is, if C(l) is positive then l is the desired codeword; otherwise the first comple-

ment (logical inverse) of l is selected as the codeword.

13.4 GAIN RELATED PROCEDURES

Gains of the excitation codebooks—adaptive, stochastic 1, and stochastic 0—are

jointly optimized and vector quantized with 8 bits, which is performed once per

subframe. The procedure to quantize the excitation gains and other related

procedures are described here.

TABLE 13.1 Four-Bit Gray Code and Comparison
with Binary Code

Gray Binary

0000 0000

0001 0001

0011 0010

0010 0011

0110 0100

0111 0101

0101 0110

0100 0111

1100 1000

1101 1001

1111 1010

1110 1011

1010 1100

1011 1101

1001 1110

1000 1111

362 VECTOR SUM EXCITED LINEAR PREDICTION

Energy of the Speech Frame

Energy of the speech frame is found and quantized once per frame using 5 bits at a

step size of 2 dB. The quantized energy value is denoted as Es. For each of the four

subframes, energy of the speech frame is interpolated using the following rules:

� Subframe 0: Use energy of previous frame: Es, previous,

� Subframe 1: Use
ffi
Es; previous Es; current

p
, the geometric mean between past and

present.

� Subframe 2 and 3: Use Es, current.

By knowing the energy of the speech subframe, an estimate of the energy of

prediction error (excitation) can be found with

Ee ¼ Es

Y10
i¼ 1

1� k2i

 �

; ð13:35Þ

with ki denoting the reflection coefficients of the current subframe. The above

relation comes from the linear prediction framework (Chapter 4), where the

prediction gain is given by

PG ¼ Es=Ee: ð13:36Þ

Excitation Gains: Selection of Parameters for Quantization

For excitation codebook gains, there are a total of three values to consider: b, g1,

and g0. However, these gains are not quantized directly. The first parameter for

quantization is the energy offset G, defined by

Eo ¼ G � Ee; ð13:37Þ
with Eo being the actual excitation energy (measured directly from the signal) and

G representing an adjustment factor acting on the estimated value Ee.

Note that the complete excitation codevector is given by

d ¼ b � d2ðtÞo þ g1 � v1ðl1Þ þ g0 � v0ðl0Þ: ð13:38Þ
Let’s define

R0 ¼ v0ðl0ÞTv0ðl0Þ; ð13:39Þ
R1 ¼ v1ðl1ÞTv1ðl1Þ; ð13:40Þ
R2 ¼ d2ðtÞTo d2ðtÞo ; ð13:41Þ

representing the energy of each codevector. Then

P2 ¼ b2R2

Eo

ð13:42Þ

GAIN RELATED PROCEDURES 363

is the fractional energy contribution of the adaptive codevector; note that 0

P2
 1. The parameter P2 is selected as the second parameter for quantization.

The third parameter for quantization is

P1 ¼ g12R1

Eo

; ð13:43Þ

representing the fractional energy contribution of the codevector from the first

stochastic codebook.

The three-dimensional vector {G, P2, P1} is quantized with a codebook having

256 vectors (8 bits). In order to find {b, g1, g0} from {G, P2, P1}, the following

relations are derived:

b ¼
ffi
G � Ee � P2

R2

r
; ð13:44Þ

obtained by substituting (13.37) in (13.42);

g1 ¼
ffi
G � Ee � P1

R1

r
; ð13:45Þ

obtained by substituting (13.37) in (13.43); and

g0 ¼
ffi
G � Eeð1� P2 � P1Þ

R0

s
ð13:46Þ

since 1�P2�P1 > 0 is the fractional energy contribution of stochastic codebook 0.

Gain Codebook Search

The codevector from the gain codebook that minimizes the total weighted error for

the subframe is chosen. This error measure is

eðlÞ ¼ ��u� y2ðlÞ � y1ðlÞ � y0ðlÞ
��2 ð13:47Þ

with l denoting the index of the gain codebook. Thus, for l ¼ 0 to 255, e(l) is
evaluated with the gain codevector {G(l), P2(l), P1(l)}, and the index producing

the lowest error is selected. Expanding, we find

eðlÞ ¼ uTu� 2y0ðlÞTu� 2y1ðlÞTu� 2y2ðlÞTu

þ 2y0ðlÞTy1ðlÞ þ 2y0ðlÞTy2ðlÞ þ 2y1ðlÞTy2ðlÞ

þ y0ðlÞTy0ðlÞ þ y1ðlÞTy1ðlÞ þ y2ðlÞTy2ðlÞ: ð13:48Þ

364 VECTOR SUM EXCITED LINEAR PREDICTION

Since u is constant with respect to l, it can be eliminated with no effect on the final

outcome. Redefine an error quantity with

e
0ðlÞ ¼

X9
i¼ 1

gðlÞi ; ð13:49Þ

where

gðlÞ1 ¼ �2y0ðlÞTu ¼ �2

ffi
GðlÞ 1� P

ðlÞ
2 � P

ðlÞ
1

� 	
Ee

R0

vuut
y0Tou ð13:50Þ

and

y0o ¼ y0=g0; ð13:51Þ
y1o ¼ y1=g1; ð13:52Þ
y2o ¼ y2=b ð13:53Þ

are the filtered excitation vectors with unity gain. The remaining eight factors in

(13.48) are

gðlÞ2 ¼ �2y1ðlÞTu ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðlÞPðlÞ1 Ee

R1

s
y1Tou; ð13:54Þ

gðlÞ3 ¼ �2y2ðlÞTu ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðlÞPðlÞ2 Ee

R2

s
y2Tou; ð13:55Þ

gðlÞ4 ¼ 2y0ðlÞTy1ðlÞ ¼ 2EeG
ðlÞ

ffi
P
ðlÞ
1 1� P

ðlÞ
2 � P

ðlÞ
1

� 	
R1R0

vuut
y0Toy1o; ð13:56Þ

gðlÞ5 ¼ 2y0ðlÞTy2ðlÞ ¼ 2EeG
ðlÞ

ffi
P
ðlÞ
2 1� P

ðlÞ
2 � P

ðlÞ
1

� 	
R2R0

vuut
y0Toy2o; ð13:57Þ

gðlÞ6 ¼ 2y1ðlÞTy2ðlÞ ¼ 2EeG
ðlÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
ðlÞ
2 P

ðlÞ
1

R2R1

s
y1Toy2o; ð13:58Þ

gðlÞ7 ¼ y0ðlÞTy0ðlÞ ¼ Ee

R0

GðlÞ 1� P
ðlÞ
2 � P

ðlÞ
1

� 	
y0Toy0o; ð13:59Þ

GAIN RELATED PROCEDURES 365

gðlÞ8 ¼ y1ðlÞTy1ðlÞ ¼ Ee

R1

GðlÞPðlÞ1 y1Toy1o; ð13:60Þ

gðlÞ9 ¼ y2ðlÞTy2ðlÞ ¼ Ee

R2
GðlÞPðlÞ2 y2Toy2o: ð13:61Þ

It is left as an exercise for readers to verify the accuracy of the above relations.

A Summary

Gain quantization as designed for the IS54 coder has the following advantages:

� The VQ scheme works well for all signal levels since the energy of the speech

frame is quantized separately. With the average energy eliminated, the three

gains can be quantized efficiently.

� The values of G, P2, and P1 are well behaved and highly suitable for

quantization purposes. For instance, P1 and P2 have the limited range of

[0, 1]. On the other hand, most values of G are less than or equal to one.

� As long as the energy of the speech frame is correct, the decoded signal

energy will not be much greater than the intended level. This is due to the

nature of the gain codebook, with most of the values of their elements (G, P2,

and P1) less than one. Thus, transient instability will not occur while decoding

the subframe. This is a desirable property since minor channel errors will not

have a big impact on signal quality.

Using a set of speech data, the gain codebook for VQ can be designed using

the GLA, explained in Chapter 7. See Exercise 13.4 for methods to speed up the

codebook search.

13.5 ENCODER AND DECODER

Operations of the encoder and decoder for the IS54 VSELP standard are described

in this section. Figure 13.2 shows the block diagram of the encoder. For LP

analysis, ten LPCs are obtained at every frame interval of 20 ms (160 samples),

which are quantized and interpolated to be used by each subframe (Chapter 8).

A total of 38 bits are transmitted per frame for information regarding the LPC.

Functions of the rest of the blocks are very much self-explanatory.

Table 13.2 summarizes the bit allocation scheme of the IS54 coder. A total of

159 bits are allocated per frame, leading to a bit-rate of 7950 bps. In the original

standard, an additional 5050 bps are utilized for error protection and synchroniza-

tion, bringing the total bit-rate to 13 kbps.

Figure 13.3 shows the block diagram of the decoder, which has the mission of

reconstructing the excitation vector and passing it through the synthesis filter.

A postfilter (see Chapter 11) is incorporated at the end to improve the subjective

quality of the synthetic speech.

366 VECTOR SUM EXCITED LINEAR PREDICTION

Input
PCM
speech

Stochastic
codebook 1

index

Stochastic
codebook 0

index

Adaptive
codebook

index
Energy

index
LPC

index
Gain
index

VSELP bit-stream

Frame /
subframe

segmentation

Perceptual
weighting

filter

LP
analysis

Impulse
response of
m. f. s. f.

LPC
encoder

LPC decoding
and

interpolation

Stochastic
codebook 0

search

Pack

Gain
codebook

search

Gain
decoder

Zero-input
response of
m. f. s. f.

Adaptive
codebook

search

Total response,
update of

system’s state

Stochastic
codebook 1

search

Energy
calculation and

encoding

Energy
decoding and
interpolation

Figure 13.2 Block diagram of the IS54 VSELP encoder (m. f. s. f. means modified formant

synthesis filter).

TABLE 13.2 Bit Allocation For the TIA IS54a VSELP Coder

Number Total Bits

Parameter per Frame Resolution per Frame

LPC 10 6,5,5,4,4,3,3,3,3,2 38

Adaptive codebook index 4 7 28

Stochastic codebook 1 index 4 7 28

Stochastic codebook 0 index 4 7 28

Frame energy 1 5 5

Gain index 4 8 32

———

Total 159

aData From Macres [1994], Table 2.

ENCODER AND DECODER 367

13.6 SUMMARY AND REFERENCES

Eminent features of VSELP are presented in this chapter. It is shown that the coder

is designed to have reduced computational load—fast search is realizable with the

excitation codebooks. Limited memory cost is achieved with a finite set of basis

vectors, providing also high robustness against channel errors. The IS54 outper-

forms other standard CELP coders in quality, such as the FS1016 [Cox, 1995],

although it operates at a higher bit-rate of 7.95 kbps. Thus, the IS54 is well suited

for cellular telephony applications.

As indicated in Section 13.1, the basis vectors from which the stochastic code-

vectors are spanned contain white noise elements. It is possible to elevate the per-

formance by further training the system using a large amount of speech data, with

the objective of tuning the elements of the basis vectors in such a way that the total

weighted error is minimized. For the case of the IS54, the optimal basis vectors are

computed by solving the 14 basis vectors � 40 samples/basis vector ¼ 560 simult-

aneous equations, which are the results of taking the partial derivatives of the total

weighted error with respect to each sample of each basis vector and setting them

equal to zero. See Gerson and Jasiuk [1991] for additional information, where an

VSELP
bit-stream

Excitation Gain Energy LPC
codebook indices index index index

Synthetic speech

LPC decoding
&

interpolation

Stochastic
codebook 1

Formant
synthesis

filter

Postfilter

Stochastic
codebook 0

Gain
decoding and
computation

Adaptive
codebook

Energy
decoding and
interpolation

Unpack

Figure 13.3 Block diagram of the IS54 VSELP decoder.

368 VECTOR SUM EXCITED LINEAR PREDICTION

increase of 13.41 to 14.05 dB in weighted segmental SNR after 16 iterations was

reported.

Major contributions of the IS54 coder can be summarized as follows:

� First standardized medium bit-rate coder based on CELP.

� Introduction of the concept of adaptive codebook, enabling closed-loop

optimization of long-term prediction parameters.

� Efficient implementation through the use of separate fixed codebooks with

codevectors spanned by a small number of basis vectors.

� Joint quantization of the gains associated with the excitation via VQ.

The other two VSELP standards—GSM 6.20 and STD-27B—are based on simi-

lar architecture, but with a differing number of stochastic codebooks and/or basis

vectors. The coder works essentially the same way if only one stochastic codebook

is present, leading to lower implementational cost and bit-rate with sacrifice in

quality. Main features of the VSELP algorithm are described in Gerson and Jasiuk

[1991]. See Macres [1994] for the actual implementation on a DSP platform. In

DeMartino [1993], a quality measurement report is presented where three coders—

GSM 6.10, IS54, and STD-27B—are compared. The conclusion is that the IS54 is

better than the other two coders, providing higher perceptual quality.

The IS54 coder was standardized by the TIA in approximately a year, beginning

in early 1989. Due to insufficient time, the amount of testing was minimal and the

coder suffers from a number of performance deficiencies that were never identified

during testing, such as quality with background noise or music and tandem coding.

The TIA attempted to repair the coder, but in 1994, discussion began about a total

replacement [Cox, 1995]. The quest culminated in 1996 with the IS641 ACELP

standard, operating at 7.4 kbps and described in Chapter 16.

EXERCISES

13.1 Prove Lemma 13.1 by expanding the norm term and using the fact that

yTz ¼ zTy ¼ 0

since y and z are orthogonal.

13.2 Let gN� 1 � � �g2g1g0 denote a codeword in the N-bit Gray code, and let

bN� 1 � � �b2b1b0 designate the corresponding binary number, where the sub-

scripts 0 and N� 1 denote the least significant and most significant digits,

respectively. Then the ith digit gi can be obtained with

gi ¼ bi � biþ1; 0
 i
 N � 2;

gN�1 ¼ bN�1;

with � denoting the exclusive or operation [Sandige, 1990]. Using the above

relations, find the 3-bit Gray code from the corresponding binary numbers.

EXERCISES 369

13.3 To convert from Gray code to binary, start with the most significant digit and

proceed to the least significant digit. Then

bi ¼ gi; if number of 1’s preceding gi is even;

bi ¼ g0i; otherwise;

with g0 denoting the logically inverted version of g. Using the rule, convert

the 3-bit Gray code to binary.

13.4 The excitation gains are vector quantized as a three-dimensional vector

containing the elements G, P2, and P1. To find the best codevector from the

codebook, an error expression containing nine sum terms is used. These sum

terms are denoted as g1 to g9. Note from the expression for g1 that the

quantity

�2
ffi
GðlÞ 1� P

ðlÞ
2 � P

ðlÞ
1

� 	r

must be evaluated for all index values l. The expression can be precomputed

in an off-line fashion and stored in a codebook, recovered by the same

index l. This will save valuable processing time when the gain codebook is

searched; the price to pay is additional storage space. Following the same

principle, evaluate the expressions for g2 to g9 and find out the terms that can

be computed off-line and stored in a codebook.

13.5 Once the optimal gain codevector is found, the elements {G, P2, P1} must be

converted to {b, g1, g0}. From the relations between these two sets of

parameters, we can see that some quantities can be precomputed and stored

in a codebook so as to save computational cost. For instance, in order to

calculate b, we can precompute the quantity (GP2)
1/2 and store them in a

codebook. What can we do for g1 and g0?

13.6 Consider a VSELP coder without stochastic codebook 0; that is, the

excitation is comprised of the adaptive codevector and one stochastic

codevector. To quantize the excitation gains, a two-dimensional VQ is used,

where the vector under consideration is {G, P2}, with

b ¼
ffi
G � P2 � Ee

R2

r

and

g1 ¼
ffi
G 1� P2ð ÞEe

R1

s
:

370 VECTOR SUM EXCITED LINEAR PREDICTION

Find the error expression for this case that one can rely on to search the

gain codebook. Express the answer as a function of G(l), P
ðlÞ
2 , Ee, R1, R2, y1o,

y2o, and u (see Section 13.4).

13.7 Gerson and Jasiuk [1991] propose using the ‘‘pitch prefilter’’ with system

function

HðzÞ ¼ 1

1� bz�T

during decoding. The excitation signal going into the formant synthesis filter

is first processed by this filter. The purpose of the filter is, as its name

implies, to enhance the pitch periodicity of the excitation signal. How would

you choose the parameters b and T of this filter? Justify your answer.

13.8 Find out the computational costs associated with the stochastic codebook

search with and without the Gray code ordering scheme. How much is

gained by deploying the Gray code ordering?

EXERCISES 371

CHAPTER 14

LOW-DELAY CELP

In the process of speech encoding and decoding, delay is inevitably introduced.

Loosely defined, delay is the amount of time shift between the speech signal at

the input of the encoder with respect to the synthetic speech at the output of the

decoder, when the output of the encoder is directly connected to the input of the

decoder. For schemes such as PCM and ADPCM (Chapter 6), the speech signal

is encoded on a sample-by-sample basis: a few bits are found for each sample

with the result transmitted immediately; the delay associated with these schemes

is negligible. For many speech coders, such as CELP (Chapter 11), high compres-

sion ratio is achieved by processing the signal on a frame-by-frame basis, thus

requiring a buffering procedure consuming typically 20 to 30 ms, depending on

the length of the frame. It is this buffering process associated with most low bit-

rate coders that augment the overall delay. See Chapter 1 for a precise definition

of coding delay.

Delay is an important concern for real-time two-way conversations, and it basi-

cally can be thought of as the time the sound takes to travel from speaker to listener.

For an excessively large delay, that is, above 150 ms, the ability to hold a conversa-

tion is impaired. The parties involved begin to interrupt or ‘‘talk over’’ each other

because of the time it takes to realize the other party is speaking. When delay

becomes high enough, conversations degrade to a half-duplex mode, taking place

strictly in one direction at a time; hence, the lower the delay the better. Low delay is

also highly desirable for typical telephone networks, since delay aggravates echo

problems: the longer an echo is delayed, the more audible and annoying it is to

the talker. Even though echo cancelers are normally incorporated, high delay makes

the job of echo cancellation more difficult.

372

There is always a price to pay for a certain attribute, and for the case of low

delay there is no exception. The low-delay constraint is in conflict with other desir-

able properties of a speech coder, such as low bit-rate, high quality, reduced com-

putational cost, and robustness against channel errors. Therefore, delay reduction

with minimum degradation of the good properties has been a great challenge to

speech coding researchers.

This chapter is devoted to the ITU-T G.728 LD-CELP coder, standardized in

1992. At a bit-rate of 16 kbps, it is perhaps the most successful low-delay coder

available. Core techniques of the coder were developed mainly by Chen while at

AT&T Bell Labs [Chen 1990, 1991, 1995; Chen et al., 1990, 1991, 1992]. Even

though the coder is based on the same principles as CELP, it utilizes many uncon-

ventional techniques to achieve low delay. In Section 14.1, strategies to achieve low

delay are explained. Basic operational principles of the LD-CELP coder are

described in Section 14.2, while issues related to LP analysis are given in

Section 14.3. Excitation codebook structure and search procedures are covered in

Section 14.4; the technique for backward gain adaptation is given in Section 14.5;

operations of the encoder and decoder are covered in Section 14.6, followed by the

algorithm for excitation codebook training in Section 14.7. A brief summary is

given in the last section.

14.1 STRATEGIES TO ACHIEVE LOW DELAY

In this section, we analyze the most important strategies adopted by the G.728

LD-CELP coder to achieve low delay while maintaining low bit-rate.

Strategy 1. Reduce frame length to 20 samples. From Chapter 1 we know that the

biggest component of coding delay is due to buffering at the encoder and is

directly linked to the length of the frame selected for analysis. Therefore, an

obvious solution is to reduce the length of the frame. Like conventional CELP,

the LD-CELP coder partitions the input speech samples into frames that are

further divided into subframes; each frame consists of 20 samples, containing

four subframes of five samples each. As we will see later, encoding starts

when five samples are buffered (one subframe); this leads to a buffering delay

of 0.625 ms, producing a coding delay in the range of 1.25 to 1.875 ms. These

value are much lower than conventional CELP, having a buffering delay of

20 to 30 ms.

Strategy 2. Recursive autocorrelation estimation. The first step for finding the

LPCs is to calculate the autocorrelation values, which can be done using conven-

tional techniques such as Hamming windowing (nonrecursive); due to the short

frame length, the scheme gets highly computationally expensive and inefficient

since the windows become overlapping for consecutive frames. To simplify,

STRATEGIES TO ACHIEVE LOW DELAY 373

recursive methods can be employed. The LD-CELP coder utilizes the Chen win-

dowing method (Chapter 3) to estimate the autocorrelation values, which in prin-

ciple is a hybrid technique, combining both recursive and nonrecursive

approaches.

Strategy 3. External prediction. Since the signal frame is relatively short, its statis-

tical properties tend to be close to the near past or near future. It is therefore pos-

sible to estimate the LPCs entirely from the past and apply these coefficients to

the current frame, which is the definition of external prediction (Chapter 4). By

using external prediction, the encoder does not have to wait to buffer the whole

frame (20 samples) before analysis; instead, the LPCs are available at the instant

that the frame begins; encoding starts as soon as one subframe (five samples) is

available. This is in high contrast to conventional CELP, where the LPCs are

derived from a long frame, with the resultant coefficients used inside the frame

(internal prediction).

Strategy 4. Backward adaptive linear prediction. Conventional speech coders use

forward adaptation in linear prediction, where the LPCs are derived from the

input speech samples; the coefficients are then quantized and transmitted as

part of the bit-stream. The LD-CELP coder utilizes backward adaptation, with

the LPCs obtained from the synthetic speech. By doing so, there is no need

to quantize and transmit the LPCs since the synthetic speech is available

at both the encoder and decoder side, thus saving a large number of bits for trans-

mission. Note that this is a necessity to achieve low bit-rate, since otherwise

the quantized LPCs must be transmitted at short frame intervals, leading to

unacceptably high bit-rate. A disadvantage of the approach is its vulnerability

toward channel errors: any error will propagate toward future frames while

decoding.

Strategy 5. High prediction order. The LD-CELP coder utilizes a short-term synth-

esis filter with a prediction order equal to 50; no long-term predictor is employed.

This design choice is due to the following reasons.

� In general, two options are available for capturing the periodicity of voiced

frames: a long-term predictor combined with a short-term predictor (with a

typical order of 10), or a short-term predictor with high prediction order, for

instance, a value of 50.

� Long-term prediction with forward adaptation (i.e., parameters of the pred-

ictors are obtained from the input speech signal and are quantized and

transmitted to the decoder) is not an option, since the number of bits required

to carry information regarding the long-term predictor’s parameters at short

frame length would elevate the resultant bit-rate to prohibitive levels, ruining

the low bit-rate goal.

� Long-term prediction with backward adaptation (i.e., parameters of the

predictor are extracted from the synthetic speech; these parameters are not

required to be transmitted since the decoder has access to the same synthetic

speech signal) is possible, since no extra bit allocation is necessary. However,

374 LOW-DELAY CELP

it was found that backward block adaptation was extremely sensitive to

channel errors and seemed to be inherently unstable [Chen, 1995]. Thus, the

long-term predictor is abandoned.

� Pitch period of female speech is typically less than 50 samples. By using a

short-term predictor with a prediction order of 50, it is possible to reproduce

female speech with high quality. In addition, prediction gain practically

saturates when the order is beyond 50; that is, further increasing the prediction

order beyond 50 does not improve the quality much and only increases the

complexity.

� High prediction order would create a burden for forward adaptation schemes

since the LPCs must be quantized and transmitted; increasing the order

implies an increasing number of bits for transmission. However, this is not

an issue for LD-CELP, since backward adaptation is used with no need to

encode the LPCs.

� Without the long-term predictor, the coder becomes less speech-specific, since

no pitch quasiperiodicity is assumed. This feature improves the perform-

ance for nonspeech signals, like voice-band signaling tones found in most

telecommunication systems and/or music.

Strategy 6. Backward excitation gain adaptation. Excitation gain is updated once

every subframe (five samples) by using a tenth-order adaptive linear predictor in

the logarithmic-gain domain. The coefficients of this log-gain predictor are

updated once every four subframes by performing linear prediction analysis on

previous logarithmic gain values.

By using a log-gain predictor of order ten, the predicted gain will be based

on ten past gain values having a time span of 10 � 5 ¼ 50 speech samples.

This in turn allows the exploitation of pitch periodicity remaining in the excita-

tion gain sequence for those female voices with a pitch period under 50 samples.

Such a scheme is better at predicting the excitation gain for female voices. As a

result, better coding efficiency can be achieved.

By making the excitation gain backward adaptive, the current gain value is

derived from the information embedded on previously quantized excitation,

and there is no need to send any bits to specify the excitation gain, since the

decoder can derive the same gain in the same manner. Transmission of the highly

redundant gain information is thus eliminated.

14.2 BASIC OPERATIONAL PRINCIPLES

After browsing the most distinguishing features of LD-CELP from the previous

section, we are now ready for the basic operational principles. In LD-CELP,

only five samples are needed to start the encoding process. On the other hand,

only the excitation signal is transmitted: the predictor coefficients are

updated by performing LP analysis on previously quantized speech. Thus, the

BASIC OPERATIONAL PRINCIPLES 375

LD-CELP coder is basically a backward adaptive version of the conventional CELP

coder. The essence of CELP, which is the analysis-by-synthesis codebook search, is

retained. Figure 14.1 shows the general structures of the LD-CELP encoder and

decoder.

The basic operational principle follows the conventional CELP algorithm,

except that only the index to the excitation codebook is transmitted. The operation

of the LD-CELP algorithm can be summarized as follows.

� Like conventional CELP, samples of speech are partitioned into frames and

subdivided into subframes. In LD-CELP, each frame consists of 20 samples,

which contains four subframes of five samples each. Since LP analysis is

performed in a backward adaptive fashion, there is no need to buffer an entire

frame before processing. Only one subframe (five samples) needs to be stored

before the encoding process begins.

Input speech

LD-CELP bit-stream (Excitation index)

LD-CELP S Synthetic
speechbit-stream

Backward
predictor

adaptation

Synthesis
filter

Perceptual
weighting

filter

Backward
gain

adaptation

Excitation
codebook

Error
minimization

LP
analysis

Backward
predictor

adaptation

Synthesis
filter

Backward
gain

adaptation

Excitation
codebook Postfilter

Figure 14.1 LD-CELP encoder (top) and decoder (bottom).

376 LOW-DELAY CELP

� The perceptual weighting filter has ten linear prediction coefficients derived

from the original speech data. The filter is updated once per frame. The

current frame’s coefficients are obtained from previous frames’ samples.

� The synthesis filter corresponds to that of a 50th-order AR process. Its

coefficients are obtained from synthetic speech data of previous frames.

The filter is updated once per frame. The zero-input response of the current

frame can be obtained from the known initial conditions.

� Excitation gain is updated every subframe, with the updating process

performed with a tenth-order adaptive linear predictor in the logarithmic-gain

domain. The coefficients of this predictor are updated once per frame, with the

LP analysis process done on gain values from previous subframes.

� The excitation sequence is searched once per subframe, where the search

procedure involves the generation of an ensemble of filtered sequences: each

excitation sequence is used as input to the formant synthesis filter to obtain an

output sequence. The excitation sequence that minimizes the final error is

selected.

� In the decoder, the initial conditions are restored. The synthetic speech is

generated by filtering the indicated excitation sequence through the filter

without any perceptual weighting. Since the excitation gain and the LPCs are

backward adaptive, there is no need to transmit these parameters. A postfilter

can be added to further enhance the output speech quality.

Functionality of each block is presented in the next sections.

14.3 LINEAR PREDICTION ANALYSIS

The LD-CELP algorithm requires multiple LP analysis procedures to be performed

during operation since different sets of LPCs are used in various parts of the coder.

These are:

� Synthesis Filter. This is a 50th-order filter; its coefficients are obtained by

analyzing the synthetic speech in a backward adaptive fashion. The same

procedure is performed in the encoder and decoder. In the decoder, the

resultant coefficients are also used by the postfilter.

� Perceptual Weighting Filter. This is a tenth-order filter; its coefficients are

obtained by analyzing the original input speech. This filter is available only in

the encoder.

� Backward Excitation Gain Adaptation. The gain is obtained through back-

ward adaptation, where a tenth-order predictor is applied in the logarithmic-

gain domain. Coefficients of the predictor are obtained by analyzing the past

gain terms. The operation is the same for the encoder and the decoder. Details

are given in Section 14.5.

LINEAR PREDICTION ANALYSIS 377

Synthesis Filter

The system function of the filter is

HðzÞ ¼ 1

1þ P50
i¼ 1

aiz�i
: ð14:1Þ

The LPCs ai; i ¼ 1; . . . ; 50; are obtained by backward adaptation, where the

input to LP analysis is the synthetic speech signal. The procedure of LP analysis is

summarized in Figure 14.2. A set of autocorrelation coefficients is first estimated

from the synthetic speech signal: R½l�; l ¼ 0; . . . ; 50; the estimation is based on

the Chen windowing procedure with parameters

a ¼ ð3=4Þ1=40 ¼ 0:992833749; L ¼ 35:

As explained in Chapter 3, the Chen window is hybrid in nature and consists of

a recursive part and a nonrecursive part. It is highly efficient and provides good

accuracy in practice.

Backward LP analysis is inherently more unstable than forward adaptation, and

many of the techniques discussed in Chapter 4 for the alleviation of ill-conditioning

are necessary to ‘‘tame’’ the system. Spectral smoothing by windowing the autocor-

relation coefficients is optional; however, its application is highly recommended

since system divergence (state of the decoder does not follow the encoder) had

been observed for certain synthetic signals when this block is not present [Chen,

1995].

White noise correction is applied next with l¼ 257/256. After using the

Levison–Durbin recursion, the LPCs are bandwidth expanded with g¼ 253/

256& 0.9883.

The LPCs are updated once every frame, or four subframes (20 samples). Within

the frame–subframe structure, the update occurs at the third subframe. This scheme

is illustrated in Figure 14.3. Note that the LPCs found from the samples before sub-

frame 0 of the current frame are used by subframes 2 and 3 of the current frame,

Synthetic
speech

LPC

Recursive
autocorrelation

estimation

White
noise

correction

Autocorrelation
windowing
(optional)

Levinson−
Durbin

recursion

Bandwidth
expansion

Figure 14.2 Procedure to obtain the LPCs for the synthesis filter.

378 LOW-DELAY CELP

and subframes 0 and 1 of the future frame. This scheme allows a more even distri-

bution of computational activity during the various cycles of the encoding process

and thus facilitates real-time implementation. This can be seen by observing that

even though the autocorrelation values are available at the first subframe of

each frame, computations may require more than one subframe worth of time.

And since the Levinson–Durbin recursion is quite demanding, by updating at the

third subframe, plenty of time is available to complete the task.

Perceptual Weighting Filter

The system function of the perceptual weighting filter is

WðzÞ ¼ Aðz=g1Þ
Aðz=g2Þ

¼
1þP10

i¼1
bigi1z

�i

1þP10
i¼1

bigi2z�i
: ð14:2Þ

The nominal values for (g1, g2) are (0.9, 0.6) and have been found to give good

subjective quality. When compared with the form of weighting filter given in Chap-

ter 11, (14.2) is more general, allowing more control over the spectral characteris-

tics. Note that the prediction order is equal to 10, which is quite different from

conventional CELP, where the order of the synthesis filter is equal to that of the

weighting filter. Experimentally, a weighting filter with an order of 50 was found

to produce occasional artifacts and was thus abandoned from consideration [Chen,

1995].

The LPCs bi, i¼ 1 to 10, are derived from the original input speech; use of syn-

thetic speech is avoided since it contains quantization errors. LP analysis follows a

similar approach as for the synthesis filter, with

a ¼ ð1=2Þ1=40 ¼ 0:982820598; L ¼ 30

Previous frame Current frame Next frame

Sf0 Sf1 Sf2 Sf3

Analyze the signal
at this interval to
obtain the LPCs.

Resultant LPCs
are applied to
this interval.

Figure 14.3 Illustration of LPC adaptation scheme for the synthesis filter.

LINEAR PREDICTION ANALYSIS 379

being the window parameters; white noise correction is the same as for the synth-

esis filter. The LPCs bi in (14.2) are the output of the Levinson–Durbin module.

Similar to the synthesis filter, the perceptual weighting filter is also updated once

per frame, and the updates also occur at the third subframe.

14.4 EXCITATION CODEBOOK SEARCH

Like conventional CELP, the zero-input response is first subtracted from the input

speech to obtain the target sequence. The target sequence is then used as reference

during the excitation codebook search, where the codevector capable of generating

the sequence as close as possible (in a sum of squared error sense) to the reference

is selected. In this section, various techniques for the excitation codebook search are

analyzed. Due to architectural differences with conventional CELP, LD-CELP

requires different methodologies to improve efficiency.

The Analysis-by-Synthesis Loop

Figure 14.4 shows the encoding loop of the LD-CELP coder; unlike conventional

CELP, the excitation gain is known during encoding of the current subframe, which

is obtained through prediction from past values. Due to this fact, some computa-

tional saving is obtainable. Consider the alternative scheme shown in Figure 14.5.

This new scheme has the excitation gain block moved out of the loop. After the

zero-input response is subtracted from the original speech, the resultant sequence

is divided by the excitation gain to generate the target sequence. In this way, there is

no need to multiply all vectors of the excitation codebook by the gain. Using similar

reasoning as for conventional CELP, it is possible to reposition the perceptual

weighting filter as shown in Figure 14.6, leading to an additional cut in computa-

tional cost.

Input speech

Gain

Synthesis
filter

Perceptual
weighting

filter

Excitation
codebook

Error
minimization

Synthesis
filter

(Zero)

−

−

Figure 14.4 Analysis-by-synthesis loop of the LD-CELP encoder.

380 LOW-DELAY CELP

Excitation Codebook Structure

The excitation codebook uses a shape-gain structure, where a 7-bit shape codebook

forms from five-dimensional vectors together with a 3-bit gain codebook, constitut-

ing the 10-bit codebook. This configuration reduces computational complexity

since filtering operations with the excitation sequences are done only 27 times.

Input speech

(Gain)−1

Gain

Synthesis
filter

Perceptual
weighting

filter

Excitation
codebook

Error
minimization

Synthesis
filter

(Zero)

−

−

Figure 14.5 An equivalent analysis-by-synthesis loop.

s u

Excitation codebook
t

v(l) x(l,m) G G

g(m)

ε(l,m)

H(z)

Shape
codebook

Energy
computation

H(z)
(Zero)

W(z)

W(z)

W(z)
(Zero)

G−1

Gain
codebook

y2

y1(l,m)

−

−

Figure 14.6 Another equivalent analysis-by-synthesis loop with reduced complexity.

EXCITATION CODEBOOK SEARCH 381

The rest of the zero-state responses are found by multiplication with the gain values

located in the gain codebook. Note also that the shape-gain approach reduces the

storage requirement, since the gain codebook has relatively few components.

The exact values of the codebook elements are specified in [ITU, 1992]. For the

gain codebook, 3 bits lead to a total of 8 different values. Two bits of the gain code-

book address different magnitudes while the last bit contains the sign of the actual

gain. Hence, there are four different magnitudes resulting in a total of eight gain

values; half of them are positive and the other half negative. Denoting these values

by g(m), m ¼ 0, . . . , 7, they are specified with

gð0Þ ¼ 33=64;

gðmÞ ¼ gðm�1Þ7=4; m ¼ 1; 2; 3;

gðmÞ ¼ �gðm�4Þ; m ¼ 4; 5; 6; 7:

Denoting the five-element vectors of the shape codebook by vðlÞ, where 0
 l

127, there are a total of 210 ¼ 1024 different five-element sequences from the exci-

tation codebook, formed by the product between the shape codebook and gain

codebook. Thus, each excitation sequence is denoted by gðmÞvðlÞ. These sequences

are filtered by the cascade connection of formant synthesis filter and perceptual

weighting filter to produce the zero-state response y1ðl;mÞ during encoding.

Objective of Excitation Codebook Search

For a given subframe, the zero-state response of the filters cascade is

y1ðl;mÞ ¼ gðmÞHvðlÞ ð14:3Þ

with l ¼ 0; . . . ; 127; m ¼ 0; . . . ; 7; and H the impulse response matrix of the

filters cascade. The objective is to find l and m so that

eðl;mÞ ¼ t� y1ðl;mÞ
�� ��2 ð14:4Þ

is minimized, with

t ¼ 1

G
u� y2ð Þ ð14:5Þ

being the target vector; u is the perceptually weighted input speech vector, and y2 is
the zero-input response vector of the filters cascade. Expanding (14.4), we find

eðl;mÞ ¼ tT t� 2tTy1ðl;mÞ þ y1ðl;mÞTy1ðl;mÞ: ð14:6Þ

382 LOW-DELAY CELP

The first term, tT t, is constant with respect to l and m. Hence, we need only consider
the alternative error expression:

e0ðl;mÞ ¼ �2tTy1ðl;mÞ þ y1ðl;mÞTy1ðl;mÞ

¼ �2gðmÞtTHvðlÞ þ gðmÞ2 HvðlÞ
�� ��2: ð14:7Þ

Propositions for Complexity Reduction

In actual encoding, (14.7) is evaluated for every value of l and m. Note that H is

constant for four subframes; hence, the following proposals lead to computational

savings:

� Compute Hv(l), l¼ 0, . . . , 127, and store the results for use by the four

subframes. This requires 5 � 128¼ 640 memory locations.

� Compute jjHv(l)jj2, l¼ 0, . . . , 127, and store the results for use by the four

subframes. This requires 128 memory locations.

� Compute g(m)2jjHv(l)jj2, m¼ 0, . . . , 7; l¼ 0, . . . , 127, and store the results for

use by the four subframes. This requires 8 � 128¼ 1024 memory locations.

� Compute g(m)Hv(l), m¼ 0, . . . , 7; l¼ 0, . . . , 127, and store the results for use

by the four subframes. This requires 5 � 8 � 128¼ 5120 memory locations.

The above proposals work by removing redundancies during the codebook

search, since the same computation is repeated for four subframes. The third and

fourth propositions have the drawback of requiring excessive storage, which might

be prohibitive in practice due to high memory cost.

A Quantization Approach for Gain Search

For every index l, the obvious way to find the gain index m is by evaluating (14.7)

for all m. The disadvantage of the approach is that (14.7) must be evaluated for

every index m. To speed up the process, gg(m)¼ 2g(m) and g2(m)¼ g(m)2 are often

precalculated and stored in a codebook. The quantity gc(m) represents the midpoint

level between adjacent gain levels, given by

gcðmÞ ¼ 1
2
gðmÞ þ gðmþ1Þ

 �

; m ¼ 0; 1; 2; 4; 5; 6; ð14:8Þ

and is included to assist the search process.

Differentiating (14.7) with respect to the gain and equating to zero, the optimal

gain value, denoted by g, is given by

g ¼ tTHvðlÞ

HvðlÞ
�� ��2 ¼ CðlÞ

DðlÞ
; ð14:9Þ

EXCITATION CODEBOOK SEARCH 383

where

CðlÞ ¼ tTHvðlÞ ð14:10Þ

and

DðlÞ ¼ HvðlÞ
�� ��2: ð14:11Þ

Note that (14.7) can be expressed by

e0ðl;mÞ ¼ �ggðmÞCðlÞ þ g2ðmÞDðlÞ: ð14:12Þ

Therefore, in principle, we can quantize the optimal gain value (14.9) by select-

ing the codebook value g(m), m¼ 0 to 7, that is the closest. The procedure, however,

requires one division operation that is not desirable for fixed-point implementation.

Quantization can basically be implemented with a series of comparisons with the

quantizer cell boundaries (Chapter 5). For instance, to quantize a positive gain value

g, one can rely on the following steps:

1. if g < gc(0)

2. m 0

3. else if g < gc(1)

4. m 1

5. else if g < gc(2)

6. m 2

7. else m 3

The same objective can be achieved without performing the division (14.9) to

get g; instead we use the following code:

1. if C(l) < gc(0)D(l)

2. m 0

3. else if C(l) < gc(1)D(l)

4. m 1

5. else if C(l) < gc(2)D(l)

6. m 2

7. else m 3

In this latter code, division is avoided; for each m one multiplication is required.

Multiplication is very often the preferred approach in a fixed-point environment

since it can be implemented far more efficiently.

384 LOW-DELAY CELP

The Official Excitation Codebook Search Procedure
of the ITU-T G.728 Coder

The code specified below is described in the original document of the ITU. It is

assumed that D(l), l¼ 0, . . . , 127, and that tTH are precomputed before entering.

The outcomes are the two indexes, lmin and mmin, pointing to the optimal excitation

vector. This algorithm is very efficient and well suited for fixed-point implemen-

tation.

1. min 1
2. for l 0 to 127

3. C(l) (tTH)v(l)

4. if C(l) < 0 goto 12

5. if C(l) < gc(0)D(l)

6. m 0; goto 19

7. if C(l) < gc(1)D(l)

8. m 1; goto 19

9. if C(l) < gc(2)D(l)

10. m 2; goto 19

11. else m 3; goto 19

12. if C(l) > gc(4)

13. m 4; goto 19

14. if C(l) > gc(5)

15. m 5; goto 19

16. if C(l) > gc(6)

17. m 6; goto 19

18. else m 7

19. epsilon �gg(m)C(l) þ g2(m)D(l)

20. if epsilon < min

21. min epsilon

22. lmin l; mmin m

23. return lmin, mmin

14.5 BACKWARD GAIN ADAPTATION

The excitation gain in the LD-CELP algorithm is backward adaptive and is updated

once per subframe. The adaptation process is based on a linear predictor of order

ten working in the logarithmic domain.

BACKWARD GAIN ADAPTATION 385

Principles of Operation

Given the excitation vector x¼ g �v and its scaled version

er ¼ Gr �xr; ð14:13Þ
where r is the subframe index and G the excitation gain, then

se;r ¼ Grsx;r; ð14:14Þ
where sx denotes the root mean square (rms) value of the vector x (standard devia-

tion). Taking the logarithm of both sides of (14.14) gives

logse;r ¼ logGr þ logsx;r: ð14:15Þ

Prediction

The variables in (14.15) can be associated with parameters in an AR model in the

following manner:

� Log se,r: an AR signal.

� LogGr: the predicted AR signal.

� Log sx,r: prediction error.

Within the context of LP, prediction is found via a linear combination of past

samples of the AR signal. That is,

logGr ¼ �
X10
i¼1

ci logse;r�i; ð14:16Þ

where ci is the ith LPC for the current frame. These LPCs are changed only once

per frame and are obtained by performing LP analysis on the past log-gain values

se,r, up to and including the past frame. Additional insight into the prediction

procedure can be obtained by substituting (14.15) in (14.16):

logGr ¼
X10
i¼1

ci logGr�i þ
X10
i¼1

ci logsx;r�i: ð14:17Þ

The above equation describes a linear time-invariant (LTI) system whose input is

sx,r with output Gr . The system function is

HðzÞ ¼
P10
i¼1

ciz
�i

1�P10
i¼1

ciz�i
: ð14:18Þ

386 LOW-DELAY CELP

Assuming that the filter is stable, the associated impulse response will eventually

decay to zero; this is highly desirable since, in the presence of channel error, the

corresponding effect on the excitation gain will eventually decay to zero due to

the decaying impulse response. Hence, this backward gain adaptation algorithm

is robust to channel errors.

Example 14.1 From the discussion, it follows that the linear predictor is found to

predict log se,r, with logGr being the prediction for the rth frame. Therefore, the

predictor is designed so that

logGr � logse;r; ð14:19Þ

and the prediction is based on the linear combination of the values se,r�1, . . . ,
se,r�10. If the prediction is perfect, Gr is equal to se,r; from (14.15) it follows

that log sx,r¼ 0, or sx,r¼ 1. In practice, however, prediction errors occur, and

sx,r will be different from 1. Figure 14.7 shows an example of a typical situation

in gain adaptation, where the rms value of the original speech subframe is increased

at r¼ r1 and decreased at r¼ r2.

Assuming stationary conditions where the rms value of the original speech sub-

frame is constant, the prediction is perfect, or near perfect; hence, sx,r& 1 for r< r1.

At r¼ r1, the rms value of the speech subframe increases to a new level; the

predicted value log Gr1 cannot respond instantaneously. The analysis-by-synthesis

procedure during excitation codebook search finds the best excitation vector whose

Input power level

r1 r2 r
log σx,r

r

log σ e,r

log Gr

r

Figure 14.7 Example of gain adaptation.

BACKWARD GAIN ADAPTATION 387

rms value sx,r1 is greater than one so as to compensate the power increase. A simi-

lar situation happens at r¼ r2 when the input power decreases.

Note from Figure 14.7 that without gain adaptation, the highly redundant gain

sequence se,r must be sent. With gain adaptation, however, the sequence sx,r is

transmitted as part of the excitation vector. The dynamic range of sx,r is far lower

than se,r . Coding efficiency is therefore increased by transmitting sx,r instead of

se,r . We also see that in order for the scheme to work properly, the excitation vec-

tors must have different rms values; this is effectively solved for the LD-CELP

encoder, where the excitation codebook has a gain-shape structure.

Implementation

The actual backward gain adaptation mechanism of the G.728 coder is described

here. Figure 14.8 shows the block diagram. The scaled excitation vector of the

rth subframe is delayed by one subframe (er�1), with its rms value calculated

(se,r�1), and the decibel value found (20 log se,r–1). A log-gain offset value of

32 dB is subtracted from the actual log-gain value so that

dr�1 ¼ 20 log se;r�1 � 32 dB: ð14:20Þ

The offset value is meant roughly to equal the average excitation gain level for

voiced frames. By removing the redundant value of the mean, the zero-mean

sequence dr is created. Use of a zero-mean sequence has a numerical advantage

in fixed-point processing, since the range of most variables involved in LP analysis

is lowered, leading to a more efficient usage of the limited resolution.

er−1 σe,r

er 32 dB

δr −1

−1

32 dB

Gr

Recursive
autocorrelation

estimation

Inverse
logarithm
calculator

Delay
by 1 vector

Root mean
square

calculator

Logarithm
calculator

Levinson−
Durbin

recursion

Bandwidth
expansion

Limiter

Predictor

^δ r

−

Figure 14.8 Backward excitation gain adaptation.

388 LOW-DELAY CELP

The same Chen windowing procedure, as for the synthesis filter and perceptual

weighting filter, is applied here, with the input variables being dr . The window para-

meters are

a ¼ ð3=4Þ1=8; L ¼ 20:

After obtaining the LPCs through Levinson–Durbin recursion (prediction order

of ten), the coefficients are bandwidth expanded with the constant g¼ 29/32;

such bandwidth expansion makes the gain adapter more robust to channel errors.

Denoting the LPCs after bandwidth expansion as ci, i¼ 1 to 10, we find

d̂r ¼ �
X10
i¼1

cidr�i ð14:21Þ

is the predicted value of dr. The offset value of 32 dB is added back to the predicted

value, with the result clipped between 0 and 60 dB. This is performed by the limiter

block, where gain values that are excessively large or small are set to the biggest

and smallest limits, respectively. The gain limiter output is then fed to the inverse

logarithm calculator, converting the gain back to the linear domain. Inclusion of the

limiter ensures that the gain in the linear domain is between 1 and 1000.

The gain predictor is updated once every four subframes, with the updates taking

place at the second subframe.

14.6 ENCODER AND DECODER

Operations of the encoder and decoder for the G.728 standard are described in this

section.

Decoder

Block diagram of the decoder is essentially the one shown in Figure 14.1. The LD-

CELP bit-stream consists of the excitation codebook index transmitted 10 bits every

subframe (0.625 ms), leading to a bit-rate of 16 kbps. The recovered excitation

codevector is scaled and passed through the synthesis filter and postfilter to yield

the synthetic speech signal.

Mechanisms for gain and predictor adaptation are already explained in previous

sections. Details of postfilter are covered in Chapter 11. Note that the postfilter

utilizes a tenth-order short-term filter whose LPCs are obtained from the same

LP analysis procedure as for the synthesis filter. All that is needed is to pause the

50th-order Levinson–Durbin recursion at order 10, get a copy of the coefficients,

and resume the recursion from order 11 to 50.

ENCODER AND DECODER 389

Encoder

Block diagram of the encoder appears in Figure 14.9. The input speech signal is

passed through the perceptual weighting filter, with the output combined with the

zero-input response and the gain to produce the target vector used during excitation

codebook search. Prior to this step, the impulse response of the cascade filters

is computed from the LPCs of these filters. The optimal codebook indices are

transmitted as the bit-stream, which is the only information sent to the decoder.

Bit-Stream Synchronization

The LD-CELP bit-stream consists of 10 bits of the excitation index transmitted

every 0.625 ms, leading to a bit-rate of 16 kbps. In practice, it is necessary

for the decoder to know the boundaries of the received 10-bit codebook indices,

so that the system states can be updated accordingly. Such synchronization informa-

tion can be made available to the decoder by adding extra synchronization bits,

leading to a bit-rate increase. Suppose that a rate increase is undesirable; it is still

possible to send synchronization information without increasing the bit-rate.

LD-CELP bit-stream

Input
PCM
speech

Backward
predictor

adaptation

Synthesis
filter

Perceptual
weighting

filter

Backward
gain

adaptation

Excitation
codebook

Zero-input
response of

filters cascade

Weighting
filter

adaptation

Frame /
subframe

segmentation

Target
vector

computation

Total
response &
update of

system’s state

Impulse
response of

filters cascade

Excitation
codebook

search

Figure 14.9 Block diagram of the G.728 encoder.

390 LOW-DELAY CELP

Figure 14.10 illustrates one such scheme, where one synchronization bit is sent for

a certain number of subframes. Since the coding algorithm has a basic adaptation

cycle of four indices, it is reasonable to select a number of subframes in between

synchronization that is a multiple of 4. The example in Figure 14.10 synchronizes

once every eight subframes; in practice, synchronizing every 16 subframes is a

good trade-off between robustness and quality.

Ten bits are sent every subframe, regardless of whether it is normal or not. If it is

a normal subframe, the ten transmitted bits represent the index of the excitation

codebook. Otherwise, one bit is allocated for synchronization (equal to 0 or 1),

6 bits for the shape codebook, and 3 bits for the gain codebook. Since the shape

codebook is addressed by 7 bits, only half of the codevectors are searched during

synchronization transmission. That is, the search range for the shape codebook is

cut in half during synchronization. If this is done infrequently, such as once every

16 subframes, the speech quality degradation is essentially negligible. In this

manner, synchronization is transmitted with no bit-rate modification.

14.7 CODEBOOK TRAINING

This section describes a training procedure to optimize the shape codebook and

gain codebook of the LD-CELP coder originally outlined in Chen [1990]. Given

the training data set

sr½n�; n ¼ 0; . . . ; 4; r ¼ 0; . . . ; Nt � 1;

which represents an actual speech signal for training, with Nt being the size of the

training data set (total number of five-sample subframes), the LD-CELP encoder

can be used to encode the data set, resulting in the total error sum

D ¼
XNt�1

r¼0
eðlr ;mrÞ
r ; ð14:22Þ

10
bits

10
bits

... ...

Synchronization
subframe: search
only half of the
shape codebook.

Normal
subframe:
apply full
search.

Figure 14.10 Illustration of a synchronization scheme where 1 bit is sent every 8

subframes.

CODEBOOK TRAINING 391

which can be minimized by choosing the appropriate codebook contents. Note that

the subscript r is introduced to index a subframe.

Optimal Shape Codevectors

Expanding (14.22) and using (14.3), we find

D ¼
XNt�1

r¼0
tr � y1ðlr ;mrÞ�� ��2 ¼XNt�1

r¼0
tr �Hrv

ðlrÞgðmrÞ�� ��2; ð14:23Þ

where Hr is the impulse response matrix for the cascade connection between the

two filters. Differentiating the above equation with respect to v, we find

qD
qvðlrÞ

¼
XNt�1

r¼0
�2trHrg

ðmrÞ þ 2HrH
T
r v
ðlrÞ gðmrÞ
� 	2

: ð14:24Þ

Equating to zero gives

XNt�1

r¼0
trHrg

ðmrÞ ¼
XNt�1

r¼0
HrH

T
r gðmrÞ
� 	2

vðlrÞ: ð14:25Þ

The above equation indicates the requirements for the optimal shape code-

vectors v.

Optimal Gain Codewords

Differentiating (14.23) with respect to g gives

qD
qgðmrÞ ¼

XNt�1

r¼0
�2tTr Hrv

ðlrÞ þ 2gðmrÞ Hrv
ðlrÞ�� ��2; ð14:26Þ

equating to zero results in the optimal gain codewords that minimize D:

gðmrÞ ¼
PNt�1

r¼0
tTr Hrv

ðlrÞ

PNt�1

r¼0
HrvðlrÞk k2

: ð14:27Þ

Optimization Procedure

The encoder is initialized appropriately and the signal subframes (from the training

data set) are used as input to the encoder. As usual, all subframes are presented

392 LOW-DELAY CELP

sequentially, the optimal indices are searched using the available excitation code-

book, which can be initialized using random numbers.

Since there are a total of 128 possible values of l corresponding to 128 shape

codevectors v(l), and a total of 8 values of m or 8 different gain values, the relations

for v (14.25) and g (14.27) must be accumulated separately and solved for the opti-

mal codebook values at the end of the presentation of the whole training data set.

This accumulation process is described by

X
r:lr¼l

trHrg
ðmrÞ ¼

X
r:lr¼l

HrH
T
r gðmrÞ
� 	2

vðlrÞ; l ¼ 0; . . . ; 127; ð14:28Þ

gðmÞ ¼

P
r:mr¼m

tTr Hrv
ðlrÞ

P
r:mr¼m

HrvðlrÞk k2
; m ¼ 0; . . . ; 7: ð14:29Þ

The training procedure is summarized as follows. Each training subframe is

presented sequentially to the encoder. Parameters of the encoder pertaining to the

particular subframe are found. If lr¼ l, the parameters of the rth subframe are used

in the linear system described by (14.28) for the lth codevector. Similarly, if mr¼m,

the parameters of the rth subframe are used in (14.29) for the mth codeword. After

presenting all Nt subframes, a system of 128 equations results for the shape code-

book; while for the gain codebook, a system of 8 equations is obtained. These

equations are solved, resulting in a new excitation codebook. A new training epoch

can start all over using the newly found codebooks. This process can be applied

repeatedly up to the desired number of epochs. Using the described technique,

Chen [1990] reported a SNR improvement on the order of 1 to 1.5 dB in actual

LD-CELP coding using speech data outside the training set, with substantial gain

in perceptual speech quality.

14.8 SUMMARY AND REFERENCES

In this chapter, the essence of the ITU-T G.728 LD-CELP coder is introduced. This

coder achieves a one-way coding delay of less than 2 ms by using a short-length

input buffer having only five samples, and by using backward adaptation for a

50th-order synthesis filter and the excitation gain. Speech quality is equivalent to

or better than the 32-kbps G.726 ADPCM algorithm. Its unique design is also

highly robust against channel errors without the help of any kind of forward error

correction. Due to the lack of a pitch predictor, the G.728 can effectively model

other signals besides speech with good accuracy; it has been shown that the coder

is capable of passing all network information signals with little distortion.

Besides achieving the objective of low delay while maintaining toll quality

speech at a relatively low bit-rate of 16 kbps, the parameters of the coder are

SUMMARY AND REFERENCES 393

selected carefully to facilitate fixed-point implementation; also, the different com-

putational cycles are planned prudently to maintain a balanced load. These are

important factors for the coder to be practicable. The level of complexity for the

G.728 is higher than many low bit-rate coders: a trade-off is made to accomplish

low delay. However, with the constant speed-up of microprocessors, the extra com-

plexity will become less of an issue in the near future.

See Chen [1990] for inceptive ideas on LD-CELP, and a description of excitation

codebook training. Fixed-point implementation issues are discussed in Chen et al.

[1990] and Chen [1991]. A thorough description of the development and features of

LD-CELP appears in Chen et al. [1991, 1992]. See Chen and Rauchwerk [1993] for

the description of an 8-kbps LD-CELP coder. More updated surveys of low-delay

coders and additional descriptions appear in Chen [1995], where the prime tech-

niques are extended to the development of lower bit-rate coders, at 8, 6.5, and

4.67 kbps. Details of postfilter design are available in Chen and Gersho [1995].

The official standard is published in ITU [1992].

EXERCISES

14.1 Are the following statements true? Justify your answers.

� Minimum coding delay of a PCM system is equal to 0.125 ms.

� Minimum coding delay of the ETSI GSM 6.10 RPE-LTP coder

(Chapter 10) is 40 ms.

� Minimum coding delay of the FS1016 CELP coder (Chapter 12) is 75 ms.

� Minimum coding delay of the TIA IS54 VSELP coder (Chapter 13) is

40 ms.

It is assumed that the encoder is transmitting in constant mode, with no

processing delays.

Now, assume that the encoder is transmitting in burst mode; that is, all

available bits of the compressed bit-stream for the frame are sent immedi-

ately to the decoder once encoding is completed. Recalculate the minimum

coding delay for the above four cases.

14.2 Several multiplicative constants of the LD-CELP coder are specified as a

fraction, like l¼ 257/256 and g¼ 253/256. What is the advantage of such

numerical representation? Hint: The denominator is a power of 2.

14.3 During the excitation codebook search, the zero-state response y1(l,m) must

be evaluated for all possible combinations between l and m. For each value

of l, v(l) is filtered by the cascade filters; the resulting sequence is multiplied

by one of the eight possible gain values to generate y1(l,0) to y1(l,7). This
requires a total of 128 convolutions, plus 128 � 8¼ 1024 products between a

scalar and a vector to find all 1024 responses. It is possible to save

computation by using a different configuration for the excitation codebook.

Instead of separating into shape and gain, one of the gain values can actually

394 LOW-DELAY CELP

be embedded into the shape codebook. For instance, the vectors in the shape

codebook are now comprised by

gð0ÞvðlÞ;

then the gain codebook needs only seven values:

gð1Þ=gð0Þ; gð2Þ=gð0Þ; . . . ; gð7Þ=gð0Þ:

Study the proposition, count the total number of products, and compare to

the original.

14.4 Design a bit-stream synchronization method for the G.728 coder based on

the following features:

� One synchronization bit is transmitted every 16 subframes.

� Value of the synchronization bit is equal to one.

Take into account all possible real-world situations such as the occasional

loss of synchronization.

14.5 For the codebook training technique described in Section 14.7, write down

the step-by-step procedure with the assumption that the gain g(m) is known.

That is, only the shape codevectors are modified through training.

14.6 Contrast the codebook training technique described in Section 14.7 with the

regular GLA. Is it reasonable to assume that the total error sum is

monotonically decreasing? Propose some stopping criterion to manage the

training process.

EXERCISES 395

CHAPTER 15

VECTOR QUANTIZATION OF LINEAR
PREDICTION COEFFICIENT

Most speech coders standardized after 1994 utilize some sort of VQ for the LPC.

This is because of the superior performance when compared with scalar quantiza-

tion. Practical deployment of VQ is limited mainly by its inherent high complexity,

and many structured schemes are often deployed. The methods described in this

chapter deal exclusively with line spectral frequencies, which is the LPC represen-

tation of choice due to many favorable features as studied in Chapter 8.

The chapter begins with an investigation on interframe and intraframe correla-

tion present among the LSF vectors; it is shown that the elements of the LSF vec-

tors have a great deal of redundancy and can be explored for more efficient

quantization. Three major techniques developed for LSF VQ, namely, split VQ,

MSVQ, and PVQ, are described; very often in practice, these schemes are com-

bined together to take advantage of the strength that each individual method pro-

vides. Detailed implementations of four LSF quantizers incorporated in various

speech coding standards are given.

15.1 CORRELATION AMONG THE LSFs

The LSFs extracted from speech frames typically display a high level of redun-

dancy, manifested as a dependency between elements of a frame (intraframe), as

well as elements from different frames (interframe). Figure 15.1 shows the LSFs

obtained from a female speech sequence, where tenth-order LP analysis is

performed on 160-sample frames extracted with a Hamming window; a factor of

0.996 is applied for bandwidth expansion (Chapter 4). The data are gathered for

a total of 174 frames. Note the dependency between LSF values of consecutive

396

frames, as well as LSF data within the same frame. Therefore, an encoding system

that makes use of the correlation between elements will result in improved perfor-

mance over those that do not consider these properties.

Since the means of the LSFs represent redundant information, they are often

removed before using a prediction system. The mean in the present context refers

to the time average of the LSFs values when they are concatenated frame-after-

frame; its value can be estimated by analyzing a large amount of data, or by apply-

ing some time-adaptive scheme. Using the same data as in Figure 15.1, the means

of the LSFs are estimated to be

m1 ¼ 0:291; m2 ¼ 0:564; m3 ¼ 0:851; m4 ¼ 1:146; m5 ¼ 1:444;

m6 ¼ 1:736; m7 ¼ 2:033; m8 ¼ 2:312; m9 ¼ 2:595; m10 ¼ 2:882:

In some coders, the means are simply assumed to be

mi ¼ p:i=11; i ¼ 1 to 10: ð15:1Þ

Outcomes of (15.1) are actually very close to the previous estimates obtained from

real data and usually are satisfactory for practical applications.

To develop a correlation measure for the LSFs, consider the values

oi½m�; i ¼ 1 to 10; m ¼ 0; . . . ;Nt � 1

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

3

ω i[m]

m

i = 1

i = 10

Figure 15.1 An example plot of LSFs obtained from consecutive frames of speech

material.

CORRELATION AMONG THE LSFs 397

corresponding to a collection of LSF samples extracted from a speech source

frame-after-frame; a total of Nt frames are considered. Then the mean-removed

LSFs are

vi½m� ¼ oi½m� � mi: ð15:2Þ

The normalized correlation measure is defined by

R½i; j; k� ¼
PNt�k�1

m¼0 vi½m�vj½mþ k�ffiPNt�k�1
m¼0 ðvi½m�Þ2

PNt�k�1
m¼0 ðvj½mþ k�Þ2

q ; i; j ¼ 1 to 10; k ¼ 0; 1; 2; . . . :

ð15:3Þ

In (15.3), the correlation is measured between the ith LSF of a certain frame,

with respect to the jth LSF k frames ahead. Thus, use k ¼ 0 for intraframe measure-

ment, and k 6¼ 0 for interframe calculation. Figure 15.2 shows some results on

applying (15.3) to the data of Figure 15.1. For the case of R½1; j; k�, note how the

correlation tends to be high for j near 1 and decreases as the index increases. Also,

correlation is the highest for k ¼ 0 and decreases as k increases. Similar observa-

tions are found for R½6; j; k�. These are expected results since the LSFs tend to have

strong correlation with their neighbors that are close in time or frequency.

Figure 15.3 shows additional results, where R½1; j; k� is plotted as a function of k,

with four values of j.

Researchers have used various schemes to explore the correlation among the

LSFs so as to design more effective quantization systems. For instance, VQ can

be used to effectively represent the LSF vector in a frame, hence taking advantage

of the intraframe correlation. Moreover, predictive VQ can be deployed to explore

the presence of interframe correlation. The former is often known as memoryless,

since each LSF vector is quantized independently; while the latter is referred to as

0 5 10
−0.5

0

0.5

1

0 5 10
−0.5

0

0.5

1

j j

R[1, j, k] R[6, j, k]

k = 0
1

3

k = 0
1
2

3
2

Figure 15.2 Some normalized correlation results for LSFs.

398 VECTOR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

memory-based: quantization of the current LSF vector depends on past outcomes.

The strategies applied in practice are the topics for the rest of the chapter.

15.2 SPLIT VQ

Vector quantization (VQ) treats the whole set of LPCs as a vector, and distortion is

minimized by finding the best vector, that is, the best combination of individual

coefficients. Thus, the use of VQ is far more efficient than scalar quantization, espe-

cially for the case of LPCs, where transparent quantization is defined using spectral

distortion—a measure dependent on the entire set of coefficients.

One of the earliest works in this area is by Buzo et al. [1980], where superiority

of VQ over scalar quantization is demonstrated. Many variants have been proposed

since then. Due to the fact that VQ is inherently more expensive to implement, most

studies focused on cost reduction. Paliwal and Atal [1993] proposed the use of split

VQ (Chapter 7) and showed that the resultant scheme outperformed the existent

scalar quantization techniques, with moderate computational costs. Highlights of

their work are presented in this section.

0 5 10
−0.5

0

0.5

1

k

R[1, j, k]

j = 1

2

3

4

Figure 15.3 Additional normalized correlation results for LSFs.

SPLIT VQ 399

Distance Measure

Selection of a proper distance measure is the most important issue in the design and

operation of a vector quantizer. Since transparent quantization of LPCs is defined

using spectral distortion, the ideal distance measure in a VQ system is, obviously,

the spectral distortion itself. However, due to the fact that SD is relatively complex

to implement (Chapter 8), it is not suitable for direct deployment.

One of the simplest distance measures for the LSF vector xT ¼ ½o1;o2; . . . ;oM �
and its quantized version is the squared Euclidean distance

dðx; x̂Þ ¼ ðx� x̂ÞTðx� x̂Þ

¼
XM
i¼1
ðoi � ôiÞ2: ð15:4Þ

The squared Euclidean distance, however, is not optimum with respect to SD, in the

sense that SD might not diminish even though the squared Euclidean distance is

reduced. Of course, in the extreme case of zero Euclidean distance, SD is equal

to zero as well. Due to the simplicity of (15.4) it is tempting to apply it in practice.

The suboptimality of this distance measure is demonstrated in the following

example.

Example 15.1 The relation between SD and squared Euclidean distance is shown

here for a practical example. Using a fixed LSF vector as a reference, 1000 ran-

domly generated LSF vectors are used to calculate two distances with respect to

the reference vector. The first distance is the squared Euclidean and the second is

0 2 4
0

20

40

SD

d

Figure 15.4 Spectral distortion (SD) versus squared Euclidean distance (d) for 1000

randomly generated LSF vectors.

400 VECTOR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

the SD. In the computation of SD, the LSF vectors are transformed to the corre-

sponding LPC vectors, and the spectral distortion is found using 200 sampling

points. The results are plotted in Figure 15.4. In general, a small Euclidean distance

corresponds to low SD. However, for a given Euclidean distance, a wide range of

SD exists and vice versa. Thus, Euclidean distance is not optimum when minimiza-

tion of SD is required, since its reduction does not necessarily lower the SD.

Squared Euclidean Distance Measure with Weighting

To improve the distance measure so as to capture more spectral information, a

weighting scheme can be applied as follows:

dðx; x̂Þ ¼ ðx� x̂ÞTWðx� x̂Þ

¼
XM
i¼1

wiðoi � ôiÞ2; ð15:5Þ

where W is a diagonal matrix with the diagonal elements given by wi; these ele-

ments might depend on x. By selecting the weights wi appropriately, it is possible

to obtain a more optimized distance measure for the purpose of LSF quantization.

In Paliwal and Atal [1993], the following weights are proposed:

wi ¼
SðejoiÞ0:3; 1
 i
 8;

0:64½SðejoiÞ�0:3; i ¼ 9;

0:16½SðejoiÞ�0:3; i ¼ 10:

8>><
>>: ð15:6Þ

Note that SðejoÞ is the PSD defined by the set of LSFs foig, and a system with a

prediction order equal to ten is considered (Chapter 3). Hence, the weights fwig
vary with each LSF vector x.

In this weighted Euclidean distance measure, the weight assigned to a given LSF

is proportional to the PSD at a frequency value equal to that of the LSF. Thus, more

weight is put on the peak of the PSD, which is important since the spectrum

peaks play a higher role in auditory perception. Also note that for the last two

weights (i ¼ 9 and 10), fractional constants are applied so as to diminish their con-

tributions toward the overall distance. Since the human ear cannot resolve diffe-

rences at high frequencies as accurately as at low frequencies, more emphasis is

put on the low- to mid-frequency regions. Therefore, the distance measure gives

more weight to the LSFs corresponding to the high-amplitude formants than to

those corresponding to the low-amplitude formants; the LSFs corresponding to

the valleys in the PSD get the least weight. It is important to note that the weighting

improves the perceptual performance; it does not necessarily reduce the spectral

distortion.

SPLIT VQ 401

Design of Split VQ

Many variables exist in a split VQ scheme. These variables are determined by

answering some questions about what to expect from the system. Some of these

can be answered by common sense, while others need experimentation. Questions

and answers are recorded below.

� How many subvectors should be split?

In split VQ, the input vector is divided into a number of subvectors, with

each subvector quantized separately using regular VQ. The higher the number

of subvectors, the lower the computational cost; the price to pay is a degra-

dation in quality. A good trade-off for LSF quantization is to split into two

subvectors.

� How many elements per subvector should there be?

The input vector can be split into two parts in many ways: for instance,

separately quantizing the first four elements and the last six elements, referred

to as the (4, 6) scheme. Experimentally, it was found that the (4, 6) structure

outperformed (3, 7), (5, 5), and (6, 4).

� How many bits per vector should there be?

Experimentally, transparent quantization is achieved using 24 bits per vec-

tor together with the weighted Euclidean distance measure (15.5), where each

subvector is encoded using 12 bits. The bit requirement is indeed a big leap

forward when compared to traditional scalar quantizers (Chapter 8), which

typically consume more than 30 bits/frame in order to achieve transparent

quantization.

� How are the codebooks searched?

The two codebooks in a (4, 6) scheme can be searched in many different

ways. Full search, for instance, evaluates all possible combinations of sub-

vectors from the two codebooks—a rather expensive proposition. By proceed-

ing in a suboptimal sequential manner, the computational cost is greatly

reduced. One approach is to search the first codebook in order to locate the

first quantized subvector; this is done using the weighted Euclidean distance

with the first four elements alone. Then the second codebook is searched so as

to locate the second quantized subvector, this time using all 10 LSFs in the

distance measure, with the first four elements fixed. To preserve the ordering

of the LSFs, only those codevectors from the second codebook that satisfy

o4 < o5 are considered. In this way, stability is guaranteed for the filter

associated with the quantized LSF vector.

402 VECTOR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

The split VQ scheme described here has influenced and inspired the design of

LPC quantizers in generations to come. Several of these quantizers are described in

the next sections.

15.3 MULTISTAGE VQ

MSVQ, as presented in Chapter 7, is a reduced-complexity suboptimal approach to

VQ. Here, we study the work presented in LeBlanc et al. [1993], where MSVQ of

the LSF is considered. The technique is included as part of the FS MELP standard

(Chapter 17).

Codebook Design

Chapter 7 already discussed codebook design in MSVQ under squared Euclidean

distance measure. Using the same notation, we seek to design the codebooks so as

to minimize the distance sum

D ¼
X
k

ðxk � x̂kÞTWkðxk � x̂kÞ; ð15:7Þ

with Wk the diagonal weighting matrix associated with xk. Expanding (15.7), we

find

D ¼
X
k

ðxk � BkyÞTWkðxk � BkyÞ

¼
X
k

xTkWkxk � 2yT
X
k

BT
kWkxk þ yT

X
k

BT
kWkBk

 !
y: ð15:8Þ

Let’s define

v ¼
X
k

BT
kWkxk; ð15:9Þ

Q ¼
X
k

BT
kWkBk; ð15:10Þ

Do ¼
X
k

xTkWkxk: ð15:11Þ

Substituting (15.9), (15.10), and (15.11) into (15.8) gives

D ¼ Do � 2yTvþ yTQy: ð15:12Þ

Thus, the expression for the distortion takes the same form as in Chapter 7, and the

design procedure can be applied with no modification.

MULTISTAGE VQ 403

One of the concerns in VQ of the LSF is the outliers—input vectors that are

poorly represented in the training sequence and are quantized with a spectral

distortion much larger than the average. The outlier performance can be improved

significantly by appropriately weighting the distortion measure during training. The

weighting matrix Wk in (15.7) is substituted by W0
k, defined by

W0
k ¼ f ðSDkÞWk; ð15:13Þ

where SDk is the spectral distortion between xk and x̂k, and f ð�Þ is a mapping func-

tion that can be selected according to a particular situation. One such function is

f ðSDÞ ¼ 1; SD
 1;

1þ dZðSD� 1Þe; SD > 1;

�
ð15:14Þ

with Z a positive constant and d�e the ceiling function (returns the nearest integer

greater than or equal to the enclosed variable). Therefore, the mapping function

produces no changes to the weighting matrix for low SD. For SD > 1, however,

the magnitudes of the original weights are augmented by a factor greater than

one. Experimentally, it was found that the average SD was not disturbed signifi-

cantly, but the percentage of outliers was decreased substantially [LeBlanc et al.,

1993]. The typical range of Z is between 2 and 100. For small Z, reduction of

the number of outliers is not very pronounced. For more effective control of the

number of outliers, a higher value of Z should be used. An excessively high value

of Z, however, can degrade the average performance of the final design.

Using MSVQ of the LSF parameters, with the codebooks designed with the

explained procedures, it was found that the subjective performance, using 24

bits/frame, is equivalent to that of the LSF scalar quantizer for the FS1016 coder,

which uses 34 bits/frame (Chapter 8). Thus, a much higher compression ratio is

achieved. It is this superior performance that led to the inclusion of the MSVQ tech-

nique into the FS MELP standard. The reader must not forget that high performance

is obtained with increasing implementational cost. However, cost associated with

MSVQ is well within the reach of modern DSPs.

Other Implementational Issues

Let’s ignore the case of MSVQ for a moment and consider an LSF-based LPC

quantization system using optimal VQ. Figure 15.5 (top) shows the block diagram

of such a system. The index output of the VQ encoder is transmitted to the VQ

decoder, where a particular codevector, representing the quantized LSF vector is

recovered. This quantized LSF vector is transformed back to LPC so as to yield

the quantized LPC vector. Since all possible LSF codevectors are stored in the

codebook of the VQ decoder, the LSF-to-LPC block can be eliminated by convert-

ing the LSF codevectors to LPC, and using the output index of the VQ encoder to

directly recover a LPC vector, thus eliminating the computation associated with

LSF-to-LPC conversion.

404 VECTOR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

Assuming that the input LPC vectors are associated with stable synthesis filters,

the corresponding LSF vectors have their elements sorted in ascending order (inter-

lacing property, Chapter 8). This property is generally true if the numerical preci-

sion applied for the LPC-to-LSF conversion procedure is sufficiently high. Very

often, numerical precision in practice is not what one desires due to resource lim-

itation; for instance, one might not be able to use a floating-point processor due to

the low price target of a product. Instead, all computation must be done using a

cheaper fixed-point processor; in this case, accumulated errors during conversion

may lead to LSF vectors with unsorted elements. Quantizing these LSF vectors

using a VQ designed for sorted LSF vectors might lead to excessive quantization

errors.

A low-complexity solution to the described problem is to deploy the system

shown in Figure 15.5 (bottom). As we can see, a sorting block is incorporated to

ensure that the LSF vectors are sorted in ascending order. These vectors are then

passed to a minimum distance enforcement block, with the purpose of separating

two elements that are too close to each other. That is, if the distance between

any two elements is less than a certain threshold, they are modified in such a

way that their distance is equal to the pre-established threshold. In this way, all

input LSF vectors to the VQ encoder will satisfy the desired property.

The systems described in Figure 15.5 are based on an optimal VQ, where the

codevectors are stored in one single codebook addressed by an index. This approach

is computationally expensive and, in most instances, impractical. Let’s go back

into our MSVQ discussion. Figure 15.6 shows such a system: besides the prepro-

cessing blocks prior to entering the encoder, the same blocks are deployed after the

decoder. This is necessary since, for MSVQ, it is in general not possible to guaran-

tee the ordering of the quantized vector; in fact, codevectors at the second stage and

beyond are normally zero-mean vectors since they represent a population of error

LPC

LPC

Quantized
LPC

Quantized
LPC

LPC
to LSF

VQ
encoder
(LSF)

VQ
decoder
(LPC)

Sorting
Minimum
distance

enforcement

LPC
to LSF

VQ
encoder
(LSF)

VQ
decoder
(LSF)

LSF
to LPC

Figure 15.5 LSF-based LPC quantization using optimal VQ (top). Same system with

increased robustness (bottom).

MULTISTAGE VQ 405

vectors—the difference between input vectors and first-stage codevectors. On the

other hand, codebook search in MSVQ is usually performed sequentially on a

stage-by-stage basis. Based on the above factors, ordering and minimum distance

between elements of the quantized vectors cannot be attained in general. Thus, the

quantized LSF vectors at the output of the MSVQ decoder must be sorted and mini-

mum distance maintained before converting back to LPC. In this way, the final LPC

vectors are warranted to lead to stable synthesis filters.

LPC Quantization and Interpolation of the FS MELP Coder

This coder utilizes a frame length of 180 samples (22.5 ms); however, for LP

analysis, a 200-sample (25 ms) Hamming window centered on the last sample in

the current frame is used (Figure 15.7). A tenth-order LP analysis is performed.

The LPCs are first transformed to LSFs, which are sorted (see Exercise 15.3 for

ideas on sorting algorithms), and minimum distance between elements is enforced,

where the minimum separation is equal to 50 Hz (see Exercise 15.4 for a suggested

algorithm). The resulting vectors are quantized using MSVQ. The MSVQ code-

books consist of four stages of 128, 64, 64, and 64 codewords, respectively, result-

ing in a total of 25 bits/frame.

The MSVQ finds the codevectors that minimize the weighted squared Euclidean

distance ((15.5) and (15.6)). Tree search is applied where the Ma ¼ 8 best

LPC

Quantized
LPC

LPC
to LSF

MSVQ
encoder
(LSF)

MSVQ
decoder
(LSF)

LSF
to LPC

Sorting
Minimum
distance

enforcement

Sorting
Minimum
distance

enforcement

Figure 15.6 LSF-based LPC quantization using MSVQ.

LP analysis window

Previous Current

T
no

n0 = 0 n0 = 179

Previous frame Current frame Next frame

Figure 15.7 Positions of frame and LP analysis windows for the FS MELP coder.

406 VECTOR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

codevectors from each stage are saved for use by the next stage. On the decoder

side, the recovered LSF vectors are sorted and minimum distance is enforced; these

vectors are then transformed to become the quantized LPC vectors.

During decoding for speech synthesis, the signal is generated on a pitch-period-

by-pitch-period basis. The pitch period is determined from the input signal. For the

pitch period that starts at time instant no, where 0
 no < 180, the interpolation

factor a is given by

a ¼ no=180; ð15:15Þ
and the LSF for the particular pitch period is obtained by linear interpolation with

o ¼ ð1� aÞoprevious þ aocurrent; ð15:16Þ
where oprevious and ocurrent represent the LSFs of the previous and current frames,

respectively. Other parameters in the MELP model are interpolated in a similar

manner. See Chapter 17 for more details.

15.4 PREDICTIVE VQ

As is evidenced from Section 15.1, LSF vectors from consecutive frames exhibit a

high level of correlation, which can be explored efficiently using PVQ to improve

the performance of LSF quantization. In this section, three PVQ-based schemes are

described and are all part of standardized coders. The description is not limited to

quantization, but also windowing and interpolation.

ITU-T G.723.1 MP-MLQ / ACELP

This coder utilizes a 30-ms (240-sample) frame divided into four 7.5-ms (60-sample)

subframes. For each subframe, a Hamming window of length 180 centered on the

subframe is applied; eleven autocorrelation coefficients are computed from the

windowed data. A white noise correction factor of 1025/1024 is applied followed

by spectral smoothing; LPCs are found by Levinson–Durbin conversion, which are

bandwidth expanded. Thus, for every input frame, four sets of LPCs are computed,

one for every subframe. The situation is illustrated in Figure 15.8. Among the four

LP analysis window

Sf0 Sf1 Sf2 Sf3 Sf0 Sf1 Sf2 Sf3 Sf0 Sf1 Sf2 Sf3

Previous frame Current frame Next frame

Figure 15.8 Positions of frame and LP analysis windows for the G.723.1 coder.

PREDICTIVE VQ 407

sets of LPCs that are obtained from a given frame, only the one corresponding to

the last subframe is quantized and transmitted. The other three sets of LPCs asso-

ciated with the first three subframes are only used for encoding operations, such as

perceptual weighting.

LSF Quantization: PVQ with Split Structure

A block diagram of the LSF quantizer appears in Figure 15.9. The input LSF vector

x½m� of the mth frame is first mean-removed:

v½m� ¼ x½m� �m; ð15:17Þ
leading to the zero-mean LSF vector v½m�. Given the prediction p½m�, the prediction-
error vector is

e½m� ¼ v½m� � p½m�; ð15:18Þ

with the prediction given by

p½m� ¼ 12

32
v̂½m� 1�; ð15:19Þ

that is, it is a fixed first-order predictor that relies on the quantized mean-removed

LSF vector to form the prediction. The prediction-error vector is quantized using split

VQ, where the vector is split into three subvectors with dimension 3, 3, and 4.

m

v[m] e[m]
x[m]

p[m]
i[m]

m

m

i[m]

p[m]

Encoder

Decoder

Predictor

Stability
enforcement

Decoder Stability
enforcement

Predictor

v[m]ˆ

x[m]ˆ

x[m]ˆ
v[m]ˆ

e[m]ˆ

e[m]ˆ

−

−

Figure 15.9 Encoder (top) and decoder (bottom) of the G.723.1 LSF quantizer.

408 VECTOR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

The subvectors are quantized with three codebooks having the same size of 256,

each addressed by 8 bits leading to a total of 24 bits/frame.

The objective of quantization is to locate the optimal codebook indices so that

the weighted distance measure (15.5) is minimized. The weights are given by

wi ¼
ðo2 � o1Þ�1; i ¼ 1;
ðminðoi � oi�1;oiþ1 � oiÞÞ�1; i ¼ 2 to 9

ðo10 � o9Þ�1; i ¼ 10:

8<
: ð15:20Þ

Thus, more emphasis is placed on those LSFs that are situated close to each other.

By utilizing these weights, sharp peaks in the spectrum can be represented more

faithfully since they tend to have close-by LSFs. To enforce stability, the following

procedure is applied:

1. counter 0
2. while counter < 10
3. flag 0
4. for i 1 to 9
5. if oi þ1 � oi < dmin
6. avg (oi þ oiþ1)/2
7. oi avg � dmin/2
8. oiþ1 avg þ dmin/2
9. flag 1

10. counterþþ;
11. if flag ¼ 0 break

In the above pseudocode, a minimum distance of dmin is enforced between adja-

cent LSF values, with the official value being dmin ¼ 31:25Hz. The distance enfor-
cement loop (Line 4 to Line 9) is entered a maximum of ten times. If the loop is

passed with no modification to the LSF elements, the procedure is terminated (Line

11). If the LSF elements are still changed after the tenth exit to the loop, the LSF

vector is considered invalid. The variable flag can be returned at the end of the

procedure as a signal to the status of the operation.

During actual LSF decoding, if a decoded vector is invalid, it is discarded and

replaced by the vector from the last frame.

LSF Interpolation

Linear interpolation is performed between the decoded LSF vector of the current

frame (x) and the past frame ðxpastÞ so as to obtain a different LSF vector for

each subframe. This is done as follows:

x0 ¼ 0:75xpast þ 0:25x; ð15:21Þ
x1 ¼ 0:5xpast þ 0:5x; ð15:22Þ
x2 ¼ 0:25xpast þ 0:75x; ð15:23Þ
x3 ¼ x; ð15:24Þ

with x0; x1; x2, and x3 the LSF vectors of subframes 0, 1, 2, and 3, respectively.

PREDICTIVE VQ 409

ITU-T G.729 ACELP

This coder utilizes a 10-ms (80-sample) frame divided into two 5-ms (40-sample)

subframes. A tenth-order LP analysis procedure is performed once per frame, with

the autocorrelation values extracted using the asymmetric window:

w½n� ¼
0:54� 0:46 cos 2pn

399

 �
; n ¼ 0; . . . ; 199;

cos
2pðn�200Þ

159

� 	
; n ¼ 200; . . . ; 239:

(
ð15:25Þ

There is a 5-ms look-ahead in LP analysis, meaning that 40 samples are needed

from the future speech frame. Figure 15.10 illustrates the situation. The windowed

samples are used to compute the autocorrelation values R½l�; l ¼ 0; 1; . . . ; 10. To
avoid numerical problems for low-level input signals, the value of R½0� has a low

boundary of R½0� ¼ 1.

Spectral smoothing is applied with the window

wss½l� ¼ e�ð2p60l=8000Þ
2=2; l ¼ 1; . . . ; 10; ð15:26Þ

followed by white noise correction with a factor of 1.0001 (Chapter 4). The

Levinson–Durbin algorithm is applied to solve for the LPCs.

Use of an asymmetric window coupled with a relatively short frame length of

10 ms is mainly motivated by coding delay issues. A shorter frame length is trans-

lated directly into lower delay. An asymmetric window with more weighting on the

samples of the last subframe in the current frame implies less look-ahead during

autocorrelation computation; that is, the need to buffer future samples is reduced,

minimizing coding delay at the same time.

LSF Quantization: PVQ-MA with Switched Predictor and
Multistage Split Structure

The G.729 coder utilizes 18 bits/frame to encode the LSF. The scheme is based on a

combination of MSVQ, split VQ, and PVQ-MA with switched predictor. To quan-

tize the prediction-error vectors within the framework of PVQ-MA, a two-stage

w

Sf0 Sf1

Next frameCurrent f.Past framePast past f.

Sf0 Sf1Sf0 Sf1Sf0 Sf1

Figure 15.10 Positions of frame and LP analysis windows for the G.729 coder.

410 VECTOR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

MSVQ is utilized; the first stage consists of a ten-dimensional quantizer, while the

second stage is implemented as a split VQ with five-dimensional codebooks.

Another important feature is the use of two different predictors, selected during

encoding. Bit allocation of the quantizer is summarized in Table 15.1.

The switched prediction scheme allows the system to better adapt to different

signal conditions, which is desirable since the LSFs display strong correlation dur-

ing stationary segments, but mild correlation during transitions. To limit propaga-

tion of channel errors, the predictor is of the MA type. Prediction order was

determined empirically and it was found that a fourth-order MA predictor forms

a good compromise between performance and error control [Kataoka et al.,

1994]. The use of a multistage and split VQ configuration effectively reduces

implementational costs. The first stage is ten-dimensional, allowing exploitation

of correlation among all vector components; at the second stage, these correlations

are reduced, and the residue vector from the first stage is quantized efficiently using

a split structure.

For comparison between residue vector from the first stage LSF vectors, the

weighted Euclidean distance (15.5) is utilized, with

wi ¼
ri; if oiþ1 � oi�1 � 1 > 0;

10riðoiþ1 � oi�1 � 1Þ2 þ 1; otherwise;

�
ð15:27Þ

for i ¼ 1 to 10, and

ri ¼ 1:2; if i ¼ 5; 6;
1:0; otherwise;

�
ð15:28Þ

with o0 ¼ 0:04p and o11 ¼ 0:92p.
During encoding and decoding, the following procedure is often invoked so as

to maintain a minimum separation between the elements of the LSF vector. The

minimum distance dmin is passed as a parameter to the procedure.

MIN_DISTANCEðo1, . . . ;o10, dmin)
1. for i 2 to 10
2. if ðoi�1 > oi - dmin)
3. oi-1 ðoi þoi-1 - dmin)/2
4. oi ðoi þ oi-1 þ dmin)/2

Table 15.1 Bit Allocation for LSF Quantization of the G.729 Codera

Index Function Number of Bits

i0 Predictor selection 1

i1 First-stage codebook (10-D) 7

i2 Second-stage codebook—low part (5-D) 5

i3 Second-stage codebook—high part (5-D) 5

aData from ITU [1996a], Table 8.

PREDICTIVE VQ 411

Decoding the LSF

Given the indices i0½m�; i1½m�; i2½m�, and i3½m� of the mth frame, the vector

ê½m� ¼ y1li1½m� þ y2li2½m�
y1hi1½m� þ y2hi3½m�

� �
ð15:29Þ

is constructed. It represents a scaled version of the quantized prediction-error vec-

tor. The vector ½y1lT jy1hT �T is the 10-D codevector of the first-stage codebook, with

y1l and y1h 5-D vectors. On the other hand, y2l and y2h denote the codevectors of

the second-stage codebook, the low part and high part, respectively.

Minimum distance is enforced on the vector in (15.29) by calling MIN_DISTANCE

twice; first with a value of dmin ¼ 0:0012, then with a value of dmin ¼ 0:0006.
After this processing step, the quantized LSF vector is

x̂½m� ¼ aði0½m�Þê½m� þ xði0½m�Þp ½m�

¼ aði0½m�Þê½m� þ
X4
i¼1

b
ði0½m�Þ
i ê½m� i�; ð15:30Þ

where

aði0Þ ¼ 1�
X4
i¼1

b
ði0Þ
i ð15:31Þ

and b
ði0Þ
i are the MA coefficients of the i0-th predictor. Initial values of the

prediction-error vectors are given by

ê ¼ p
11

2p
11

3p
11

� � � 10p
11

� �T
: ð15:32Þ

After computing (15.30), stability of the corresponding filter is ensured by

performing the following operations:

1. Sort the elements of the LSF vector.

2. If ô1 < 0:005 then ô1 0:005.

3. If ôiþ1 � ôi < 0:0391 then ôiþ1 ôi þ 0:0391, for i ¼ 1 to 9.

4. If ô10 > 3:135 then ô10 3:135.

In the above procedure, ôi are the elements of the quantized LSF vector x̂.
Figure 15.11 shows the block diagram of the decoder.

412 VECTOR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

Encoding the LSF

Given the input LSF vector of the mth frame,

x½m� ¼ ½o1½m� o2½m� � � � o10½m��T ; ð15:33Þ

we have the prediction-error vector

rði0Þ½m� ¼ x½m� � xði0Þp ½m�: ð15:34Þ

Note that the procedure is repeated for the two predictors: i0 ¼ 0 and i0 ¼ 1. The

quantization target is the scaled prediction-error vector

eði0Þ½m� ¼ rði0Þ½m�=aði0Þ: ð15:35Þ

The vector is quantized by searching the first-stage codebook to find the codevector

that minimizes the Euclidean distance (no weighting); the resultant quantized vec-

tor is denoted by

e1ði0Þ½m� ¼ y1l
ði0Þ
i1

y1h
ði0Þ
i1

" #
: ð15:36Þ

The next step is to search the second-stage low-part codebook. In this case, the

vectors

e2
ði0Þ
i2
½m� ¼ y1l

ði0Þ
i1
þ y2li2

y1h
ði0Þ
i1

" #
ð15:37Þ

are constructed with i2 ¼ 0; . . . ; 31. Based on (15.37), the following quantized

input vectors are found:

x̂2
ði0Þ
i2
½m� ¼ aði0Þe2ði0Þi2

½m� þ xði0Þp ½m�; ð15:38Þ

i0[m]

y1

y2l

y2h

i1[m]
α

i2[m]

i3[m] xp

First-stage
codebook

Second-stage
lower part
codebook

Second-stage
higher part
codebook

Minimum
distance

enforcement

Predictor

Choose
scaling
constant

Stability
enforcement

e

[]x m

ˆ

ˆ

Figure 15.11 Block diagram of the LSF decoder for the G.729 coder.

PREDICTIVE VQ 413

which are derived from (15.30). Minimum distance is enforced with dmin ¼
0:0012; the processed vectors are then applied in the weighted distance computa-

tion so as to compare with the input vector. The particular index i2 that produces the

smallest distance is selected. This concludes the search of the second-stage lower

part codebook.

Using the selected first-stage codevector, and the second-stage lower part code-

vector, the high part of the second stage is searched. This is done by first construct-

ing the vectors

e3
ði0Þ
i3
½m� ¼ y1l

ði0Þ
i1
þ y2l

ði0Þ
i2

y1h
ði0Þ
i1
þ y2hi3

" #
ð15:39Þ

for i3 ¼ 0; . . . ; 31. Both i1 and i2 are fixed from previous searches. Followed by cal-

culation of the quantized input vectors similar to (15.38), the rest of the procedure is

performed in an identical manner, with the ultimate goal of finding the optimal

index i3.

After the indices i1, i2, and i3 are fixed, the same decoding procedure is applied

to compute two quantized LSF vectors: x̂ði0Þ½m�; i0 ¼ 0 and 1. These vectors are

compared to the input vector with the one producing the lowest weighted distance

selected. This final step determines the index i0. Figure 15.12 shows the block

diagram of the LSF encoder.

LSF Interpolation

Given the LSF vector x, whose elements are in the angular frequency domain

oi 2 ½0; p�, it is first transformed by

u ¼ ½cosðo1Þ cosðo2Þ � � � cosðo10Þ�T ; ð15:40Þ

r e
x[m]

x p i1 i2 i3

x Codebook indices

i1[m], i2[m], i3[m]

i0[m]

First-stage
encoding

Second-stage
lower part
encoding

Second-stage
higher part
encoding

LSF decoder

Distance
computation,

predictor
selection

Switch

1/α (i0)

(i0)(i0)

(i0) (i0)

(i0)

(i0) (i0)

−

ˆ

Figure 15.12 Block diagram of the LSF encoder for the G.729 coder.

414 VECTOR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

where the oi are elements of x. This vector is used directly by the second subframe.

For the first subframe, we use

u0 ¼ 0:5 upast þ 0:5 u: ð15:41Þ

The procedure is done for both the original LSF vector as well as the quantized

version. Interpolation of either domain does not produce noticeable audible

differences; the cosine domain, however, is sometimes convenient for practical

implementation.

ETSI GSM EFR ACELP

This coder utilizes a 20-ms (160-sample) frame divided into four 5-ms (40-sample)

subframes. A tenth-order LP analysis procedure is carried out twice for each 20-ms

frame using two different asymmetric windows of length 30 ms (240 samples).

Both procedures are performed for the same set of speech samples without using

any samples from future frames. These two windows are defined by

w1½n� ¼
0:54� 0:46cos pn

159

 �
; n ¼ 0; . . . ; 159;

0:54þ 0:46cos pðn�160Þ
79

� 	
; n ¼ 160; . . . ; 239;

8<
: ð15:42Þ

and

w2½n� ¼
0:54� 0:46cos 2pn

463

 �
; n ¼ 0; . . . ; 231;

cos
pðn�232Þ

31

� 	
; n ¼ 232; . . . ; 239:

8<
: ð15:43Þ

The windows are applied to 80 samples from a past frame in addition to the 160

samples of the current frame. Relative positions of the windows are illustrated in

Figure 15.13. The windowed samples are used to compute the autocorrelation

values R½l�; l ¼ 0; 1; . . . ; 10. The same processing steps as for the G.729 coder

are used to obtain two sets of LPCs.

w1 w2

Sf0 Sf1 Sf2 Sf3 Sf0 Sf1 Sf2 Sf3

Previous frame Current frame

Figure 15.13 Positions of frame and LP analysis windows of the GSM EFR coder.

PREDICTIVE VQ 415

LSF Quantization: PVQ-MA with Split Matrix Quantization

Given the two sets of LPCs of the frame under consideration,

a1;i; a2;i; i ¼ 1; . . . ; 10;

where a1;i are obtained through w1 while a2;i via w2, they are first converted to two

sets of LSFs:

o1;i;o2;i; i ¼ 1; . . . ; 10:

In vector notation,

xT1 ¼ ½o1;1;o1;2; . . . ;o1;10�; xT2 ¼ ½o2;1;o2;2; . . . ;o2;10�:

The mean of each individual LSF element is removed:

v1 ¼ x1 �m; v2 ¼ x2 �m; ð15:44Þ

with the prediction-error vectors

r1 ¼ v1 � p; r2 ¼ v2 � p; ð15:45Þ

where p is the predicted LSF vector for the current frame. The prediction is based

on the prediction-error vector of the past frame, given by

p ¼ 0:65r̂2;past; ð15:46Þ

where r̂2;past is the quantized second prediction-error vector of the prior frame.

Thus, a first-order MA predictor is employed.

The two vectors r1 and r2 are joined together to form a matrix, which is divided

into five submatrices of dimension 2� 2: R1 to R5. This is illustrated as follows:

½r1jr2� ¼
r1;1 r2;1
r1;2 r2;2

..

. ..
.

r1;10 r2;10

2
6664

3
7775 ¼

R1

R2

R3

R4

R5

2
66664

3
77775: ð15:47Þ

Each submatrix consists of four elements and is quantized separately with 7, 8,

8þ 1, 8, and 6 bits, respectively. The scheme is referred to as split matrix quantiza-

tion, which in principle is a split VQ procedure. The third submatrix uses a 256-

entry signed codebook; that is, 8 bits is allocated to the shape vectors and 1 bit

is allocated to sign. In this way, more resources are allocated to the perceptually

important frequency regions.

416 VECTOR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

The objective of quantization is to find the vectors

x̂1 ¼ v̂1 þm ¼ r̂1 þ pþm; x̂2 ¼ v̂2 þm ¼ r̂2 þ pþm ð15:48Þ

and to minimize the distance

dðx1; x2; x̂1; x̂2Þ ¼
X10
i¼1

w1;iðo1;i � ô1;iÞ2 þ w2;iðo2;i � ô2;iÞ2; ð15:49Þ

with w1;i and w2;i the weighting factors depending on the LSF values. Derivation of

the weighting factors is identical for the two vectors, defined by

wi ¼
3:347� 4:377�oi; �oi < 0:353;

2:143� 0:970�oi; otherwise;

(
ð15:50Þ

where

�oi ¼ oiþ1 � oi�1 ð15:51Þ

with o0 ¼ 0 and o11 ¼ p. This weighting scheme puts more emphasis on those

LSFs that are surrounded closely by others, while LSFs that are far separated

have proportionately less amount of weight. This is reasonable since for those

LSFs that are close together, higher precision is needed to represent them as faith-

fully as possible; for those LSFs that are far apart, higher error can be tolerated.

Figure 15.14 illustrates the quantization procedure.

LSF Interpolation

Given the quantized LSF vectors û1 and û2 whose elements are in the angular fre-

quency domain, the second subframe utilizes û1 directly while the fourth subframe

m m

v1 r1

x1

v2 r2

x2

0.65 0.65
m p p

Quantizer

Delay by
one frame

Delay by
one frame

r1

r2

x1

x2

−

− −

−
ˆ

ˆ

ˆ
ˆ

Figure 15.14 Illustration of LSF quantization for the GSM EFR coder.

PREDICTIVE VQ 417

utilizes û2 directly. For the first and third subframes, linear interpolation is

employed. First, the quantized LSF vectors are converted to

xT1 ¼ ½cosðô1;1Þ cosðô1;2Þ � � � cosðô1;10Þ�;
xT3 ¼ ½cosðô2;1Þ cosðô2;2Þ � � � cosðô2;10Þ�:

Then for the first and third subframes, we use

x0 ¼ 0:5x3;past þ 0:5x1 ð15:52Þ

and

x2 ¼ 0:5x1 þ 0:5x3; ð15:53Þ

respectively.

15.5 SUMMARY AND REFERENCES

This chapter captured some major trends in LPC quantization, which are all related

to VQ of the LSF. These schemes have been widely deployed to many speech

coding standards and are far superior to the prior generation of scalar quantizers.

Success of these schemes is credited to the exploration of correlation among the

LSFs, both interframe and intraframe.

One of the earliest work in VQ of LPCs is perhaps Buzo et al. [1980], with

demonstration of the superiority of VQ over scalar quantization. Paliwal and

Atal [1993] studied split VQ and concluded that LSF was better suited than

LAR, and the resultant quantizer was as robust to channel errors as the scalar quan-

tizers; transparent quantization was achieved with 24 bits/frame. LeBlanc et al.

[1993] utilized MSVQ of the LSF and found that, at 24 bits/frame, performance

is equivalent to the 34-bit/frame scalar quantizer of the FS1016. The same principle

was later absorbed by the FS MELP standard, where a four-stage MSVQ at 25 bits/

frame was utilized [McCree et al., 1997]. It is possible to prove that, at high resolu-

tion, the weighted Euclidean distance measure is optimum for LSF VQ, with a spe-

cial form of weighting factors derived in Gardner and Rao [1995a, 1995b]. These

principles are utilized in McCree and DeMartin [1997] to develop a switched PVQ

scheme with multistage structure for LSF quantization at a rate of 20 bits/frame.

The method outperformed the original quantizer of the FS MELP standard; together

with other changes, the authors proposed a 1.6-kbps MELP coder.

Early works for PVQ in spectrum parameters quantization can be found in Sho-

ham [1987] and Yong et al. [1988], where a predictor is selected according to cer-

tain criteria during encoding. Adaptive predictor and split VQ were proposed by

Erzin and Cetin [1993]. The LSF quantizer of the G.729 was originally proposed

in Kataoka et al. [1993, 1994] and later incorporated in the design of a CS-CELP

418 VECTOR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

coder [Kataoka et al., 1996]. A similar quantizer was investigated by Salami et al.

[1994] and ultimately led to its inclusion as part of the G.729 standard [ITU, 1996a;

Salami et al., 1998]. In Shoham [1999], a training algorithm is proposed to jointly

optimize the predictors and residual codebook, leading to improvements with

respect to the standardized quantizer. Use of an asymmetric window in LP analysis

was investigated by Florencio [1993], which is very much favored by modern

coders due to the cutback in algorithmic delay. Xydeas and Papanastasiou [1995]

introduced the idea of split matrix quantization, where LSF vectors from conse-

cutive frames are concatenated into a matrix to be quantized as a whole. Quantizer

of the GSM EFR coder is described in Salami [1997a] and ETSI [1999], and that of

the G.723.1 coder is found in ITU [1996b]. See Eriksson et al. [1999] for the

‘‘safety-net’’ PVQ design to improve robustness against channel errors as well as

performance. Theoretical analysis of memoryless VQ and recursive coding of spec-

trum parameters can be found in Hedelin and Skoglund [2000] and Samuelsson and

Hedelin [2001].

Quantization of LPCs is still an active research area where new algorithms with

improved performance and less computational cost are proposed. Readers are

referred to the current literature for the latest trend. Due to continuous technological

advances, faster and more powerful processors are becoming accessible at low cost;

some of the high-performance high-complexity algorithms that were prohibitive in

the old days are becoming implementable. Therefore, in the near future, we will be

able to witness the spawn of new generations of high-performance speech coders at

very low bit-rate.

EXERCISES

15.1 Using some speech material, extract the LSF vectors based on 160-sample

frames using a Hamming window. Calculate the normalized correlation

R½i; j; k� as defined in (15.3) for i; j ¼ 1 to 10 and k ¼ 0 to 3. Repeat the

correlation calculation with the original LSF, that is, before the mean

is removed. Compare the two sets of correlation values; explain the

difference.

15.2 In split VQ of the LSF, and considering (3, 7), (5, 5), (4, 6), and (6, 4), using

24 bits and 12 bits per codebook, is there any difference in memory cost for

these four schemes? What about computational cost using sequential search?

15.3 An elementary sorting method is known as bubble sort [Sedgewick, 1992]:

keep passing through the array, exchanging adjacent elements, if necessary;

when no exchanges are required on some pass, the array is sorted. The

following pseudocode illustrates the idea:

BUBBLE_SORT(x[], N)
1. flag 1

EXERCISES 419

2. for i 0 to N � 2
3. if x[i] > x[i þ 1]
4. SWAP(x[i], x[i þ 1])
5. flag 0
6. if flag ¼ 0 goto 1

The function SWAP at Line 4 exchanges two elements of the array. Verify

that the algorithm does work. What is the best case and worst case computa-

tional cost associated with this method? See Cormen et al. [1990] for other

sorting algorithms and performance analysis.

15.4 One suggested method for minimum distance enforcement for tenth-order

LSF vector is the following:

MIN_DISTANCEðo1, . . . , o10)
1. for i 1 to 9
2. d oi+1 � oi

3. if d < dmin
4. s1 s2 (dmin � d)/2
5. if i ¼ 1 and oi < dmin
6. s1 oi/2
7. else if i > 1
8. temp oi � oi�1
9. if temp < dmin

10. s1 0
11. else if temp < 2 � dmin
12. s1 (temp � dmin)/2
13. if i ¼ 9 and oiþ1 > p � dmin
14. s2 ðp� oiþ1)/2
15. else if i < 9
16. temp oiþ2 � oiþ1
17. if temp < dmin
18. s2 0
19. else if temp < 2 � dmin
20. s2 (temp � dmin)/2
21. oi oi � s1

22. oiþ1 oiþ1 þ s2

Does the procedure deliver the expected results? What are the limitations, if

any? The parameter dmin is the distance threshold between elements.

15.5 For the minimum distance enforcement routine of the G.723.1 coder, find out

two situations with the input LSF values where the routine will return an

invalid status: that is, the procedure finalizes and reports the condition where

distance enforcement has not been completed.

420 VECTOR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

15.6 Based on your knowledge of PVQ design (Chapter 7), summarize the

procedure that you would apply to train the codebooks for the LSF

quantizer of the G.729 coder, taking into account the particular structure

with a switched predictor. Extend your method to the case where more than

two predictors exist.

15.7 Plot the windows utilized by the G.729 and the GSM EFR coders for the

autocorrelation calculation. Find the magnitude of the Fourier transform

associated with the windows.

15.8 Using some speech material, extract the LSF vectors based on the rules

outlined for the GSM EFR coder. With no quantization, apply the predic-

tion scheme of the LSF quantizer to compute the prediction-error vectors.

Calculate normalized correlation as defined in (15.3) for the LSF vectors as

well as the prediction-error vectors. Is the prediction scheme effective in

redundancy removal?

15.9 For the GSM EFR coder, plot the distance calculation weights as a function

of the LSF difference (15.50). What conclusion is obtained?

15.10 One way to measure the effectiveness of the linear predictor is through the

energy of the prediction error, and the associated prediction gain (Chapter

4). Using the windowing, LP analysis, and interpolation schemes of the

G.729 coder, calculate the segmental prediction gain for some speech

material. Repeat the measurement using a Hamming window and a

rectangular window of the same length. Is the use of an asymmetric

window effective in elevating the prediction gain?

15.11 Are the following statements true? Justify your answers.

(a) Minimum coding delay of the FS MELP coder is equal to 57.5 ms.

(b) Minimum coding delay of the G.723.1 coder is equal to 67.5 ms.

(c) Minimum coding delay of the G.729 coder is equal to 25 ms.

(d) Minimum coding delay of the GSM EFR coder is equal to 40 ms.

See Chapter 1 for definition of coding delay. It is assumed that the

encoder is transmitting in constant mode, with no processing delays. Ignore

the additional delay that the postfilter introduces for these coders during

decoding.

Now, assuming that the encoder is transmitting in burst mode—that is,

all available bits of the compressed bit-stream for the frame are sent imme-

diately to the decoder once encoding is completed—recalculate the mini-

mum coding delay for the above four cases.

15.12 Given the LSF vector

x ¼ ½0:17; 0:33; 1:01; 1:14; 1:16; 1:57; 2:13; 2:54; 2:65; 2:95�T ;

EXERCISES 421

show that the weight vectors to find the weighted Euclidean distance

between x and its quantized version for various standardized coders are

specified as follows:

(a) FS MELP:

w ¼ ½1:741; 1:604; 1:101; 1:043; 1:035; 0:906; 0:805; 0:767; 0:486; 0:120�T :
(b) G.723.1:

w ¼ ½6:25; 6:25; 7:69; 50:0; 50:0; 2:44; 2:44; 9:09; 9:09; 3:33�T :

(c) G.729:

w ¼ ½7:33; 1:26; 1:36; 8:23; 5:10; 1:21; 1:01; 3:30; 4:48; 6:77�T :

(d) GSM EFR:

w ¼ ½1:90; 1:33; 1:36; 2:69; 1:73; 1:20; 1:20; 1:64; 1:75; 1:67�T :

422 VECTOR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT

CHAPTER 16

ALGEBRAIC CELP

Algebraic CELP or ACELP was born as another attempt to reduce the computa-

tional cost of standard CELP coders. As explained in Chapter 11, excitation code-

book search is the most intensive of all CELP operations. Throughout history,

researchers have tried many techniques to bring the cost down to manageable

levels; very often, the approach is to impose a certain structure for the fixed excita-

tion codebook so as to enable fast search methods. For instance, the IS54 coder

(Chapter 13) relies on a small number of basis vectors to generate the entire space

of excitation codevectors; by doing so, efficient techniques can be applied to locate

the optimal excitation sequence. The FS1016 coder (Chapter 12), on the other hand,

utilizes an overlapping codebook with ternary-valued samples, allowing the usage

of recursive convolution with no products.

Many ACELP-based standards follow the legacy of past CELP coders. The term

‘‘algebraic’’ essentially means the use of simple algebra or mathematical rules to

create the excitation codevectors, with the rules being addition and shifting. Based

on the approach, there is no need to physically store the entire codebook, resulting

in significant memory saving. The original ideas were first introduced in Adoul and

Lamblin [1987] and Adoul et al. [1987], two years after the landmark paper of

Schroeder and Atal [1985]. It has been refined by many researchers, leading to at

least five standardized coders:

� ITU-T G.723.1 Multipulse Maximum Likelihood Quantization (MP-MLQ)/

ACELP (1995).

� ITU-T G.729 Conjugate Structure (CS)–ACELP (1995).

� TIA IS641 ACELP (1996).

423

� ETSI GSM Enhanced Full Rate (EFR) ACELP (1996).

� ETSI Adaptive Multirate (AMR) ACELP (1999).

This chapter is devoted to the G.729 CS-ACELP coder. The most distinguishing

features are use of the algebraic excitation codebook and conjugate VQ for the

involved gains. The coder was developed originally for personal communication

systems, digital satellite systems, and other applications such as packetized speech

and circuit multiplexing equipment. The chapter starts with a revelation of the struc-

ture of the algebraic codebook, followed by the construction and search methodol-

ogy of the adaptive codebook. Description of encoding and decoding operations,

algebraic codebook search techniques, and gain quantization are given. The above-

mentioned ACELP standards have been developed by the same group of researchers

and therefore share many common attributes. The other four ACELP-based standards

are studied in a separate section with themost salient features analyzed and compared.

The concept of ACELP has a great deal of influence on the direction of speech

coding developments; study of its structure is necessary to grasp some of the

puissant trends in this field.

16.1 ALGEBRAIC CODEBOOK STRUCTURE

As studied in Chapter 11, a CELP coder contains a fixed excitation codebook hold-

ing the codevectors that serve as input to the synthesis filter. The codebook is

searched during encoding to locate the best codevector for a particular speech sub-

frame. The G.729 coder has an algebraic structure for the fixed codebook (referred

to from now on as the algebraic codebook) that is based on the interleaved single-

pulse permutation design. In this scheme each codevector contains four nonzero

pulses. Each pulse can have the amplitude of either 1 or �1 and can assume the

positions given in Figure 16.1.

Each excitation codevector has 40 samples, which is the length of a subframe.

The excitation codevector v[n] is constructed by summing the four pulses according to

v½n� ¼
X3
i¼0

pi½n� ¼
X3
i¼0

sid½n� mi�; n ¼ 0; . . . ; 39; ð16:1Þ

p0

p1

p2

p3

0 9 19 29 39
Position

Figure 16.1 Positions of individual pulses in algebraic codebook for the G.729 coder,

indicated by the black rectangles. Data from ITU [1996a], Table 7.

424 ALGEBRAIC CELP

where si ¼ �1 is the sign of the pulse and mi is the position. Thus, each pulse

requires 1 bit per sign. For p0, p1, and p2, 3 bits are needed for position; while

for p3, 4 bits are required. Hence, a total of 17 bits are needed to index the whole

codebook.

The index to the codebook is therefore composed of two parts: sign (4 bits) and

position (13 bits). Using a truncation function, f ðxÞ ¼ x if x > 0 and f ðxÞ ¼ 0 other-

wise. The sign index is given by

sindex ¼ f ðs0Þ þ 2f ðs1Þ þ 4f ðs2Þ þ 8f ðs3Þ ð16:2Þ

represented with 4 bits; while for position, we have

pindex ¼ m0

5
þ 8

m1

5

j k
þ 64

m2

5

j k
þ 512 2

m3

5

j k
þ ms3

� 	
ð16:3Þ

represented with 13 bits, where

ms3 ¼ 0; if m3 ¼ 3; 8; � � � ; 38;
1; if m3 ¼ 4; 9; � � � ; 39:

�
ð16:4Þ

Note that (16.2) and (16.3) are the actual indices transmitted as part of the G.729

bit-stream. The advantage of this method is that no physical storage is required for

the fixed codebook; however, the amount of bits allocated is relatively high when

compared to other CELP standards, such as the FS1016.

16.2 ADAPTIVE CODEBOOK

The G.729 coder has some unique methodologies applied to the adaptive codebook,

which are quite different from standards such as FS1016 or IS54. Figure 16.2 shows

the signals involved in the encoder. When compared with the diagrams in Chapters 12

and 13, we see some major differences. In general, the G.729 is more complex with

finer structure to boost the quality of synthetic speech. Due to advances in DSP

technology, extra complexity can be tolerated. In fact, comparing the G.729 with

previous generations of CELP coders, we can see the trend of increased complexity,

affordable with the constant improvements in the hardware front. In this section we

study the structure and search procedure of the adaptive codebook.

Perceptual Weighting Filter

G.729 utilizes a more sophisticated perceptual weighting filter than previous gen-

erations of CELP standards. The system function is

W zð Þ ¼ A z=g1ð Þ
A z=g2ð Þ ¼

1þP10
i¼1 aig

i
1z
�i

1þP10
i¼1 aig

i
2z
�i : ð16:5Þ

ADAPTIVE CODEBOOK 425

The LPC ai are the unquantized coefficients and are updated once every subframe.

For each subframe, the LPCs are obtained through interpolation in the LSF domain

(Chapter 15).

The use of unquantized LPCs in the system function (16.5) allows a better cap-

ture of the original signal spectrum, leading to elevated subjective quality. This is in

contrast to past generations of CELP coders, such as the FS1016, where quantized

coefficients are used due to simplicity. As we have seen in Chapter 11, the percep-

tual weighting filter and the formant synthesis filter are merged together to form the

modified formant synthesis filter. This technique does not apply to the G.729 coder,

where modest reduction in computational cost is abandoned in favor of higher

signal integrity.

The parameters g1 and g2 determine the frequency response of the filter and are

made adaptive depending on the spectral characteristics. The adaptation is based on

a spectrum flatness measure obtained through the first two RCs, as well as the clo-

seness of the LSFs. There are two possible values for g1—0.94 or 0.98—and g2
pertains to the range [0.4, 0.7]. The rules for the determination of g1 and g2 are

based on subjective tests and improvement in final speech quality has been reported

[Salami et al., 1998].

Open-Loop Pitch Period Estimation

Open-loop pitch period estimation is the first step toward adaptive codebook search.

The procedure is based on the weighted speech signal and is done once per frame,

s u3

e
d 2o

(t+f) d2(t+f) y 2(t+f)

s

b

d

uo

d1(l)

v(l) y1(l)

ew

g

Adaptive
codebook

W z()

W z A z()/ ()
(Zero)

1/ ()A z()A z

1/ ()A z

Delay by 1
subframe

W z A z() / ()
(Zero)

H zp ()

(Zero)

Algebraic
codebook

r
ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

−
−

−

Figure 16.2 Signals involved in the G.729 encoder.

426 ALGEBRAIC CELP

that is, every 10 ms. Figure 16.3 summarizes the major steps involved. The percep-

tually weighted speech, denoted by u[n], is used in the following autocorrelation

expression:

R l½ � ¼
X79
n¼0

u½n�u½n� l�: ð16:6Þ

Note that 80 samples are involved corresponding to two subframes. Three peaks are

separately found in three ranges of lag; these results are denoted by

R0 ¼ R½Top;0�jR½l�
 R½Top;0�; 20
 l; Top;0
 39; ð16:7Þ
R1 ¼ R½Top;1�jR½l�
 R½Top;1�; 40
 l; Top;1
 79; ð16:8Þ
R2 ¼ R½Top;2�jR½l�
 R½Top;2�; 80
 l; Top;2
 143: ð16:9Þ

The retained peak autocorrelation values are normalized according to

ri ¼ RiffiP
n u

2 n� Top;i
� �q ; i ¼ 0; 1; 2: ð16:10Þ

An overall winner is selected among these three outcomes by favoring the delays

in the lowest range. The decision process is summarized as follows:

1. Top Top,0; r ro;
2. if r1 > 0.85r
3. Top Top,1; r r1;
4. if r2 > 0.85r
5. Top Top,2;

Input
speech

Top,0

Top,1 Pitch period
Top

Top,2

Autocorrelation
and peak location

(first region)

Perceptual
weighting

filter

Decision
Autocorrelation

and peak location
(second region)

Autocorrelation
and peak location

(third region)

Figure 16.3 The open-loop pitch period estimation procedure for the G.729 encoder.

ADAPTIVE CODEBOOK 427

Thus, the procedure divides the lag range into three regions, with the final result

(Top) inclined toward the lower region, which is done to avoid choosing pitch

multiples.

Search Range for Pitch Period

The pitch period or adaptive codebook index is encoded with 8 bits for the first sub-

frame; for the second subframe, a relative value with respect to the first subframe is

encoded with 5 bits. For the first subframe, a fractional pitch period is used with a

resolution of 1
3
in the range of [19 1

3
, 84 2

3
] and integers only in the range [85, 143].

For the second subframe, a delay with a resolution of 1
3
is always used in the range

T2 2 roundðT1Þ � 5
2

3
; roundðT1Þ þ 4

2

3

� �
;

with T1 and T2 the pitch period of the first and second subframes, respectively.

For each subframe, the pitch period is determined by searching through the

adaptive codebook in such a way that the weighted mean-squared error is mini-

mized. The search range is found from the open-loop estimate Top: it is roughly

Top � 3 and Top � 5 for the first and second subframes, respectively.

Signals Involved in Adaptive Codebook Search

After knowing the search range for adaptive codebook, the following signals are

gathered before searching the codebook.

� Adaptive codebook array or excitation sequence.

This is denoted as d2½n�. For n < 0, the array contains samples of past exci-

tation (d in Figure 16.2). For 0
 n < N, where N ¼ 40 is the subframe

length, the array contains prediction error of the current subframe, obtained

by filtering the input speech using the prediction-error filter. Coefficients of

the filter are the quantized and interpolated LPCs, with the system function

denoted by ÂðzÞ. With this arrangement, the preliminary adaptive codevector

for integer pitch period t is given by

d20ðtÞ½n� ¼ d2½n� t�; 0
 n < N: ð16:11Þ

Note that this is different from the traditional adaptive codebook formula-

tion, where the codevector repeats the t samples of d2[n] in the range

n 2 ½�t;�1� when t < N (Chapter 12). A drawback of repeating the t samples

is that recursive convolution does not apply when t < N. To improve

computational efficiency, d2[n], 0
 n < N is filled with prediction error so

that recursive convolution can be utilized for all t. Also note that the codevec-

tors (16.11) are preliminary, meaning that they are not the final version

428 ALGEBRAIC CELP

utilized for speech synthesis. Obviously, this approach is suboptimal since the

codevectors during the search stage are not the same as the final versions used

in speech synthesis—more on this issue later.

� Target sequence for adaptive codebook search.

The target sequence u3[n] is found using the perceptually weighted speech

and the zero-input response of the cascade connection between perceptual

weighting filter and formant synthesis filter. The system function of the

formant synthesis filter is denoted by 1/ÂðzÞ, where the coefficients are the

quantized and interpolated LPCs.

� Impulse response of the cascade connection between perceptual weighting

filter and formant synthesis filter, denoted by h[n].

Finding Integer Lag

Given the preliminary codevector d20ðtÞ½n�, it is processed by the filter cascade to

generate the output sequence y20ðtÞ½n�; that is,

y20ðtÞ½n� ¼ d20ðtÞ½n� � h½n� ¼
Xn
k¼0

h½k�d20ðtÞ½n� k� ð16:12Þ

for t ¼ Tmin � 4 to Tmax þ 4 and n ¼ 0 to N � 1, with Tmin and Tmax found in the

previous step. Note that the range of t has extended; this is done to enable interpo-

lation. Normalized correlation is calculated using

R½t� ¼
P39

n¼0 u3½n�y20ðtÞ½n�ffiP39
n¼0

y20ðtÞ½n��2q : ð16:13Þ

The value of t that maximizes R[t] within the interval [Tmin; Tmax] is denoted as T,

which is the integer lag sought.

Finding Fractional Lag

If it is the first subframe and the integer lag satisfies T > 84, the fractional part of

the pitch period is set to zero. Otherwise, the fractions around T are evaluated by

interpolating the correlation values (16.13) in the following way:

Roðt; f Þ ¼
X3
i¼0

R½t � i�w13½3f þ 3i� þ
X3
i¼0

R½t þ iþ 1�w13½3� 3f þ 3i� ð16:14Þ

for f ¼ 0, 1
3
, and 2

3
. In actual implementation, five fractional values are considered:

f ¼ � 2
3
;� 1

3
, 0, 1

3
, and 2

3
. Since (16.14) only applies for f 	 0, tmust be decremented

by one in order to evaluate negative f. For transmission, only three fractional values

are used: � 1
3
, 0, and 1

3
. If f ¼ � 2

3
: T T � 1; f 1

3
. If f ¼ 2

3
: T T þ 1, f 1

3
.

ADAPTIVE CODEBOOK 429

The interpolation weights w13 are obtained through a Hamming truncated sinc

function at �11 and padded with zero at �12. See Exercise 16.5 for details.

Generation of Adaptive Codevector

Given t, f, and d2, the actual adaptive codevector used for speech synthesis is

calculated with the following procedure:

Adaptive_cv(d2, t, frac)
1. n0 �t
2. frac �frac
3. if frac < 0
4. frac frac þ 3
5. n0 n0 � 1
6. for n 0 to 39
7. d2[n] 0
8. for i 0 to 9
9. d2[n] d2[n] þ d2[n0 � i þ n] � w31[frac þ 3 � i]

þ d2 [n0 þ 1 þ i þ n] � w31 [3 � frac þ 3 � i]

The parameter frac is equal to �1, 0, or 1 in the above code, corresponding to

the fractional values of � 1
3
, 0, and 1

3
, respectively. The codevectors are found at

d2[n], n ¼ 0 to 39. The interpolation weights w31[n] are obtained from a Hamming

truncated sinc function at �29 and padded with zeros at �30 (Exercise 16.5).

Note from the previous pseudocode that the initial values in the d2 array for

n 2 ½0; 39� are completely replaced. Recall that, before searching the adaptive code-

book, these elements of the array are filled with prediction-error samples. Interpo-

lation is done for all fractional values, including f ¼ 0. Thus, the actual adaptive

codevector—henceforth denoted as d2
ðtþf Þ
o ½n� ¼ d2½n�; n ¼ 0 to 39, with d2½n� the

result of applying the interpolation routine Adaptive_cv—is in general not the

same as the preliminary codevectors, defined in (16.11). In this manner, the encoder

and the decoder are able to generate the exact same codevectors from t and f, since

samples of the codevector are formed solely from past excitation.

Therefore, we have a search procedure where the integer and fractional lags are

based on a set of preliminary codevectors. Once the lags are determined the actual

codevector is found, which is different from the preliminary version. How accurate

could this be? Well, as shown in the next example, the accuracy is quite good when

t 	 40. In this case, interpolating using (16.14) and identifying the correlation peak

produces a similar outcome as first calculating the actual adaptive codevectors and

later finding the correlation using an equation like (16.13). This is because the inter-

polation weights w13 and w31 are selected to achieve a close match. For t < 40,

however, the process is inaccurate, since the preliminary codevectors obtained

from the prediction-error samples are not the same as those found through interpo-

lation of past samples. This limits the potential of the coder to represent speech with

short pitch period, such as females or children. Nevertheless, the technique per-

forms reasonably well, and when combined with the rest of the coder’s components,

the synthetic speech is of good quality in most instances.

430 ALGEBRAIC CELP

Example 16.1 Samples of the adaptive codebook at a certain encoding instance

are recorded, denoted as d2[n], with n < 0 the past excitation samples, while

n 2 ½0; 39� is the prediction error of the current subframe. Figure 16.4 shows

some preliminary adaptive codevectors, where we can see that, for nearby pitch

periods, the codevectors are shifted versions of each other.

By knowing the LPC of the formant synthesis filter, the zero-state responses are

found for all preliminary codevectors from t ¼ 16 to 150, which are then used to

calculate the normalized correlation as given in (16.13), where a target sequence

u3[n] is available. Using these correlation values (at integer lags), the correlation

at fractional lags are found using (16.14). Figure 16.5 shows the results. Note

how the interpolated values Roðt; 0Þ are roughly equal to R½t�, with Ro t; 1
3

 �
and

Ro t; 2
3

 �
positioned in between R[t] and R½t þ 1�. Under a full search criterion, the

goal would be the evaluation of the Roðt; f Þ for all t and f so as to locate the one

combination that provides the highest correlation.

Next, all codevectors for t 2 ½20; 147� and f ¼ f� 1
3
; 0; 1

3
g using the procedure

described in the pseudocode are found. Figure 16.6 shows some example wave-

forms, where we can see that they are related by a fractional time shift. Additional

0 20 40
−4000

−2000

0

2000

4000

0 20 40
−5000

0

5000

n n

d 2′[n]d 2′[n]

t = 98
100

t = 27

25

Figure 16.4 Examples of preliminary adaptive codevectors.

50 100 150
−2�104

2�104
2�104

1�1040

64 66 68 70
0

t t + f

R[t]

R[t]
Ro(t + f)

Figure 16.5 Examples of correlation values during adaptive codebook search. Left: For

integer lags. Right: Plot of correlation at integer lag (o) and fractional lag (þ).

ADAPTIVE CODEBOOK 431

plots appear in Figure 16.7, where the actual and preliminary codevectors are

compared (zero fractional lag). Note that the two versions are different, which is

more pronounced when t < 40.

The correlation values are recalculated using the actual codevectors; this is done

by modifying (16.13) slightly. A comparison appears in Figure 16.8, where we can

see that for t þ f 	 40, the two sets of values match each other closely; for

t þ f < 40, however, the difference becomes obvious.

0 5 10 15 20 25 30 35 40
−4000

−2000

0

2000

4000

0 5 10 15 20 25 30 35 40
−500

0

500

1000

n

n

t = 25, f = − f = 0 f =

t = 26

t = 67, f f = 0 t = 68, ff =

1
3

f = − 1
3

1
3

1
3

1
3

1
3

= −= −

d2o [n](t + f)

d2o [n](t + f)

Figure 16.6 Examples of adaptive codevectors.

0 20 40
−4000

−2000

0

2000

4000

0 20 40
−5000

0

5000

n n

t = 25 t = 100

Figure 16.7 Some comparisons between actual codevectors (bold) and preliminary

codevectors (fine).

432 ALGEBRAIC CELP

A Summary

The G.729 adopts a strategy for the adaptive codebook search that is intended to be

computationally efficient at some sacrifice on overall accuracy, especially for short

pitch periods (t þ f < 40). We can say that the approach is suboptimal in the sense

that the best possible solution is not found, at the benefit of reduced computational

burden. In practice, however, the method in combination with other components of

the coder produces synthetic speech of high quality.

16.3 ENCODING AND DECODING

The G.729 follows the basic schemes for encoding and decoding as for a generic

CELP coder (Chapter 11). Differences exist mainly because of the extra complexity

introduced to achieve higher performance. These differences are explained in this

section.

Signals Involved in Encoding and Filter-State Updates

For the G.729 coder, the perceptual weighting filter utilizes the original (unquan-

tized) LPCs, while the formant synthesis filter employs the quantized LPCs. Hence,

cascade connection of these filters does not produce the modified formant synthesis

filter, as for the case of the generic CELP coder. The advantage of this approach

is that, in theory, perceptual weighting is more accurate, since no distortion due

to quantization is introduced. The price to pay is extra complexity. Due to the

need to have the prediction-error signal (r) in the adaptive codebook search

(Section 16.2), the configuration in Figure 16.9 is deployed. As explained later,

this scheme provides some advantage in fixed-point implementation.

It is possible to further simplify the system by combining the top two layers

of filters. Figure 16.10 summarizes the idea. Two filters—marked as #1 and

#2—require special attention. For filter #1, its state is given by the synthesis error

e ¼ s� ŝ . Thus, output of the filter in response to r (prediction error) with initial

20 40 60 80 100 120 140

0

2•104

−2•104

t + f

Figure 16.8 Comparison between the correlation values used for codebook search

(Ro, solid) and the correlation values found with the actual codevectors (R0o, dot).

ENCODING AND DECODING 433

state given by s (input speech) is equal to s; while output in response to zero input

with initial state given by ŝ (synthetic speech) is equal to x2 (Figure 16.9). There-

fore, the overall response is given by s� x2. For filter #2, its state is given by the

weighted synthesis error ew ¼ sw � ŝw. Output of the filter in response to s with

initial state given by sw (weighted input speech) is equal to sw; while output in

response to �x2 with initial state �ŝw is equal to �y2 (Figure 16.9). The total

response is hence sw � y2. We conclude that the two systems (Figures 16.9 and

16.10) are equivalent. These arguments are valid due to linearity of the underlying

filters. The diagram in Figure 16.2 is essentially the same as that in Figure 16.10

with all components made explicit.

The advantage of this configuration is its higher performance under a fixed-point

environment. In the generic approach and in Figure 16.9, zero-input response of the

filter (x2) is calculated separately and is subtracted later from the perceptually

weighted speech. The problem is that samples of the zero-input response decay

rapidly toward zero, due to the fact that the filter is stable. Under fixed-point,

r s
s

“0”

s

d

sw

sw

ew

−

−

y1x1

x2 y2

1 / A(z)

1 / A(z)
(Zero)

W(z)
(Zero)

W(z)

W(z)A(z)ˆ

ˆ ˆ

ˆ

1 / A(z)ˆ

ˆ

Figure 16.9 Signals involved in G.729 encoding: equivalent realization as in Figure 16.1.

sw − y2

ew

s − x2

−

−

s

e
d

r

x1 y1
s

1 / A(z)

1 / A(z)
(#1)

A(z)

1 / A(z)
(Zero)

W(z)
(Zero)

W(z)
(#2)

ˆ

ˆ

ˆ
ˆ

ˆ

Figure 16.10 Signals involved in G.729 encoding: another equivalent realization.

434 ALGEBRAIC CELP

low-magnitude samples cannot be represented faithfully, leading to relatively high

quantization errors. The system in Figure 16.10 avoids computing the zero-input

response separately. As we can see, the filters process at all time the relatively

high-amplitude input speech. By initializing the filters appropriately, equivalent

functionality is achieved. Therefore, no weak signals are computed in isolation,

leading to higher precision for the final outcomes.

Overview of Encoding Operations

Figure 16.11 shows the block diagram of the G.729 encoder. The input speech sig-

nal is highpass filtered and segmented into 80-sample frames (10 ms), subdivided

into two 40-sample subframes (see Exercise 16.6).

LP analysis is performed once per frame (Chapter 15). Two sets of LPCs are

obtained at the end: original and quantized. Both sets are interpolated so as to apply

to each individual subframe. The original LPCs (after interpolation) are used by the

Input
PCM
speech

Adaptive Algebraic
LPC Gain codebook codebook
index index index index

G.729 bit-stream

Highpass
filtering

Frame /
subframe

segmentation

LP
analysis Interpolation

LPC
encoding

LPC decoding
and

interpolation

Adaptive
codebook

search

Pack

Prediction-
error
filter

Open-loop
pitch period
estimation

Perceptual
weighting

filter

Perceptual
weighting
adaptation

Total response,
update of

system’s state

Algebraic
codebook

search

Impulse
response of

w.s.f.

Gain
encoder

Gain
decoder

Perceptual
weighting

filter

Formant
synthesis

filter

Figure 16.11 Block diagram of the G.729 encoder (w.s.f. means weighted synthesis filter).

ENCODING AND DECODING 435

perceptual weighting filter. The input speech subframe is then filtered by it, with the

output used in the open-loop pitch period estimation. The procedure for perceptual

weighting adaptation and pitch period estimation is explained in Section 16.2.

The impulse response of the filter cascade between the perceptual weighting fil-

ter and the formant synthesis filter is calculated. The resultant filter with system

function WðzÞ/ÂðzÞ is referred to as the weighted synthesis filter. Note that the for-

mant synthesis filter utilizes the quantized LPCs âi, with system function

1

ÂðzÞ ¼
1

1þP10
i¼1 âiz�i

: ð16:15Þ

Target signal u3 for the adaptive codebook search is found using the scheme in

Figure 16.2, with proper initialization for the filters. Computation of the adaptive

codebook gain is identical to that of the FS1016, with the resultant gain bounded

between 0 and 1.2. See Section 16.4 for the algebraic codebook search, and Section

16.5 for the gain quantization.

Table 16.1 summarizes the bit allocation scheme of the G.729 coder. A total of

80 bits are allocated per frame, leading to a bit-rate of 8000 bps. One parity bit is

transmitted per frame for error detection.

Summary of Decoding Operations

Figure 16.12 shows the decoder. The algebraic codevector is found from the

received index, specifying positions and signs of the four pulses, which is filtered

by the pitch synthesis filter in zero state. Parameters of this filter are specified in

Section 16.4. The adaptive codevector is recovered from the integer part of the pitch

period and interpolated according to the fractional part of the pitch period. Alge-

braic and adaptive codevectors are scaled by the decoded gains and added to form

the excitation for the formant synthesis filter. A postfilter is incorporated to improve

subjective quality.

TABLE 16.1 Bit Allocation for the G.729 Codera

Number Total Bits

Parameter per Frame Resolution per Frame

LPC index 1 18 18

Pitch period (adaptive 2 8, 5 13

codebook index)

Parity bit for pitch period 1 1 1

Algebraic codebook index 2 17 34

Gain index 2 7 14
—————

Total 80

aData from ITU [1996a], Table 1.

436 ALGEBRAIC CELP

16.4 ALGEBRAIC CODEBOOK SEARCH

The different techniques for the algebraic codebook search are explained in this

section.

Exhaustive Search

The 17-bit codebook is searched in such a way that (Chapter 11)

PðlÞ ¼ uToHvðlÞ

 �2
vðlÞTHTHvðlÞ

ð16:16Þ

is maximized, with l ¼ 0; . . . ; 217 � 1 being the index to the codebook; uo ¼ u3�
y2 is the target vector; H is the impulse response matrix of the cascade connection

between HpðzÞ and WðzÞ=ÂðzÞ; and vðlÞ is the excitation codevector corresponding

to the index l. During the actual search, the vector

uh ¼ HTuo ¼

h½0� h½1� � � � h½39�
0 h½0� � � � h½38�
..
. ..

. . .
. ..

.

0 0 � � � h½0�

2
6664

3
7775

uo½0�
uo½1�
..
.

uo½39�

2
6664

3
7775 ð16:17Þ

G.729
bit-stream

Algebraic Adaptive
codebook codebook Gain LPC

index index index index

Synthetic speech

LPC decoding
&

interpolation

Decode
algebraic

codevector

Formant
synthesis

filter

Postfilter

Interpolation

Pitch period
decoder

Adaptive
codebook

Gain
decoder

Unpack

Pitch synthesis
filter

(Zero)

Figure 16.12 Block diagram of the G.729 decoder.

ALGEBRAIC CODEBOOK SEARCH 437

is precomputed and stored. Elements of the vector are

uh½n� ¼
X39
i¼n

uo½i�h½i� n�; n ¼ 0; . . . ; 39; ð16:18Þ

representing the correlation between the target vector and the impulse response. On

the other hand,

� ¼ HTH ð16:19Þ

is the autocorrelation matrix of the impulse response; the matrix is symmetric with

elements

f i; j½ � ¼
X39
n¼j

h½n� i�h½n� j�; i ¼ 0; . . . ; 39; j ¼ i; . . . ; 39: ð16:20Þ

Based on (16.17) and (16.19), (16.16) can be rewritten as

PðlÞ ¼ uThv
ðlÞ
 �2

vðlÞT�vðlÞ
¼ CðlÞ

 �2
GðlÞ

: ð16:21Þ

In order to search the codebook and locate the optimal codevector, PðlÞ must be

computed 217 times to find the peak. Due to the structure of the codebook, compu-

tation of PðlÞ is not as complex as it appears from (16.21); after all, each codevector

has only four nonzero samples. It is simple to verify that

CðlÞ ¼
X3
i¼0

s
ðlÞ
i uh m

ðlÞ
i

h i
; ð16:22Þ

where si and mi are the signs and positions of the nonzero pulses in the codevector.

Similarly, the denominator of (16.21) is given by

GðlÞ ¼
X3
j¼0

X3
i¼0

s
ðlÞ
j s
ðlÞ
i f m

ðlÞ
i ;m

ðlÞ
j

h i

¼
X3
i¼0

f m
ðlÞ
i ;m

ðlÞ
i

h i
þ
X3
j¼0

X3
i¼0;i 6¼j

s
ðlÞ
j s
ðlÞ
i f m

ðlÞ
i ;m

ðlÞ
j

h i
: ð16:23Þ

Taking into account that � is symmetric—f½i; j� ¼ f½ j; i�—we have

GðlÞ ¼
X3
i¼0

f m
ðlÞ
i ;m

ðlÞ
i

h i
þ 2

X2
j¼0

X3
i¼jþ1

s
ðlÞ
j s
ðlÞ
i f m

ðlÞ
i ;m

ðlÞ
j

h i
: ð16:24Þ

438 ALGEBRAIC CELP

Thus, (16.22) and (16.24) can be utilized to compute PðlÞ for all l so as to locate

the optimal codevector, and it must be done 217 times since that is the size of the

codebook; this number represents the amount of work required for exhaus-

tive search.

Suboptimal Search

From (16.22) we see that CðlÞ will have a high probability of being maximized when

the condition

s
ðlÞ
i ¼ sgn uh m

ðlÞ
i

h i� 	
ð16:25Þ

is satisfied for all combinations of i and l, where sgnðxÞ ¼ �1 depending on the

sign of x. In other words,

sgn vðlÞ½n�
� 	

¼ sgn uh½n�ð Þ ð16:26Þ

for all l and n ¼ 0; . . . ; 39. That is, signs of the excitation codevector samples are

set to be equal to that of the correlation sequence uh½n�. By fixing the signs of each

codevector sample according to uh½n�;PðlÞ needs to be evaluated only 213 times,

instead of 217 times, since the 4 bits associated with the signs are effectively

removed from the search loop. Under (16.25) or (16.26), (16.22) becomes

CðlÞ ¼
X3
i¼0

uh m
ðlÞ
i

h i��� ���: ð16:27Þ

Note that (16.20) can be modified to include the values of the sign as follows:

f0 i; j½ � ¼ f i; j½ �; if i ¼ j;
1
2
sgn uh½i�ð Þ sgn uh½ j�ð Þf i; j½ �; otherwise:

(
ð16:28Þ

Then (16.24) becomes

GðlÞ ¼
X3
i¼0

f0 mðlÞi ;m
ðlÞ
i

h i
þ
X2
j¼0

X3
i¼jþ1

f0 mðlÞi ;m
ðlÞ
j

h i
: ð16:29Þ

Therefore, (16.27) and (16.29) can be utilized to compute PðlÞ, with the range of l
a subset of the widest possible range [0, 217� 1]. Note that there is no guarantee

that the codevector found in this way is the absolute best; however, in practice, the

suboptimal search approach provides performance very close to exhaustive search.

The search loop is described by the following pseudocode. It is assumed that

uh½n� and f0½i; j� for all i, j, and n are known before entering the loop.

ALGEBRAIC CODEBOOK SEARCH 439

1. peak 0
2. for i0 0 to 7
3. for i1 0 to 7
4. for i2 0 to 7
5. for i3 0 to 15
6. m0 5i0; m1 5i1 þ 1; m2 5i2 þ 2;
7. if i3 > 7
8. m3 5(i3 � 8) þ 4;
9. else

10. m3 5i3 + 3;
11. P C2[m0, m1, m2, m3]/G[m0, m1, m2, m3];
12. if P > peak
13. peak P
14. m’0 m0; m’1 m1; m’2 m2; m’3 m3

Note that the search time associated with the fourth pulse (Line 5) is the longest,

since it has a total of 16 possible positions. In Line 11, (16.27) and (16.29) are uti-

lized to find C and G for the four position values. Upon completion, the final posi-

tions m00, m
0
1, m

0
2, and m03 are returned as the results.

Suboptimal Search with Reduced Complexity

One of the biggest computational burdens for the suboptimal search method

described before is the loop involved with the fourth pulse, which has 16 different

positions. This loop is entered 83 ¼ 512 times. By limiting the number of times that

this last loop is entered, a great deal of computation can be eliminated.

By keeping track of the relative contribution of the first three pulses toward the

objective of maximizing (16.21), it is possible to make the (heuristic) decision not

to enter the fourth search loop. This is done by setting a reference threshold to

which that the contribution of the first three pulses is compared. This threshold is

given by

Cth ¼ Cavg þ Cmax � Cavg

 �
a; ð16:30Þ

where Cavg is the average correlation due to the first three pulses,

Cavg ¼ 1

8

X7
n¼0

uh½5n�j j þ
X7
n¼0

uh½5nþ 1�j j þ
X7
n¼0

uh½5nþ 2�j j
 !

; ð16:31Þ

Cmax is the maximum correlation due to the first three pulses,

Cmax ¼ max
n¼0;...;7

uh½5n�j j þ max
n¼0;...;7

uh½5nþ 1�j j þ max
n¼0;...;7

uh½5nþ 2�j j; ð16:32Þ

and the parameter a controls the number of times the last loop is entered. Experi-

mentally, it was found that a ¼ 0:4 provides performance very close to exhaustive

search [Salami et al., 1998].

440 ALGEBRAIC CELP

Note that for the previous suboptimal search technique, the last loop is entered

N ¼ 23þ3þ3 ¼ 512 times. For the present method and on an experimental basis,

with a ¼ 0:4, the average value of N is 60 and only 5% of the time exceeds 90.

To limit the worst case complexity, the value of N in the two subframes is limited

to a maximum value of Nmax ¼ 180. The first subframe is allowed a maximum of

N1 ¼ 105, and the second subframe is left with N2 ¼ Nmax � N1. Thus, during

codebook search for a particular subframe, if the last loop is entered more than

the maximum allowable times, the whole search process is stopped with the best

results found so far returned. In practice only 1% of the subframes have to be

stopped due to the limits being exceeded. Pseudocode for this improved search

method is given below, where it is assumed that Cth is known before initiating

the search process.

1. peak 0; count 0;
2. for i0 0 to 7
3. for i1 0 to 7
4. for i2 0 to 7
5. m0 5i0; m1 5i1 +1; m2 5i2 þ 2;
6. C |uh[m0]| + |uh[m1]| + |uh[m2]|
7. if C < Cth

8. continue;
9. count þ þ;

10. if count>MAX_N
11. goto end
12. for i3 0 to 15
13. if i3 > 7
14. m3 5(i3 � 8) þ 4
15. else
16. m3 5i3 þ 4
17. C1 C þ |uh[m3]|
18. P C1

2/G[m0, m1, m2, m3]
19. if P > peak
20. peak P
21. m’0 m0; m’1 m1; m’2 m2; m’3 m3;
22. end:

As we can see, a variable count is incorporated to track the number of times that

the innermost loop is entered. If count is greater than the pre-established limit

(MAX_N), the whole process is terminated immediately (Line 11). The contribution

of the first three pulses is calculated (Line 6) and compared to the threshold (Line 7);

if it is below threshold, the last loop will not be entered (Line 8); otherwise, the loop

is entered if count is below the maximum allowable number.

Pitch Synthesis Filter

Many CELP-based speech coding standards, such as the FS1016 and the IS54, have

eliminated the pitch synthesis filter in the filtering path during the excitation

ALGEBRAIC CODEBOOK SEARCH 441

codebook search. This is done for simplicity reasons since at a pitch period greater

than the subframe length, the effect of the filter is void (Chapter 12). In many

instances, long-term periodicity can effectively be generated by the adaptive code-

book alone, which is the motive for its exclusion in the filtering path.

Voices with low pitch period will have more than one pitch pulse in a subframe.

In that situation, it is beneficial to introduce periodicity to the excitation codevector

from the algebraic codebook so as to enhance the overall periodicity of the signal.

This can effectively be generated through the pitch synthesis filter, with system

function

HpðzÞ ¼ 1

1þ bz�T
: ð16:33Þ

In using (16.33), one of the obvious questions is the determination of the para-

meters b and T. One particular scheme that works well within the context of G.729

is to use a rounded value of the pitch period (or adaptive codebook index) from the

current subframe and the quantized adaptive codebook gain of the past subframe.

This is due to the fact that, for the current subframe, the quantized adaptive code-

book gain is not yet known. Thus,

b ¼ �b̂past ð16:34Þ

with b̂past being the quantized adaptive codebook gain of the past subframe,

bounded by [0.2, 0.8].

For T < 40, the introduction of the pitch synthesis filter requires computing the

signal

d1½n� ¼ v½n�; 0
 n
 T � 1;

v½n� � bd1½n� T �; T
 n
 39;

�
ð16:35Þ

where d1½n� is the output of the pitch synthesis filter. This signal is needed for

the adaptive codebook update and is calculated only after the optimal excitation

codevector v[n] is located.

Addition of the pitch synthesis filter does not modify the general procedure for

the excitation codebook search. If the impulse response of the weighted synthesis

filter is denoted by hw½n�, then the total impulse response is

h½n� ¼ hw½n�; 0
 n
 T � 1;

hw½n� � bhw½n� T �; T
 n
 39;

�
ð16:36Þ

since the pitch synthesis filter is in cascade with the weighted synthesis filter. Equa-

tion (16.36) represents the impulse response of HpðzÞWðzÞ=ÂðzÞ.

442 ALGEBRAIC CELP

16.5 GAIN QUANTIZATION USING CONJUGATE VQ

After locating the adaptive and algebraic codevectors, the associated gains are vec-

tor quantized; this is done based on a conjugate structure VQ system. The objective

of quantization is the minimization of

J ¼ k u3� b � y2o � g � y1o k2; ð16:37Þ

where:

� u3 ¼ Target vector for adaptive codebook search.

� y2o: Zero-state response of weighted synthesis filter to adaptive codevector

(no scaling).

� y1o: Zero-state response of the cascade connection between pitch synthesis

filter and weighted synthesis filter to algebraic codevector (no scaling).

� b: Adaptive codebook gain.

� g: Algebraic codebook gain.

The objective of quantization is to choose quantized values of b and g so as to

minimize (16.37).

Quantization of Algebraic Codebook Gain

Given the codevector d1r, which is the algebraic codevector filtered by the pitch

synthesis filter with no scaling, its power is calculated as the mean energy:

Edr ¼ 10log
1

40

X39
n¼0

d12r ½n�
 !

; ð16:38Þ

with r being the subframe index. Note that d1r has only a few nonzero elements,

and when the pitch period of the past subframe is greater than 40, d1r is the same as

the algebraic codevector with only four nonzero pulses. After scaling d1r with the

gain gr, the power of the resultant vector becomes Edr þ 20 log gr. Let Eor be the

mean�removed power of the scaled algebraic codebook contribution:

Eor ¼ 20 log gr þ Edr � 30; ð16:39Þ

with 30 dB being the experimentally found mean. The gain gr can then be expressed

by

gr ¼ 10 Eor�Edrþ30ð Þ=20: ð16:40Þ

This gain is written as

gr ¼ grg
0
r; ð16:41Þ

GAIN QUANTIZATION USING CONJUGATE VQ 443

with g a correction factor, and g0 the predicted gain of the rth subframe. In actual

implementation, it is the factor g that is being quantized. For gain prediction, we

consider first the power prediction:

Eo0r ¼
X4
i¼1

biÛr�i; ð16:42Þ

with fb1; b2; b3; b4g ¼ f0:68; 0:58; 0:34; 0:19g being the MA coefficients for the

predictor, and Û the quantized version of prediction error. That is,

Ur ¼ Eor � Eo0r: ð16:43Þ

The predicted gain is found by replacing Eor by its predicted value in (16.40):

g0r ¼ 10ðEo
0
r �Edr þ 30Þ=20: ð16:44Þ

Substituting (16.39) and (16.44) in (16.43), one can show that

Ur ¼ 20 log gr: ð16:45Þ

The encoder of the gain quantizer is shown in Figure 16.13, where we can see

that the quantized gain is given by

ĝr ¼ ĝrg
0
r: ð16:46Þ

30

Edr

Eor

Ur

gr

br

br

ir

gr

d1r

30

Eo′r

g′r

γr

Ur

γ
r

Power
calculation

10(•)/20

10(•)/20Predictor

20 log (•)

20 log (•)

Decode Encode

−

−

−

ˆ

ˆ

ˆ

ˆ

Figure 16.13 Quantization of algebraic codebook gain (G.729 encoder).

444 ALGEBRAIC CELP

The quantization process is done by searching the available candidates in

the codebook and constructing the quantized gain values according to (16.46).

The particular value that minimizes (16.37) is selected as the final result. See

Exercise 16.11 for the corresponding gain decoder.

VQ Structure and Search Technique

The adaptive codebook gain b and the correction factor g are vector quantized using
a two-stage conjugate-structured codebook. The first stage consists of a 3-bit 2-D

codebook, and the second stage a 4-bit 2-D codebook. Denote the first stage code-

words as

y
ð1Þ
i1
¼ y

ð1Þ
i1;1

y
ð1Þ
i1;2

h iT
; i1 ¼ 1; . . . ; 8;

and the second stage codewords as

y
ð2Þ
i2
¼ y

ð2Þ
i2;1

y
ð2Þ
i2;2

h iT
; i2 ¼ 1; . . . ; 16:

The first element of each codevector contains a fraction of the quantized adap-

tive codebook gain, while the second element represents a fraction of the quantized

algebraic codebook gain correction factor. Given the indices i1 and i2, the quantized

adaptive codebook gain is given by

b̂ ¼ y
ð1Þ
i1;1
þ y

ð2Þ
i2;1

; ð16:47Þ
and the quantized fixed codebook gain is given by

ĝ ¼ g0ĝ ¼ g0 y
ð1Þ
i1;2
þ y

ð2Þ
i2;2

� 	
: ð16:48Þ

A full search procedure can be applied where all candidates are plugged into

(16.37) to evaluate the error, and afterwards the codewords with the lowest error

are selected; this requires the evaluation of 8 � 16 ¼ 128 times the error expression

(16.37).

A suboptimal search technique that requires only 4 � 8 ¼ 32 error computations

using (16.37) is described. In this method, the optimal gains are derived from

(16.37). Note that (16.37) can be written in the expanded form:

J ¼ u3Tu3þ b2y2Toy2o þ g2y1Toy1o � 2bu3Ty2o � 2gu3Ty1o þ 2bgy1Toy2o:

ð16:49Þ
Differentiating with respect to b and g and equating the results to zero leads to the

following system of equations:

y2Toy2o y1Toy2o

y1Toy2o y1Toy1o

" #
b

g

� �
¼ u3Ty2o

u3Ty1o

� �
; ð16:50Þ

which can easily be solved to obtain the optimal gain values.

GAIN QUANTIZATION USING CONJUGATE VQ 445

The design of the conjugate VQ codebooks is such that the second elements (g)
of the first-stage codevectors are in general larger than the first elements (b). For

the second codebook, the situation is reversed. This design allows the usage of a

pre-selection technique to reduce computation.

Given the optimal g and therefore g, the four first-stage codevectors with second

element closest to the optimal value are selected. Using the optimal b, the eight

second-stage codevectors with first element closest to the optimal value are

selected. Hence, for each codebook, the best 50% candidate vectors are selected.

This is followed by a search over the 4 � 8 ¼ 32 possibilities, such that the

combination of the two indices minimizes (16.37) or (16.49).

The suboptimal search method reduces the complexity without noticeable loss of

quality compared to the full search. The codebooks can be designed using an itera-

tion process in which one of the codebooks is optimized while the other is kept

fixed.

16.6 OTHER ACELP STANDARDS

Salient features of other ACELP-based standards are described in this section; since

all these were developed by the same group of researchers, they share many com-

mon features. Interested readers are referred directly to the indicated references for

full details.

ITU-T G.723.1 MP-MLQ/ACELP

The G.723.1 coder was initiated for very-low-bit-rate videophone applications. It

started with the screening of ten candidate coders in 1993. In 1994 two coders

met the proposed requirements, and subsequently the two were merged to form a

dual rate coder, with the draft of the standard finalized in 1995 [Cox, 1997].

Since low-bit-rate videophones only send a few image frames per second, the

involved delay is relatively high. The researchers at the time felt that a 30-ms frame

length would be acceptable. A longer frame is normally associated with lower bit-

rate, since the speech samples can be analyzed and represented more efficiently.

When compared with G.729, the bit-rate of 5.3 kbps (low rate) and 6.3 kbps

(high rate) is lower, but the minimum coding delay of 67.5 ms is higher (8 kbps

and 25 ms for the G.729; see Chapter 15—Exercise section).

The G.723.1 encoder utilizes the same analysis-by-synthesis principle of most

CELP coders. LP analysis, LPC quantization, and LPC interpolation are covered

in Chapter 15. For the two even subframes, pitch period is encoded with 7 bits;

while for the two odd subframes, pitch period is encoded differentially from a pre-

vious value using 2 bits. The pitch synthesis filter has a five-tap structure with the

coefficients vector quantized.

ACELP is the adopted method for low bit-rate in the G.723.1 standard. The

algebraic codebook is addressed by 17 bits, with each codevector containing at

446 ALGEBRAIC CELP

most four nonzero pulses. Each pulse can have the amplitudes either of 1 or �1 and

can assume the positions given in Figure 16.14. Each excitation codevector has 60

samples, which is the length of a subframe. The excitation codevector v[n] is con-

structed by summing the four pulses according to

v½n� ¼
X3
i¼0

pi½n� ¼
X3
i¼0

sid n� mi þ grid½ �; ð16:51Þ

where si ¼ �1 is the sign of the pulse, mi are the positions according to Figure 16.14,

and grid ¼ 0 when even positions are used (just as in Figure 16.14), and grid ¼ 1

when odd positions are utilized. Each pulse position is encoded with 3 bits and each

pulse sign is encoded with 1 bit. This gives a total of 16 bits for the four pulses, plus

one grid bit leading to a total of 17 bits.

High bit-rate excitation utilizes a similar principle but with more pulses. The

scheme is referred to as multipulse maximum likelihood quantization (MP-

MLQ). For even subframes, 6 pulses are used; for odd subframes, 5 pulses are

used. Restriction on the pulse positions is that they can either be all odd or all

even, selected with a grid bit. Positions, signs, and grid are determined using

analysis-by-synthesis. Excitation gain is scalar quantized. Tables 16.2 and 16.3

show the bit-allocation scheme for the G.723.1 coder, resulting in the bit-rates of

6300 and 5266.67 bps.

TIA IS641 ACELP

Due to advances in speech coding technology, TIA launched a standardization pro-

cess around 1995 to search for a substitute for the existent IS54 standard of the

North American TDMA system. The process culminated in 1996 when the coder

proposal submitted jointly by Nokia and the University of Sherbrooke was

approved as the IS641 standard. The coder was found to be superior to IS54 not

only under error-free conditions, but also in the presence of channel errors and

background noise [Salami et al., 1997c].

The coder is based on the ACELP algorithm, with a source bit-rate of 7.4 kbps

and a channel bit-rate of 5.6 kbps. It operates on speech frames of 20 ms, divided

p0

p1

p2

p3

0 9 19 29 39 49 59
Position

Figure 16.14 Positions of individual pulses in the algebraic codebook for the G.723.1

coder, indicated by the black rectangles. Data from ITU [1996b], Table 1.

OTHER ACELP STANDARDS 447

into four 5-ms subframes. The extracted parameters are typical of CELP coders,

with the bit-allocation scheme shown in Table 16.4. General operation of the coder

is very similar to G.729. In fact, it uses the same algebraic codebook.

ETSI GSM EFR ACELP

In order to improve on the existent GSM full-rate coder (6.10 RPE-LTP) and half-

rate coder (6.20 VSELP), ETSI started a prestudy phase in 1994, where a set of

essential requirements was drafted and technical feasibility was assessed. The goals

include high quality at error-free condition (with ITU-T G.728 LD-CELP as a refer-

ence) and to achieve significant improvement with respect to the existing GSM full-

rate coder under severe error conditions, providing graceful degradation without

annoying effects. The target coder was designated as enhanced full rate (EFR).

In addition, essential requirements were set for bit-rate, complexity, and delay.

The same channel bit-rate of 22.8 kbps as for the existing full rate coder is used.

The complexity was not to exceed that of the GSM half-rate coder, and coding

delay was not to surpass that of the full-rate coder.

TABLE 16.3 Bit Allocation for the G.723.1 Coder at Low Bit-Ratea

Parameter Number per Frame Resolution Total Bits per Frame

LPC index 1 24 24

Pitch period 4 7, 2, 7, 2 18

All the gains combined 4 12 48

Pulse positions 4 12 48

Pulse signs 4 4 16

Grid bit 4 1 4
————

Total 158

aData from ITU [1996b], Table 3.

TABLE 16.2 Bit Allocation for the G.723.1 Coder at High Bit-Ratea

Number Total Bits

Parameter per Frame Resolution per Frame

LPC index 1 24 24

Pitch period 4 7, 2, 7, 2 18

All the gains combined 4 12 48

Pulse positions 4 20, 18, 20, 18 73b

Pulse signs 4 6, 5, 6, 5 22

Grid bit 4 1 4
———

Total 189

aData from ITU [1996b], Table 2.
bA special packaging technique is used to achieve this number.

448 ALGEBRAIC CELP

Six candidate coders were submitted to the competitive EFR coder selection

process launched by ETSI in 1995. After the first phase of testing, the ACELP algo-

rithm jointly developed by Nokia and the University of Sherbrooke was selected in

October. During 1996, verification tests for the EFR coder were completed, finaliz-

ing the new standard [Salami et al., 1997a].

The GSM EFR coder is based on ACELP and shares many common features,

like its other ACELP cousins. It operates on 20-ms speech frames subdivided

into four 5-ms subframes. In the encoder, the speech signal is analyzed with the

parameters of the CELP model extracted. LP analysis, LPC quantization, and

LPC interpolation are described in Chapter 15.

The fixed excitation codebook has an algebraic structure indexed by 35 bits.

Each excitation codevector has 40 samples, which is the length of a subframe.

The codevector is formed by a summation of 10 pulses. These pulses are basically

shifted impulses with known position; they have unit magnitude and associated sign.

The index to the algebraic codebook contains information about the position and

sign of each of the ten pulses. Three bits are allocated to the positions of each pulse,

and 1 bit is used to encode the sign of two pulses. This leads to 10 � 3þ 5 � 1 ¼
35 bits for the codebook. Available positions of the pulses are summarized in

Figure 16.15, where we can see that the ten pulses are separated into groups of

Track 1: p0, p1

Track 2: p2, p3

Track 3: p4, p5

Track 4: p6, p7

Track 5: p8, p9

0 9 19 29 39
Position

Figure 16.15 Positions of individual pulses in the algebraic codebook for the GSM EFR

coder, indicated by the black rectangles. Data from Salami et al. [1997a], Table II.

TABLE 16.4 Bit Allocation for the IS641 Codera

Parameter Number per Frame Resolution Total Bits per Frame

LPC index 1 26 26

Pitch period 4 8, 5, 8, 5 26

Gain index 4 7 28

Algebraic codebook index 4 17 68
————

Total 148

aData from Salami et al. [1997c], Table 1.

OTHER ACELP STANDARDS 449

two, called a track. Positions of the two pulses inside each track are encoded with 6 bits,

or 8 positions per pulse, and one sign bit is assigned to each track. The sign bit

indicates the sign of the first pulse, while the sign of the second pulse is determined

by its relative position with respect to the first pulse. If the position of the second

pulse is smaller, then it has opposite sign; otherwise it has the same sign as that of

the first pulse. Table 16.5 uses a single track to show the various forms of signals

encodable by the specified scheme. Note that two pulses in each track may overlap,

resulting in a single pulse with amplitude þ2 or �2.
The bit-allocation scheme is shown in Table 16.6, resulting in a source coding

bit-rate of 12.2 kbps. For channel coding, a bit-rate of 10.6 kbps is used, resulting in

a 22.8-kbps channel bit-rate.

TABLE 16.5 Examples of Pulses and Resultant Sequences from the First Track
for the GSM EFR Coder

Position of p0 Position of p1 Sign Resultant Sequence

0 5 þ þ1 þ1
0 5

0 5 � 0 5

�1 �1
5 0 þ 0 þ1

�1 5

5 0 � þ1 5

0 �1
5 5 þ þ2

0 5

5 5 � 0 5

�2

TABLE 16.6 Bit Allocation for the GSM EFR Codera

Parameter Number per Frame Resolution Total Bits per Frame

LPC index 1 38 38

Pitch period 4 9, 6, 9, 6 30

Adaptive codebook gain 4 4 16

Algebraic codebook index 4 35 140

Algebraic codebook gain 4 5 20
———

Total 244

aData from Salami et al. [1997a], Table 1.

450 ALGEBRAIC CELP

ETSI AMR ACELP

The adaptivemultirate (AMR) coder standardized byETSI in 1999 pertains to the family

of coders called network-controlled multimode. Precise definition for multimode

coding is given in Chapter 1. Network control means that the coder responds to

an external control signal to switch the data rate to one of a predetermined set of

rates. The control signal is assumed to be remotely generated, typically in response

to traffic levels in the network or in response to requests for signaling information.

The AMR coder consists of a family of fixed-rate coders, each having a different

rate. There are a total of eight coders and all are based on the ACELP algorithm.

The available bit-rates are 12.2, 10.2, 7.95, 7.40, 6.70, 5.90, 5.15, and 4.75 kbps. At

the highest bit-rate of 12.2 kbps, the algorithm is identical to GSM EFR. At lower

bit-rates, the available bits are diminished, and different schemes are used to allo-

cate the bits to various parameters of the ACELP model [ETSI, 1999].

16.7 SUMMARY AND REFERENCES

Principles of ACELP are covered in this chapter, with detailed description of the

G.729 coder and abbreviated recitals of four other well-known ACELP standards.

It is shown that ACELP follows the fundamental structure of CELP, with a fixed-

codebook design that allows fast search with no storage requirement. Particularly

for the G.729, various innovations in the form of refined structure with added com-

plexity are incorporated. The extra complexities essentially reflect the progress in

speech coding development, where more sophistication is added to the coder frame-

work for general improvement.

See Adoul and Lamblin [1987] and Adoul et al. [1987] for initial ideas on

ACELP. Details of the G.729 coder are given in ITU [1996a] and Salami et al.

[1998]; quality of the coder under various test conditions is summarized in Perkins

et al. [1997]. A faster codebook search technique is described in Salami et al.

[1997d, 1997e]; the resultant coder—together with other changes—is published

separately by the ITU as G.729 Annex A, or G.729a, which is bit-stream compati-

ble with the G.729. There are variations of the G.729 standard that operate at bit-

rates other than 8 kbps. For instance, Annex D of the G.729 specifies a 6.4-kbps

coder utilizing the same CS-ACELP principle [ITU, 1998b]. Details of the

G.723.1 coder are given in ITU [1996b]; In Cox [1997], comparison is made

between G.729, G.723.1, and G.729a. See Salami et al. [1997c] and Salami et al.

[1997a] for descriptions of the IS641 and GSM EFR, respectively. Issues regarding

implementation of the GSM EFR coder on a DSP platform are described in

Du et al. [2000]. Details of the AMR coder are given in ETSI [1999]. Note that

documentations and reference codes of most ETSI standards are available free of

charge at their official website: www.etsi.org.

EXERCISES

16.1 For the G.729 coder, given the pulse positions m0;m1;m2;m3f g ¼ 20;f
31; 12; 18g, find pindex, the associated position index. Repeat for {0, 16,

33, 29}.

EXERCISES 451

16.2 Given pindex (16.3) in the G.729 coder, specify the procedure to recover the

four pulse positions m0, m1, m2, and m3.

16.3 For the G.729 coder, count the number of pitch period values available for

the first subframe and the second subframe, and confirm the fact that they

can be encoded using 8 and 5 bits, respectively.

16.4 For the G.729 coder, if the open-loop pitch period estimate is Top ¼ 22,

what is the search range for the first subframe? If T1 ¼ 23 1
3
, what is the

search range for the second subframe?

16.5 For the G.729 coder, the interpolation weights w13[n], n ¼ 0 to 12 and

w31[n], n ¼ 0 to 30 are given by the following:

(a) w13: {0.901, 0.760, 0.424, 0.0841, �0.106, �0.121, �0.0476, 0.0163,
0.0312, 0.0157, 0, �0.00593, 0},

(b) w31: {0.899, 0.769, 0.449, 0.0959, �0.134, �0.179, �0.0849, 0.0370,
0.0955, 0.0689, 0, �0.0504, �0.0508, �0.0142, 0.0231, 0.0335,

0.0168, �0.00747, �0.0193, �0.0138, 0, 0.00940, 0.00903, 0.00238,
�0.00366, �0.00503, �0.00241, 0.00105, 0.00278, 0.00215, 0}.

Gather some prediction error data from a real speech signal and perform

an experiment similar to Example 16.1 so as to confirm some of the claims

made in Section 16.2. The above numbers are rounded results; see ITU

[1996a] for full precision specifications.

16.6 The G.729 coder specifies the following filter to process the input speech:

HðzÞ ¼ 0:46364� 0:92725z�1 þ 0:46364z�2

1� 1:9059z�1 þ 0:91140z�2
:

Plot the magnitude response of the filter and describe its behavior. The

above filter’s coefficients are rounded results; see ITU [1996a] for full

precision specifications.

16.7 Section 16.4 presented a suboptimal algebraic codebook search procedure

for the G.729 coder. Extend the same idea to the G.723.1 coder, where the

positions of the pulses for the algebraic codebook are given in Figure 16.14.

Write down the procedure in the form of a pseudocode. Repeat for the GSM

EFR coder, with the positions given in Figure 16.15.

16.8 Based on your knowledge of the G.729 standard, assess the validity of the

statements below. Justify your answers.

(a) Algebraic codebook gain is always greater than or equal to zero.

(b) The exhaustive search procedure for the algebraic codebook, as

explained in Section 16.4, cannot be implemented in practice, since

the synthetic speech will suffer severe distortion.

452 ALGEBRAIC CELP

If your assessment to the latter statement is true, redesign an exhaustive

search procedure that will work well under the G.729 framework. Write

down the pseudocode to perform the search.

16.9 Bozo proposed reducing the bit-rate of the G.729 coder by simply

lengthening the frame length, say, for instance, from 10 ms to 12 ms, with

all codebooks’ parameters intact. Is Bozo’s idea implementable? What

would be the main problem?

16.10 For the ETSI GSM EFR ACELP coder, the positions (m) and signs (s) are

given by

m0 ¼ 15;m1 ¼ 35; s1 ¼ 1f g;
m2 ¼ 21;m3 ¼ 1; s2 ¼ �1f g;
m4 ¼ 17;m5 ¼ 17; s3 ¼ 1f g;
m6 ¼ 33;m7 ¼ 18; s4 ¼ 1f g;
m8 ¼ 9;m9 ¼ 34; s5 ¼ �1f g:

Find out the pulses of the associated excitation sequence, specifying the

positions and amplitudes.

16.11 Based on the block diagram of the gain encoder for the G.729 coder

(Figure 16.13), draw the block diagram of the corresponding gain decoder,

with inputs being the codevector d1 and index i, producing the quantized

gain ĝ at its output.

EXERCISES 453

CHAPTER 17

MIXED EXCITATION
LINEAR PREDICTION

The LPC coder, as studied in Chapter 9, uses a fully parametric model to efficiently

encode the important information of the speech signal. The coder produces intel-

ligible speech at bit-rates in the neighborhood of 2400 bps. However, the highly

simplistic model in the core of the LPC coder generates annoying artifacts such

as buzzes, thumps, and tonal noises; which is due to the many limitations of the

model, thoroughly analyzed in Chapter 9.

The mixed excitation linear prediction (MELP) coder is designed to overcome

some of the limitations of LPC. It utilizes a more sophisticated speech production

model, with additional parameters to capture the underlying signal dynamics with

improved accuracy. The essential idea is the generation of a mixed excitation signal

as input to the synthesis filter, where the ‘‘mixing’’ refers to the combination of a

filtered periodic pulse sequence with a filtered noise sequence. The benefits require

an extra computational cost, practicable only with the powerful digital signal pro-

cessors (DSPs) introduced in the mid-1990s.

Originally developed by McCree (see McCree and Barnwell [1995]) as a Ph.D.

thesis, the MELP coder incorporated many research advances at the time, including

vector quantization, speech synthesis, and enhancement to the basic LPC model. It

was then refined and submitted as a candidate for the new U.S. federal standard at

2.4 kbps in 1996 [McCree et al., 1996] and officially became a federal standard in

1997 [McCree et al., 1997].

In this chapter, the speech production model that the MELP coder relies on is

described and compared with LPC. Several fundamental processing techniques

are analyzed next, followed by a detailed discussion on the encoder and decoder

operations. The discussion is based on the core structure of the FS MELP coder,

as described in the open literature. Readers must be aware that in order to

454

implement a bit-stream-compatible version of the coder, consultation with official

documentation is mandatory.

17.1 THE MELP SPEECH PRODUCTION MODEL

A block diagram of the MELP model of speech production is shown in Figure 17.1,

which is an attempt to improve upon the existent LPC model. Comparing with the

block diagram in Chapter 9, we can see that the MELP model is more complex.

However, the two models do share some fundamental similarities; such as the

fact that both rely on a synthesis filter to process an excitation signal so as to gen-

erate the synthetic speech. As explained later in the chapter, the MELP decoder uti-

lizes a sophisticated interpolation technique to smooth out interframe transitions.

The main improvements of the MELP model with respect to the LPC model are

highlighted below.

� A randomly generated period jitter is used to perturb the value of the pitch

period so as to generate an aperiodic impulse train.

As mentioned in Chapter 9, one of the fundamental limitations in LPC is the

strict classification of a speech frame into two classes: unvoiced and voiced. The

MELP coder extends the number of classes into three: unvoiced, voiced, and jittery

voiced. The latter state corresponds to the case when the excitation is aperiodic but

not completely random, which is often encountered in voicing transitions. This jit-

tery voiced state is controlled in the MELP model by the pitch jitter parameter and

is essentially a random number. Experimentally, it was found that a period jitter

uniformly distributed up to �25% of the pitch period produced good results. The

short isolated tones, often encountered in LPC coded speech due to misclassifica-

tion of voicing state, are reduced to a minimum.

Impulse
response

Pitch
period

Voicing strengths
Speech

Period
jitter

Impulse
train

generator

Pulse
generation

filter

Pulse
shaping

filter

White
noise

generator

Noise
shaping

filter

Synthesis
filter

Filter
coefficients

Gain

Figure 17.1 The MELP model of speech production.

THE MELP SPEECH PRODUCTION MODEL 455

Methods to determine the voicing states are explained in the next sections.

� Shape of the excitation pulse for periodic excitation is extracted from the input

speech signal and transmitted as information on the frame.

In the simplest form of LPC coding, voiced excitation consists of a train of

impulses; which differs a great deal from real world cases, where each excitation

pulse possesses a certain shape, different from an ideal impulse. The shape of the

pulse contains important information and is captured by the MELP coder through

Fourier magnitudes (next section) of the prediction error. These quantities are used

to generate the impulse response of the pulse generation filter (Figure 17.1), respon-

sible for the synthesis of periodic excitation.

� Periodic excitation and noise excitation are first filtered using the pulse

shaping filter and noise shaping filter, respectively; with the filters’ outputs

added together to form the total excitation, known as the mixed excitation,

since portions of the noise and pulse train are mixed together.

This indeed is the core idea of MELP and is based on practical observations

where the prediction-error sequence is a combination of a pulse train with noise.

Thus, the MELP model is much more realistic than the LPC model, where the exci-

tation is either impulse train or noise.

In Figure 17.1, the frequency responses of the shaping filters are controlled by a

set of parameters called voicing strengths, which measure the amount of ‘‘voiced-

ness.’’ The responses of these filters are variable with time, with their parameters

estimated from the input speech signal, and transmitted as information on the

frame; procedural details are given in the next sections.

17.2 FOURIER MAGNITUDES

The MELP coder depends on the computation of Fourier magnitudes from the

prediction-error signal to capture the shape of the excitation pulse, which basically

are the magnitudes of the Fourier transform. These quantities are quantized and

transmitted as information on the frames. The objective is to create, on the decoder

side, a periodic sequence as close as possible to the original excitation signal. In this

section, the procedure for Fourier magnitude computations is described; examples

using real speech signals are included to illustrate the technique. Note that Fourier

magnitudes are calculated only when the frame is voiced or jittery voiced.

Many properties of the discrete Fourier transform (DFT) and discrete-time

Fourier transform (DTFT) are used to explain the topics in this section. Readers

are referred to Oppenheim and Schafer [1989] for full coverage of the subjects.

Efficient algorithms for the computation of the DFT, known as the fast Fourier

transform (FFT), are also contained in the same reference.

456 MIXED EXCITATION LINEAR PREDICTION

Pulse Generation Filter

The MELP model relies on the pulse generation filter (Figure 17.1) to produce per-

iodic excitation. The idea is to find the impulse response of the filter during encod-

ing and transmit the response to the decoder so as to generate the pulse train, used

as the periodic excitation to the synthesis filter. Figure 17.2 illustrates the pulse gen-

eration process, where an impulse train of period T excites the filter to obtain a

pulse train at its output. Looking at the magnitude of the Fourier transform, the

spectrum of the pulse train is given by the product between the spectrum of the

impulse train and the magnitude response of the filter. Therefore, by measuring

the height of the peaks of the pulse train’s magnitude spectrum, it is possible

to get acquainted with the magnitude response of the pulse generation filter.

From Figure 17.2, measurements of heights are done at frequency values of

o ¼ 2pi/T ; i ¼ 1; 2; . . . ; once the magnitude response is found, the impulse

response of the pulse generation filter, and hence the shape of the pulse, is known.

During encoding, the magnitude of the DFT for the prediction error is found;

peaks of the magnitude spectrum corresponding to the harmonics associated with

the pitch frequency are measured. The peak values are the Fourier magnitudes and

are transmitted to the decoder to construct the excitation pulse, or impulse response,

of the pulse generation filter.

Fourier Magnitudes: Calculation and Quantization

The procedure used by the FS MELP coder for Fourier magnitude calculations and

quantizations is presented next (Figure 17.3). Inputs to the procedure are the speech

data (200 samples), the LPC, and the pitch period. It is assumed that the LPC and

Impulse train P Pulse train

Impulse response

Time
domain

0 T 0 0

Frequency
domain

0 π 0 π 0 π
2π/T

Pulse
generation

filter

Figure 17.2 Illustration of signals associated with the pulse generation filter.

FOURIER MAGNITUDES 457

pitch period are already extracted from the signal. Prediction error is first computed

by passing the speech data through the prediction-error filter. A Hamming window

multiplies the resultant 200-sample prediction-error sequence. The windowing step

is standard in FFT deployment; its incorporation maintains spectral leakage to a

minimum. The resultant 200-sample sequence is zero padded to a 512 sample,

with the FFT calculated afterward, resulting in 512 complex-valued samples. Recall

that the FFT is an efficient way to compute the DFT, with the DFT defined by

X½k� ¼
XNo�1

n¼0
x½n�e�jð2pkn=NoÞ; k ¼ 0; . . . ;No � 1 ð17:1Þ

being the analysis equation of the transform, and

x½n� ¼ 1

No

XNo�1

k¼0
X½k�ejð2pkn=NoÞ; n ¼ 0; . . . ;No � 1 ð17:2Þ

being the synthesis equation. We say that x[n] and X[k] form a DFT transform pair,

and No¼ 512 is the length of the sequences.

Why is there a need to zero pad? And why is the length equal to 512? To answer

these questions, it is necessary to realize that, under very general conditions, the

sequence X[k] in (17.1) is obtained by sampling the DTFT at regular interval,

defined by

XðejoÞ ¼
X1
n¼�1

x½n�e�jon; ð17:3Þ

which is the spectrum of the signal corresponding to continuous frequency values.

Thus, each value of k in (17.1) is associated with one particular frequency, given by

ok ¼ 2pk
No

; k ¼ 0; . . . ;No � 1: ð17:4Þ

Therefore, increasing the length of our original sequence from 200 to 512 samples

with zero padding effectively increases the frequency resolution, resulting in higher

Speech

LPC

Index

Pitch period

Prediction-
error filter

Windowing Zero
padding

FFT

Magnitude
peaks search

VQ
encoder

Normali-
zation

Figure 17.3 Block diagram of the Fourier magnitude calculation and quantization

procedure.

458 MIXED EXCITATION LINEAR PREDICTION

accuracy; the process is equivalent to interpolation in the frequency domain. The

number of 512 is selected as a trade-off between frequency resolution and compu-

tational cost and is a power of 2 because most FFT algorithms work under that con-

straint. In the present case, since the prediction-error signal is real-valued, the

resultant DFT sequence (17.1) is symmetric, and only half of the samples need

to be computed; that is, only 256 samples are passed to the next block. Operation

of the magnitude peaks search block (Figure 17.3) is summarized as follows, where

it is assumed that the pitch period T is known. The approach used for pitch period

estimation is given in Section 17.4.

MAG_PEAKS_SEARCH(X[0 . . . 255], T, Fmag[1 . . . 10])
1. for i 1 to 10
2. freq round(512 �i/T)
3. if freq > 255
4. Fmag[i] SMALLEST_MAG
5. else
6. peak 0
7. for j freq � 5 to freq þ 5
8. if j>255 break
9. if jX[j]j > peak

10. peak jX[j]j
11. Fmag[i] peak
12. return Fmag[1 . . . 10]

The purpose of the above code is to search in the neighborhoods surrounding the

frequency values 512i/T, i¼ 1, . . . , 10. These values correspond to the ten first har-

monics associated with the pitch frequency. If the frequency value is above 255,

that is, the harmonic is out of the evaluation range, the corresponding peak value,

or Fourier magnitude, is set at SMALLEST_MAG (Line 4), which is a constant. In

practice, SMALLEST_MAG is set to a small positive value. This latter case occurs

when the pitch frequency is too high. If the frequency values are less than or equal

to 255, the search for peaks is performed in the range round(512i/T)� 5; this range

can be adjusted accordingly depending on the desired accuracy. At the end of the

routine, ten peak magnitudes are obtained: Fmag[i], i¼ 1 to 10. These ten values

are the sought-after Fourier magnitudes. Thus, the Fourier magnitudes are the peak

magnitude values of the harmonics related to the pitch frequency. Ten of these

quantities are found to be sufficient for the present coding application.

The Fourier magnitude sequence Fmag[i] is normalized according to

Fmag0½i� ¼ a � Fmag½i�; ð17:5Þ

with

a ¼ 1

10

X
i

ðFmag½i�Þ2
 !�1=2

: ð17:6Þ

FOURIER MAGNITUDES 459

The resultant sequence Fmag0[i] has an rms value of one and is vector quantized

with an 8-bit VQ. (Procedures for VQ design are presented in Chapter 7.) The codebook

is searched using a perceptually weighted Euclidean distance, with fixed weights

that emphasize the low-frequency regions, since it is subjectively more important.

Pulse Excitation Generation

During decoding, the excitation signal is synthesized on a pitch-period-by-pitch-

period basis; that is, if T is the pitch period under consideration, then a T-sample

pulse is generated. A block diagram of the pulse generation procedure is shown

in Figure 17.4. Given the decoded Fourier magnitudes, which are interpolated dur-

ing MELP decoding (discussed later), the resultant sequence is denoted by Fmag[i],

i¼ 1, . . . , 10; the following pseudocode summarizes the procedure.

PULSE_GENERATION(Fmag[1 . . . 10], T, y[0 . . . T�1])
1. Y[0] 0 // DC component set to zero
2. for k 11 to T�11 // Default components set to one
3. Y[k] 1
4. for k 1 to 10 // Symmetric extension
5. Y[k] Fmag[k]
6. Y[T�k] Fmag[k]
7. IDFT(Y[0 . . . T�1], y[0 . . . T�1], T)
8. CIRCULAR_SHIFT(y[0 . . . T�1], T, 10)
9. NORMALIZE(y[0 . . . T�1], T)

10. return y[0 . . . T�1]

The routine takes the ten Fourier magnitudes and the pitch period as inputs to

generate the T-sample array Y by setting Y[0] to 0 and the rest of the elements to 1.

The Y-array is used for the inverse DFT (IDFT), thus representing frequency-

domain information. By setting the first element to zero, the DC component of

the sequence obtained after IDFT is going to be zero. Next, the ten Fourier magni-

tudes are placed at Y[1 . . . 10] and Y[T� 10 . . . T� 1], resulting in a symmetric

sequence. Symmetric extension is necessary for the generation of a real-valued

sequence after IDFT. In Line 7, the IDFT is calculated with

y½n� ¼ 1

T

XT�1
k¼0

Y½k�e j2pnk=T ; n ¼ 0; . . . ; T � 1: ð17:7Þ

Index

Pitch period

Pulse

VQ
decoder

Interpo-
lation

Symmetric
extension

Circular
shift

Normali-
zation

IDFT

Figure 17.4 Block diagram of the excitation pulse generation procedure during decoding.

460 MIXED EXCITATION LINEAR PREDICTION

In Line 8, the resultant sequence y[n] is circularly shifted by ten samples and is

normalized (Exercise 17.1) in Line 9 so that the y-array has unit rms value. The

circular shift operation is specified by the following:

CIRCULAR_SHIFT(y, T, n)
1. for i 0 to T�1
2. x[i] y[MOD(i�n, T)]
3. for i 0 to T�1
4. y[i] x[i]
5. return y[0 . . . T�1]

The modulo operation MOD(n, N) is defined* by

MOD(n, N)
1. if n<0
2. n nþN
3. if n<0 goto 2
4. else
5. n n�N
6. if n	N goto 5
7. return n

The purpose of circular shifting is to prevent abrupt changes at the beginning of

the period.

Example 17.1 The procedures explained before are illustrated using a real speech

signal. Figure 17.5 shows the prediction-error sequence used, with 200 samples and

a pitch period roughly equal to 49. The magnitude plot of the 512-point DFT, cor-

responding to the windowed and zero-padded prediction-error signal, is also shown

*When the input variable is negative, this definition of modulo operation might differ from other

commonly used definitions found in calculators or math software. The present definition is necessary to

implement the circular shift operation in a meaningful way.

700 800 900
100

0

100

0 200 400
0

200

400

600

n k

e[n] |E[k]|

Figure 17.5 Left: A 200-sample prediction-error sequence. Right: Magnitude plot of the

resultant 512-point DFT.

FOURIER MAGNITUDES 461

in the same figure. Since the pitch period is equal to 49, the magnitude peaks search

occurs at 512i/49& 10i, for i¼ 1 to 10. Figure 17.6 shows an expanded view of the

magnitude of the DFT, where we can see that the peaks are roughly located around

10i. The peaks search operation leads to the following Fourier magnitude sequence:

Fmag½1� ¼ 422:5; Fmag½2� ¼ 398:3; Fmag½3� ¼ 269:4;

Fmag½4� ¼ 59:4; Fmag½5� ¼ 287:8; Fmag½6� ¼ 322:9;

Fmag½7� ¼ 358:0; Fmag½8� ¼ 193:9; Fmag½9� ¼ 226:7;

Fmag½10� ¼ 370:4:

The above sequence is normalized and used to generate the excitation pulse.

Quantization is not considered in this example.

To generate the excitation pulse, the normalized Fourier magnitude sequence is

first symmetrically extended to 49 samples (Figure 17.7); then the inverse DFT is

0 20 40 60 80 100 120
0

200

400

600

k

|E[k]|

Figure 17.6 Expanded view of the magnitude plot of the DFT in Figure 17.5.

0 20 40
0

1

2

k

Y[k]

Figure 17.7 Symmetrically extended Fourier magnitude sequence.

462 MIXED EXCITATION LINEAR PREDICTION

calculated, leading to the sequence shown in Figure 17.8. The final excitation pulse

is obtained after circular shifting. Figure 17.9 contrasts the original magnitude spec-

trum (prediction error), the magnitude spectrum of the pulse train generated by the

Fourier magnitude, and the magnitude spectrum of an impulse train. These spec-

trums are obtained following the procedure of windowing using a 200-sample win-

dow, zero padding to 512 samples, and calculating the DFT. As we can see,

frequency distribution of the pulse train is much closer to the original than the

impulse train. In fact, the impulse train exhibits a spectrum having equal-height

peaks; while for the pulse train, peaks of the first ten harmonics follow the shape

of the original spectrum. Hence, incorporation of Fourier magnitudes adds natural-

ness and improves the overall quality.

0 20 40
−0.5

0

0.5

1

0 20 40
n n

y[n]

−0.5

0

0.5

1

y[n]

Figure 17.8 Left: Excitation pulse after IDFT. Right: The same pulse after circular

shift.

0 50 100 150 200 250
0.1

1

10

100

1000

1·104

k

|E[k]|

a

b

c

Figure 17.9 Comparison between the magnitude spectrum of (a) original prediction error,

(b) impulse train, and (c) pulse train generated using Fourier magnitude.

FOURIER MAGNITUDES 463

17.3 SHAPING FILTERS

The MELP speech production model makes use of two shaping filters (Figure 17.1)

to combine pulse excitation with noise excitation so as to form the mixed excitation

signal. Responses of these filters are controlled by a set of parameters called voicing

strengths; these parameters are estimated from the input signal. By varying the voi-

cing strengths with time, a pair of time-varying filters results. These filters decide

the amount of pulse and the amount of noise in the excitation, at various frequency

bands.

In FS MELP, each shaping filter is composed of five filters, called the synthesis

filters, since they are used to synthesize the mixed excitation signal during decod-

ing. Each synthesis filter controls one particular frequency band, with passbands

defined by 0–500, 500–1000, 1000–2000, 2000–3000, and 3000–4000 Hz. The

synthesis filters connected in parallel define the frequency responses of the shaping

filters. Figure 17.10 shows the block diagram of the pulse shaping filter, exhibiting

the mechanism by which the frequency response is controlled. Denoting the

impulse responses of the synthesis filters by hi[n], i¼ 1 to 5, the total response

of the pulse shaping filter is

hp½n� ¼
X5
i¼1

vsihi½n�; ð17:8Þ

with 0
 vsi
 1 being the voicing strengths. Equation (17.8) results from the fact

that the synthesis filters are connected in parallel. The noise shaping filter, on the

other hand, has the response

hn½n� ¼
X5
i¼1
ð1� vsiÞhi½n�: ð17:9Þ

Synthesis
filter #1

vs5

vs2

vs1

:
:
:

Synthesis
filter #2

Synthesis
filter #5

Figure 17.10 Block diagram of the pulse shaping filter.

464 MIXED EXCITATION LINEAR PREDICTION

Thus, the two filters complement each other in the sense that if the gain of one

filter is high, then the gain of the other is proportionately lower, with the total gain

of the two filters remaining constant at all times. As we will see later in the chapter,

during MELP decoding, both pulse excitation and noise excitation are generated to

have the same power level.

The synthesis filters are implemented as FIR with 31 taps. FIR filters are utilized

due to the following reasons:

� Linear phase. A linear phase system simply means that the group delay is

constant with frequency, which is a feature of FIR systems. A constant group

delay for all frequency values will not distort the shape of a pulse passing

through the system, since all components are delayed by the same amount,

which is important for the processing of a pulse excitation sequence.

� Frequency response can be changed with relative ease. As we have already

seen, the total response of the filter can be obtained by some scaling and sum

operations, which can be done in practice at relatively low cost. In fact, by

combining the synthesis impulse responses together, only one convolution is

needed to compute the output, instead of doing it five times.

� Interpolation can be done with relative ease. To guarantee smoothness in

transition between frames, the impulse responses of the shaping filters are

interpolated during MELP decoding. The FIR nature of the filter allows linear

interpolation of the impulse responses, or filter coefficients, without instability

concerns, since stability is guaranteed for FIR systems. Figure 17.11 shows

the impulse responses (hi[n], i¼ 1 to 5, n¼ 0 to 30) of the synthesis filters

with the magnitude responses shown in Figure 17.12. See Exercise 17.2 for

instructions on the design of these filters.

Figure 17.13 shows some example of the frequency responses of the shaping fil-

ters. As expected, when the gain of one band is maximized in one filter, the gain of

the same band is minimized in the other filter. Gain of the parallel combination

of the two filters is always constant.

0 10 20 30
−0.2

0

0.2

0.4

−0.2

−0.4

0

0.2

0.4

0 10 20 30

n n

h5[n]
h4[n]

h3[n]

h2[n]

h1[n]

Figure 17.11 Impulse responses of the FS MELP synthesis filters.

SHAPING FILTERS 465

The function of the shaping filters become obvious: they determine how pulse-

like or noise-like the mixed excitation is in each of the five frequency bands. Within

the context of MELP coding, the two shaping filters are used only during decoding,

where mixed excitation is generated.

17.4 PITCH PERIOD AND VOICING STRENGTH ESTIMATION

The FS MELP coder employs a sophisticated procedure to accurately estimate

the pitch period and voicing strengths, since these parameters play a weighty

role in the quality of the synthetic speech. In fact, fractional refinement is used

throughout the encoding process. An analysis filter bank is utilized to separate

the input signal into five bands, with the voicing strength found in each band.

The operations described in this section are performed only during encoding, where

the speech signal is analyzed with the required parameters extracted.

0 0.2 0.4 0.6 0.8 1
0

0.001

0.01

0.1

1

10

ω /π

|Hi(e
jω)|

i = 1 2 3 4 5

Figure 17.12 Magnitude responses of the FS MELP synthesis filters.

0 0.5 1
0.001

0.01

0.1

1

10

0 0.5 1
0.001

0.01

0.1

1

10

ω /π ω /π

|Hn(e jω)||Hp(e jω)|

Figure 17.13 Magnitude response plots of the pulse shaping filter (left) and noise shaping

filter (right) when vs1¼ 1, vs2¼ vs3¼ 0.5, vs4¼ 0, and vs5¼ 0.5.

466 MIXED EXCITATION LINEAR PREDICTION

Analysis Filters

The five analysis filters possess the same bandwidth settings as for the synthesis

filters. Unlike the synthesis filters discussed in Section 17.3, these filters are imple-

mented as sixth-order Butterworth [Oppenheim and Schafer, 1989]; that is, they are

IIR. This design decision is based mainly on the relatively low computational cost

associated with IIR configurations. For instance, sixth-order Butterworth requires

12 multiplications per output sample, whereas for a 31-tap FIR filter, 31 products

are needed; and both configurations meet or exceed the required passband and stop-

band characteristics. Nonlinearity in phase response—typical of IIR systems—is of

minor importance here, since the filters’ outputs are used for the correlation com-

putation. See Exercise 17.3 for the design of analysis filters.

Positions of Windows

Before continuing with pitch period estimation, the positions of some signal proces-

sing windows with respect to the signal frames are first described. Figure 17.14

summarizes the major windows utilized by the FS MELP coder. Like the FS1015

LPC coder, each frame is comprised of 180 samples. The positions of these analysis

windows are selected to facilitate interpolation, since parameters of a given frame

are interpolated between two different sets, calculated from the analysis windows

g1 g2

.... Gain
120
320

Peakiness
160

Prediction
error

180

Fourier

200 magnitudes
and LP analysis

Pitch period
.... 320 estimation

..... Signal frames

180

Present FuturePast

Figure 17.14 Positions of different windows with respect to the signal frames. Windows

associated with the present frame are marked using bold lines.

PITCH PERIOD AND VOICING STRENGTH ESTIMATION 467

centered at the beginning sample and end sample of the frame (gain parameter is an

exception to this rule).

As we can see, some windows are overlapping and others are not. For most para-

meters (except gain), the analysis window corresponding to the present frame is

centered on the last sample of the present frame. For instance, Fourier magnitudes

utilize a 200-sample window (Section 17.2); this window consists of the last 100

samples of the present frame, and the first 100 samples of the future frame.

First-Stage Pitch Period Estimation

The input speech signal is filtered by the first analysis filter, with a passband of 0 to

500 Hz. For each 180-sample frame, the normalized autocorrelation

r½l� ¼ c½0; l; l�ffi
c½0; 0; l�c½l; l; l�p ; ð17:10Þ

where

c½l;m; k� ¼
X�bk=2cþ79

n¼�bk=2c�80
s½nþ l�s½nþ m�; ð17:11Þ

is calculated for l¼ 40, 41, . . . , 160. The resultant pitch period is the corresponding
value of l for which r[l] is maximized. Normalization in (17.10) is used to compen-

sate for variations in signal energy; its introduction also simplifies voicing classifi-

cation since the same threshold can be applied to all frames (low-energy frames

excluded).

Autocorrelation calculation according to (17.11) utilizes 160 products. Taking

into account the range of l, it is straightforward to verify that for each pitch period

estimation operation, 320 consecutive samples of the signal are involved. The 320

consecutive samples constitute the pitch period estimation window. This window is

based on 160 samples of the current frame, plus 160 samples of the next frame. The

sample s[0] in (17.11) corresponds to the first sample of the next frame. Denoting

the integer pitch period from the above procedure as T, the following steps are used:

� The autocorrelation values c[0, Tþ 1, T] and c[0, T� 1, T] are calculated. If

c[0, T� 1, T]> c[0, Tþ 1, T], then T T� 1; otherwise proceed to the next

step. The purpose of this step is to verify the likelihood of the maximum

autocorrelation point being located in [T, Tþ 1] or [T� 1, T]; this is done by

comparing the autocorrelation values at lags of T� 1 and Tþ 1.

� Compute the fractional pitch period:

Z ¼ c½0; T þ 1; T �c½T ; T; T� � c½0; T ; T �c½T ; T þ 1; T�
c½0; T þ 1; T�ðc½T; T; T � � c½T ; T þ 1; T�Þ þ c½0; T; T �ðc½T þ 1; T þ 1; T� � c½T ; T þ 1; T�Þ :

ð17:12Þ

468 MIXED EXCITATION LINEAR PREDICTION

� Compute the normalized autocorrelation value:

r½T þ Z� ¼ ð1� ZÞc½0; T; T� þ Zc½0; T þ 1; T �ffi
c½0; 0; T�
ð1� ZÞ2c½T; T; T � þ 2Zð1� ZÞc½T ; T þ 1; T� þ Z2c½T þ 1; T þ 1; T��q :

ð17:13Þ

The resultant real pitch period is denoted by T(1)¼ Tþ Z, referred to as the first-

stage pitch period (Figure 17.15). The origin of the above formulas is from the

Medan–Yair–Chazan method discussed in Chapter 2.

Low-Band Voicing Strength

Voicing strength of the low band (0–500 Hz, vs1) is equal to the normalized auto-

correlation value associated with T(1), given by (17.13). That is,

vs1 ¼ r
�
Tð1Þ

�
: ð17:14Þ

This value of voicing strength is subjected to modification later according to other

properties of the signal.

Aperiodic Flag

The aperiodic flag depends on the low-band voicing strength:

af ¼ 1; if vs1 < 0:5;
0; otherwise:

�
ð17:15Þ

For high voicing strength (above 0.5), the frame is strongly periodic and the flag

is set to zero. For weak periodicity, the flag is set to one, signaling the MELP deco-

der to generate aperiodic pulses as voiced excitation (jittery voiced). The flag is

transmitted as part of the MELP bit-stream using one bit.

Voicing Strength Determination for the Four High-Frequency Bands

Figure 17.16 shows the system used to estimate the voicing strengths of the four

upper-frequency bands. Details are described below.

Input r[T (1)]
speech af

vs1
(1)

T(1)

Analysis
filter #1

Pitch period
estimation

Aperiodic
flag decision

Figure 17.15 Illustration of first-stage pitch period estimation.

PITCH PERIOD AND VOICING STRENGTH ESTIMATION 469

� Calculate r1¼ r[T(1)], where r[�] is the normalized autocorrelation given by

(17.13), and T(1) is the first-stage real pitch period. The signal used to

calculate the autocorrelation is the output from the corresponding bandpass

filter.

� Calculate r2¼ r[T(1)]. This time, however, the signal used is the envelope of

the bandpass signal, where the envelope is obtained by full-wave rectification

(absolute value of the samples), followed by lowpass filtering. The lowpass

filter possesses a zero at o¼ 0 so as to cancel the DC component. Thus, the

full-wave rectified signal is smoothed. In many instances, the envelope of the

bandpass signal reflects better the underlying periodicity due to the funda-

mental pitch frequency; in fact, these envelopes tend to rise and fall with each

pitch pulse. Autocorrelation analysis of these bandpass signal envelopes

yields an estimate of the amount of pitch periodicity in the corresponding

band. Figure 17.17 shows some example waveforms, where we can see that

the envelope roughly displays the same periodicity due to the fundamental

pitch period. The autocorrelation value is decremented by 0.1 to compensate

for an experimentally observed bias.

� The voicing strength of the band is given by

vs ¼ maxðr1; r2Þ: ð17:16Þ

Repeating the above procedures for the four remaining filters leads to the voicing

strengths vs2, vs3, vs4, and vs5. Thus, the voicing strength is determined by compar-

ing the autocorrelation values obtained directly from the bandpass signal and the

one obtained from the envelope of the signal itself, whichever is higher.

LP Analysis and Prediction Error

A tenth-order LP analysis is performed on the input speech signal using a 200-

sample (25-ms) Hamming window centered on the last sample in the current frame

(Figure 17.14). The autocorrelation method is utilized together with the Levinson–

Durbin algorithm. The resultant coefficients are bandwidth-expanded with a

constant of 0.994 (Chapter 4). The coefficients are quantized (Chapter 15) and

used to calculate the prediction-error signal.

Pitch period T (1)

Input
speech vs2,3,4,5

Analysis
filter

#2, 3, 4, 5

Envelope
extraction Autocorre-

lation

Autocorre-
lation

Comparator

Figure 17.16 Illustration of bandpass voicing strengths estimation.

470 MIXED EXCITATION LINEAR PREDICTION

Peakiness

Peakiness of the prediction-error signal is calculated over a 160-sample window

centered on the last sample in the current frame (Figure 17.14). The peakiness value

is defined by

p ¼
ffi
1
160

P79
n¼�80 e2½n�

q
1

160

P79
n¼�80 je½n�j

ð17:17Þ

and is a measure of the ‘‘peaky’’ level of the signal. Generally, the ‘‘peaky’’ level

refers to the presence of samples having relatively high magnitudes (‘‘peaks’’) with

respect to the average magnitude of a group of samples, which is effectively cap-

tured by (17.17). For high peakiness, the signal is expected to have outstanding

‘‘peaks.’’ In linear algebra terms, peakiness is the ratio of the L2 norm to the L1

norm of the signal.

Example 17.2 Figure 17.18 shows some commonly encountered signals and their

peakiness measures. As we can see, a single impulse has the highest peakiness. A

train of scattered impulses also has a relatively high peakiness. The sinewave and

1000 1200 1400
−5000

−1000

0

5000

n
1000 1200 1400

0

2000

4000

6000

n

1000 1200 1400

0

1000

2000

3000

n

y[n]

s[n] |s[n]|

Figure 17.17 Bandpass output from the third analysis filter (1–2 kHz), obtained using a

voiced portion of a speech waveform (top left). The full-rectified bandpass output (top right).

The smoothed bandpass envelope (bottom).

PITCH PERIOD AND VOICING STRENGTH ESTIMATION 471

white noise sequences have low peakiness due to the fact that no outstanding peaks

are present in these signals.

Figure 17.19 plots the peakiness value of a periodic impulse train having a cer-

tain period. As we can see, peakiness grows monotonically with the period. When

0 100

0

0.5

1

0 100
−1

−1

0

1

0 100

0

1

0 100

s[n]

s[n]

s[n]

−1

0

1

s[n]

n

n

n

n

Figure 17.18 Some signals and their peakiness values. Top left: Impulse, p¼ 13.4. Top

right: Some irregular impulses, p¼ 7.3. Bottom left: Sinewave, p¼ 1.1. Bottom right: White

noise, p¼ 1.2.

0 50 100
0

5

10

T

p[T]

Figure 17.19 Peakiness of a uniformly spaced impulse train as a function of the period.

472 MIXED EXCITATION LINEAR PREDICTION

peakiness of prediction error is calculated, it is expected that the measure is higher

for voiced frames due to the quasiperiodic impulse train structure. In particular, its

value can be maximized when the number of pulses in the frame becomes sparse,

such as the case of transition frames. Therefore, peakiness measure is useful for

voiced/unvoiced decision, as well as in the detection of transition.

Figure 17.20 shows an example of peakiness measure on a practical prediction-

error signal. Note that peakiness is much higher between n¼ 1000 and 2000, where

the signal is voiced. Peakiness is especially high for the frame containing n¼ 1000

due mainly to the transition nature, where a few excitation pulses are irregularly

distributed within the frame.

Peakiness and Voicing Strengths

According to the value of peakiness, voicing strengths of the lowest three bands are

modified according to the following:

� If p> 1.34 then vs1 1.

� If p> 1.60 then vs2 1 and vs3 1.

Thus, when peakiness is high, it overwrites some of the voicing strengths by

setting them directly to a high value. As we will see later, each voicing strength

is quantized to 0 or 1, transmitted using 1 bit.

A combination of peakiness and autocorrelation measures is highly effective in

voicing state classification. Typical unvoiced frames have low peakiness and auto-

correlation, leading to weak voicing strengths. For transition frames, however, pea-

kiness is high with medium autocorrelation. For these frames, the relatively low

autocorrelation sets the aperiodic flag to 1 (17.15), signaling the decoder to generate

random periods. On the other hand, high peakiness sets the voicing strengths to

their maximum values; the resultant conditions indicate the jittery voiced state.

For voiced frames, peakiness is medium with high autocorrelation; this would

0 1000 2000 3000
−0.5

0

0.5

0 1000 2000 3000
1

1.5

2

n n

e[n] p[n]

Figure 17.20 Prediction error obtained from a speech waveform (left) and peakiness

measure applied to the prediction error (right).

PITCH PERIOD AND VOICING STRENGTH ESTIMATION 473

set the aperiodic flag to zero, with high voicing strengths. The MELP coder relies

on the aperiodic flag combined with voicing strengths to manage voicing state

information.

Final Pitch Period Estimation

The prediction-error signal is filtered using a lowpass filter with 1-kHz cutoff, with

the output used for pitch period estimation. The result is obtained by searching in a

range surrounding the first-stage pitch period T(1). Reestimating the pitch period

using prediction error yields a more accurate result, since the formant structure

of the original speech signal is removed.

17.5 ENCODER OPERATIONS

After studying the core techniques in previous sections, we are ready to put pieces

together so as to form the MELP encoder; a block diagram is shown in Figure 17.21.

Functionality of some blocks is already explained and will not be repeated here.

Input
PCM
speech

Pitch period
/ low-band
v. s. index

Bandpass
v. s.

index
LPC Aperiodic

flag
Gain

index index
Fourier

m.index

MELP bit-stream

Frame
segmentation

Pitch period
estimation
(first stage)

LP
analysis

Voicing
strength

calculation

LPC
encoder

Prediction-
error filter

Pitch period /
low-band v.s.

encoder

Pack

LPC
decoder

Gain
computation

Gain
encoder

Aperiodic flag
decision

Fourier
magnitude
calculation

Bandpass
v. s. encoder

Pitch period
estimation

(final)

Fourier
magnitude

encoder

Figure 17.21 Block diagram of the MELP encoder.

474 MIXED EXCITATION LINEAR PREDICTION

Bandpass Voicing Strength Encoder

Voicing strengths of the four high-frequency bands are quantized according to the

following pseudocode:

QUANTIZE_VS(vs1, . . ., vs5)
1. if vs1
0.6 // Unvoiced
2. for i 2 to 5
3. qvsi 0
4. else // Voiced
5. for i 2 to 5
6. if vsi>0.6
7. qvsi 1
8. else
9. qvsi 0

10. if qvs2¼0 and qvs3¼0 and qvs4¼0
11. qvs5 0
12. return qvs2, . . ., qvs5

The procedure takes the voicing strength of the five bands as input. For the

unvoiced case, which is determined by the magnitude of vs1, the quantized voicing

strengths (qvsi) of the four high-frequency bands are set to zero (Lines 2 and 3).

Otherwise, they are quantized to zero or one according to their magnitudes. The

case of (qvs2, qvs3, qvs4, qvs5)¼ (0, 0, 0, 1) is explicitly avoided in Lines 10

and 11. Finally, the four quantized voicing strengths are returned in Line 12.

Quantization of Pitch Period and Low-Band Voicing Strength

The final pitch period T and the low-band voicing strength vs1 are quantized jointly

using 7 bits. If vs1
 0.6, the frame is unvoiced and the all-zero code is sent. Other-

wise, log T is quantized with a 99-level uniform quantizer ranging from log 20 to

log 160. The resulting index is mapped to the appropriate code based on a table.

The quantized vs1 denoted as qvs1 is equal to 0 for the unvoiced state and 1 for

the voiced state. No separate transmission is necessary since the information can

be recovered from the same table.

Gain Computation

The input speech signal gain is measured twice per frame using a pitch-adaptive

window length. This length is identical for both gain measurements and is deter-

mined as follows:

� If vs1> 0.6, the window length is the shortest multiple of T(1) (first-stage,

pitch period), which is longer than 120 samples. If this length exceeds 320

samples, it is divided by 2. This case corresponds to voiced frames, where

pitch synchronization is sought during gain computation. By utilizing an

ENCODER OPERATIONS 475

integer multiple of pitch period, variation in the value of gain with respect to

the position of the window is minimized.

� If vs1
 0.6, the window length is 120 samples. Thus, for unvoiced or jittery

voiced frames, a default window length is used.

Gain calculation for the first window produces g1 and is centered 90 samples

before the last sample in the current frame (Figure 17.14). The calculation for

the second window produces g2 and is centered on the last sample in the current

frame. The equation for gain calculation is

g ¼ 10 log10 0:01þ 1

N

X
n

s2½n�
 !

; ð17:18Þ

where N is the window length and s[n] the input speech signal. The range of n

depends on the window’s length as well as the particular gain (g1 or g2). The

0.01 factor prevents the argument from going too close to zero. If a gain measure-

ment is less than 0, it is clamped to 0. The gain measurement assumes that the input

signal range is [�32768, 32767] (16 bits per sample).

Gain Encoder

Gain g2 is quantized with a 5-bit uniform quantizer ranging from 10 to 77 dB. Gain

g1 is quantized with 3 bits using the pseudocode described below:

ENCODE_g1(g1, g2, g2,past)
1. if jg2�g2,pastj< 5 and jg1�(g2þg2,past)/2j<3
2. index 0
3. else
4. gmax MAX(g2,past, g2)þ6
5. gmin MIN(g2,past, g2)�6
6. if gmin<10
7. gmin 10
8. if gmax>77
9. gmax 77

10. index UNIFORM(g1, gmin, gmax, 7)
11. return index

The procedure takes the gains g1 and g2 of the current frame and g2,past of the

past frame. In Line 1 some conditions are verified to determine whether the frame is

steady-state (slight change in energy). If the condition is met, zero is returned as

the encoding result. Otherwise the frame is transitory and a seven-level uniform

quantizer is used. The limits of the quantizer (gmin, gmax) are calculated in

Lines 4 to 9; encoding through the uniform quantizer is performed in Line 10,

resulting in the index set {1, 2, . . . , 7}. Thus, a total of eight levels exist, deploy-

able with 3 bits. The function UNIFORM in Line 10 takes g1 as input and encodes it

476 MIXED EXCITATION LINEAR PREDICTION

using a uniform quantizer (Chapter 5) having the input range [gmin, gmax] and

seven codewords. The method is essentially an adaptive quantization scheme,

where parameters of the past and future are utilized to improve efficiency.

Bit Allocation

Table 17.1 summarizes the bit allocation scheme of the FS MELP coder. As

described in Chapter 15, the LPCs are quantized as LSFs using MSVQ. Synchro-

nization is an alternating one/zero pattern. Error protection is provided for unvoiced

frames only, using 13 bits. A total of 54 bits are transmitted per frame, at a frame

length of 22.5 ms. A bit-rate of 2400 bps results.

17.6 DECODER OPERATIONS

Figure 17.22 shows the block diagram of the MELP decoder, where the bit-stream

is unpacked with the indices directed to the corresponding decoder. Comparing

with Figure 17.1, we can see that the speech production model is embedded within

the structure of the decoder. Two additional filters are added along the processing

path: the spectral enhancement filter taking the mixed excitation as input, and the

pulse dispersion filter at the end of the processing chain. These filters enhance

the perceptual quality of the synthetic speech.

Parameter Decoding and Interpolation

In MELP decoding, parameters from the bit-stream are unpacked and decoded

according to the appropriate scheme. These parameters are LPC (LSF), pitch period/

TABLE 17.1 Bit Allocation for the FS MELP Codera

Resolution

————————————————

Parameter Voiced Unvoiced

LPC 25 25

Pitch period/low-band voicing strength 7 7

Bandpass voicing strength 4 —

First gain 3 3

Second gain 5 5

Aperiodic flag 1 —

Fourier magnitudes 8 —

Synchronization 1 1

Error protection — 13
————————————————

Total 54 54

aData from McCree et al. [1997], Table 1.

DECODER OPERATIONS 477

low-band voicing strength, bandpass voicing strengths, gains (g1 and g2), aperiodic

flag, and Fourier magnitudes. The mentioned parameters represent information on

the frame. Most of them are interpolated linearly during speech synthesis.

For unvoiced frames (detectable from the pitch period/low-band voicing strength

code), default values for some parameters are used. These include 50 for the pitch

period, 0.25 for the jitter, all 1’s for Fourier magnitudes, and all 0’s for voicing

strengths. Default values are necessary for unvoiced frames since linear interpola-

tion is performed on a pitch-period-by-pitch-period basis during speech synthesis.

Note that a new parameter—jitter—is introduced. Jitter is used only in the

decoder to control the amount of randomness during aperiodic voiced excitation

generation.

For voiced frames, the value of jitter is assigned according to: jitter 0.25 if

aperiodic flag is equal to one; otherwise, jitter 0. In this case, pitch period is

MELP
bit-stream

Fourier
m. index

Pitch period
/ low-band
v. s. index

Bandpass
v. s. index

LPC
index

Gain
index

Aperiodic
flag

go g

Synthetic speech

Fourier m.
decoding and
interpolation

Pitch period /
low-band v.s.

decoder

Pulse
generation

Pitch period
interpolation

Shaping
filter’s

coefficients

Scale factor
calculation

White noise
generator

LPC decoding
and

interpolation

Synthesis
filter

Noise shaping
filter

Shaping
filter’s

coefficients

Jitter
generation and
interpolation

Spectral
enhancement

filter

Gain decoding
and

interpolation

Pulse
dispersion

filter

Pulse shaping
filter

Unpack

Pitch period
adjustment

y[n]

Figure 17.22 Block diagram of the MELP decoder.

478 MIXED EXCITATION LINEAR PREDICTION

decoded from the bit-stream. After interpolation, the actual pitch period to use is

given by

T ¼ Toð1þ jitter � xÞ; ð17:19Þ

with To being the decoded and interpolated pitch period, and x a uniformly distrib-

uted random number in the interval [�1, 1]. In this way, erratic periods are gener-

ated, simulating the conditions encountered in transition frames. The quantity

(To � jitter � x) is the period jitter described in Figure 17.1. Also note that the max-

imum perturbation to the pitch period is equal to�25%, a limit found to be adequate

for most practical situations.

During speech synthesis, the signal is generated on a pitch-period-by-pitch-

period basis. That is, at a given instant of time no, where no 2 [0, 179] pertains

to the current frame, the set of parameters required for synthesis is determined

from linear interpolation of data from the past frame and present frame. The inter-

polation factor a is given by

a ¼ no=180: ð17:20Þ

This interpolation factor is applied in a similar manner for the parameters LPC

(LSF), pitch period, jitter, Fourier magnitudes, and shaping filters’ coefficients. Even

though voicing strengths can be interpolated, interpolating the shaping filters’ coef-

ficients (Section 17.3) results generally in lower computational cost (Exercise 17.6).

As an example, the pitch period value to be used for synthesis is given by

T ¼ ð1� aÞTpast þ aTpresent; ð17:21Þ

with the result rounded to the nearest integer. The gain to use is given by the inter-

polation formulas:

g ¼ ð1� aÞg2; past þ ag1; present; no < 90;

ð1� aÞg1; present þ ag2; present; 90
 no < 180:

�
ð17:22Þ

See Exercise 17.7 for gain decoding.

For the case that noþ T> 180, that is, the period under consideration crosses the

frame boundary, the parameters are still interpolated using the same rule. For the

next period, no is adjusted by subtracting 180 to reflect the coordinate of the new

frame.

Mixed Excitation Generation

The T-sample pulse sequence generated from the Fourier magnitudes has unit rms

value (Section 17.2). This sequence is filtered by the pulse shaping filter and added

with the filtered noise sequence to form the mixed excitation. Noise is generated by

DECODER OPERATIONS 479

a zero-mean uniform random number having unit rms value. Coefficients of the

filters are interpolated pitch synchronously.

Spectral Enhancement Filter

This filter has the system function

HðzÞ ¼ ð1� mz�1Þ
1þP10

i¼1
aib

iz�i

1þP10
i¼1

aiaiz�i
; ð17:23Þ

where the ai are the linear prediction coefficients. The parameters m, a, and b are

made adaptive depending on the signal conditions. This filter is identical to the

widely used postfilter in CELP coders—see Chapter 11 for details. It is stated with-

out further comment that the sole purpose of the spectral enhancement filter, as its

name implies, is to enhance the perceptual quality of the synthetic speech by

accentuating the original spectral characteristics.

Synthesis Filter

This is a formant synthesis filter in direct form, with the coefficients corresponding

to the interpolated LSFs.

Scale Factor Calculation

Power of the synthesis filter’s output must equal the interpolated gain g (17.22) of

the current period. Since the excitation is generated at an arbitrary level, a scaling

factor go is calculated so as to scale the synthesis filter’s output (y[n], Figure 17.22)

to produce the appropriate level. This is given by

go ¼ 10g=20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

P
n

y2½n�
r : ð17:24Þ

By multiplying go by y[n], the resultant T-sample sequence will have a power of

(10g/20)2, or g dB.

Pulse Dispersion Filter

This is the last block in the decoding chain. The filter is a 65-tap FIR filter derived

from a spectrally flattened triangle pulse (see Exercise 17.8). Figure 17.23 shows

the impulse response and magnitude response of this filter. As we can see, it is

almost an allpass filter, where changes in magnitude response are relatively small.

480 MIXED EXCITATION LINEAR PREDICTION

What is the purpose of this ineffectual looking filter? The explanation from

McCree and Barnwell [1995] is that it improves the match of bandpass-filtered syn-

thetic and natural speech waveforms in regions not containing a formant resonance,

where the bandpass-filtered natural speech has a smaller peak-to-valley ratio than

the synthetic speech. We can think of the function of the filter as to ‘‘stir’’ slightly

the spectrum of the synthesis filter’s output so as to improve naturalness; this is ben-

eficial since mixed excitation is formed by combining the noise and pulse through a

filter bank with fixed bandwidth.

17.7 SUMMARY AND REFERENCES

The theory and practice of the MELP coder are discussed in this chapter. It is shown

that the speech production model of MELP is basically an improvement with

respect to LPC, where additional parameters are introduced to add naturalness,

smoothness, and adaptability to more diverse signal conditions. The MELP coder

has achieved all these advantages without elevating the overall bit-rate, which is

mainly due to the inclusion of vector quantization techniques. Much of the buzzy

quality usually associated with LPC is eliminated by introducing frequency-

dependent voicing strength, jittery voiced state with aperiodic excitation pulses,

and enhancement filters to better match the synthetic waveform with the original.

MELP pertains to the family of parametric coders. When comparing with

hybrid coders such as CELP, the bit-rate requirement is much lower since detailed

description for the excitation is avoided. Instead, a coarse set of parameters is

extracted to represent the excitation. Similar to LPC, it can also be classified as a

source-controlled multimode coder, since different encoding schemes are applied

depending on the properties of the signal.

Many details of the operations of the encoder and decoder are simplified to facil-

itate digestion of the chapter’s material. Readers are referred to official documenta-

tion for a complete description, where additional techniques are included to

0 20 40 60
−0.5

0

0.5

1

h[n]

n

0 0.5 1
0.1

1

10

|H(ejω)|

ω /π

Figure 17.23 Impulse response (left) and magnitude response (right) of the pulse

dispersion filter.

SUMMARY AND REFERENCES 481

improve robustness and accuracy under various practical situations. Like any coder,

MELP is not perfect and many studies have been published with the aim of

enhancement. See Unno et al. [1999] for improvement ideas, where transition

noise, plosive reproduction, and low-pitch male speakers are addressed. In McCree

and DeMartin [1998], the bit-rate is reduced to 1.7 kbps with alternative quantiza-

tion techniques. In Stachurski et al. [1999], attempts were made to achieve near toll

quality at 4.0 kbps.

The ideas of mixed excitation, where a noise component and a periodic compo-

nent are combined together, have been investigated by many researchers in the past.

The multiband excitation coder, for instance, replaces the single voiced/unvoiced

classification of the LPC coder with a set of such decisions over harmonic intervals

in the frequency domain [Griffin and Lim, 1988]. The idea was subsequently stan-

dardized by the International Maritime Satellite Corporation (Inmarsat) in 1990 at a

bit-rate of 4.15 kbps. In Kondoz [1994], additional proposals are given to reduce the

bit-rate to 2.4 kbps and below. However, when the model on which multiband exci-

tation is based no longer fits the input signal, the resultant reproduction quality is

greatly reduced. This is particularly true when there is music or noise mixed with

the speech signal [Cox, 1995]. The MELP coder, on the other hand, behaves quite

well even for certain classes of nonspeech signals. Its quality is mainly due to the

robustness and flexibility of the underlying model, allowing good adaptation to a

more general class of audio signals.

EXERCISES

17.1 Prove that the normalization step in the PULSE_GENERATION(. . .) routine
is accomplished by multiplying each sample of the pulse sequence (y[n]) by

the square root of the pitch period T. That is,
ffiffiffiffi
T
p � y½n�, n¼ 0, . . . , T� 1 has

an rms value of one. Hint: The decoded Fourier magnitude sequence has an

rms value of 1.

17.2 This exercise concerns MELP synthesis filters design. These are 31-tap FIR

filters, designed by windowing the impulse response of an ideal filter. Follow

the procedures below to find the impulse responses of these filters.

(a) Synthesis filter #1: This is essentially a lowpass filter. For an ideal

lowpass filter with a cutoff frequency of op and unit passband gain, the

impulse response is [Oppenheim and Schafer, 1989]

hd½0� ¼ op

p
;

hd½n� ¼ sinðopnÞ
pn

; if n 6¼ 0:

Note that the impulse response is infinite in length. For finite length, the

response is truncated using a window sequence w[n] with N¼ 31

482 MIXED EXCITATION LINEAR PREDICTION

samples, centered around the origin:

h½n� ¼ hd n� N � 1

2

� �� �
w n� N � 1

2

� �� �
; n ¼ 0; 1; . . . ;N � 1:

Some popular window sequences are the Hamming, Hanning, and

Kaiser.

(b) Synthesis filters #2, 3, and 4: The same procedure can be applied.

However, the impulse response of an ideal bandpass filter is utilized,

which is given by

hd½0� ¼ op2 � op1

p
;

hd½n� ¼ � sinðop1nÞ
pn

þ sinðop2nÞ
pn

; if n 6¼ 0:

(c) Synthesis filter #5: This filter is basically a highpass filter; hence, the

impulse response of an ideal highpass filter is used, given by

hd½0� ¼ 1� op

p
;

hd½n� ¼ � sinðopnÞ
pn

; if n 6¼ 0:

After finding the five impulse responses hi[n], i¼ 1 to 5, add them up to

confirm the fact that the result is an impulse. Thus, the five synthesis

filters connected in parallel produce an allpass filter. Finally, plot the

frequency responses for the five filters.

17.3 This exercise concerns MELP analysis filters design. These are sixth-order

Butterworth filters. Design procedures are well documented and can be found

in Oppenheim and Schafer [1989] or Bose [1993]. The system function is

given by

HðzÞ ¼
Ho 1þP6

i¼1
aiz
�i

� �

1þP6
i¼1

biz�i
;

with Ho a scaling constant; ai and bi are the filter’s coefficients. Parameters of

the filters, designed with an attenuation level of �3 dB at the cutoff

frequency values, are given in Table 17.2. Plot the frequency responses of

these filters and compare with the synthesis filters.

17.4 Explain the differences between the Medan–Yair–Chazan method of pitch

period estimation as explained in Chapter 2 and that of Section 17.4.

EXERCISES 483

17.5 Calculate and plot the peakiness measure of the pulse

h½n; T� ¼ 1; 0
 n < T ;
0; otherwise;

�

as a function of T, where T 2 [2, 100]. Peakiness is computed with 180

samples. What conclusion can be drawn?

17.6 It is mentioned that during MELP decoding, the coefficients of the shaping

filters are interpolated. Confirm the fact that interpolating the voicing

strengths produces the same results. Find out the computational cost involved

in each case. Which approach offers the lowest cost?

17.7 This exercise concerns gains decoding.

(a) How is g2 decoded given its index ig2 from the bit-stream?

(b) Confirm the fact that g1 can be decoded using the following pseudocode:

DECODE_g1(ig1, g“ 2, g“ 2,past)
1. if ig1¼0
2. g“ 1 (g“ 2þg“ 2,past)/2
3. else
4. gmax MAX(g“ 2,past,g“ 2)þ6
5. gmin MIN(g“ 2,past,g“ 2)�6
6. if gmin<10
7. gmin 10
8. if gmax>77

TABLE 17.2 Parameters of the Analysis Filters

Analysis Filter Analysis Filter Analysis Filter Analysis Filter Analysis Filter

Parameter #1 #2 #3 #4 #5

Ho 2.883 �10�5 5.300 �10�3 3.169 �10�2 3.169 �10�2 1.052 �10�3
a1 6 0 0 0 �6
a2 15 �3 �3 �3 15

a3 20 0 0 0 �20
a4 15 3 3 3 15

a5 6 0 0 0 �6
a6 1 �1 �1 �1 1

b1 �4.485 �4.425 �1.847 1.847 2.979

b2 8.529 8.798 2.631 2.631 4.136

b3 �8.779 �9.953 �2.216 2.216 3.260

b4 5.148 6.753 1.575 1.575 1.517

b5 �1.628 �2.608 �0.6229 0.6229 0.3911

b6 0.2166 0.4535 0.1978 0.1978 0.04336

484 MIXED EXCITATION LINEAR PREDICTION

9. gmax 77
10. g“ 1 UNIFORM_DECODE(ig1,gmin,gmax,7)
11. return g“ 1

17.8 This exercise concerns the design of a pulse dispersion filter. The procedures

specified here are described in McCree and Barnwell [1995].

(a) Consider the triangle pulse described by

x½n� ¼
n=n1; if 0
 n < n1;
ðn� n1Þ=ðn1 � n2Þ þ 1; if n1 < n
 n2;
0; otherwise;

8<
:

where 0< n1< n2 are integers.

(b) Find the DFT of the triangle pulse sequence, with n1¼ 23, and n2¼ 33,

using 65 samples (n¼ 0 to 64).

(c) Denoting the resultant DFT sequence as X[k], k¼ 0 to 64, set all samples

to unit magnitude with

H½k� ¼ X½k�=jX½k�j:

(d) Calculate the IDFT of H[k], resulting in the desired impulse response

sequence h[n], n¼ 0 to 64. The impulse response represents the coeffi-

cients of the pulse dispersion filter. Plot the magnitude spectrum and

compare with Figure 17.23.

17.9 In the FS1015 LPC coder, the LPC quantizer achieves good efficiency by

transmitting a different number of linear prediction coefficients, depending

on whether the frame is voiced or unvoiced. Why is this seemingly excellent

approach not used in the FS MELP coder?

17.10 Applying the interpolation rule specified for decoding, show that when

Tpast¼ 50, Tpresent¼ 60, and no¼ 0 the sequence of pitch periods {50, 53,

56, 59} will be generated. Find the sequence of pitch periods when

Tpast¼ 60, Tpresent¼ 70, and no¼ 38.

17.11 Given the voicing strength values {vs1, . . . , vs5}¼ {0.8, 0.6, 0.5, 0.9, 0.1},

find the quantized values qvs2 to qvs5. Repeat for {0.5, 0.4, 0.6, 0.9, 0.7} and

{0.8, 0.2, 0.1, 0.3, 0.7}.

17.12 Write down the pseudocode capable of producing the length of the window

used for gain computation. Inputs to this procedure are the low-band voicing

strength and first-stage pitch period.

EXERCISES 485

CHAPTER 18

SOURCE-CONTROLLED
VARIABLE BIT-RATE CELP

In a conventional speech coder, the same number of bits is allocated to all speech

frames regardless of the fact that a speaker is silent roughly 63% of the time in a

two-way conversation. Furthermore, due to the dynamic nature of the speech signal,

the number of bits required to represent the frames faithfully varies with time. By

changing the bit-rate as a function of the signal properties, it is possible to yield an

average bit-rate that is substantially less than the fixed bit-rate of a conventional

coder. This is the principle of the source-controlled variable rate, where the cod-

ing algorithm responds to the time-varying local character of the speech signal to

determine the data rate.

The principles of source-controlled variable bit-rate algorithm have been around

since the early stage of speech coding development. The FS1015 LPC coder

(Chapter 9) and the FS MELP coder (Chapter 17), for instance, pertain to this

family. For these coders, parameters of the speech production model are encoded

using different numbers of bits, depending on whether the frame is voiced or

unvoiced.

This chapter is dedicated to the TIA IS96 variable bit-rate (VBR) CELP stan-

dard, in which the control mechanism is based on a background noise estimate

and the energy of the signal. The coder was created to increase the capacity of a

code division multiple access (CDMA)-based digital cellular system by decreasing

the mutual interference among users. The IS96 algorithm is also known as QCELP,

since it was initially designed by Qualcomm and later standardized by the TIA in

1993 [Gardner et al., 1993]. The chapter begins with a thorough description of the

principles of adaptive rate decision, followed by LP analysis, LSF quantization, and

operations of decoding and encoding. Since many details of CELP operations are

covered extensively in previous chapters (Chapters 11, 12, 13, 14, and 16), topics

486

related to decoding, encoding, and quantization are described only briefly. Readers

are referred to TIA [1998] for a complete description of the IS96 standard.

18.1 ADAPTIVE RATE DECISION

The most critical component of a source-controlled variable rate coder is the

mechanism by which the bit-rate is selected, since the efficiency and quality of

the resultant algorithm depend heavily on the selected technique. This section

describes the method adopted by the IS96 standard.

Available Bit-Rates

The IS96 coder dynamically selects one of four data rates every 20 ms (160-sample

frames), depending on speech activity. The four bit-rates are:

� Full rate: 8.55 kbps.

� Half rate: 4 kbps.

� Quarter rate: 2 kbps.

� Eighth rate: 0.8 kbps.

Typically, active speech is coded at full rate, while silence and background noise

are coded at lower rates.

Frame/Subframe Structure

IS96 follows the conventional CELP structure (Chapter 11), with the parameters of

the speech production model extracted at regular time intervals. Depending on the

bit-rate, a 20-ms frame is divided into subframes of different lengths. Two types of

subframes are considered:

� Pitch Subframe. This is the interval within which the parameters of the pitch

synthesis filter are extracted.

� Codebook Subframe. This is the interval where the fixed excitation code-

book is searched to find the best codevector.

Lengths of the subframes are summarized in Table 18.1.

Bit-Rate Transition Rules

An adaptive algorithm is used to determine the bit-rate for each frame, which keeps

a running estimate of the background noise energy and selects the bit-rate based on

the difference between the background noise energy estimate and the current

frame’s energy. Figure 18.1 summarizes the major rules for transition between

ADAPTIVE RATE DECISION 487

bit-rates, where the algorithm stays at a certain bit-rate at a given frame and

switches to other values or remains the same for the next frame. It is only permitted

to decrease by one rate per frame, that is, full ! quarter is prohibited; if a request

for full ! quarter appears, it is converted to full ! half. However, there is no

restriction on bit-rate increases; thus, eighth ! quarter, eighth ! half, and eighth !
full are all valid. These rules are designed to smooth the transitions so as to mini-

mize the amount of perceivable artifacts, as well as to represent transients (sudden

increases in energy) in the most faithful manner, since they play an important role

in subjective quality.

Background Noise Estimate and Bit-Rate Decision

The first variable that the algorithm relies on for bit-rate decision is the autocorre-

lation at zero lag, or energy of the windowed speech signal, written as

Es ¼
X159
n¼0
ðw½n�s½nþ 60�Þ2; ð18:1Þ

where s[n] denotes the input speech signal, with the shift of 60 reflecting the posi-

tion of the LP analysis window (Section 18.2); w[n] is the Hamming window

TABLE 18.1 Subframe Lengths in Number of Samples
for Different Bit-Ratesa

Bit-Rate Pitch Subframe Codebook Subframe

Full 40 20

Half 80 40

Quarter 160 80

Eighth — 160

a Data from TIA [1998], Table 2.4.1-1.

Full Half

Quarter Eighth

Figure 18.1 State diagram for bit-rate transitions.

488 SOURCE-CONTROLLED VARIABLE BIT-RATE CELP

sequence. It is important to note that the equations to follow assume 14-bit uniform

PCM for the input speech, with a maximum range of �8031. The window, on the

other hand, is assumed to have a peak magnitude of 1.

The background noise estimate of current frame is found with

BN ¼ minðEspast; BNmax; maxða � BNpast; BNpast þ 1ÞÞ ð18:2Þ

where min(x, y, z) returns the minimum of x, y, and z; and max(a, b) returns the

maximum of a and b. Espast and BNpast correspond to past frame quantities. BNmax

represents the upper limit of the background noise estimate and is a parameter of

the algorithm; its value is set at& 5.06 � 106. For initialization, BN is equal to

BNmax. Both terms inside the max() operator (a �BNpast and BNpast þ 1) increment

the candidate for the noise estimate by a small amount for the next frame, with

a¼ 1.00547. The expression is based on the assumption that the noise of the

next frame is almost the same as for the current frame, with a slight increase. In

fact, the adaptation speed of the noise estimate is controlled by the constant a of

the first term, as well as the addition of 1 in the second term. Changing these two

constants modifies the adaptation speed. Why are the two terms inside the max()

operator? This is because the incremental effect of 1.00547BNpast might be void for

a low value of the noise estimate under a fixed-point environment (rounding), and

the use of BNpast þ 1 ensures that a higher number is available for the next round,

since 1 is the smallest possible unit.

Example 18.1 Figure 18.2 shows some plots of the background noise estimate,

where a typical speech waveform is utilized. The energy of the signal is calculated

as in (18.1) with the noise estimate computed by (18.2). From the plots we see the

following: BN is an estimate of the lowest energy level of the signal. The core

assumption is that the background noise is equal to the lowest input energy at all

times. Thus, BN continuously tracks the minimum in the energy level of the input

signal. If the energy of the input signal is above BN, BN is increased slightly with

time, with the adaptation speed dictated by the constants inside the max() operator

in (18.2): a and 1. These two constants can be modified if a different adaptation

speed is desired. Unless there is a new low in the input energy level so that

BN[m]¼ Es[m�1], the inclusion of the max() operator ensures that the value of

BN is always on the upside.

Decision Thresholds for Bit-Rate Decision

Based on the noise estimate, a threshold equation is defined with

Thi ¼
ai;1BN2 þ ai;2BN þ ai;3; BN
 1:6 � 105;
ai;4BN2 þ ai;5BN þ ai;6; otherwise;

(
ð18:3Þ

for i¼ 1, 2, and 3. The threshold functions are designed in such a way that Th3 >
Th2 > Th1 for BN 2 [0, BNmax], which is satisfied except at the very end of

ADAPTIVE RATE DECISION 489

the range: BN& BNmax. The a constants have the values a1,1&�5.54 �10�6,
a1,2& 4.05, a1,3& 362, a1,4& 9.04 �10�8, a1,5& 3.54, a1,6&�6.21�104, a2,1&
�1.53 �10�5, a2,2& 8.75, a2,3& 1.14 �103, a2,4&�1.99 �10�7, a2,5& 4.94, a2,6&
2.24 �105, a3,1&�3.96 �10�5, a3,2& 18.9, a3,3& 3.35 �103, a3,4&�4.84 �10�7,
a3,5& 8.63, and a3,6& 6.46 �105. Figure 18.3 plots the three thresholds as a func-

tion of the background noise estimate. To find the desired bit-rate for the current

frame, the energy Es is compared to the thresholds. If Es is greater than the three

thresholds, the full rate is selected; if Es is greater than only two thresholds, the half

rate is selected; if Es is greater than only one threshold, the quarter rate is selected;

otherwise the eighth rate is selected. It is necessary to note that the actual bit-rate

for the frame depends on the past history, which is governed by the rules of Figure

18.1. Thus, the actual bit-rate is determined from the desired bit-rate in conjunction

with the past bit-rate. This multithreshold scheme improves robustness and stability

under noisy conditions.

Example 18.2 Figure 18.4 plots the energy Es of the 160-sample frames, together

with the noise estimate BN and the thresholds Th1, Th2, Th3 for the same signal as in

Example 18.1. It shows that the three thresholds are proportional to the noise esti-

mate, which tracks the bottom of the signal energy. Note also that Th3 > Th2 > Th1.

At the beginning, the signal energy is low and decreasing (first six frames), and BN

is equal to Es. As the speech energy grows, BN increases slowly, until a low-energy

interval corresponding to a short silent period appears near the 50th frame; at that

0 20 40 60 80 100 120 140 160 180
100
103

103

104

1·104

105

106

107

108

109

m

Es[m] BN[m]

0 20 40 60 80 100 120 140 160 180
100

m

BN[m]

Figure 18.2 Example of signal energy Es and background noise estimate BN.

490 SOURCE-CONTROLLED VARIABLE BIT-RATE CELP

point BN is lowered and increases slowly afterward. Figure 18.5 shows the desired

bit-rate, bit-rate0 [m], obtained when the energy is compared with the three thresh-

olds. The coding scheme is: bit-rate¼ 0 for full, 1 for half, 2 for quarter, and 3 for

eighth. Initially (first six frames), the eighth rate is the choice since the signal

energy is lower than the three thresholds. This is again the case during the short

103

104

105

106

107

108

BN

Th3

Th2

Th1

1·103 1·104 1·105 1·106 1·107

Figure 18.3 Plot of decision thresholds as a function of the background noise estimate.

0 20 40 60 80 100 120 140 160 180
100

103

104

105

106

107

108

109

m

Es

BN

Th3
Th2 Th1

Figure 18.4 Example of signal energy, background noise estimate, and the three decision

thresholds.

ADAPTIVE RATE DECISION 491

silence period near the 50th frame. Most of the frames, however, have a desired

bit-rate of full. The incorporation of three thresholds effectively improves the robus-

tness of the decision mechanism against noisy conditions, leading to a stable

bit-rate decision outcome. The desired bit-rate is processed so as to produce the

actual bit-rate, bit-rate[m], following the restriction rules for bit-rate changes.

Note how the sudden alteration in bit-rate, such as full ! eighth, is replaced by

full ! half.

Example 18.3 White noise is used to illustrate the behavior of the bit-rate selec-

tion algorithm. Figure 18.6 shows the situation, where the first few frames are low-

energy noise followed by high-energy noise. Except at the transition, the noise is

stationary. We can see how BN initially tracks the bottom of the signal energy and

increases slowly after the transition. The three thresholds display similar behaviors.

As time progresses, Th2 and Th1 surpass the signal energy. Figure 18.7 shows the

actual bit-rate. Note that right after the transition, the half rate is selected, followed

by an oscillatory zone where the rate changes between half and quarter; and as Th1
moves higher, the bit-rate eventually switches to eighth.

Bit Allocation

At a bit-rate of full, half, and quarter, five sets of parameters are transmitted: LPC,

pitch period, pitch gain, codebook index, and codebook gain. These parameters are

typical of a CELP algorithm. Depending on the bit-rate, a different number of bits

are used for encoding. At the full rate, additional bits are sent for error detection. At

0 20 40 60 80 100 120 140 160 180
0

2

4

0 20 40 60 80 100 120 140 160 180
0

2

4

m

m

bi
t-

ra
te

′[m
]

bi
t-

ra
te

[m
]

Figure 18.5 Desired bit-rate (top) and actual bit-rate (bottom) for the signal in Figure 18.4.

492 SOURCE-CONTROLLED VARIABLE BIT-RATE CELP

a bit-rate of eighth, no parameters from the pitch synthesis filter are transmitted.

The bit allocation scheme is summarized in Table 18.2.

A Summary

The technique adopted by the IS96 standard for bit-rate selection is based on the

energy of the frames. In this method, a background noise estimate is found based

on the lowest energy of the signal frame observed so far. This noise estimate is

allowed to increase slowly with time if the signal energy remains above it. Three

thresholds are defined on top of the noise estimate. The energy of the frame is com-

pared to these thresholds so as to select one out of four different bit-rates.

The technique is an open-loop approach, since bit-rate selection is made directly

from observations of parameters extracted from the input speech without assessing

how the specific coding mode will perform for the particular frame. The advantage

of using this method is its simplicity, when compared to a closed-loop method,

where each coding mode must be evaluated with the best selected.

0 20 40 60 80 100 120 140 160 180
105

106

107

m

BN

Es

Th3

Th1

Th2

Figure 18.6 Example of signal energy, background noise estimate, and the three decision

thresholds. The signal in this case consists of low-energy white noise switched to high-energy

white noise.

0 20 40 60 80 100 120 140 160 180
0

2

4

m

bi
t-

ra
te

[m
]

Figure 18.7 Actual bit-rate for the signal in Figure 18.6.

ADAPTIVE RATE DECISION 493

18.2 LP ANALYSIS AND LSF-RELATED OPERATIONS

This section describes the operations related to LP analysis, LSF quantization, and

LSF interpolation.

LP Analysis

This coder utilizes a 20-ms (160-sample) frame, and a Hamming window of

length 160 is applied to the signal for autocorrelation computation. The window

is centered on the last full-rate pitch subframe (Figure 18.8). The windowed data

TABLE 18.2 Bit Allocation for the IS96 Codera

Parameter Number per Frame Resolution Total Bits per Frame

Full Rate

LPC 10 4 40

Pitch period 4 7 28

Pitch gain 4 3 12

Codebook index 8 7 56

Codebook gain 8 3 24

Parity check 11 1 11
————

Total 171

Half Rate

LPC 10 2 20

Pitch period 2 7 14

Pitch gain 2 3 6

Codebook index 4 7 28

Codebook gain 4 3 12
————

Total 80

Quarter Rate

LPC 10 1 10

Pitch period 1 7 7

Pitch gain 1 3 3

Codebook index 2 7 14

Codebook gain 2 3 6

————
Total 40

Eighth Rate

LPC 10 1 10

Codebook seed 1 4 4

Codebook gain 1 2 2

————
Total 16

a Data from TIA [1998], Table 2.4.1-2.

494 SOURCE-CONTROLLED VARIABLE BIT-RATE CELP

are used in the autocorrelation computation, where 11 values are obtained. The

Levinson–Durbin algorithm is then applied, resulting in ten LPCs, which are

bandwidth-expanded with a factor of 0.9883, and later converted to LSFs. The

LSFs are mean-removed by subtracting the constant bias

mk ¼ kp=11; k ¼ 1; . . . ; 10; ð18:4Þ
representing the mean values of the LSFs when they are concatenated frame after

frame.

LSF Quantization

At full rate, the mean-removed LSFs are quantized directly using ten different

uniform scalar quantizers, with the same resolution of 4 bits. A predictive scalar

quantizer or DPCM (Chapter 6) is deployed for quantization for all other rates.

The scheme allows exploitation of redundancy present among the LSFs at conse-

cutive frames (Chapter 15). Prediction is based on a scaled version of the LSF from

the past frame, with the scale factor or prediction coefficient being 0.90625. The

prediction error in the DPCM scheme is uniformly quantized at a resolution of

2 bits for half rate and 1 bit for quarter and eighth rates.

LSF Decoding and Interpolation

After decoding the LSFs using the appropriate scheme, stability is enforced with

the following procedure; for simplicity, the input set of LSFs is denoted by oi,

i¼ 1 to 10.

1. o0 0; i 0;

2. while i < 10

3. if oiþ1� oi < dmin

4. oiþ1 oi þ dmin

5. iþþ
6. o11 p

7. while i > 0

8. if oiþ1� oi < dmin

LP analysis window

Sf3Sf2Sf1Sf0Sf3Sf2Sf1Sf0Sf3Sf2Sf1Sf0

Previous frame Current frame Next frame

Figure 18.8 Positions of frame and LP analysis windows.

LP ANALYSIS AND LSF-RELATED OPERATIONS 495

9. oi oiþ1�dmin

10. i��

The procedure first proceeds from low to high order. If the ordering or minimum

distance requirement is not satisfied, the high-order LSF is replaced by the low-

order LSF plus dmin, where dmin¼ 0.02p corresponds to 80-Hz minimum sepa-

ration (Line 4). By enforcing minimum distance between the LSFs, large peaks

in the transfer function of the associated synthesis filter are eliminated. The proce-

dure then proceeds from high to low order, achieving a similar goal but in reverse

order. Note that two additional LSFs are created: o0¼ 0 and o11¼ p.
After stability enforcement, the quantized LSFs of the current frame ôk are

smoothed according to

ôk bôk;past þ ð1� bÞôk: ð18:5Þ

At full rate, no smoothing is performed where b¼ 0. The level of smoothing is

higher for the lower rates of quarter and eighth since quantization noise is higher

for these cases and more smoothing is necessary to ensure good quality.

Finally, the LSFs are linearly interpolated to be used by the different subframes.

18.3 DECODING AND ENCODING

Decoding and encoding operations of the IS96 are described in this section.

Decoder Structure

The IS96 is based on the CELP algorithm (Chapter 11), with the overall speech

synthesis or decoder model shown in Figure 18.9. First, a vector is taken from

one of two sources depending on the bit-rate. For the eighth rate a pseudorandom

vector is generated. For all other rates, a vector specified by an index is taken

Seed

Index Gain LPCLong-term
LP parameters

Excitation
codebook

Pitch
synthesis

filter

Formant
synthesis

filter
Postfilter

Random
vector

generator

Synthetic
speech

Eighth
rate

Other
rates

Figure 18.9 Block diagram of the IS96 decoder.

496 SOURCE-CONTROLLED VARIABLE BIT-RATE CELP

from the excitation codebook. The vector is multiplied by a gain term and passed

through the cascade connection of the pitch synthesis filter, formant synthesis filter,

and postfilter so as to generate the synthetic speech at its output.

Excitation Codebook Structure

The excitation codebook consists of 27¼ 128 codevectors and has an overlapping

structure, where two consecutive codevectors are shifted by one sample (Chap-

ter 12). To further save memory cost, the codebook is stored as a 128-element array,

with the elements of the codevector obtained through circular shifting. That is, if

the codebook index combined with the codevector length surpasses the boundary of

the array, the last elements of the codevector are read from the beginning of the

array. This design is highly compact and allows a fast codebook search through

recursive convolution. The structure is referred to as a circular overlapping code-

book. Denoting the entire codebook as a single array,

v½n�; n ¼ 0; . . . ; 127;

then each codevector is identified with

vðlÞ½n� ¼ v½ðnþ lÞmod128�; l ¼ 0; . . . ; 127; n ¼ 0; . . . ;Nc � 1; ð18:6Þ

where Nc is the length of the codevector, which depends on the bit-rate. Samples of

the codebook take on discrete values in the set {�2.5, �2, �1.5, �1, 0, 1, 1.5, 2,
2.5, 3}, where 79% are zeros. A plot of all the samples of the excitation codebook

array appears in Figure 18.10.

0 50 100
−5

0

5

n

v[n]

Figure 18.10 Plot of the excitation codebook array for the IS96 coder. Data from TIA

[1998], Table 2.4.6.1-1.

DECODING AND ENCODING 497

Random Seed Generation

For frames encoded with the eighth bit-rate, a pseudorandom number generator is

used to produce the excitation sequence. The sequence is generated using a 4-bit

seed value, which is transmitted as information on the packet. Both the decoder

and encoder use the same seed to generate the exact same excitation sequence.

Finding the Parameters of the Pitch Synthesis Filter

The pitch synthesis filter has a system function

HpðzÞ ¼ 1

1þ bz�T
; ð18:7Þ

with b the pitch gain (or long-term gain) and T the pitch period. Both parameters

must be determined for the pitch subframe under consideration. Note that these

parameters are not found for the case of the eighth rate, where a default value of

b¼ 0 is applied.

Like other CELP coders (i.e., IS54, Chapter 13), the IS96 utilizes a suboptimal

two-step sequential procedure to locate the best parameters during encoding. In the

first step, a long-term gain and pitch period are found, assuming zero excitation

gain; and in the second step, an index to the excitation codebook with the associated

gain is determined, with the long-term parameters fixed. An analysis-by-synthesis

loop is applied to find the long-term parameters; this is done by searching through

all possible combinations of pitch period and quantized gain values.

The pitch lag T is encoded with 7 bits and ranges from 17 to 143. The pitch gain

b is represented by 3 bits and ranges from 0 to �2 in steps of �0.25 (uniform quan-

tization). For each pitch subframe, the chosen parameters b and T are encoded using

3 and 7 bits, respectively.

Excitation Codebook Search

After the parameters of the pitch synthesis filter are found, the next step is to search

the excitation codebook so as to get the optimal excitation codevector and the asso-

ciated gain. The codebook search procedure is performed for every codebook sub-

frame. Given the excitation codebook gain g and index l, they are encoded using 3

and 7 bits, respectively.

Gain magnitude is quantized using a DPCM technique, which operates on a

codebook subframe basis regardless of the bit-rate. That is, it operates eight times

during a full rate frame, four times during a half rate frame, two times during a

quarter rate frame, and only once for an eighth rate frame.

18.4 SUMMARY AND REFERENCES

This chapter briefly covers the TIA IS96 VBR-CELP standard, with a description

of its most salient features. It is shown that the coder follows the principles of an

498 SOURCE-CONTROLLED VARIABLE BIT-RATE CELP

open-loop source-controlled variable bit-rate algorithm, with the bit-rate selected

based on the energy of the signal frame. In particular, the energy of the background

noise is monitored and used to adapt a set of three time-varying thresholds that

remain above the noise level. Comparison between the energy of the frame and

the thresholds determines the desired bit-rate. Other implementational details of

IS96 are quite similar to its CELP cousins and hence are skipped for brevity.

There are many other proposed multimodal coders; see Das et al. [1995] for an

overview. Discussion of issues related to variable bit-rate speech coding appears

in Gersho and Paksoy [1993]; development of the QCELP algorithm is given in

Gardner et al. [1993]. In Wang [1999], a higher bit-rate QCELP algorithm is

described with improved performance. See TIA [1998] for technical descriptions

of the IS96 standard.

EXERCISES

18.1 Given the desired bit-rate sequence bit-rate0[m], write the pseudocode to

convert it to the actual bit-rate sequence bit-rate[m]. All transition rules

among bit-rates must be observed. Hint: Inputs to the procedure are bit-

rate0[m] and bit-rate[m�1].
18.2 Using some speech waveforms, compute the energy per frame and the

background noise estimate and plot out the resultant sequences. Modify the

constants 1.00547 and 1 inside the max() operator in the expression for

background noise estimate and replot the background noise estimate. You

can either increase those constants or decrease them. What is the conclusion?

18.3 Implement the threshold equations for bit-rate decision and observe their

behaviors using different types of waveforms. Based on a comparison

between energy and threshold, find out the actual bit-rate assigned to the

frames.

18.4 IS96 relies on the pseudorandom number generator described by

SD½n� ¼ ð521 � SD½n� 1� þ 259Þmod 216:

Based on the equation, generate several sequences (160 samples) using var-

ious initial conditions. Are the resultant sequences ‘‘white’’ enough? Justify

your answer. Is it possible for this pseudorandom number generator to degen-

erate [Banks and Carson, 1984]? That is, under certain conditions, subse-

quent outcomes become the same number (constant output).

18.5 For the bit-rate transition rules, assume all aspects remain the same with the

exception that full ! quarter is permitted. Draw the state diagram for bit-

rate transitions and write the pseudocode to convert the desired bit-rate

sequence to the actual bit-rate sequence.

EXERCISES 499

18.6 Example 18.3 shows a situation where rapid oscillation is developed in the

bit-rate pattern (Figure 18.7). This happens when the value of the threshold

is near the background noise estimate, since a simple pass–fail comparison

rule is deployed. The situation is undesirable since frequent switching

between bit-rates can generate artifacts. One solution to the problem is to

introduce hysteresis to the comparison rule, with the comparison based on

two thresholds as illustrated in Figure 18.11. By properly adjusting the

distance between the two thresholds in a comparator with hysteresis, it is

possible to eliminate or reduce the oscillations at the output, leading to

improved stability. Modify the IS96 scheme to incorporate hysteresis in the

decision process. Generate some signals in a similar way as in Example 18.3

to test and contrast the cases with and without hysteresis.

Th Thl Thh

Figure 18.11 Transfer characteristics of a simple comparator (left) and a comparator with

hysteresis (right).

500 SOURCE-CONTROLLED VARIABLE BIT-RATE CELP

CHAPTER 19

SPEECH QUALITY ASSESSMENT

Quality of synthetic speech is one of the most important attributes of a speech

coder. At the very early development stage of digital communication, signal-

to-noise ratio (SNR) is often the method of choice to evaluate the quality of wave-

form coding schemes such as PCM and ADPCM. When the FS1015 LPC coder was

developed around 1984, it was observed that the synthetic speech was quite

intelligible; however, it has a poor SNR value. The conclusion was that some

new measure must be developed in order to handle these types of parametric coders.

A series of subjective measures were invented to meet this need, where a selected

group of human subjects was asked to listen to some speech material and evaluate

them. An average score, representing the subjective quality, is obtained at the end of

the section.

This chapter aims to present a survey of current speech coding evaluation

practice. It begins with an overview of speech quality, its scope and measuring

conditions. Early objective measures are described next, followed by some standard

subjective test procedures. Recent developments in objective measures are dis-

cussed in the last section, with some description on standardization efforts. The

material in this chapter is intended for general information only; no detail algo-

rithmic descriptions are provided. Interested readers are referred to the references

for additional information.

19.1 THE SCOPE OF QUALITY AND MEASURING CONDITIONS

There are many dimensions in quality perception, some of them are described as

follows.

501

� Intelligibility. Whether the underlying message of the speech signal can be

clearly understood.

� Naturalness and Pleasantness. This is often related to the presence or

absence of various types of distortion or artifact in the synthetic speech, such

as noise, echoes, muffling, and clicking.

� Speaker Recognizability. Does the synthetic speech allow straightforward

identification to the original speaker?

It is important to note that speech quality must be measured under various

conditions, such as:

� Dependency on Speaker. Many low-bit-rate coders show a quality that is

speaker dependent. A thorough quality evaluation should involve speech

material from adult males, adult females, and children.

� Dependency on Language. Different languages have different speech sounds

(phonemes) that may or may not be appropriately modeled by the coder.

Evaluating the coder using speech material from different languages can

discover a weakness toward a given idiom.

� Dependency on Signal Levels. Quality of a coder is not uniform with respect

to variations in input power level and must be tested for various power levels

so as to understand its behavior. In particular, the coder should be tested for

extremely low level (or even zero) as well as extremely high level. Under

these conditions, the output should be well behaved.

� Background Noise. Performance of the coder for speech with background noise

is important due to the increasing number of portable applications. Typical noise

sources include car, street, and transient noise, music, and interfering speakers.

� Tandem Coding. In a typical communication link, the speech signal might be

encoded and decoded repeatedly; sometimes under the same coder, and other

times with different coders. Performance under these conditions must be

evaluated.

� Channel Errors. All communication channels contain some sort of errors.

Quality of the coder can be measured under different bit error rates.

� Nonspeech Signal. The faithfulness in the reproduction of nonspeech signals,

such as music or signaling tones (i.e., dual-tone multifrequency—DTMF—in

modern telephone systems), might be important in certain applications. In

general, it is not expected for the speech coder to be able to synthesize music,

but it should not generate annoying artifacts.

19.2 OBJECTIVE QUALITY MEASUREMENTS
FOR WAVEFORM CODERS

Performance of waveform coders, such as PCM and ADPCM, can simply be

measured using some form of signal-to-noise ratio (SNR). Discussion of SNR

and its refinement is included in this section.

502 SPEECH QUALITY ASSESSMENT

Signal-to-Noise Ratio

Given the original speech x[n] and the synthetic version y[n], the SNR is defined by

SNR ¼ 10 log10

P
n

x½n�2P
n

x½n� � y½n�ð Þ2

0
B@

1
CA; ð19:1Þ

with the range of the time index n covering the measurement interval.

Segmental Signal-to-Noise Ratio (SSNR)

This is a refinement with respect to conventional SNR measure and is created to

handle the dynamic nature of nonstationary signals such as speech. The definition

of SSNR is

SSNR ¼ 1

N

XN
m¼ 1

SNRm; ð19:2Þ

that is, it is an average of SNR values obtained for isolated frames, with the frame

being a block of samples. This measure compensates for the underemphasis of

weak-signal performance in conventional SNR measure. As we can see from

(19.2), very high SNR values corresponding to well-coded high-power frames can-

not camouflage performance of low-power frames, as in conventional SNR.

Poorly designed coders do not handle low-power frames appropriately, leading

to a drop in SNR for these frames. This normally leads to deterioration in subjective

performance, since low-power frames play an important role in perception: silence

frames should be silent instead of annoying noise. Conventional SNR does not

penalize the bad rendition of weak signals since strong signals dominate the

measurement outcome. The SSNR measure uncovers the performance in low-power

frames, leading to a more subjectively meaningful parameter.

The SNR in (19.2) is computed locally for frames of 10 to 20 ms in duration.

Further refinements to the computation of SSNR include the exclusion of extremely

high and extremely low SNR values from the equation, and the elimination of

silence frames.

A Summary

The SNR and SSNR measures are meaningful only for waveform coders. As we can

see from (19.1) and (19.2), both the SNR and SSNR are extremely sensitive toward

waveform misalignments and phase distortions, which are not always perceptually

relevant. On the other hand, most low bit-rate coders do not preserve the original

waveform, and hence the SNR and SSNR are meaningless for the evaluation of

these coders. Subjective quality measurement techniques are designed to overcome

the limitations of the simple SNR approach. This is covered in the next section.

OBJECTIVE QUALITY MEASUREMENTS FOR WAVEFORM CODERS 503

19.3 SUBJECTIVE QUALITY MEASURES

In subjective testing, speech materials are played to a group of listeners, who are

asked to rate the passage just heard. The ratings are then gathered and averaged to

yield the final score. The test is normally done for a wide variety of conditions

(Section 19.1) so as to obtain a general performance appreciation for a particular

coder. Some popular procedures to perform subjective testing are described in this

section.

Absolute Category Rating (ACR)

In this test the listeners are required to make a single rating for each speech passage.

Five choices exist: excellent (5), good (4), fair (3), poor (2), and bad (1). The aver-

age of all votes is known as the mean opinion score, or MOS.

Degradation Category Rating (DCR)

In this test the listeners are presented with the original signal as a reference, before

they listen to the synthetic signal, and are asked to compare the two and give a

rating according to the amount of degradation perceived. The choices are: not

perceived (5), perceived but not annoying (4), slightly annoying (3), annoying

(2), and very annoying (1). The average of all votes is known as the degradation

mean opinion score, or DMOS.

Comparison Category Rating (CCR)

Due to the order by which the speech materials are presented in the DCR test, the

final score might be biased. A better approach is to present two samples and ask the

listeners to compare and rate. The order by which the original speech and synthetic

speech is presented can be made arbitrary or random. The suggested choices are:

much better (3), better (2), slightly better (1), about the same (0), slightly worse

(�1), worse (�2), and much worse (�3).

A Summary

Reliability of subjective tests’ outcomes depends on the number of listeners. In

most tests the minimum number is 16, with the listeners recruited from the general

population so as to reflect better the conditions under which the system eventually

will be deployed.

It is clear that subjective tests are expensive to implement and highly time con-

suming. Therefore, current research efforts are being directed toward perceptually

based objective measures, described in the next section.

504 SPEECH QUALITY ASSESSMENT

19.4 IMPROVEMENTS ON OBJECTIVE QUALITY MEASURES

Since most objective quality measures designed for waveform-approximating

coders are inadequate for the evaluation of low-bit-rate coders, and subjective

tests are too costly to implement, it is natural for the speech coding community

to consider the development of alternative objective quality measurement techni-

ques. Ideally, the outcomes should be highly correlated with subjective test scores.

Figure 19.1 contrasts the case of a good objective measure, where the outcomes are

nearly proportional to subjective scores, to that of a bad objective measure, with

almost no correlation with respect to subjective scores.

Since the 1980s, the ITU-T has been investigating many proposals for objective

quality measurements. After careful comparisons, it was concluded that the percep-

tual speech quality measure (PSQM) algorithm best correlated with the subjective

quality of coded speech. The effort led to the standardization of PSQM as ITU-T

Recommendation P.861 in 1996 [ITU, 1996c].

Figure 19.2 shows a high-level block diagram of the PSQM algorithm. The delay

of the coder under test is first estimated and compensated for. The perceptual trans-

formation contains a simple hearing model, while the distance measure block

models judgment. A mapping function is used to convert the perceptual distance

into the scale of mean opinion score. Note that the algorithm resembles the DCR

0 2 4
0

2

4

Subjective score

Objective
score

Figure 19.1 Illustration of the outcomes for a good objective quality measure (þ) and a

bad objective quality measure (dots).

IMPROVEMENTS ON OBJECTIVE QUALITY MEASURES 505

test, where the reference and test signals are compared and a score is generated at

the end.

Voran [1999a] addressed some limitations of the P.861 standard and came up

with an improvement that eventually led to a new ITU standard [ITU, 1998a].

The technique is known as measuring normalizing block (MNB) and has found

to provide significant improvements in many cases, particularly at lower bit-rates,

and when bit errors or frame erasures are present.

Neither PSQM nor MNB was suitable for end-to-end measurement of telecom-

munication networks, where conditions such as linear filtering, variable delay, and

background noise are common. To address these problems, a competition to select

a new algorithm was conducted in late 1998 by ITU-T. The winner was the

perceptual evaluation of speech quality (PESQ) algorithm, which was subsequently

standardized by the ITU-T as recommendation P.862 [ITU, 2001]. PESQ performs

much better than earlier assessment methods, such as PSQM and MNB, and

has been evaluated on a very wide range of coders and network conditions. It

represents a milestone in the evolution of quality assessment technology.

Additional References

See Jayant and Noll [1984] for signal-to-noise ratio types of objective measure-

ments; subjective tests are described in Panzer et al. [1993] and Dimolitsas

[1993]. Kroon [1995] contains a survey of existing objective and subjective mea-

sures up to 1995. Comprehensive discussion of problems and challenges in quality

assessment can be found in Denisowski [2001]. The PSQM algorithm is described

in ITU [1996c], and ITU [1998a] contains the improved version based on MNB;

detailed descriptions of the MNB technique are given in Voran [1999a, 1999b].

See Rix et al. [2000, 2001] for description of the PESQ algorithm. Quality measure-

ments of speech are often overlapped with audio; in ITU [1998c], an algorithm

known as perceptual audio quality measure (PAQM) is standardized as ITU-R

Recommendation BS.1387. Description for the design of a combined measurement

tool for speech and audio is found in Keyhl et al. [1999].

Input speech

Estimated
mean

opinion
score

Synthetic speech

Coder
under
test

Delay
estimation

Delay
Perceptual
transfor-
mation

Perceptual
transfor-
mation

Distance
measure

Mapping
function

Figure 19.2 High-level block diagram of the PSQM algorithm.

506 SPEECH QUALITY ASSESSMENT

APPENDIX A

MINIMUM-PHASE PROPERTY
OF THE FORWARD
PREDICTION-ERROR FILTER

The predictor as presented in Chapter 4 is known as a forward predictor, since it

predicts the future based on samples from the past. In this appendix, the minimum-

phase property of the forward prediction-error filter is proved. In order to accom-

plish that, the concept of backward linear prediction is introduced. Relations

between backward and forward predictors are developed, followed by a discussion

of the dependency of mean-squared prediction error on the reflection coefficients.

System functions of backward and forward prediction-error filters are given, and the

minimum-phase property of the forward prediction-error filter is proved using

Rouché’s theorem.

Backward Linear Prediction: Predictor and Prediction-Error Filter

One-step backward prediction consists of using the subset of M samples s½n�;
s½n� 1�; . . . ; s½n�M þ 1� to predict, or estimate s½n�M�, with the prediction

given by

ŝ½n�M� ¼ �
XM
i¼ 1

gis½n� iþ 1�; ðA:1Þ

where the gi are referred to as the backward LPCs. The backward prediction error is

equal to

e½n� ¼ s½n�M� � ŝ½n�M� ¼ s½n�M� þ
XM
i¼1

gis½n� iþ 1�: ðA:2Þ

507

Figure A.1 shows the signal flow graph implementation of (A.2) and is known as

the backward prediction-error filter.

Backward Linear Prediction: Normal Equation

The backward LPCs are selected so that

J ¼ Efe2½n�g ¼ E s½n�M� þ
XM
i¼ 1

gis½n� iþ 1�
 !2

8<
:

9=
; ðA:3Þ

is minimized. Differentiating J with respect to gi and setting the result to zero leads

to

qJ
qgk
¼ 2E s½n�M� þ

XM
i¼ 1

gis½n� iþ 1�
 !

s½n� k þ 1�
()

¼ 0 ðA:4Þ

for k ¼ 1; 2; . . . ;M. Rearranging the above equation gives

Efs½n�M�s½n� k þ 1�g þ
XM
i¼ 1

giEfs½n� iþ 1�s½n� k þ 1�g ¼ 0 ðA:5Þ

or

XM
i¼ 1

giRs½i� k� ¼ �Rs½M � k þ 1�; ðA:6Þ

which is the normal equation for backward linear prediction. In matrix form,

Rsg ¼ �rBs ; ðA:7Þ

z−1 z−1 z−1 z−1...
s[n] s[n − M]

g1 g2 g3 gM−1 gM

ε [n]

−s[n − M]ˆ

Figure A.1 The backward prediction-error filter.

508 APPENDIX A

where Rs is the correlation matrix,

g ¼ ½g1 g2 � � � gM �T ðA:8Þ

and

rBs ¼ ½Rs½M� Rs½M � 1� � � � Rs½1��T ðA:9Þ

is the backward-arranged correlation vector. Equation (A.3) can be expanded to

give

J ¼ Rs½0� þ 2
XM
i¼ 1

giRs½M � iþ 1� þ
XM
i¼ 1

XM
j¼ 1

gigjRs½i� j�: ðA:10Þ

We are interested to find the minimum value of J, which is obtained when the LPCs

satisfy (A.6) or (A.7). Substituting (A.6) in the third term on the right-hand sum of

(A.10) leads to the following minimum mean-squared prediction error:

Jmin ¼ Rs½0� þ
XM
i¼ 1

giRs½M � iþ 1�: ðA:11Þ

The above equation, combined with (A.6) and written in matrix form, gives

Rs rBs
rBTs Rs½0�
� �

g
1

� �
¼ 0

Jmin

� �
ðA:12Þ

and is known as the augmented normal equation, with 0 the M � 1 zero vector.

Relations Between Backward and Forward Predictors

Arranging both sides of (A.7) in a backward manner, we come to the equivalent

relation

Rsg
B ¼ �rs: ðA:13Þ

Comparing with the normal equation for a forward predictor (Chapter 4), we

conclude that

a ¼ gB; ðA:14Þ

that is, we can modify a backward predictor into a forward predictor by rearranging

the sequence in a backward manner. Alternatively, we can write

ai ¼ gMþ1�i ðA:15Þ

MINIMUM-PHASE PROPERTY OF THE FORWARD PREDICTION-ERROR FILTER 509

or

gi ¼ aMþ1�i ðA:16Þ

for i ¼ 1; 2; . . . ;M.

Reflection Coefficient and Mean-Squared Prediction Error

When applying the Levinson–Durbin algorithm, the minimum mean-squared

prediction error is solved at each step of the recursion and is specified by

J0 ¼ R½0�; Jl ¼ Jl�1ð1� k2l Þ; l ¼ 1; 2; . . . ;M; ðA:17Þ

with kl being the RC. Starting with l ¼ 0, and increasing the filter order by 1 at a

time, we find that the repeated application of (A.17) yields

Jl ¼ J0
YM
l¼ 1

ð1� k2l Þ: ðA:18Þ

If the order of the prediction-error filter increases, the corresponding value of the

mean-squared prediction error normally decreases or else remains the same. Hence,

we must always have

0
 Jl
 Jl�1; l 	 1: ðA:19Þ

The above condition is equivalent to

jklj
 1; for all l: ðA:20Þ

Forward Prediction-Error Filter

For a linear predictor of order M, the prediction-error filter is described by

e½n� ¼
XM
i¼ 0

a
ðMÞ
i s½n� i�; ðA:21Þ

where a
ðMÞ
0 ¼ 1. The system function is found as

H
ðMÞ
f ðzÞ ¼

XM
i¼ 0

a
ðMÞ
i z�i: ðA:22Þ

510 APPENDIX A

Backward Prediction-Error Filter

For a backward predictor of order M, the prediction-error filter is described by

e½n� ¼
XMþ1
i¼ 1

g
ðMÞ
i s½n� iþ 1�; ðA:23Þ

where g
ðMÞ
Mþ1 ¼ 1. The system function is found to be

H
ðMÞ
b ðzÞ ¼

XMþ1
i¼ 1

g
ðMÞ
i z�iþ1 ¼

XM
i¼ 0

g
ðMÞ
iþ1z

�i: ðA:24Þ

Using the equivalent relation between backward and forward LPCs, we can write

H
ðMÞ
b ðzÞ ¼

XM
i¼ 0

a
ðMÞ
M�i z

�i; ðA:25Þ

where the system function of the backward prediction-error filter is expressed in

terms of the forward LPCs.

Recursive Expression for the System Function of the
Forward Prediction-Error Filter

It is desired to express the system function of the forward prediction-error filter in

terms of the system functions for the corresponding filters one order below. From

Chapter 4, the forward LPCs of order l satisfy

a
ðlÞ
l ¼ �kl; ðA:26Þ

a
ðlÞ
i ¼ a

ðl�1Þ
i � kla

ðl�1Þ
l�i ; i ¼ 1; 2; . . . ; l� 1: ðA:27Þ

Equation (A.22) can first be expanded to yield

H
ðlÞ
f ðzÞ ¼ 1þ

Xl�1
i¼ 1

a
ðlÞ
i z�i þ a

ðlÞ
l z�l: ðA:28Þ

Substituting (A.26) and (A.27) gives

H
ðlÞ
f ðzÞ ¼ 1þ

Xl�1
i¼ 1

a
ðl�1Þ
i z�i � kl

Xl�1
i¼ 1

a
ðl�1Þ
l�i z�i � klz

�l

¼
Xl�1
i¼ 0

a
ðl�1Þ
i z�i � klz

�1Xl�1
i¼ 0

a
ðl�1Þ
l�i�1z

�i: ðA:29Þ

MINIMUM-PHASE PROPERTY OF THE FORWARD PREDICTION-ERROR FILTER 511

Substituting (A.22) and (A.25) into (A.29) leads to

H
ðlÞ
f ðzÞ ¼ H

ðl�1Þ
f ðzÞ � klz

�1Hðl�1Þb ðzÞ: ðA:30Þ

Thus, given the RCs kl and the system functions of the forward and backward

prediction-error filters of order l� 1, the system function of the corresponding

forward prediction-error filter of order l is uniquely determined.

Minimum-Phase Property of the Forward Prediction-Error Filter

On the unit circle in the z-plane, we find that

jHðl�1Þf ðzÞj ¼ jHðl�1Þb ðzÞj; jzj ¼ 1; ðA:31Þ

which can easily be verified from the expressions of the system functions. Suppose

that the RCs kl satisfy the condition jklj < 1 for all l; then

jklz�1Hðl�1Þb ðzÞj < jHðl�1Þb ðzÞj ¼ jHðl�1Þf ðzÞj; jzj ¼ 1: ðA:32Þ

At this point, we cite Rouché’s theorem [Churchill and Brown, 1990]. Suppose that

two functions F and G are analytic inside and on a simple closed contour C. If
jFðzÞj > jGðzÞj at each point on C, then the functions FðzÞ and FðzÞ þ GðzÞ have
the same number of zeros, counting multiplicities, inside C. Using Rouché’s

theorem with

FðzÞ ¼ H
ðl�1Þ
f ðzÞ ðA:33Þ

and

GðzÞ ¼ �klz�1Hðl�1Þb ðzÞ ðA:34Þ

and considering the unit circle C of the z-plane traversed in the clockwise direction

(Figure A.2), we find that both FðzÞ and GðzÞ are analytic inside and on C. That is,
their derivatives are continuous throughout the region enclosed by C, which is

composed of the unit circle itself and the region outside it. Also note that

jGðzÞj < jFðzÞj; jzj ¼ 1: ðA:35Þ

Thus, the conditions specified by Rouché’s theorem are satisfied. According to the

theorem, FðzÞ and FðzÞ þ GðzÞ have the same number of zeros outside the unit

circle.

512 APPENDIX A

We can examine the number of zeros outside the unit circle starting with the

zero-order predictor. In this case,

H
ð0Þ
f ðzÞ ¼ 1: ðA:36Þ

Therefore, it has no zeros at all. Then

H
ð1Þ
f ðzÞ ¼ H

ð0Þ
f ðzÞ � k1z

�1Hð0Þb ðzÞ ¼ 1� k1z
�1 ðA:37Þ

will also have no zeros outside the unit circle. It is indeed the case from (A.37),

where a zero is located at z ¼ k1, for jk1j < 1, that the zero is situated inside the

unit circle.

If H
ð1Þ
f ðzÞ has no zeros on or outside the unit circle, then Hð2Þf ðzÞ will also have no

zeros on or outside the unit circle provided that jk2j < 1. The argument can be

extended to any prediction order.

Thus, the system function H
ðlÞ
f ðzÞ of a forward prediction-error filter of order l

has no zeros on or outside the unit circle in the z-plane for all values of l, if and only

if the reflection coefficients satisfy the condition jklj < 1 for all l. Such a system is

known as minimum-phase.

Im{z}

Re{z}0 1

Figure A.2 The unit circle traversed in the clockwise direction.

MINIMUM-PHASE PROPERTY OF THE FORWARD PREDICTION-ERROR FILTER 513

APPENDIX B

SOME PROPERTIES OF LINE
SPECTRAL FREQUENCY

Some properties of LSF are presented in this appendix. Consult Soong and Juang

[1984] and Kim and Lee [1999] for further information.

Lemma B.1. Given the function GðzÞ as defined in Chapter 8, if the prediction-

error filter with system function AðzÞ is minimum-phase, then

jGðzÞj > 1; if jzj < 1;

jGðzÞj < 1; if jzj > 1;

jGðzÞj ¼ 1; if jzj ¼ 1:

Proof. GðzÞ is defined by

GðzÞ ¼ z�ðMþ1Þ
Aðz�1Þ
AðzÞ : ðB:1Þ

Using the expression of AðzÞ,

GðzÞ ¼ z�ðMþ1Þ
QM

i¼ 1ð1� zizÞQM
i¼ 1ð1� ziz�1Þ

¼ z�1
YM
i¼ 1

1� ziz

z� zi
; ðB:2Þ

where the zi are the zeros of AðzÞ. From the minimum-phase condition, we have

jzij < 1. Magnitude of GðzÞ is given by

jGðzÞj ¼ jzj�1
YM
i¼ 1

j1� zizj
jz� zij : ðB:3Þ

514

Each magnitude term is calculated with

j1� zzij ¼
ffi
ð1� zizÞð1� z�i z�Þ

q
¼

ffi
1þ jzzij2 � 2ReðzziÞ

q
; ðB:4Þ

jz� zij ¼
ffi
ðz� ziÞðz� � z�i Þ

q
¼

ffi
jzj2 þ jzij2 � 2Reðzz�i Þ

q
: ðB:5Þ

We need to evaluate the ratio between (B.4) and (B.5) to prove the theorem.

Since the zi form complex conjugate pairs, it is possible to find zi ¼ z�j such that

2 ReðzziÞ ¼ 2Reðzz�j Þ: ðB:6Þ

Hence, we only need to compare the magnitude of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jzzij2

q
ðB:7Þ

with

ffi
jzj2 þ jzij2

q
: ðB:8Þ

Note that

ð1þ jzzij2Þ � ðjzj2 þ jzij2Þ ¼ ð1� jzj2Þð1� jzij2Þ: ðB:9Þ

Since jzij < 1 from the minimum-phase constraint on AðzÞ, it follows from (B.9)

that

jzj > 1) jzj2 þ jzij2 > 1þ jzzij2;
jzj < 1) jzj2 þ jzij2 < 1þ jzzij2;
jzj ¼ 1) jzj2 þ jzij2 ¼ 1þ jzzij2:

Substituting back in (B.3) proves the lemma.

Theorem B.1. For AðzÞ representing a minimum-phase system, all zeros of PðzÞ
and QðzÞ are on the unit circle.

Proof. From Chapter 8,

PðzÞ ¼ AðzÞð1þ GðzÞÞ; ðB:10Þ
QðzÞ ¼ AðzÞð1� GðzÞÞ: ðB:11Þ

SOME PROPERTIES OF LINE SPECTRAL FREQUENCY 515

Thus, the polynomials can only be zero when GðzÞ ¼ �1. For AðzÞ minimum phase,

jGðzÞj ¼ 1 only when jzj ¼ 1 (Lemma B.1). That is, the zeros of PðzÞ and QðzÞ are
on the unit circle.

Transfer Function, Argument, and Group Delay
of G(z) for A(z) Minimum Phase

From Lemma B.1 it follows that GðzÞ is the z-transform of an allpass filter, when

AðzÞ is minimum phase; that is,

jGðzÞj ¼ 1; if z ¼ ejo:

Its transfer function can be written as

GðejoÞ ¼ expð j argfGðejoÞgÞ; ðB:12Þ

with argf�g denoting the argument or phase function. The argument function can be

found by noting that

GðejoÞ ¼ e�jo
YM
i¼ 1

1� rie
jðoþoiÞ

ejo � riejoi
¼ e�jðMþ1Þo

YM
i¼ 1

1� rie
jðoþoiÞ

1� riejðoþoiÞ ; ðB:13Þ

where

zi ¼ rie
joi ; i ¼ 1; . . . ;M ðB:14Þ

are the zeros of AðzÞ. Therefore,

argfGðejoÞg ¼ �ðM þ 1Þoþ
XM
i¼ 1

tan�1
�ri sinðoþ oiÞ

1� ri cosðoþ oiÞ
� �

�
XM
i¼ 1

tan�1
ri sinðoþ oiÞ

1� ri cosðoþ oiÞ
� �

or

argfGðejoÞg ¼ �ðM þ 1Þo� 2
XM
i¼ 1

tan�1
ri sinðoþ oiÞ

1� ri cosðoþ oiÞ
� �

: ðB:15Þ

The group delay of G is [Oppenheim and Schafer, 1989]:

grdfGðejoÞg ¼ � d

do
argfGðejoÞg ¼ 1þ

XM
i¼ 1

1� r2i
1þ r2i � 2ri cosðoþ oiÞ : ðB:16Þ

516 APPENDIX B

Theorem B.2. For AðzÞ representing a minimum-phase system, the zeros of PðzÞ
and QðzÞ are interlaced with each other.

Proof. First, we have to show that the group delay of G is positive. Since

0 < ri < 1 and jcosðoþ oiÞj
 1, substitution of these extreme values in (B.16)

shows that

1
 grdðGðejoÞÞ
 M þ 1: ðB:17Þ

Hence, the argument function (B.15) must be a monotonically decreasing

function. Furthermore, the argument values for o ¼ 0 and o ¼ 2p are given by

argðGðejoÞÞjo¼ 0 ¼ 0; ðB:18Þ
argðGðejoÞÞjo¼ 2p ¼ �2ðM þ 1Þp; ðB:19Þ

which can be verified from the argument function directly. Therefore, the argument

function crosses each argðGÞ ¼ np line exactly once, resulting in 2ðM þ 1Þ
crossing points for 0
 o < 2p. These crossing points constitute the total

2ðM þ 1Þ zeros of PðzÞ and QðzÞ alternately on the unit circle. The situation is

depicted in Figure B.1. Starting from o ¼ 0, the function crosses the ip line at

o ¼ oi; i ¼ 0; . . . ; 2ðM þ 1Þ � 1 ¼ 2M þ 1, producing a total of 2ðM þ 1Þ zeros
for 0
 o < 2p. Since GðexpðjoiÞÞ ¼ 1 for i even and GðexpðjoiÞÞ ¼ �1 for i

odd, QðexpðjoiÞÞ ¼ 0 for i even and PðexpðjoiÞÞ ¼ 0 for i odd. The frequency

values oi are the LSFs of AðzÞ. Note that the zeros of PðzÞ and QðzÞ are interlaced

with each other.

arg{G(e jw)}

ω4
ω3

ω2
ω1

0
2π

ω

−4π

−2(M + 1)π

−3π
−2π
−π

Figure B.1 A typical argument plot.

SOME PROPERTIES OF LINE SPECTRAL FREQUENCY 517

APPENDIX C

RESEARCH DIRECTIONS
IN SPEECH CODING

The speech coding community has accomplished a great deal in the past thirty

years. Looking ahead, there are still many challenges to be confronted. Here, we

summarize some of the goals that must be conquered in order to advance the

state-of-the-art in the speech coding arena.

Wide-Band Speech Coding, Handling Audio Signals

Most speech coders are targeted for telephone communications, with the bandwidth

limited between 300 and 3400 Hz, requiring a sampling frequency of 8 kHz; this is

referred to as narrow-band speech. By doubling the value of the sampling

frequency to 16 kHz, it is possible to extend the bandwidth in the low- and high-

frequency regions, for instance, 50 to 7 kHz. The increase in bandwidth enhances

naturalness, presence, and comfort of the resultant digital speech signal, which is

highly desirable for emerging applications such as teleconferencing and multimedia

services. The expanded-bandwidth signal is known as wide-band speech.

Most standardized coders can be modified slightly to operate under a higher

sampling frequency. The main problem is the increase in computational load. For

instance, pitch search must be performed in a range that is doubled with respect to

8-kHz sampling. This could lead to an augmenting demand in computation by three

to four times. Thus, many studies have focused on complexity reduction while

dealing with wide-band speech coding. In Shoham [1993], an LD-CELP coder is

developed that operates at 32 kbps; Laflamme et al. [1993] reported an ACELP

coder at a bit-rate of 9.6 kbps. In Atal et al. [1993], more articles are available

on wide-band speech coding. In McCree [2000], input speech is split into low-

band and high-band, with the low-band signal encoded using the G.729 coder, while

518

the high-band signal is encoded independently using a simple model, resulting in a

14-kbps coder. The work was later extended to a multimode coder [McCree et al.,

2001]. A MELP coder operating around 8 kbps is covered in Lin et at. [2000].

Modern speech coding technology can encode virtually transparent wide-band

speech with only a slight increase in bit-rate when compared to narrow-band

speech. One of the fundamental limitations of hybrid speech coders, such as

CELP, is that they do not behave well for audio signals in general, mainly due to

the restriction imposed by the long-term predictor, or pitch synthesis filter. This

latter technique allows great efficiency while encoding speech, but fails when

facing the complex spectrum of typical audio signals, such as music.

For most wide-band applications such as teleconferencing, it is very likely that

the coder has to handle occasional music segments besides speech. Thus, the

challenge of low bit-rate wide-band coder design is to retain as much speech

modeling as possible, while accommodating other types of signals such as music.

The ITU-T standardized a wide-band coder known as G.722 in 1986 [Maitre,

1988]. It is essentially a subband coder where the input signal is split into low-

and high-frequency regions and separately encoded using ADPCM. It operates

on a bit-rate of 64 kbps and does not introduce any perceptually significant

distortion for speech. Due to its operational principles, its performance is rather

signal independent, with good behavior under speech as well as audio in general.

TheG.722 standard is commonly used as a reference for comparisonwith other coders.

Many audio coders designed for high-fidelity quality reproduction are based on

some sort of transform coding principles. The input signal is mapped to a frequency-

related domain, which is then quantized according to the outcomes of a psychoa-

coustic model calculation, putting different weightings on various frequency

regions depending on the perceptual relevance. This is the principle of the

MPEG1 audio coder, with the highly popular Layer 3 scheme, or MP3 [ISO/IEC,

1993]. The problem with this approach is that it works well only at relatively high

bit-rate; as it drops, performance decreases to a level that is not too bad for music,

but definitely not good enough for speech communication since most parametric or

hybrid speech coders work much better at similar bit-rate and below. See Noll

[1993] and Painter and Spanias [2000] for a survey of major audio coding techniques.

Recently, researchers have been developing parametric modeling for audio

representation with various levels of success. In a larger context, signal models

offer a general framework for the solution to a wide range of conditions and provide

efficient representation of general audio signals that can be explored for low bit-rate

audio coding. See Levine [1998] and Verma [1999] for descriptions of the sine plus

transient plus noise model; a brief tutorial on parametric audio coding appears in

Purnhagen [1999]. Refinements to these models perhaps hold the key to low bit-rate

audio plus speech coding.

Multispeaker

Most LP-based coders are designed to handle a single voice source; their efficiency

comes from the simple model on which they rely. Since the model itself is adapted

RESEARCH DIRECTIONS IN SPEECH CODING 519

to one speaker, the performance of the coder becomes unacceptable when several

speakers are involved, especially when they have comparable energy. The situation

is not a problem for traditional telephone applications but becomes critical for

teleconferencing, when several people might talk simultaneously. Roughly

speaking, the problem can be seen as an audio coding issue since the signal

spectrum when various speakers are involved mimics that of music. Thus, if the

coder is capable of representing audio signals accurately, it should behave

well under multispeaker conditions. Hence, the challenge is similar to that of audio

coding.

Lower and Lower Bit-Rate

This is an obvious goal in speech coding and the research community has achieved

a great deal of progress in this regard. Presently, it is technically feasible to produce

high-quality speech at a bit-rate around 2 kbps and below. However, due to require-

ments related to other attributes such as delay and complexity, many standardized

coders operate in the medium bit-rate range (5 to 15 kbps). Obviously, the

challenge is always reducing the bit-rate with minimum deterioration of the good

properties.

Many recent research activities have moved toward multimode coding, since this

can generally outperform single-mode coders by delivering equivalent quality at

lower rates.

A commonly asked question is in regard to the lowest bit-rate bound for coding

of speech. Judging from the verbal information rate of speech, the number should

lie somewhere around 100 bps. This bit-rate is likely to be achieved by a speech

recognition mechanism [Rabiner and Juang, 1993] acting as the encoder, followed

by a text-to-speech (TTS) system taking the role of the decoder. In Lee and Cox

[2001], a very low bit-rate coder is reported that works by taking into account

prosody information and speech synthesis techniques. At 800 bps, the authors

claimed that the quality is equivalent to that of the MELP coder operating at

2.4 kbps. It is important to note, however, that this type of approach has inherently

high coding delay that might hamper its practicality in two-way communication

systems.

Objective Quality Measure

As indicated in Chapter 19, a performance comparison among various coders is

frequently performed using subjective measurement techniques, which are cumber-

some, expensive, and often nonrepeatable. It is clear that a reliable objective quality

measurement technique that correlates well with subjective scores is necessary to

improve the confidence and credibility of the final results. Several recently

proposed methods have been quite successful in this aspect and are standardized

by major bodies. Merging these techniques to speech encoding should elevate the

quality of future generations of coders.

520 APPENDIX C

Scalability

The bit-stream of a scalable coder allows the decoder to reconstruct different

versions of the synthetic speech at various levels of accuracy or quality. The bit-

stream of a scalable coder is separated into independent units, with one unit respon-

sible for the core, low-quality part of the synthetic signal, while additional units

enhance and refine the overall accuracy. The core unit is indispensable for

reconstruction, while the rest of the units are optional. Scalability has become an

important issue for multimedia streaming over the internet. In that environment,

transmission delay is generally unknown and varies depending on the traffic.

Some advantages of scalable coders are:

� The decoder can start operating once the core unit is received. If the optional

units arrive late or never reach their destination, they can be stored or

discarded depending on system setting. This feature has significant impact

on overall performance under variable-delay packetized networks.

� If the platform on which the decoder is deployed cannot afford the resources

required to recover the high-quality signal (i.e., limitation in memory or

computational capacity), it can settle with only the lower quality decoding

operations.

� In case of a sudden drop in channel capacity (traffic increase) or an onset of

resource demand in the platform (beginning of other operations under the

same platform), the decoder can choose to switch to a lower-quality regen-

eration mode. Once the transients have settled and stabilized, the decoder can

decide to go back to its original high-quality mode.

The point to note is that scalability permits the decoder to downgrade gracefully

and predictably under unforeseen channel or system conditions. The feature

enhances the performance for a wide range of real-world systems, such as packe-

tized networks, the internet, and multitasking environments. The coders presented

in this book are not scalable, that is, the decoder can operate only when all bits

corresponding to the frame are recovered. In most cases, there is an all-or-nothing

attitude. Many standardized coders have ways to operate under channel loss condi-

tions, but the performance is generally hard to predict. Therefore, much more can

be improved in this aspect.

RESEARCH DIRECTIONS IN SPEECH CODING 521

APPENDIX D

LINEAR COMBINER FOR
PATTERN CLASSIFICATION

This appendix discusses the application of a linear combiner for pattern classifica-

tion. The patterns considered are vectors drawn from a given source, which are

processed by the linear combiner so that they are classified into two classes.

The mechanism can be used for voiced/unvoiced classification (LPC coder, Chap-

ter 9), where the patterns to be classified are vectors containing parameters of the

frame. Operation of the linear combiner is first explained followed by discussion of

the pattern classification problem. The ultimate goal is to derive the procedure used

for classifier design.

Operation of the Linear Combiner

Figure D.1 shows the structure of a linear combiner. The input vector x has M þ 1

elements

x ¼ ½x0 x1 � � � xM�T ¼ ½1 x1 � � � xM�T ; ðD:1Þ

where the first element x0 ¼ 1 is fixed and known as the bias input. The output

of the linear combiner is the inner product of two vectors: input x and weight w.
That is,

s ¼ xTw ¼
XM
k¼ 0

xkwk ¼ w0 þ
XM
k¼ 1

xkwk ðD:2Þ

522

with

w ¼ ½w0 w1 � � � wM�T : ðD:3Þ

Pattern Classification

The linear combiner can be used as a pattern classifier whereby the vector space

represented by the input vectors is partitioned into two subspaces, corresponding

to the two classes Cþ and C�. An input vector is classified as pertaining to one

of two classes by

x 2 Cþ; if xTw > 0;
C�; if xTw < 0:

�
ðD:4Þ

A surface that separates the patterns into different classes is called a decision

surface. In the present case, the decision surface is the hyperplane defined by

xTw ¼ w0 þ
XM
k¼ 1

xkwk ¼ 0: ðD:5Þ

Figure D.2 illustrates an example decision surface when M ¼ 2. Note how the

hyperplane divides the whole space into two subspaces, corresponding to the two

classes.

Linearly Separable and Nonseparable Patterns

The linear decision surface characteristic of a linear combiner limits its applicabil-

ity to those cases where the patterns are naturally linearly separable. Figure D.3

shows a few cases where the linear combiner is or is not a good solution choice.

w0

x0 = 1

w1

x1

w2

x2 s

:

:

wM

xM

Figure D.1 Structure of a linear combiner.

LINEAR COMBINER FOR PATTERN CLASSIFICATION 523

For linearly separable patterns, a linear combiner provides a simple and optimal

solution. Depending on the nature of the patterns, a linear combiner can be opti-

mized to minimize the total classification error. However, there are cases where

the use of a linear combiner is inadequate since excessive classification error is

incurred due to boundaries of the pattern classes; differing strategies must be

applied to these situations.

Classifier Design: Problem Statement

A pattern classifier* is obtained by transforming the outputs of the linear combiner

(D.2) via the sign function, that is,

Figure D.2 Decision surface in a two-dimensional space.

*The linear combiner followed by the sign extractor is sometimes referred to as a perceptron, or single-

layer perceptron, which is a simple form of neural network [Haykin, 1994].

Figure D.3 Illustration of linearly separable and nonseparable patterns in a two-

dimensional plane. Left: Linearly separable, use of linear combiner yields optimal results.

Middle: Nonseparable but the linear combiner can be optimized to minimize classification

error. Right: Nonseparable, use of linear combiner is inadequate due to excessive error.

524 APPENDIX D

y ¼ sgnðsÞ: ðD:6Þ

Then

x 2 Cþ; if y ¼ 1;
C�; if y ¼ �1:

�
ðD:7Þ

For the set of pattern vectors

xk; k ¼ 0; 1; . . . ;Nt � 1; ðD:8Þ

with Nt being the total number of vectors, each vector xk has an associated desired

response

dk; k ¼ 0; 1; . . . ;Nt � 1: ðD:9Þ

The desired response dk indicates the class to which xk pertains; that is, dk ¼ 1 if

xk 2 Cþ and dk ¼ �1 if xk 2 C�. It is desired to find the classifier that can success-

fully classify the pattern vectors (D.8) into Cþ and C�, that is,

yk ¼ dk; k ¼ 0; 1; . . . ;Nt � 1; ðD:10Þ

where yk is the classifier’s output in response to the pattern vector xk.
Since the classifier is completely defined by the weight vector w, solution of the

classifier design problem consists of finding the weight vector w given the set of

pattern vectors xk and the associated desired response dk. Classification error is

given by

ek ¼ dk � yk: ðD:11Þ

If the set of pattern vectors is linearly separable, a weight vector can be found in

such a way that ek ¼ 0 for all k. If the pattern vectors are not linearly separable, ek
will not be zero for some k. The design procedure should still be able to find a

weight vector w such that ek ¼ 0 for the highest number of k.

To paraphrase, the problem of classifier design consists of finding the weight

vector w so that the set of pattern vectors xk is classified with minimum error.

The pattern vectors associated with the desired responses are known as the training

exemplars. The exemplars are used to train the classifier so as to produce the correct

classification results.

Weight Vector and the Decision Surface

Consider an arbitrary weight vector w. This vector is normal to the decision surface

defined by (D.5), since by definition, if x and w are normal to each other, their inner

LINEAR COMBINER FOR PATTERN CLASSIFICATION 525

product is

xTw ¼ jxjjwjcosðp=2Þ ¼ 0; ðD:12Þ

which is the condition described by (D.5). Furthermore, if the vector x is positioned

such that its angle y with respect to w satisfies y 2 ½�p=2; p=2�, the inner product

between x and w is greater than zero and x will be classified as Cþ:

xTw ¼ jxjjwj cosy > 0 if y 2 ½�p=2; p=2�: ðD:13Þ

On the other hand, if y 2 ½�p;�p=2� or ½p=2; p�, the inner product between x
and w is less than zero and x will be classified as C�:

xTw ¼ jxjjwj cosy < 0 if y 2 ½�p;�p=2� or ½p=2; p�: ðD:14Þ

The following conclusions can be drawn:

1. The decision surface is normal to the weight vector w.

2. x 2 Cþ if and only if the angle between x and w is such that y 2 ½�p=2; p=2�.
3. x 2 C� if and only if the angle between x and w is such that y 2 ½�p;�p=2�

or ½p=2; p�.

Solution Space

For each training pattern, there is a corresponding decision surface separating the

entire space into two half-spaces—positive and negative—according to whether the

inner product between x and w is positive or negative. This surface is normal to

the direction of the pattern vector. Any weight vector w lying in the positive

half-space will generate correct output with zero error since xTw > 0 if x 2 Cþ

Solution space Solution space

x � C +

x � C −

− + − +

Figure D.4 Left: Solution space for x 2 Cþ. Right: Solution space for x 2 C�.

526 APPENDIX D

and xTw < 0 if x 2 C� (Figure D.4). The positive half-space separated by the

decision surface normal to the direction of x is called the solution space associated

with x.
For a group of patterns, there is a corresponding group of solution spaces. If the

intersection of the solution spaces is nonempty, there is a solution to the classifica-

tion problem. This space is called the solution space for the pattern’s group, and any

weight vector lying in this space will produce the desired output with zero error. An

example involving two pattern vectors is shown in Figure D.5, where the intersec-

tion between the solution spaces for the individual pattern is the total solution.

Cases of Misclassification

If a pattern is misclassified, the weight vector is outside the solution space asso-

ciated with the pattern; that is, it lies in the negative half-space. In order to find

the correct weight vector, it is possible to move it along the direction normal to

the desired decision surface toward the correct side. There are actually two different

cases of misclassification considered separately as follows.

� x 2 Cþ; xTw < 0

To move w to the solution space or positive half-space separated by the

desired decision surface, the following relation can be used to update the

weight vector w:

wnew ¼ wþ mx; ðD:15Þ
since x is normal to the desired decision surface and pointing to the positive

Solution space
for x & y

Solution
space for y

Solution
space for x

Figure D.5 Example of solution space for two patterns.

LINEAR COMBINER FOR PATTERN CLASSIFICATION 527

half-space. A real positive constant m is added to adjust the amount of weight

change and is known as the step-size parameter. The classification error is

e ¼ d � y ¼ 1� sgnðxTwÞ ¼ 2: ðD:16Þ

� x 2 C�; xTw > 0

To move w to the solution space or positive half-space separated by the

desired decision surface, the following relation can be used to update the

weight vector w:

wnew ¼ w� mx; ðD:17Þ
since x is normal to the desired decision surface and pointing to the negative

half-space. The classification error is

e ¼ d � y ¼ �1� sgnðxTwÞ ¼ �2: ðD:18Þ

The Fixed Increment Rule

The weight update relations (D.15) and (D.17) together with the classification errors

(D.16) and (D.18) can be combined together in a single equation as follows:

wnew ¼ wþ 1
2
m ex; ðD:19Þ

where e is the classification error and m the step-size parameter that adjusts the

amount of weight change after each update. The factor of 1
2
is included for conve-

nience. Note that no change will be made to the weight vector when the error is zero.

Equation (D.19) is known as the fixed increment rule for linear classifier design. It

is intuitively reasonable that successive corrections to the weight vector in

the direction of the solution space should eventually lead to the point where

the output error is equal to zero for all the training patterns (assuming linear separ-

ability).

The algorithm for classifier design is summarized below:

Step 1. Initialization: Begin with an initial weight vector w1. Set m ¼ 1. The initial

vector can be randomly generated.

Step 2. Training: With wm;0 ¼ wm, for k ¼ 0 to Nt � 1, perform the following:

yk ¼ sgn

xTkwm;k

�
; ðD:20Þ

ek ¼ dk � yk; ðD:21Þ
wm;kþ1 ¼ wm;k þ mekxk: ðD:22Þ

528 APPENDIX D

Step 3. Evaluation: For k ¼ 0 to Nt � 1, ek is recalculated using wm;Nt. The sum of

absolute error is calculated with

SAEm ¼
X
k

jekj: ðD:23Þ

If SAEm is less than a certain positive threshold, stop. The final weight vector is

given by wm. Otherwise, set m mþ 1 and wmþ1 ¼ wm; go to Step 2.

For the described algorithm, the weight vector is first randomly initialized. Then

in Step 2, the training exemplars are processed one by one. If classification error is

zero, the weight vector remains intact; otherwise, it is modified by an amount that

depends on the product between the classification error and the input vector. In the

evaluation step, performance of the weight vector is measured for all classification

patterns. If the sum of absolute error is lower than a certain threshold, the algorithm

stops. Otherwise, training resumes by executing Step 2.

So far we haven’t discussed the choice of step-size parameter m, which is a posi-

tive constant determining the speed of training. For high values of m, the weight

vector converges faster but with the possibility of oscillation or even instability.

For low values of m, convergence speed can be slow. The choice of m can be found

experimentally.

The stopping threshold is selected so that the desired performance is met upon

termination of the training procedure. If the training exemplars are linearly separ-

able, the threshold should be set to zero. Otherwise, some positive values can be

used, but the algorithm might never be able to complete its mission. In this latter

case an alternative stopping criterion can be used, such as counting the total number

of iterations, and stop whenever it surpasses a certain value.

Many variations are obtainable from the basic scheme, including the following:

� Training time is largely dependent on the initial weight vector. A strategically

well placed starting point can be estimated roughly from the training

exemplars and used later in the algorithm to cut the total training time.

� A fixed step size is used throughout the algorithm. It might actually improve

convergence speed and avoid unwanted oscillations by using a gradually

decreasing step-size parameter.

� The sum of absolute error is used for evaluation. The sum of squared error is

equally well suited for the present purpose.

Summary

Design procedures for a linear combiner in pattern classification are described. The

method is relatively simple and is applicable only to those situations where the

patterns are linearly separable. In general, a nonlinear system must be used to

LINEAR COMBINER FOR PATTERN CLASSIFICATION 529

perform the classification task. Neural networks are nonlinear systems that can be

applied with good classification results. In fact, a linear combiner followed by the

sign extractor is a simple form of neural network known as a single-layer percep-

tron. Many topologies of neural networks are available for pattern classification.

Most of these systems rely on the introduction of a nonlinear smooth transformation

function into the network structure. The networks are then trained using a gradient-

descent approach so as to minimize error. A comprehensive introduction to the vast

field of neural networks can be found in Bose and Liang [1996] and Haykin [1994];

simulation experiments and practical applications are found in Freeman [1994].

The proposed design algorithm is based on a training process where the

exemplars are presented consecutively with the weight adjusted after each step. It

is possible to use a least-squares approach to solve for the weight vector. As we can

see from the structure of the linear combiner, the weights can be jointly solved by

minimizing the total sum of error squares. The procedure is similar to linear

prediction analysis (Chapter 4). As a matter of fact, the linear combiner and linear

predictor share the same general constraints.

530 APPENDIX D

APPENDIX E

CELP: OPTIMAL LONG-TERM
PREDICTOR TO MINIMIZE THE
WEIGHTED DIFFERENCE

This appendix contains the derivations of the relevant equations involved in the

determination of the long-term predictor’s parameters so as to minimize the percep-

tually weighted difference between the input speech and the synthetic speech. We

rely on the notation from Chapters 11 and 12.

Problem Statement

Within the context for CELP (Chapter 11), it is possible to find the parameters of

the long-term predictor so as to minimize the perceptually weighted error. The best

way is to jointly optimize the long-term and short-term predictors resulting in the

smallest error. The target parameters are excitation codevector, excitation gain,

pitch period, and long-term gain. The proposition, however, is highly elaborate to

implement in practice. One way of reducing the search complexity is by obtaining

the long-term predictor’s parameters (pitch period and gain) and the excitation

codevector (including gain) in two steps. First, we assume zero excitation gain

and calculate the long-term predictor’s parameters such that the error is minimized.

Next, the long-term predictor is held constant and the optimal excitation plus gain

are searched.

The problem can be stated as follows. Find b and T so that the sum of squared

error

Jr ¼
XN�1
n¼ 0

ður½n� � y2r½n� � y3r½n�Þ2 ðE:1Þ

531

is minimized. In the above equation, ur½n� (perceptually weighted speech) and

y3r½n� (zero-input response of the modified formant synthesis filter) are known.

Note the subscript r is added to indicate the subframe index.

Signal Relations

The signal y2r½n� is found with

d2r½n� ¼ dr�1½nþ N�; �T
 n
 �1; ðE:2aÞ
d2r½n� ¼ �b:d2r½n� T�; 0
 n
 N � 1; ðE:2bÞ
y2r½n� ¼ 0; �M
 n
 �1; ðE:3aÞ

y2r½n� ¼ d2r½n� �
XM
i¼ 1

aigiy2r½n� i�; 0
 n
 N � 1; ðE:3bÞ

where the short-term LPCs ai are known. The zero-state response of the modified

formant synthesis filter can also be calculated by knowing the impulse response of

the filter—h½n�—which is an IIR causal system. Written as the convolution sum,

y2r½n� ¼
Xn
k¼ 0

h½k�d2r½n� k�; 0
 n
 N � 1; ðE:4Þ

h½n� can be found directly from the LPCs ai of the current subframe.

Finding the Optimal b and T

Differentiating (E.1) with respect to b gives

qJr
qb
¼ ð�2Þ

XN�1
n¼ 0

ður½n� � y2r½n� � y3r½n�Þ qqb y2r½n�: ðE:5Þ

From (E.4),

qy2r½n�
qb

¼
Xn
k¼ 0

h½k� q
qb

d2r½n� k�; 0
 n
 N � 1: ðE:6Þ

Here is the tricky part. To find the derivative of J, we must have the derivative of

y2, by which we need the derivative of d2. Since the signal d2 is unknown for the

current subframe (the long-term parameters are yet to be determined), we must

express d2 (as shown in (E.2b)) as a function of the d2 samples of the past (the

ðr � 1Þst subframe and further into the past). The computational procedure depends

on the value of T.

532 APPENDIX E

Case 1: T 	 N

In this case, the values of d2r½n� for 0
 n
 N � 1 depend entirely on the past, that

is, for n < 0. Thus, from (E.2b), we have

q
qb

d2r½n� ¼ �d2r½n� T �; 0
 n
 N � 1: ðE:7Þ

Substituting in (E.6), we find

q
qb

y2r½n� ¼ �
Xn
k¼ 0

h½k�d2r½n� k � T �: ðE:8Þ

Putting (E.4) and (E.8) into (E.5) and equating the result to zero gives

XN�1
n¼ 0

ur½n� � y3r½n� �
Xn
k¼ 0

h½k�d2r½n� k�
 ! Xn

k¼ 0

h½k�d2r½n� k � T �
 !

¼ 0:

Substituting (E.2b) into the above equation and using the definition

y4r½n� ¼
Xn
k¼ 0

h½k�d2r½n� k � T � ðE:9Þ

yields

XN�1
n¼ 0

ður½n� � y3r½n�Þy4r½n� ¼ �b
XN�1
n¼ 0

ðy4r½n�Þ2; ðE:10Þ

or

b ¼ �
PN�1

n¼ 0ður½n� � y3r½n�Þy4r½n�PN�1
n¼ 0ðy4r½n�Þ2

; ðE:11Þ

which is the expression for the optimal long-term gain. Given b, we would like to

find the expression for the sum of squared error as a function of T. Substituting (E.4)

into (E.1), we find

JðTÞ ¼
XN�1
n¼ 0

ur½n� � y3r½n� �
Xn
k¼ 0

h½k�d2r½n� k�
 !2

:

From (E.2b) and (E.9),

JðTÞ ¼
XN�1
n¼ 0

ður½n� � y3r½n� þ by4r½n�Þ2: ðE:12Þ

CELP: OPTIMAL LONG-TERM PREDICTOR TO MINIMIZE THE WEIGHTED DIFFERENCE 533

Expanding the above equation and substituting (E.11) for b gives

JðTÞ ¼
XN�1
n¼ 0

ður½n� � y3r½n�Þ2 � ð
PN�1

n¼ 0ður½n� � y3r½n�Þy4r½n�Þ2PN�1
n¼ 0ðy4r½n�Þ2

: ðE:13Þ

Since ur½n� and y3r½n� are known, (E.13) is evaluated for all possible values of T.

The particular value that minimizes (E.13) or maximizes

PðTÞ ¼ ð
PN�1

n¼ 0ður½n� � y3r½n�Þy4r½n�Þ2PN�1
n¼ 0ðy4r½n�Þ2

ðE:14Þ

is the optimal pitch period. Note that for each T, there is a corresponding y4r½n�
given by (E.9). Once T is found, b is calculated with (E.11) and all the necessary

parameters are obtained.

Case 2 :N=2
 T < N

From (E.2b), d2½n� can be written in this case as

d2r½n� ¼
�bd2r½n� T �; 0
 n
 T � 1;

b2d2r½n� 2T �; T
 n
 N � 1;

�
ðE:15Þ

where the values for the present frame are written as a function of the last frame

(n < 0) only. Then

q
qb

d2r½n� ¼
�d2r½n� Tr�; 0
 n
 T � 1;

2bd2r½n� 2Tr�; T
 n
 N � 1:

�
ðE:16Þ

From (E.6),

q
qb

y2r½n� ¼
�Pn

k¼ 0 h½k�d2r½n� k � T�; 0
 n
 T � 1;

2b
Pn

k¼ 0 h½k�d2r½n� k � 2T �; T
 n
 N � 1:

�
ðE:17Þ

Substituting (E.17) and (E.4) into (E.5) and equating to zero, we find

XT�1
n¼ 0

ur½n� � y3r½n� �
Xn
k¼ 0

h½k�d2r½n� k�
 !

�
Xn
k¼ 0

h½k�d2r½n� k � T �
 !

þ
XN�1
n¼T

ur½n� � y3r½n� �
Xn
k¼ 0

h½k�d2r½n� k�
 !

2b
Xn
k¼ 0

h½k�d2r½n� k � 2T�
 !

¼ 0:

534 APPENDIX E

Note that the sum is broken into two parts, corresponding to the two intervals of n

described from (E.15) to (E.17). Substituting (E.15) into the above equations

gives

XT�1
n¼ 0

ur½n� � y3r½n� þ b
Xn
k¼ 0

h½k�d2r½n� k � T �
 !

�
Xn
k¼ 0

h½k�d2r½n� k � T �
 !

þ
XN�1
n¼ T

ur½n��y3r½n�� b2
Xn
k¼ 0

h½k�d2r½n�k � 2T �
 !

2b
Xn
k¼ 0

h½k�d2r½n� k � 2T�
 !

¼ 0:

ðE:18Þ

Let’s define

y5r½n� ¼
Xn
k¼ 0

h½k�d2r½n� k � 2T �: ðE:19Þ

Using definitions (E.9) and (E.19) in (E.18) leads to

�
XT�1
n¼ 0

ður½n� � y3r½n�Þy4r½n� � b
XT�1
n¼ 0

ðy4r½n�Þ2

þ 2b
XN�1
n¼ T

ður½n� � y3r½n�Þy5r½n� � 2b3
XN�1
n¼ T

ðy5r½n�Þ2 ¼ 0 ðE:20Þ

Rearranging terms, we find

2b3
XN�1
n¼T

ðy5r½n�Þ2 þ b
XT�1
n¼ 0

ðy4r½n�Þ2 � 2
XN�1
n¼ T

ður½n� � y3r½n�Þy5r½n�
 !

þ
XT�1
n¼ 0

ður½n� � y3r½n�Þy4r½n� ¼ 0: ðE:21Þ

As we can see, for the case of T 	 N, b can be written in closed form; when T is

less than N, however, the solution to b requires solving a cubic expression. This is

obviously very costly. One solution is to adopt a trial-and-error method based on

quantized values of b. In this method the sum terms are precomputed, and then

each of the possible quantized values of b is substituted into the equation. The value

of b that gives the smallest squared error is the desired value.

CELP: OPTIMAL LONG-TERM PREDICTOR TO MINIMIZE THE WEIGHTED DIFFERENCE 535

For T < N=2, more complicated expressions result for the solution of b. For

N=3
 T < N=2, for instance, d2½n� can be written as

d2r½n� ¼
�bd2r½n� T �; 0
 n
 T ;

b2d2r½n� 2T �; T
 n
 2T � 1;

�b3d2r½n� 3T�; 2T
 n
 N � 1:

8><
>: ðE:22Þ

This obviously results in an even more complex expression for the solution of b and

hence too complex for practical purposes.

536 APPENDIX E

APPENDIX F

REVIEW OF LINEAR ALGEBRA:
ORTHOGONALITY, BASIS, LINEAR
INDEPENDENCE, AND THE
GRAM–SCHMIDT ALGORITHM

Fundamental concepts of linear algebra are reviewed here, which form the back-

ground material for the study of Chapter 13, the VSELP coder. For simplicity,

many mathematical formalities are dropped. Readers pursuing a more rigorous

framework are invited to consult Strang [1988], an introductory textbook; or Lan-

caster and Tismenetsky [1985], a more advanced reference. In Golub and Van Loan

[1996], many algorithms dealing with a large array of matrix computation problems

are given.

For the purpose of this appendix, the N-dimensional vector

x½x1 x2 � � � xN �T

has real elements xi; i ¼ 1 to N.

Definition F.1: Inner Product of Two Vectors. Given the vectors x and y, their
inner product, denoted by (x, y) is defined by

ðx; yÞ ¼ yTx ¼
XN
i¼ 1

xiyi: ðF:1Þ

Definition F.2: Orthogonal Vectors. Two vectors are said to be orthogonal if their

inner product is equal to zero.

537

Definition F.3: Linear Independence. The set of M vectors x1; . . . ; xM are said to

be linearly independent if the condition

XM
i¼ 1

aixi ¼ 0 ðF:2Þ

implies that

a1 ¼ a2 ¼ � � � ¼ aM ¼ 0;

where the ai are scalars.

Definition F.4: Norm of a Vector. Given the vector x, its norm is defined by

kxk¼
ffiffiffiffiffiffiffiffiffiffiffi
ðx; xÞ

p
¼

ffiffiffiffiffiffiffiffi
xTx
p

: ðF:3Þ

Theorem F.1: Linear Independence and Orthogonality. Given the vectors

x1; . . . ; xM with nonzero norm, if these vectors are mutually orthogonal, then

they are linearly independent.

Proof. Suppose a1x1 þ � � � þ aMxM ¼ 0. To show that a1 must be zero, take the

inner product of both sides with x1:

xT1 ða1x1 þ � � � þ aMxMÞ ¼ a1xT1x1 ¼ 0;

which is due to the orthogonality constraint of the xi. Because the vectors were

assumed nonzero, xT1x1 6¼ 0 and therefore a1 ¼ 0. The same is true for every ai.
Thus, the only combination of the xi producing zero is the trivial one with all

ai ¼ 0, and the vectors are independent.

Definition F.5: Linear Space. A linear space or vector space is a set of vectors.

Within these spaces, two operations are possible: we can add any two vectors, and

we can multiply vectors by scalars. (See Lancaster and Tismenetsky [1985] for

additional details.)

Definition F.6: Basis. A finite set of vectors x1; . . . ; xM is said to be a basis of the

linear space S if they are linearly independent and every element x 2 S is a linear

combination of the basis vectors. That is,

x ¼
XM
i¼ 1

aixi; ðF:4Þ

where the ai are scalars. We say that the basis vectors span the linear space S.

538 APPENDIX F

Definition F.7: Orthonormal Vectors. The vectors q1; . . . ; qM are orthonormal if

qTi qj ¼
0; i 6¼ j;
1; i ¼ j;

�
ðF:5Þ

that is, they are mutually orthogonal with unit norm.

Projection of a Vector to a Line: The Projection Matrix

Given two vectors a and b, where a indicates the direction of a straight line and b
represents a point in space, we want to find the point p along the line in the direc-

tion of the vector a in such a way that the distance between b and p is minimum.

This is known as the projection problem and the geometry is shown in Figure F.1

for an example of a 3-D space. To find p, we use the fact that p must be some

multiple p ¼ aa of the given vector a, and the problem is to compute the coefficient

a. All that we need for this computation is the geometrical fact that the line from b
to the closest point p ¼ aa is orthogonal (perpendicular) to the vector a:

aTðb� aaÞ ¼ 0:

Thus,

a ¼ aTb

aTa
: ðF:6Þ

Therefore, the projection of b onto the line whose direction is given by a is

p ¼ aa ¼ aTb

aTa
a ¼ aaT

aTa
b ¼ P � b: ðF:7Þ

P is an N � N matrix and is the matrix that multiplies b to produce p, known as the

projection matrix.

b b − p
a

x1

x3

x2

p

Figure F.1 A one-dimensional projection in three-dimensional space.

REVIEW OF LINEAR ALGEBRA 539

The Gram–Schmidt Orthogonalization Algorithm

Given a set of linearly independent vectors,

a1; a2; . . . ; aM;

it is required to find the corresponding set of orthogonal vectors,

q1; q2; . . . ; qM ;

so that q1 is in the direction of a1.
The problem is solved by Gram and Schmidt and proceeds as follows. Start with

q1; since it goes in the same direction as a1, we have

q1 ¼ a1: ðF:8Þ

For q2, the requirement is that it must be orthogonal to q1. We proceed by sub-

tracting off the component of a2 in the direction of q1:

q2 ¼ a2 � qT1a2

qT1q1
q1; ðF:9Þ

Since ðqT1a2Þq1=ðqT1q1Þ is the projection of a2 in the direction of q1.
For q3, we eliminate the components of a3 in the direction of q1 and q2. Hence,

q3 ¼ a3 � qT1a3

qT1q1
q1 �

qT2a3

qT2q2
q2; ðF:10Þ

where the first and second negative term on the right-hand side are the components

of a3 in the directions of q1 and q2, respectively. Therefore, the basic idea is to

subtract from every new vector a its components in the directions that are already

settled; and the principle is used over and over again.

To summarize, the algorithm can be written as

For i ¼ 1:

q1 ¼ a1: ðF:11Þ

For i ¼ 2; . . . ;M:

qi ¼ ai �
Xi�1
j¼1

qTj ai

qTj qj
qj: ðF:12Þ

In practice, it is desirable to have unit norm for the final vectors. The following

algorithm includes results in a set of orthonormal vectors at the end.

540 APPENDIX F

1. for i 1 to M

2. qi ai

3. for j 1 to i � 1

4. qi qi � (qj
T ai) qj

5. normi (qi
T qi)1/2

6. qi qi /normi

The Modified Gram-Schmidt Algorithm

The original formulation of the Gram–Schmidt algorithm has poor numerical prop-

erties in the sense that a loss of orthogonality among the output vectors is often

observed. A rearrangement of the calculation, known as the modified Gram–

Schmidt algorithm, yields a much sounder procedure with improved accuracy.

This is specified as follows:

1. for i 1 to N

2. normi (ai
T ai)1/2

3. qi ai /normi

4. for j i þ 1 to N

5. aj aj � (qi
T aj) qi

REVIEW OF LINEAR ALGEBRA 541

BIBLIOGRAPHY

Adoul, J-P. and C. Lamblin (1987). ‘‘A Comparison of Some Algebraic Structures for CELP

Coding of Speech,’’ IEEE ICASSP, pp. 1953–1956.

Adoul, J-P. and R. Lefebvre (1995). ‘‘Wideband Speech Coding,’’ Speech Coding and

Synthesis, W. B. Kleijn and K. K. Paliwal, eds., pp. 289–310, Elsevier Science, The

Netherlands.

Adoul, J-P., P. Mabilleau, M. Delprat, and S. Morissette (1987). ‘‘Fast CELP Coding Based on

Algebraic Codes,’’ IEEE ICASSP, pp. 1957–1960.

Ahmed M. E. and M. I. Al-Suwaiyel (1993). ‘‘Fast Methods for Code Search in CELP,’’ IEEE

Transactions on Speech and Audio Processing, Vol.1, No.3, pp. 315–325, July.

Antoniou, A. (1993). Digital Filters: Analysis, Design, and Applications, McGraw-Hill,

New York.

Atal, B. S. and J. R. Remde (1982). ‘‘A NewMethod of LPC Excitation for Producing Natural-

Sounding Speech at Low Bit Rates,’’ IEEE ICASSP, pp. 614–617.

Atal, B. S., R. V. Cox, and P. Kroon (1989). ‘‘Spectral Quantization and Interpolation for CELP

Coders,’’ IEEE ICASSP, pp. 69–72.

Atal, B. S., V. Cuperman, and A. Gersho, eds. (1991). Advances in Speech Coding, Kluwer

Academic Publishers, Norwell, MA.

Atal, B. S.,V.Cuperman, andA.Gersho, eds. (1993). SpeechandAudioCoding forWireless and

Network Applications, Kluwer Academic Publishers, Norwell, MA.

Banks, J. and J. S. Carson II (1984). Discrete-Event System Simulation, Prentice-Hall,

Englewood Cliffs, NJ.

Barnwell, T. (1981). ‘‘Recursive Windowing for Generating Autocorrelation Coefficients

for LPC Analysis,’’ IEEE Transactions on Acoustics, Speech, and Signal Processing,

Vol. ASSP-29, No. 5, pp. 1062–1066.

Barr, M. (1999). Programming Embedded Systems in C and Cþþ, O’Reilly, Sebastopol, CA.
542

Bose, N. K. (1993). Digital Filters Theory and Applications, Krieger Publishing Co.,

Melbourne, FL.

Bose, N. K. and P. Liang (1996).Neural Networks Fundamentals with Graphs, Algorithms, and

Applications, McGraw-Hill, New York.

Burrus, C. S. and T. W. Parks (1985). DFT/FFT and Convolution Algorithms, John Wiley &

Sons, Hoboken, NJ.

Buzo, A., A. H. Gray, R. M. Gray, and J. D. Markel (1980). ‘‘Speech Coding Based Upon

Vector Quantization,’’ IEEE Transactions on Acoustics, Speech, and Signal Processing,

Vol. ASSP-28, No. 5, pp. 562–574, October.

Campbell, J. P. and T. E. Tremain (1986). ‘‘Voiced/Unvoiced Classification of Speech with

Applications to the U.S. Government LPC-10E Algorithm,’’ IEEE ICASSP, pp. 9.11.1–

9.11.4.

Campbell, J. P., T. E. Tremain, and V. C. Welch (1991). ‘‘The DOD 4.8 KBPS Standard

(Proposed Federal Standard 1016),’’ Advances in Speech Coding, B. S. Atal, V. Cuperman,

and A. Gersho, eds., pp. 121–133, Kluwer Academic Publishers, Norwell, MA.

Chan, W. Y., S. Gupta, and A. Gersho (1992). ‘‘Enhanced Multistage Vector Quantization

by Joint Codebook Design,’’ IEEE Transactions on Communications, Vol. 40, No. 11,

pp. 1693–1697, November.

Chang P-C. and R. M. Gray (1986). ‘‘Gradient Algorithms for Designing Predictive Vector

Quantizers,’’ IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-

34, No. 4, pp. 679–690, August.

Chen, J. H. (1990). ‘‘High-Quality 16 kb/s Speech Coding with a One-Way Delay Less Than

2 ms,’’ IEEE ICASSP, pp. 453–456.

Chen, J. H. (1991). ‘‘ARobust Low-DelayCELPSpeechCoder at 16 kb/s,’’Advances in Speech

Coding, B. S. Atal, V. Cuperman, and A. Gersho, eds., pp. 25–35, Kluwer Academic

Publishers, Norwell, MA.

Chen, J.H. (1995). ‘‘Low-DelayCodingof Speech,’’SpeechCoding andSynthesis,W.B.Kleijn

and K. K. Paliwal, eds., pp. 209–256, Elsevier Science, The Netherlands.

Chen, J. H., R. V. Cox, Y. C. Lin, N. Jayant, and M. J. Melchner (1992). ‘‘A Low-Delay CELP

Coder for the CCITT 16 kb/s Speech Coding Standard,’’ IEEE Journal on Selected Areas

in Communications, Vol. 10, No. 5, pp. 830–849.

Chen, J. H. and A. Gersho (1987). ‘‘Real-Time Vector APC Speech Coding at 4800 bps with

Adaptive Postfiltering,’’ IEEE ICASSP, pp. 2185–2188.

Chen, J. H. and A. Gersho (1995). ‘‘Adaptive Postfiltering for Quality Enhancement of Coded

Speech,’’ IEEE Transactions on Audio Processing, Vol. 3, No. 1, pp. 59–70, January.

Chen, J. H., Y. C. Lin, and R. V. Cox (1991). ‘‘A Fixed-Point 16 kB/s LD-CELPAlgorithm,’’

IEEE ICASSP, pp. 21–24.

Chen, J. H., M. J. Melchner, R. V. Cox, and D. O. Bowker (1990). ‘‘Real-Time Implemen-

tation and Performance of a 16 kB/s Low-Delay CELP Speech Coder,’’ IEEE ICASSP,

pp. 181–184.

Chen, J. H. andM. S. Rauchwerk (1993). ‘‘8 kb/s Low-DelayCELPCoding of Speech,’’ Speech

and Audio Coding for Wireless and Network Applications, B. S. Atal, V. Cuperman, and

A. Gersho, eds., pp. 25–31, Kluwer Academic Publishers, Norwell, MA.

Chitrapu, P. (1998). ‘‘Modern Speech Coding Techniques and Standards,’’Multimedia Systems

Design, pp. 22–35, February.

BIBLIOGRAPHY 543

Churchill, R. V. and J. W. Brown (1990). Complex Variables and Applications, McGraw-Hill,

New York.

Cormen, T. H., C. E. Leiserson, and R. L. Rivest (1990). Introduction to Algorithms, McGraw-

Hill, New York.

Cox, R. V. (1995). ‘‘SpeechCoding Standards,’’ SpeechCoding and Synthesis,W. B.Kleijn and

K. K. Paliwal, eds., pp. 49–78, Elsevier Science, The Netherlands.

Cox, R. V. (1997). ‘‘Three New Speech Coders from the ITU Cover a Range of Applications,’’

IEEE Communications Magazine, pp. 40–47, September.

Das A., E. Paksoy, and A. Gersho (1995). ‘‘Multimode and Variable-Rate Coding of Speech,’’

Speech Coding and Synthesis, W. B. Kleijn and K. K. Paliwal, eds., pp. 257–288, Elsevier

Science, The Netherlands.

Davidson G. and A. Gersho (1986). ‘‘Complexity Reduction Methods for Vector Excitation

Coding,’’ IEEE ICASSP, pp. 3055–3058.

DeFatta, D. J., J. G. Lucas, and W. S. Hodgkiss (1988). Digital Signal Processing: A System

Design Approach, John Wiley & Sons, Hoboken, NJ.

Deller, J. R., J. G. Proakis, and J. H. L. Hansen (1993). Discrete-Time Processing of Speech

Signals, Macmillan, New York.

DeMartino, E. (1993). ‘‘Speech Quality Evaluation of the European, North-American, and

Japanese Speech Coding Standards for Digital Cellular Systems,’’ Speech and Audio

Coding forWireless andNetworkApplications, B. S.Atal,V.Cuperman, andA.Gersho, eds.,

pp. 55–58, Kluwer Academic Publishers, Norwell, MA.

Denisowski, P. (2001). ‘‘How Does it Sound?’’ IEEE Spectrum, pp. 60–64, February.

Dimolitsas, S. (1993). ‘‘SubjectiveAssessmentMethods for theMeasurement ofDigital Speech

Coder Quality,’’ Speech and Audio Coding for Wireless and Network Applications,

B. S. Atal, V. Cuperman, and A. Gersho, eds., pp. 43–54, Kluwer Academic Publishers,

Norwell, MA.

Du, J., G. Warner, E. Vallow, and T. Hollenbach, (2000) ‘‘Using DSP16000 for GSM EFR

Speech Coding—High-Performance DSPs,’’ IEEE Signal Processing Magazine, pp. 16–

26, March.

Dubnowski, J. J., R. W. Schafer, and L. R. Rabiner (1976). ‘‘Real-Time Digital Hardware

Pitch Detector,’’ IEEE Transactions on Acoustics, Speech, and Signal Processing,

Vol. ASSP-24, No. 1, pp. 2–8, February.

Eckel B. (2000). Thinking in C þþ, 2nd edition, Prentice-Hall, Englewood Cliffs, NJ.

Eriksson, T., J. Linden, and J. Skoglund (1999). ‘‘Interframe LSF Quantization for Noisy

Channels,’’ IEEE Transactions on Speech and AudioProcessing, Vol. 7, No. 5, pp. 495–509,

September.

Erzin, E. and A. E. Cetin (1993). ‘‘Interframe Differential Vector Coding of Line Spectrum

Frequencies,’’ IEEE ICASSP, pp. II-25–II-28.

ETSI (1992a). Recommendation GSM 6.10 Full-Rate Speech Transcoding.

ETSI (1992b). Recommendation GSM 6.01 European Digital Cellular Telecommunication

System (Phase 1); Speech Processing Functions: General Description.

ETSI (1992c). Recommendation GSM 6.31 Discontinuous Transmission (DTX) for Full-Rate

Speech Traffic Channels.

ETSI (1992d). Recommendation GSM 6.11 Substitution and Muting of Lost Frames for Full-

Rate Speech Traffic Channels.

544 BIBLIOGRAPHY

ETSI (1992e). Recommendation GSM 6.32 Voice Activity Detection.

ETSI (1992f). Recommendation GSM 6.12 Comfort Noise Aspects for Full-Rate Speech Traffic

Channels.

ETSI (1999). Universal Mobile Telecommunications System (UMTS); Mandatory Speech

Codec Speech Processing Functions AMR Speech Codec; Transcoding Fucntions, 3G TS

26.090 Version 3.1.0, Release 1999.

Eyre, J. (2001). ‘‘The Digital Signal Processor Derby,’’ IEEE Spectrum, pp. 62–68, June.

Eyre, J. and J. Bier (2000). ‘‘The Evolution of DSP Processors—From Early Architectures to

the Latest Developments,’’ IEEE Signal Processing Magazine, pp. 43–51, March.

Florencio, D. (1993). ‘‘Investigating the Use of Asymmetric Windows in CELP Vocoders,’’

IEEE ICASSP, pp. II-427–II-430.

Freeman, J. A. (1994). Simulating Neural Networks with Mathematica, Addison-Wesley

Publishing Co., Reading, MA.

Gardner, W. R. and B. D. Rao (1995a). ‘‘Theoretical Analysis of the High-Rate Vector

Quantization of LPC Parameters,’’ IEEE Transactions on Speech and Audio Processing,

Vol. 3, No. 5, pp. 367–381, September.

Gardner,W. R. and B. D. Rao (1995b). ‘‘Optimal DistortionMeasures for the High Rate Vector

Quantization of LPC Parameters,’’ IEEE ICASSP, pp. 752–755.

Gardner, W., P. Jacobs, and C. Lee (1993). ‘‘QCELP: A Variable Rate Speech Coder for

CDMADigital Cellular,’’ Speech and AudioCoding forWireless andNetwork Applications,

B. S. Atal, V. Cuperman, and A. Gersho, eds., pp. 85–92, Kluwer Academic Publishers,

Norwell, MA.

Gersho, A. and R. M. Gray (1995). Vector Quantization and Signal Compression, 4th printing,

Kluwer Academic Publishers, Norwell, MA.

Gersho, A. and E. Paksoy (1993). ‘‘Variable Rate Speech Coding for Cellular Networks,’’

Speech and Audio Coding for Wireless and Network Applications, B. S. Atal, V. Cuperman,

and A. Gersho, eds., pp. 77–84, Kluwer Academic Publishers, Norwell, MA.

Gerson, I. A. and M. A. Jasiuk (1991). ‘‘Vector Sum Excited Linear Prediction (VSELP),’’

Advances in Speech Coding, B. S. Atal, V. Cuperman, and A. Gersho, eds., pp. 69–79,

Kluwer Academic Publishers, Norwell, MA.

Goldberg, R. and L. Riek (2000). A Practical Handbook of Speech Coders, CRC Press,

Boca Raton, FL.

Golub, G. H. and C. F. Van Loan (1996).Matrix Computation, 3rd edition, The Johns Hopkins

University Press, Baltimore, MD.

Griffin, D. W. and J. S. Lim (1988). ‘‘Multiband Excitation Vocoder,’’ IEEE Transactions on

Acoustics, Speech, and Signal Processing, Vol. 36, No. 8, pp. 1223–1235, August.

Hagen, R. and P. Hedelin (1990). ‘‘Low Bit-Rate Spectral Coding in CELP, A New LSP-

Method,’’ IEEE ICASSP, pp. 189–192.

Harbison S. P. and G. L. Steele (1995). C—A Reference Manual, 4th edition, Prentice-Hall,

Englewood Cliffs, NJ.

Hartmann, W. M. (1998). Signals, Sound, and Sensation, Springer-Verlag, New York.

Haykin, S. (1988). Digital Communications, John Wiley & Sons, Hoboken, NJ.

Haykin, S. (1991). Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs, NJ.

Haykin, S. (1994). Neural Networks—A Comprehensive Foundation, Macmillan College

Publishing Co., Englewood Cliffs, NJ.

BIBLIOGRAPHY 545

Hedelin, P., P. Knagenhjelm, and M. Skoglund (1995a). ‘‘Vector Quantization for Speech

Transmission,’’ SpeechCoding and Synthesis,W. B.Kleijn andK.K. Paliwal, eds., pp. 311–

346, Elsevier Science, The Netherlands.

Hedelin, P., P. Knagenhjelm, and M. Skoglund (1995b). ‘‘Theory of Transmission of Vector

Quantization Data,’’ Speech Coding and Synthesis, W. B. Kleijn and K. K. Paliwal, eds.,

pp. 347–396, Elsevier Science, The Netherlands.

Hedelin, P. and J. Skoglund (2000). ‘‘VectorQuantizationBased onGaussianMixtureModels,’’

IEEE Transactions on Speech and Audio Processing, Vol. 8, No. 4, pp. 385–401, July.

Intel Corporation (1997). The Complete Guide to MMX Technology, McGraw-Hill, New York.

Itakura, F. (1975). ‘‘Line Spectrum Representation of Linear Predictive Coefficients of Speech

Signals,’’ Journal of the Acoustic Society of America, Vol. 57, p. 535(A).

ISO/IEC (1993). Information Technology—Coding of Moving Pictures and Associated Audio

for Digital Storage Media at up to About 1.5 Mbit/s—Part 3: Audio, 11172-3, Switzerland.

ITU (1990). 40, 32, 24, 16 kbit/s Adaptive Differential Pulse Code Modulation (ADPCM)—

Recommendation G.726, Geneva.

ITU (1992).Coding of Speech at 16 kbit/s Using Low-Delay Code Excited Linear Prediction—

Recommendation G.728, Geneva.

ITU (1993). Pulse Code Modulation (PCM) of Voice Frequencies—ITU-T Recommendation

G.711, Geneva.

ITU (1996a).Coding of Speech at 8 kbit/s Using Conjugate-Structure Algebraic-Code-Excited

Linear-Prediction (CS-ACELP)—ITU-T Recommendation G.729.

ITU (1996b).Dual Rate SpeechCoder forMultimediaCommunications Transmitting at 5.3 and

6.3 kbit/s—ITU-T Recommendation G.723.1.

ITU (1996c). Objective Quality Measurement of Telephone-Band (300–3400 Hz) Speech

Codecs—ITU-T Recommendation P.861.

ITU (1998a). Objective Quality Measurement of Telephone-Band (300–3400 Hz) Speech

Codecs Using Measuring Normalizing Blocks (MNB’s)—ITU-T Recommendation P.861,

App.II, Geneva.

ITU (1998b).Coding of Speech at 8 kbit/s Using Conjugate-Structure Algebraic-Code-Excited

Linear-Prediction (CS-ACELP). Annex D: 6.4 kbit/s CS-ACELP Speech Coding Algorithm,

ITU-T Recommendation G.729—Annex D. September 1998.

ITU (1998c).Method for Objective Measurements of Perceived Audio Quality—Recommenda-

tion ITU-R BS.1387.

ITU (2001).Perceptual Evaluation of SpeechQuality (PESQ), AnObjectiveMethod forEnd-to-

End SpeechQuality Assessment of Narrow-Band TelephoneNetworks and SpeechCodecs—

ITU-T Recommendation P.862 (prepublication).

Jayant, N. S. and P. Noll (1984). Digital Coding of Waveforms, Prentice-Hall, Englewood

Cliffs, NJ.

Kabal, P. and R. P. Ramachandran (1986). ‘‘The Computation of Line Spectral Frequencies

Using Chebyshev Polynomials,’’ IEEE Transactions on Acoustics, Speech, and Signal

Processing, Vol. ASSP-34, No. 6, pp. 1419–1425, December.

Kataoka A., T. Moriya, and S. Hayashi (1993). ‘‘An 8 kbit/s Speech Coder Based on Conjugate

Structure CELP,’’ IEEE ICASSP, pp. II-592–II-595.

KataokaA., T.Moriya, and S. Hayashi (1994). ‘‘Implementation and Performance of an 8 kbit/s

Conjugate Structure CELP Speech Coder,’’ IEEE ICASSP, pp. II-93–II-96.

546 BIBLIOGRAPHY

Kataoka A., T. Moriya, and S. Hayashi (1996). ‘‘An 8-kb/s Conjugate Structure CELP

(CS-CELP) Speech Coder,’’ IEEE Transactions on Speech and Audio Processing, Vol. 4,

No. 6, pp. 401–411, November.

Keyhl M., C. Schmidmer, and H. Wachter (1999). ‘‘A Combined Measurement Tool for the

Objective, Perceptual Based Evaluation of Compressed Speech and Audio Signals,’’

Preprint of the AES 106th Convention, Munich, Germany, May.

Kim, D. (2001). ‘‘On the Perceptually Irrelevant Phase Information in Sinusoidal Representa-

tion of Speech,’’ IEEETransactions on Speech andAudio Processing, Vol. 9,No. 8, pp. 900–

905, November.

Kim, H. K. and H. S. Lee (1999). ‘‘Interlacing Properties of Line Spectrum Pair Frequencies,’’

IEEE Transactions on Speech and Audio Processing, Vol. 7, No. 1, pp. 87–91, January.

Kleijn, W. B., D. J. Krasinski, and R. H. Ketchum (1988). ‘‘Improved Speech Quality and

Efficient Vector Quantization in SELP,’’ IEEE ICASSP, pp. 155–158.

Kleijn, W. B. and K. K. Paliwal (1995a). Speech Coding and Synthesis, Elsevier Science, The

Netherlands.

Kleijn, W. B. and K. K. Paliwal (1995b). ‘‘An Introduction to Speech Coding,’’ Speech Coding

and Synthesis, W. B. Kleijn and K. K. Paliwal, eds., pp. 1–47, Elsevier Science, The

Netherlands.

Kohavi, Z. (1978). Switching and Finite Automata Theory, 2nd edition, McGraw-Hill,

New York.

Kondoz, A. M. (1994). Digital Speech—Coding for Low Bit Rate Communication Systems,

John Wiley & Sons, Chichester, UK.

Kroon, P. (1995). ‘‘Evaluation of Speech Coders,’’ Speech Coding and Synthesis, W. B. Kleijn

and K. K. Paliwal, eds., pp. 467–494, Elsevier Science, The Netherlands.

Kroon, P. and B. S. Atal (1991). ‘‘On Improving the Performance of Pitch Predictors in Speech

CodingSystems,’’Advances inSpeechCoding, B. S.Atal,V.Cuperman, andA.Gersho, eds.,

pp. 321–327, Kluwer Academic Publishers, Norwell, MA.

Kroon, P., E. F. Deprettere, and R. J. Sluyter (1986). ‘‘Regular-Pulse Excitation—A Novel

Approach to Effective and Efficient Multipulse Coding of Speech,’’ IEEE Transactions on

Acoustics, Speech, and Signal Processing, Vol. ASSP-34, No. 5, pp. 1054–1063, October.

Kroon, P. and W. B. Kleijn (1995). ‘‘Linear-Prediction Based Analysis-by-Synthesis Coding,’’

Speech Coding and Synthesis, W. B. Kleijn and K. K. Paliwal, eds., pp. 79–120, Elsevier

Science, The Netherlands.

Laflamme, C., R. Salami, and J-P. Adoul (1993). ‘‘9.6 kbit/s ACELP Coding of Wideband

Speech,’’ Speech and Audio Coding for Wireless and Network Applications, B. S. Atal,

V.Cuperman, andA.Gersho, eds., pp. 147–152,KluwerAcademicPublishers,Norwell,MA.

Lancaster P. and M. Tismenetsky (1985). The Theory of Matrices, Academic Press, New York.

LeBlanc, W. P (1992). ‘‘Speech Coding at Low to Medium Bit Rates,’’ Ph.D. dissertation,

Carleton University, Canada.

LeBlanc, W. P., B. Bhattacharya, S. A. Mahmoud, and V. Cuperman (1993). ‘‘Efficient Search

and Design Procedures for Robust Multi-Stage VQ of LPC Parameters for 4 kb/s Speech

Coding,’’ IEEE Transactions on Speech and Audio Processing, Vol. 1, No. 4, pp. 373–385,

October.

Lee, K. and R. V. Cox (2001). ‘‘AVery Low Bit Rate Speech Coder Based on a Recognition /

Synthesis Paradigm,’’ IEEE Transactions on Speech and Audio Processing, Vol. 9, No. 5,

pp. 482–491, July.

BIBLIOGRAPHY 547

Leroux, J. and C. Gueguen (1979). ‘‘A Fixed Point Computation of Partial Correlation

Coefficients,’’ IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-

27, pp. 257–259.

Levine, S. N. (1998). ‘‘Audio Representations for Data Compression and Compressed Domain

Processing,’’ Ph.D. dissertation, Stanford University, CA.

Lim, I. and B. G. Lee (1993). ‘‘Lossless Pole-Zero Modeling of Speech Signals,’’ IEEE

Transactions on Speech and Audio Processing, Vol. 1, No. 3, pp. 269–276, July.

Lin, W., S. Koh, and X. Lin (2000). ‘‘Mixed Excitation Linear Prediction Coding of Wideband

Speech at 8 kbps,’’ IEEE ICASSP, pp. 1137–1140.

Linde, Y., A. Buzo, and R. Gray (1980). ‘‘An Algorithm for Vector Quantizer Design,’’ IEEE

Transactions on Communications, Vol. COM-28, No. 1, pp. 84–95, January.

Macres, J. V. (1994). ‘‘Theory and Implementation of the Digital Cellular Standard Voice

Coder: VSELP on the TMS320C5x,’’ Texas Instruments Application Report.

Maitre, X. (1988). ‘‘7 kHz Audio Coding Within 64 kbit/s,’’ IEEE Journal on Selected Areas

in Communications, Vol. 6, No. 2, pp. 283–298, February.

Maksym, J. N. (1973). ‘‘Real-Time Pitch Extraction by Adaptive Prediction of the

Speech Waveform,’’ IEEE Transactions on Audio and Electroacoustics, Vol. AU-21,

No. 3, pp. 149–154, June.

Mano, M. (1993). Computer System Architecture, 3rd edition, Prentice-Hall, Englewood

Cliffs, NJ.

Markel, J. D. and A. H. Gray, Jr. (1976). Linear Prediction of Speech, Springer-Verlag,

New York.

MathSoft (2001). Mathcad User’s Guide with Reference Manual, Cambridge, MA.

McCree, A. (2000). ‘‘A 14 kb/s Wideband Speech Coder with a Parametric Highband Model,’’

IEEE ICASSP, pp. 1153–1156.

McCree, A. V. and T. P. Barnwell III (1995). ‘‘A Mixed Excitation LPC Vocoder Model for

LowBit Rate Speech Coding,’’ IEEE Transactions on Speech and Audio Processing, Vol. 3,

No. 4, pp. 242–250, July 1995.

McCree, A. V. and J. DeMartin (1997). ‘‘A 1.6 kb/s MELP Coder for Wireless Communica-

tions,’’ Proceedings of the IEEE Workshop on Speech Coding for Telecommunications,

September.

McCree, A. V. and J. DeMartin (1998). ‘‘A 1.7 kb/s MELP Coder with Improved Analysis and

Quantization,’’ IEEE ICASSP, pp. 593–596.

McCree, A. V., K. Truong, E. B. George, T. P. Barnwell, and V. Viswanathan (1996). ‘‘A

2.4 kbit/s MELP Coder Candidate for the New U.S. Federal Standard,’’ IEEE ICASSP,

pp. 200–203.

McCree, A. V., L. M. Supplee, R. P. Cohn, and J. S. Collura (1997). ‘‘MELP: The New Federal

Standard at 2400 bps,’’ IEEE ICASSP, pp. 1591–1594.

McCree, A., T. Unno, A. Anandakumar, A. Bernard, and E. Paksoy (2001). ‘‘An Embedded

Adaptive Multi-Rate Wideband Speech Coder,’’ IEEE ICASSP, pp. 761–764.

Medan, Y., E. Yair, and D. Chazan (1991). ‘‘Super Resolution Pitch Determination of Speech

Signals,’’ IEEE Transactions on Signal Processing, Vol. 39, No. 1, pp. 40–48, January.

Moller, U., M. Galicki, E. Baresova, and H. Witte (1998). ‘‘An Efficient Vector Quantizer

Providing Globally Optimal Solutions,’’ IEEE Transactions on Signal Processing, Vol. 46,

No. 9, pp. 2515–2529, September.

548 BIBLIOGRAPHY

Moore, B. C. J. (1997). An Introduction to the Psychology of Hearing, 4th edition, Academic

Press, New York.

Moriya, T. (1992). ‘‘Two-Channel Conjugate Vector Quantizer for Noisy Channel Speech

Coding,’’ IEEE Journal on Selected Areas in Communications, Vol. 10, No. 5, pp. 866–

874, June.

National Communications System (1992). Details to Assist in Implementation of Federal

Standard 1016 CELP, Arlington, VA.

Noll, P. (1993). ‘‘Wideband Speech and Audio Coding,’’ IEEE Communications Magazine,

pp. 34–44, November.

Oppenheim, A. V. and R. W. Schafer (1989). Discrete-Time Signal Processing, Prentice-Hall,

Englewood Cliffs, NJ.

Orfanidis, S (1988). Optimum Signal Processing, McGraw-Hill, New York.

Painter, T. and A. Spanias (2000). ‘‘Perceptual Coding of Digital Audio,’’ Proceedings of the

IEEE, Vol. 88, No. 4, pp. 451–513, April.

Paliwal, K. K. and B. S. Atal (1993). ‘‘Efficient Vector Quantization of LPC Parameters at

24 Bits/Frame,’’ IEEE Transactions on Speech and Audio Processing, Vol. 1, No. 1,

pp. 3–14, January.

Paliwal, K. K. and W. B. Kleijn (1995). ‘‘Quantization of LPC Parameters,’’ Speech Coding

and Synthesis, W. B. Kleijn and K. K. Paliwal, eds., pp. 433–466, Elsevier Science, The

Netherlands.

Panzer, I. L.,A.D.Sharpley, andW.D.Voiers (1993). ‘‘AComparisonofSubjectiveMethods for

Evaluating Speech Quality,’’ Speech and Audio Coding for Wireless and Network

Applications, B. S. Atal, V. Cuperman, and A. Gersho, eds., pp. 59–66, Kluwer Academic

Publishers, Norwell, MA.

Papamichalis, P. E. (1987). Practical Approaches to Speech Coding, Prentice-Hall, Englewood

Cliffs, NJ.

Papoulis, A. (1991). Probability, Random Variables, and Stochastic Processes, McGraw-Hill,

New York.

Peebles, P. (1993). Probability, Random Variables, and Random Signal Principles, McGraw-

Hill, New York.

Perkins, M. E., K. Evans, D. Pascal, and L. A. Thorpe (1997). ‘‘Characterizing the Subjective

Performance of the ITU-T 8 kb/s Speech Coding Algorithm—ITU-T G.729,’’ IEEE

Communications Magazine, pp. 74–81, September.

Picinbono, B. (1993). Random Signals and Systems, Prentice-Hall, Englewood Cliffs, NJ.

Purnhagen, H. (1999). ‘‘Advances in Parametric Audio Coding,’’ Proceedings IEEEWorkshop

onApplications of Signal Processing to Audio andAcoustics, pp .W99-1 toW99-4, October,

New York.

Rabiner, L. R. (1977). ‘‘On the Use of Autocorrelation Analysis for Pitch Detection,’’ IEEE

Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-25, No. 1, pp. 24–33,

February.

Rabiner, L. R., M. J. Cheng, A. E. Rosenberg, and C. A. McGonegal (1976). ‘‘A Comparative

Performance Study of Several Pitch Detection Algorithms,’’ IEEE Transactions on

Acoustics, Speech, and Signal Processing, Vol. ASSP-24, No. 5, pp. 399–418, October.

Rabiner, L. and B. H. Juang (1993). Fundamentals of Speech Recognition, Prentice-Hall,

Englewood Cliffs, NJ.

BIBLIOGRAPHY 549

Rabiner, L. R. and R. W. Schafer (1978). Digital Processing of Speech Signals, Prentice-Hall,

Englewood Cliffs, NJ.

Ramachandran, R. P. and P. Kabal (1989). ‘‘Pitch Prediction Filters in Speech Coding,’’ IEEE

TransactionsonAcoustics, Speech, andSignalProcessing,Vol. 37,No.4, pp. 467–478,April.

Rao, S. S (1996). Engineering Optimization, John Wiley & Sons, Hoboken, NJ.

Rix, A. W., J. G. Beerends, M. P. Hollier, and A. P. Hekstra (2000). ‘‘PESQ—the New ITU

Standard for End-to-End Speech Quality Assessment,’’ Preprint of the AES 109th

Convention, Los Angeles, September.

Rix, A. W., J. G. Beerends, M. P. Hollier, and A. P. Hekstra (2001), ‘‘Perceptual Evaluation of

Speech Quality (PESQ)—A New Method for Speech Quality Assessment of Telephone

Networks and Codecs,’’ IEEE ICASSP, pp. 749–752.

Ross, M. J., H. L. Schaffer, A. Cohen, R. Freudberg, and H. J. Manley (1974). ‘‘Average

Magnitude Difference Function Pitch Extractor,’’ IEEE Transactions on Acoustics, Speech,

and Signal Processing, Vol. ASSP-22, No. 5, pp. 353–362, October.

Salami, R., C. Laflamme, J-P. Adoul, and D. Massaloux (1994). ‘‘AToll Quality 8 kb/s Speech

Codec for the Personal Communications System (PCS),’’ IEEE Transactions on Vehicular

Technology, Vol. 43, No. 3, pp. 808–816, August.

Salami, R., C. Laflamme, J-P. Adoul, K. Jarvinen, J. Vainio, P. Kapanen, T. Honkanen, and

P.Haavisto (1997a). ‘‘GSMEnhancedFullRate SpeechCodec,’’ IEEE ICASSP, pp. 771–774.

Salami,R.,C.Laflamme,B.Bessette, andJ-P.Adoul (1997b). ‘‘ITU-TG.729AnnexA:Reduced

Complexity 8 kb/s CS-ACELP Codec for Digital Simultaneous Voice and Data,’’ IEEE

Communications Magazine, pp. 56–63, September.

Salami, R., C. Laflamme, J-P. Adoul, T. Honkanen, J. Vainio, K. Jarvinen, and P. Haavisto

(1997c). ‘‘Enhanced Full Rate Speech Codec for IS-136 Digital Cellular System,’’ IEEE

ICASSP, pp. 731–734.

Salami, R., C. Laflamme, B. Bessette, and J-P. Adoul (1997d). ‘‘Description of ITU-T

RecommendationG.729AnnexA:ReducedComplexity 8 kbit/s CS-ACELPCodec,’’ IEEE

ICASSP, pp. 775–778.

Salami, R., C. Laflamme, B. Bessette, and J-P. Adoul (1997e). ‘‘ITU-T G.729 Annex A:

Reduced Complexity 8 kb/s CS-ACELP Codec for Digital Simultaneous Voice and Data,’’

IEEE Communications Magazine, pp. 56–63, September.

Salami, R., C. Laflamme, J-P. Adoul, A. Kataoka, S. Hayashi, T. Moriya, C. Lamblin,

D. Massaloux, S. Proust, P. Kroon, and Y. Shoham (1998). ‘‘Design and Description of CS-

ACELP: A Toll Quality 8 kb/s Speech Coder,’’ IEEE Transactions on Speech and Audio

Processing, Vol. 6, No. 2, pp. 116–130, March.

Samuelsson, J. and P. Hedelin (2001). ‘‘Recursive Coding of Spectrum Parameters,’’ IEEE

Transactions on Speech and Audio Processing, Vol. 9, No. 5, pp. 492–503, July.

Sandige, R. S (1990). Modern Digital Design, McGraw-Hill, New York.

Sayood, K. (1996). Introduction to Data Compression, Morgan Kaufmann Publishers, San

Mateo, CA.

Schroeder,M.R. andB.S.Atal (1985). ‘‘Code-ExcitedLinearPrediction (CELP):High-Quality

Speech at Very Low Bit Rates,’’ IEEE ICASSP, pp. 2511–2514.

Sedgewick, R. (1992). Algorithms in C þþ, Addison-Wesley, Reading, MA.

Shoham, Y. (1987). ‘‘Vector Predictive Quantization of the Spectral Parameters for Low Rate

Speech Coding,’’ IEEE ICASSP, pp. 2181–2184.

550 BIBLIOGRAPHY

Shoham, Y. (1991). ‘‘Constrained-Stochastic Excitation Coding of Speech at 4.8 kb/s,’’

Advances in Speech Coding, B. S. Atal, V. Cuperman, and A. Gersho, eds., pp. 339–348,

Kluwer Academic Publishers, Norwell, MA.

Shoham, Y. (1993). ‘‘Low Delay Coding of Wideband Speech at 32 kbps Using Tree

Structures,’’ Speech and Audio Coding for Wireless and Network Applications, B. S. Atal,

V. Cuperman, and A. Gersho, eds., pp. 133–139, Kluwer Academic Publishers.

Shoham,Y. (1999). ‘‘Coding theLineSpectral Frequencies by JointlyOptimizedMAPrediction

and Vector Quantization,’’ Proceedings of the IEEEWorkshop on Speech Coding, June 20–

23, Finland.

Singhal, S. and B. S. Atal (1989). ‘‘Amplitude Optimization and Pitch Prediction in Multipulse

Coders,’’ IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 3,

pp. 317–327, March.

Soliman, S. S. and M. D. Srinath (1990). Continuous and Discrete Signals and Systems,

Prentice-Hall, Englewood Cliffs, NJ.

Sondhi, M. M (1968). ‘‘New Method of Pitch Extraction,’’ IEEE Transactions on Audio and

Electroacoustics, Vol. AU-16, No. 2, pp. 262–266, June.

Soong, F. K. and B. Juang (1984). ‘‘Line Spectrum Pair (LSP) and Speech Data Compression,’’

IEEE ICASSP, pp. 1.10.1–1.10.4.

Soong, F. K. and B. Juang (1990). ‘‘Optimal Quantization of LSP Parameters Using Delayed

Decisions,’’ IEEE ICASSP, pp. 185–188.

Spanias, A. S (1994). ‘‘Speech Coding: ATutorial Review,’’ Proceedings of the IEEE, Vol. 82,

No. 10, pp. 1541–1582, October 1994.

Stachurski, J., A. McCree, and V. Viswanathan (1999). ‘‘High Quality MELP Coding at

Bit-Rates Around 4 KB/S,’’ IEEE ICASSP.

Stearns, S. D. and D. R. Hush (1990). Digital Signal Analysis, Prentice-Hall, Englewood

Cliffs, NJ.

Strang,G. (1988).LinearAlgebra and Its Applications, 3rd edition,Harcourt Brace Jovanovich,

Orlando, FL.

Stremler, F.G (1990). Introduction toCommunication Systems,Addison-Wesley,Reading,MA.

Stroustrup, B. (1997). The Cþþ Programming Language, 3rd edition, Addison-Wesley,

Reading, MA.

Supplee, L. M., R. P. Cohn, J. S. Collura, and A. V. McCree (1997). ‘‘MELP: The New Federal

Standard at 2400 bps,’’ IEEE ICASSP, pp. 1591–1594.

Texas Instruments, Inc. (1990). Digital Signal Processing—Applications with the TMS320

Family. Theory, Algorithms, and Implementations, Vol. 2.

Texas Instruments, Inc. (1993). TMS320C5x User’s Guide.

Therrien, C. W. (1992). Discrete Random Signals and Statistical Signal Processing, Prentice-

Hall, Englewood Cliffs, NJ.

Thomsen, G. and Y. Jani (2000). ‘‘Internet Telephony: Going Like Crazy,’’ IEEE Spectrum,

pp. 52–58, May.

TIA (1998). Speech Service Option Standard for Wideband Spread Spectrum Systems—TIA/

EIA-96C, VA, August.

Tohkura Y., F. Itakura, and S. Hashimoto (1978). ‘‘Spectral Smoothing Technique in PARCOR

Speech Analysis-Synthesis,’’ IEEE Transactions on Acoustics, Speech, and Signal

Processing, Vol. ASSP-26, No. 6, pp. 587–596, December.

BIBLIOGRAPHY 551

Trancoso, I. M. and B. S. Atal (1986). ‘‘Efficient Procedures for Finding the Optimum

Innovation in Stochastic Coders,’’ IEEE ICASSP, pp. 2375–2378.

Tremain, T. E. (1982). ‘‘The Government Standard Linear Predictive Coding Algorithm:

LPC-10,’’ Speech Technology, pp. 40–49, April.

Un, C. K. and D. T. Magill (1975). ‘‘The Residual-Excited Linear Prediction Vocoder with

Transmission Rate Below 9.6 kbit/s,’’ IEEE Transactions on Communications, Vol. COM-

23, No. 12, pp. 1466–1473, December.

Unno, T., T. P. Barnwell III, and K. Truong (1999). ‘‘An Improved Mixed Excitation Linear

Prediction (MELP) Coder,’’ IEEE ICASSP.

Vaidyanathan, P. P. (1993). Multirate Systems and Filter Banks, Prentice-Hall, Englewood

Cliffs, NJ.

Vary, P.,K.Hellwig,R.Hofmann,R. J. Sluyter,C.Galand, andM.Rosso (1988). ‘‘SpeechCodec

for the European Mobile Radio System,’’ IEEE ICASSP, Vol. 1, pp. 227–230.

Veeneman, D. and B. Mazor (1993). ‘‘Efficient Multi-Tap Pitch Prediction for Stochastic

Coding,’’ Speech and Audio Coding for Wireless and Network Applications, B. S. Atal,

V. Cuperman and A. Gersho, eds., pp. 256–229, Kluwer Academic Publishers,

Norwell, MA.

Verma, T. S. (1999). ‘‘A Perceptually Based Audio Signal Model with Application to Scalable

Audio Compression,’’ Ph.D. dissertation, Stanford University, CA.

Viswanathan, R. and J. Makhoul (1975). ‘‘Quantization Properties of Transmission Parameters

in Linear Predictive Systems,’’ IEEE Transactions on Acoustics, Speech, and Signal

Processing, Vol. ASSP-23, pp. 309–321, June.

Voran, S. (1999a). ‘‘ObjectiveEstimation of PerceivedSpeechQuality—Part I:Development of

the Measuring Normalizing Block Technique,’’ IEEE Transactions on Speech and Audio

Processing, Vol. 7, No. 4, pp. 371–382, July.

Voran, S. (1999b). ‘‘Objective Estimation of Perceived Speech Quality—Part II: Evaluation of

the Measuring Normalizing Block Technique,’’ IEEE Transactions on Speech and Audio

Processing, Vol. 7, No. 4, pp. 383–390, July.

Walpole, R. E. and R. H. Myers (1993). Probability and Statistics for Engineers and Scientists,

Macmillan Publishing Co., New York.

Wang, D. (1999). ‘‘QCELP Vocoders in CDMA Systems Desing,’’ Communications Systems

Design, pp. 40–45, April.

Wise, J. D., J. R. Caprio, and T. W. Parks (1976). ‘‘Maximum Likelihood Pitch Estimation,’’

IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-24, No. 5,

pp. 418–423, October.

Xydeas, C. S. and C. Papanastasiou (1995). ‘‘Efficient Coding of LSP Parameters Using Split

Matrix Quantisation,’’ IEEE ICASSP, pp. 740–743.

Yong, M., G. Davidson, and A. Gersho (1988). ‘‘Encoding of LPC Spectral Parameters Using

Switched-Adaptive Interframe Vector Prediction,’’ IEEE ICASSP, pp. 402–405.

Zeger, K., J. Vaisey, and A. Gersho (1992). ‘‘Globally Optimal Vector Quantizer Design by

Stochastic Relaxation,’’ IEEE Transactions on Signal Processing, Vol. 40, No. 2, pp. 310–

322, February.

Zwicker, E. and H. Fastl (1999). Psycho-acoustics, Facts and Models, 2nd edition, Springer-

Verlag, New York.

552 BIBLIOGRAPHY

INDEX

A-law, 168, 170

Absolute category rating, 504

Adaptive codebook, 333–337, 341, 344, 347, 348,

356, 357, 425, 428

fractional pitch period, 342, 429

Adaptive differential pulse code modulation

(ADPCM), 178–180

Adaptive multirate, 451

Adaptive pulse code modulation (APCM),

176, 177

Adaptive rate decision, 487

Algorithm, 26–31

Aliasing, 3

Analog-to-digital conversion, 2

Analysis-by-synthesis, 301–304

Aperiodic flag, 469, 474, 477, 478

Audio coder, 519

Autocorrelation

estimation, 73

nonrecursive, 74

recursive, 76

estimator

asymptotically unbiased, 76

biased, 76

unbiased, 89

method, 34, 139

windowing, 135, 136

Autoregressive model, 69

Autoregressive-moving average

model, 86

Background noise estimate, 488, 489

Backward gain adaptation, 177, 375,

376, 390

Bandwidth expansion, 133

Basis vector, 355, 538

Bit-rate classification, 9

Bit-rate decision, 488, 489

Block diagram, 28

Boundary set, 189

BS.1387, 506

Burst mode, 6, 7, 394

Center clipping, 57

Centroid condition, 188

Channel errors, 221

Circular shift, 461, 463

Code division multiple access (CDMA), 486

Code-excited linear prediction (CELP), 299

adaptive multirate, 451

algebraic, 423

excitation codebook search, 308

low delay, 372

speech production model, 300

variable bit-rate, 486

Coder

hybrid, 10

parametric, 9

speech, 4

waveform, 9

Coding delay, 5, 6

553

Comparison category rating, 504

Conjugate structure, 220, 423, 424

Convolution, 52–54

recursive, 54–56, 341, 345

Cost

computational, 31

memory, 30

Covariance method, 139, 275

Decimation, 58

Decision surface, 525, 526

Decoder channel, 2, 3

Decoder source, 2, 3

De-emphasis, 132

Degradation category rating, 504

Degradation mean opinion score, 504

Delay

buffering, 5, 7

coding, 5

group, 465

processing, 6, 7

transmission, 6

Delta modulation, 182

Department of Defense (DoD), 23

Deterministic signal, 62

Difference equation, 46–49

Differential pulse code modulation (DPCM),

172–175

Digital signal processor, 28

Digital telephone answering device (DTAD), 8

Digital-to-analog conversion, 2

Direct form, 46

Distortion measure, 146, 186

Dual-tone multifrequency (DTMF), 5

Empty cell, 190

Encoder channel, 2

Encoder source, 2

Enhanced full rate, 424, 448

Euclidean distance measure, 190, 202

weighted, 401, 403

European Telecommunications Standards Institute

(ETSI), 23

Excitation codebook, 303, 308, 313

algebraic, 424, 437

circular overlapping, 497

nonoverlapping, 339

overlapping, 339, 340

Federal standard, 263, 330, 454

Filter

acoustic, 12

all-pass, 277, 516

all-pole, 45, 52

all-zero, 45

Butterworth, 467, 483

de-emphasis, 132

direct form, 46

finite impulse response, 465, 482

formant synthesis, 129

infinite impulse response, 467, 483

lattice, 47–49, 120

median, 58

modified formant synthesis, 307, 309, 310,

347, 367

noise shaping, 455, 464

perceptual weighting, 303–307, 377, 379, 425,

426, 435

pitch synthesis, 129, 337

post-, 317, 318, 348, 349, 368, 376, 377, 436,

437, 496, 497

prediction-error, 93, 287, 296, 458

backward, 508, 711

forward, 507, 510

pre-emphasis, 132

pulse dispersion, 478, 480, 481, 485

pulse generation, 455, 456

pulse shaping, 455, 464

spectral enhancement, 478, 480

synthesis, 127, 128

stability, 130, 131

time-varying, 14, 17

Finite impulse response (FIR), 465, 482

Fixed increment rule, 528

Fixed-point, 27, 28

Floating-point, 27, 28

Flow chart, 29

Formant, 12

Fourier magnitude, 456–458

Fourier transform, 67, 68, 458–460

Frame, 91

FS1015, 263, 275, 276

FS1016, 330, 348

FS MELP, 454, 477

G.711, 170

G.722, 519

G.723.1, 426, 446, 447

G.726, 181

G.728, 373, 385

G.729, 423, 424, 436

Generalized Lloyd algorithm, 190, 191

Gram-Schmidt algorithm, 540

modified, 541

Gray code, 360–362, 369, 370

Groupe Speciale Mobile, 23

554 INDEX

GSM 6.10, 286

GSM 6.20, 353, 369

GSM EFR, 424, 448

High resolution, 181

Hyperplane, 523

Hysteresis, 500

Impulse response, 52

Impulse response matrix, 54, 316

Impulse train, 264, 265, 463

In-place computation, 56

Infinite impulse response (IIR), 467, 483

Inmarsat, 482

Inner product, 537

Intelligibility, 502

Interframe correlation, 396

Interleaved single-pulse permutation, 424

International Telecommunications Union

(ITU), 23

Intraframe correlation, 396

Inverse sine, 260

IS54, 353, 367

IS96, 486, 494

IS641, 423, 447–449

Jitter, 455, 478, 479

Jittery voiced, 455

Joint codebook design algorithm, 206, 211,

214, 215

L1 norm, 471

L2 norm, 471

Laplacian distribution, 165, 166, 169, 171

Larynx, 12

LBG (Linde–Buzu–Gray) algorithm, 190

Levinson–Durbin algorithm, 107–113

Leroux–Gueguen algorithm, 114

Linear algebra, 537

Linear combiner, 522

Linear independence, 538

Linear prediction, 91, 92

analysis, 96, 101, 275, 377

backward, 507, 508

backward adaptive, 374

coding, 263

decoder, 270, 271

encoder, 269

coefficient, 92

interpolation, 256–258

scalar quantization, 227

vector quantization, 396

forward, 507

long-term, 120, 121

moving average, 137, 138

Linear space, 538

Linear time-invariant, 52

Linearly separable, 523, 524

Line spectral frequency (LSF), 239, 514

correlation, 396

interframe, 396

intraframe, 396

normalized, 398

difference, 261

interlacing property, 250, 517

localization property, 251

minimum distance enforcement, 405, 406,

411–413, 420

polynomial, 239

sorting, 405, 406

Line spectral pair (LSP), 240

Lloyd algorithm, 151, 152

Lloyd iteration, 151

Loading factor, 162

Log area ratio, 232

linear approximation, 235

transformation function, 233

Long-term linear prediction model, 129

Magnitude difference function, 36, 276

Masking, 20, 21

Matrix

correlation, 94

selection, 205, 206

shifting, 209

Toeplitz, 108

weighting, 403, 404

Mean opinion score, 504

Mean square error (MSE), 146, 147

Measuring normalizing block, 506

Medan–Yair–Chazan algorithm, 38

Millions-of-instructions-per-second (MIPS), 31

Minimum phase property, 113, 250, 512

Mixed excitation linear prediction, 454

speech production model, 455, 477

Modulo, 461

Moving average model, 85

MP3, 519

Multiband excitation coder, 482

Multimode coder, 10

network control, 451

source control, 486

Multipulse

coder, 285

closed-loop, 288

open-loop, 286, 287

INDEX 555

Multipulse (Continued)

excitation model, 285, 286

maximum likelihood quantization, 423

Multispeaker, 519

Multistage vector quantization, 194, 195

computational cost, 200

design algorithm, 202

joint, 206, 211, 214

sequential, 202

memory cost, 196

resolution, 196

search procedure, 197, 198

Narrow-band, 518

Nearest neighbor condition, 188

Neural network, 530

Normal equation, 94

augmented, 96

Nyquist theorem, 3

Object oriented, 27

Objective quality measure, 502

Oral cavity, 12

Orthogonalization, 360

Orthonormal, 539

P.861, 506

P.862, 506

Parseval theorem, 62

Pattern classification, 522

Peakiness, 467, 471–473

Perceptron, 524

Perceptual audio quality measure, 506

Perceptual evaluation of speech quality, 506

Perceptual speech quality measure, 505

Perceptual weighting, 303

Period jitter, 455, 479

Periodogram, 67

Pharyngeal cavity, 12

Pitch, 13

frequency, 13

period, 33, 264, 455

estimation, 33, 275

fractional, 38

multiples, 43

synchronous, 275

Postfilter, 317

adaptive spectral tilt compensation, 320

automatic gain control, 319

long-term, 321

Power spectral density, 62

autoregressive process, 70

cross, 88

Power transfer function, 67

Prediction, 91

error, 92

external, 97, 106

gain, 95, 98, 273

segmental, 99

internal, 97

order, 92

Predictor, 92, 121

backward, 509

forward, 509

Pre-emphasis, 132

Programming language, 26

Projection matrix, 539

Prototype spectral sensitivity curve, 231

Pseudocode, 29

Pseudorandom number generator, 499

Pulse code modulation, 161, 170

adaptive, 176

adaptive differential, 178

differential, 172

with MA prediction, 175

Qualcomm, 486

Quality measurement, 501, 502

objective, 502, 503, 505, 506, 520

subjective, 504

Quality toll, 3

Quantization

scalar, 143

split matrix, 416

uniform, 147, 148

vector, see Vector quantization

Quantizer

backward gain-adaptive, 177

boundary points, 145, 189

cell, 144, 185

codebook, 144, 185

codeword, 144

condition for optimality, 149, 150,

188, 189

design algorithm, 151, 189

expected distortion, 151, 186

forward gain-adaptive, 176

midrise, 158

midtread, 158

nearest neighbor, 187

nonuniform, 166

optimal, 149, 188

regular, 145

size, 143

step size, 147

symmetric, 158

556 INDEX

transfer characteristic, 145, 147

uniform, 147, 148

Random

access memory, 30

number generator, 282

seed, 498

signal, 61

variable, 63, 146

vector, 186

Read-only memory, 30

Reference code, 26

Reflection coefficients, 113, 232

Regular pulse excitation, 285

Regular pulse excited long-term prediction, 286,

289, 295

long-term linear prediction analysis, 290

position selection, 293

weighting filter, 292

Rouché’s theorem, 512

Sample median, 58

Sampling frequency, 3

Scalability, 521

Search

full, 159, 200

iterative sequential, 223

linear, 156

sequential, 201

tree, 156, 201, 211

Segmental signal to noise ratio, 503

Sequential codebook design algorithm, 202

Short-term linear prediction model, 129

Signal flow graph, 46, 47

Signal to noise ratio (SNR), 503

Solution space, 526

Sort, 405

bubble, 419

Spectral

distortion, 227, 228, 229

envelope, 105

sensitivity, 230, 231, 232

smoothing, 135, 136, 137

Spectrum estimation, 87

Speech

coder, 4

classification, 8

desirable properties, 4

hybrid, 10

multimode, 10

parametric, 9

single-mode, 10

waveform, 9

coding, 1

standard, 22

standard bodies, 23

production, 11

production model

code-excited linear prediction, 300

linear prediction coding, 264

mixed excitation linear prediction, 455

quality assessment, 501

signals

origin, 11

classification, 13

Stacked codebook, 205

State-save method, 50, 309

Stochastic

codebook, 337–340, 344, 354, 358, 359

process, 61, 63

relaxation, 192

Subframe, 123

Symmetric extension, 460

System function, 45

System identification, 92

Telecommunications Industry Association

(TIA), 23

Text to speech, 520

Time division multiple access (TDMA), 353

Time-scale modification, 284

Transparent quantization, 229, 230

m-law, 167, 168
Uniform distribution, 163, 164

Unvoiced, 13

Variable bit-rate, 486

Vector quantization, 184

conjugate, 220

multistage, 194

partitioned, 220

predictive, 216

with MA prediction, 217, 218

split, 220

Vector sum excited linear prediction, 353

Vocal cord, 12

Vocal tract, 12

Voiced, 13

Voicing detector, 271–274, 276

Voicing strength, 466, 469, 473

White noise, 95

correction, 135

Wide-band, 518

Wide-sense stationary, 63

INDEX 557

Window

asymmetric, 410, 415

Barnwell, 77

Chen, 80–85

Gaussian, 136

Hamming, 346, 407

hybrid, 80

rectangular, 289

Zero crossing rate, 272, 276

Zero-input zero-state method, 50–52, 310

Zero probability boundary condition, 189

558 INDEX

	Speech Coding Algorithms : Foundation and Evolution of Standardized Coders
	CONTENTS
	PREFACE
	ACRONYMS
	NOTATION
	1 INTRODUCTION
	1.1 Overview of Speech Coding
	1.2 Classification of Speech Coders
	1.3 Speech Production and Modeling
	1.4 Some Properties of the Human Auditory System
	1.5 Speech Coding Standards
	1.6 About Algorithms
	1.7 Summary and References

	2 SIGNAL PROCESSING TECHNIQUES
	2.1 Pitch Period Estimation
	2.2 All-Pole and All-Zero Filters
	2.3 Convolution
	2.4 Summary and References
	Exercises

	3 STOCHASTIC PROCESSES AND MODELS
	3.1 Power Spectral Density
	3.2 Periodogram
	3.3 Autoregressive Model
	3.4 Autocorrelation Estimation
	3.5 Other Signal Models
	3.6 Summary and References
	Exercises

	4 LINEAR PREDICTION
	4.1 The Problem of Linear Prediction
	4.2 Linear Prediction Analysis of Nonstationary Signals
	4.3 Examples of Linear Prediction Analysis of Speech
	4.4 The Levinson–Durbin Algorithm
	4.5 The Leroux–Gueguen Algorithm
	4.6 Long-Term Linear Prediction
	4.7 Synthesis Filters
	4.8 Practical Implementation
	4.9 Moving Average Prediction
	4.10 Summary and References
	Exercises

	5 SCALAR QUANTIZATION
	5.1 Introduction
	5.2 Uniform Quantizer
	5.3 Optimal Quantizer
	5.4 Quantizer Design Algorithms
	5.5 Algorithmic Implementation
	5.6 Summary and References
	Exercises

	6 PULSE CODE MODULATION AND ITS VARIANTS
	6.1 Uniform Quantization
	6.2 Nonuniform Quantization
	6.3 Differential Pulse Code Modulation
	6.4 Adaptive Schemes
	6.5 Summary and References
	Exercises

	7 VECTOR QUANTIZATION
	7.1 Introduction
	7.2 Optimal Quantizer
	7.3 Quantizer Design Algorithms
	7.4 Multistage VQ
	7.5 Predictive VQ
	7.6 Other Structured Schemes
	7.7 Summary and References
	Exercises

	8 SCALAR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT
	8.1 Spectral Distortion
	8.2 Quantization Based on Reflection Coefficient and Log Area Ratio
	8.3 Line Spectral Frequency
	8.4 Quantization Based on Line Spectral Frequency
	8.5 Interpolation of LPC
	8.6 Summary and References
	Exercises

	9 LINEAR PREDICTION CODING
	9.1 Speech Production Model
	9.2 Structure of the Algorithm
	9.3 Voicing Detector
	9.4 The FS1015 LPC Coder
	9.5 Limitations of the LPC Model
	9.6 Summary and References
	Exercises

	10 REGULAR-PULSE EXCITATION CODERS
	10.1 Multipulse Excitation Model
	10.2 Regular-Pulse-Excited–Long-Term Prediction
	10.3 Summary and References
	Exercises

	11 CODE-EXCITED LINEAR PREDICTION
	11.1 The CELP Speech Production Model
	11.2 The Principle of Analysis-by-Synthesis
	11.3 Encoding and Decoding
	11.4 Excitation Codebook Search
	11.5 Postfilter
	11.6 Summary and References
	Exercises

	12 THE FEDERAL STANDARD VERSION OF CELP
	12.1 Improving the Long-Term Predictor
	12.2 The Concept of the Adaptive Codebook
	12.3 Incorporation of the Adaptive Codebook to the CELP Framework
	12.4 Stochastic Codebook Structure
	12.5 Adaptive Codebook Search
	12.6 Stochastic Codebook Search
	12.7 Encoder and Decoder
	12.8 Summary and References
	Exercises

	13 VECTOR SUM EXCITED LINEAR PREDICTION
	13.1 The Core Encoding Structure
	13.2 Search Strategies for Excitation Codebooks
	13.3 Excitation Codebook Searches
	13.4 Gain Related Procedures
	13.5 Encoder and Decoder
	13.6 Summary and References
	Exercises

	14 LOW-DELAY CELP
	14.1 Strategies to Achieve Low Delay
	14.2 Basic Operational Principles
	14.3 Linear Prediction Analysis
	14.4 Excitation Codebook Search
	14.5 Backward Gain Adaptation
	14.6 Encoder and Decoder
	14.7 Codebook Training
	14.8 Summary and References
	Exercises

	15 VECTOR QUANTIZATION OF LINEAR PREDICTION COEFFICIENT
	15.1 Correlation Among the LSFs
	15.2 Split VQ
	15.3 Multistage VQ
	15.4 Predictive VQ
	15.5 Summary and References
	Exercises

	16 ALGEBRAIC CELP
	16.1 Algebraic Codebook Structure
	16.2 Adaptive Codebook
	16.3 Encoding and Decoding
	16.4 Algebraic Codebook Search
	16.5 Gain Quantization Using Conjugate VQ
	16.6 Other ACELP Standards
	16.7 Summary and References
	Exercises

	17 MIXED EXCITATION LINEAR PREDICTION
	17.1 The MELP Speech Production Model
	17.2 Fourier Magnitudes
	17.3 Shaping Filters
	17.4 Pitch Period and Voicing Strength Estimation
	17.5 Encoder Operations
	17.6 Decoder Operations
	17.7 Summary and References
	Exercises

	18 SOURCE-CONTROLLED VARIABLE BIT-RATE CELP
	18.1 Adaptive Rate Decision
	18.2 LP Analysis and LSF-Related Operations
	18.3 Decoding and Encoding
	18.4 Summary and References
	Exercises

	19 SPEECH QUALITY ASSESSMENT
	19.1 The Scope of Quality and Measuring Conditions
	19.2 Objective Quality Measurements for Waveform Coders
	19.3 Subjective Quality Measures
	19.4 Improvements on Objective Quality Measures

	APPENDIX A MINIMUM-PHASE PROPERTY OF THE FORWARD PREDICTION-ERROR FILTER
	APPENDIX B SOME PROPERTIES OF LINE SPECTRAL FREQUENCY
	APPENDIX C RESEARCH DIRECTIONS IN SPEECH CODING
	APPENDIX D LINEAR COMBINER FOR PATTERN CLASSIFICATION
	APPENDIX E CELP: OPTIMAL LONG-TERM PREDICTOR TO MINIMIZE THE WEIGHTED DIFFERENCE
	APPENDIX F REVIEW OF LINEAR ALGEBRA: ORTHOGONALITY, BASIS, LINEAR INDEPENDENCE, AND THE GRAM–SCHMIDT ALGORITHM
	BIBLIOGRAPHY
	INDEX

