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Preface

What you have in your hands, or on your screen, is an introductory book
on sound processing. By reading this book, you may expect to acquire some
knowledge on the mathematical, algorithmic, and computational tools that I
consider to be important in order to become proficient sound designers or ma-
nipulators.

The book is targeted at both science- and art-oriented readers, even though
the latter may find it hard if they are not familiar with calculus. For this purpose
an appendix of mathematical fundamentals has been prepared in such a way
that the book becomes self contained. Of course, the mathematical appendix
is not intended to be a substitute of a thorough mathematical preparation, but
rather as a shortcut for those readers that are more eager to understand the
applications.

Indeed, this book was conceived in 1997, when I was called to teach in-
troductory audio signal processing in the course “Specialisti in Informatica
Musicale” organized by the Centro Tempo Reale in Firenze. In that class, the
majority of the students were excellent (no kidding, really superb!) music com-
posers. Only two students had a scientific background (indeed, a really strong
scientific background!). The task of introducing this audience to filters and
trasforms was so challenging for me that I started planning the lectures and
laboratory material much earlier and in a structured form. This was the ini-
tial form of this book. The course turned out to be an exciting experience for
me and, based on the music and the research material that I heard from them
afterward, I have the impression that the students also made good use of it.

After the course in Firenze, I expanded and improved the book during four
editions of my course on sound processing for computer science students at
the University of Verona. The mathematical background of these students is
different from that of typical electrical engineering students, as it is stronger in
discrete mathematics and algebra, and with not much familiarity with advanced
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and applied calculus. Therefore, the books presents the basics of signals, sys-
tems, and transforms in a way that can be immediately used in applications and
experienced in computer laboratory sessions.

This is a free book, thus meaning that it was written using free software
tools, and it is freely downloadable, modifiable, and distributable in electronic
or printed form, provided that the enclosed license and link to its original web
location are included in any derivative distribution. The book web site also con-
tains the source codes listed in the book, and other auxiliary software modules.

I encourage additions that may be useful to the reader. For instance, it
would be nice to have each chapter ended by a section that collects annotations,
solutions to the problems that I proposed in footnotes, and other problems or
exercises. Feel free to exploit the open nature of this book to propose your ad-
ditional contents.

Venezia, 7th October 2003 Davide Rocchesso



Chapter 1

Systems, Sampling and
Quantization

1.1 Continuous-Time Systems
Sound is usually considered as a mono-dimensional signal (i.e., a function

of time) representing the air pressure in the ear canal. For the purpose of this
book, a Single-Input Single-Output (SISO) System is defined as any algorithm
or device that takes a signal in input and produces a signal in output. Most of
our discussion will regard linear systems, that can be defined as those systems
for which the superposition principle holds:

Superposition Principle : if y1 and y2 are the responses to the input sequences
x1 and x2, respectively, then the input ax1 + bx2 produces the response
ay1 + by2.

The superposition principle allows us to study the behavior of a linear sys-
tem starting from test signals such as impulses or sinusoids, and obtaining the
responses to complicated signals by weighted sums of the basic responses.

A linear system is said to be linear time-invariant (LTI), if a time shift in
the input results in the same time shift in the output or, in other words, if it does
not change its behavior in time.

Any continuous-time LTI system can be described by a differential equa-
tion. The Laplace transform, defined in appendix A.8.1 is a mathematical tool
that is used to analyze continuous-time LTI systems, since it allows to trans-
form complicated differential equations into ratios of polynomials of a complex

1



2 D. Rocchesso: Sound Processing

variable s. Such ratio of polynomials is called the transfer function of the LTI
system.

Example 1. Consider the LTI system having as input and output the func-
tions of time (i.e., the signals) x(t) and y(t), respectively, and described by the
differential equation

dy

dt
− s0y = x . (1)

This equation, transformed into the Laplace domain according to the rules of
appendix A.8.1, becomes

sYL(s)− s0YL(s) = XL(s) . (2)

Here, as in most of the book, we implicitly assume that the initial conditions are
zero, otherwise eq. (2) should also contain a term in y(0). From the algebraic
equation (2) the transfer function is derived as the ratio between the output and
input transforms:

H(s) =
1

s− s0
. (3)

###

The coefficient s0, root of the denominator polynomial of (3), is called the
pole of the transfer function (or pole of the system). Any root of the numerator
would be called a zero of the system.

The inverse Laplace transform of the transfer function is an equivalent de-
scription of the system. In the case of example 1.1, it takes the form

h(t) =
{

es0t t ≥ 0
0 t < 0 , (4)

and such function is called a causal exponential.
In general, the function h(t), inverse transform of the transfer function, is

called the impulse response of the system, since it is the output obtained from
the system as a response to an ideal impulse1.

The two equivalent descriptions of a linear system in the time domain (im-
pulse response) and in the Laplace domain (transfer function) correspond to
two alternative ways of expressing the operations that the system performs in
order to obtain the output signal from the input signal.

1A rigorous definition of the ideal impulse, or Dirac function, is beyond the scope of this book.
The reader can think of an ideal impulse as a signal having all its energy lumped at the time instant
0.
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The description in the Laplace domain leads to simple multiplication between
the Laplace transform of the input and the system transfer function:

Y (s) = H(s)X(s) . (5)

This operation can be interpreted as multiplication in the frequency domain
if the complex variable s is replaced by jΩ, being Ω the real variable of the
Fourier domain. In other words, the frequency interpretation of (5) is obtained
by restricting the variable s from the complex plane to the imaginary axis. The
transfer function, whose domain has been restricted to jΩ is called frequency
response. The frequency interpretation is particularly intuitive if we imagine
the input signal as a complex sinusoid ejΩ0t, which has all its energy focused
on the frequency Ω0 (in other words, we have a single spectral line at Ω0). The
complex value of the frequency response (magnitude and phase) at the point
jΩ0 corresponds to a joint magnitude scaling and phase shift of the sinusoid at
that frequency.

The description in the time domain leads to the operation of convolution,
which is defined as2

y(t)
4
= (h ∗ x)(t) =

∫ +∞

−∞
h(t− τ)x(τ)dτ . (6)

In order to obtain the signal coming out from a linear system it is sufficient
to apply the convolution operator between the input signal and the impulse
response.

1.2 The Sampling Theorem
In order to perform any form of processing by digital computers, the signals

must be reduced to discrete samples of a discrete-time domain. The operation
that transforms a signal from the continuous time to the discrete time is called
sampling, and it is performed by picking up the values of the continuous-time
signal at time instants that are multiple of a quantity T , called the sampling
interval. The quantity Fs = 1/T is called the sampling rate.

The presentation of a detailed theory of sampling would take too much
space and it would become easily boring for the readership of this book. For
a more extensive treatment there are many excellent books readily available,

2The convolution will be fully justified for discrete-time systems in section 1.4. Here, for
continuous-time systems, we give only the definition.
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from the more rigorous [66, 65] to the more practical [67]. Luckily, the kernel
of the theory can be summarized in a few rules that can be easily understood in
terms of the frequency-domain interpretation of signals and systems.

The first rule is related to the frequency representation of discrete-time
variables by means of the Fourier transform, defined in appendix A.8.3 as a
specialization of the Z transform:

Rule 1.1 The Fourier transform of a function of discrete variable is a function
of the continuous variable ω, periodic3 with period 2π.

The second rule allows to treat the sampled signals as functions of discrete
variable:

Rule 1.2 Sampling a continuous-time signal x(t) with sampling interval T

produces a function x̂(n)
4
= x(nT ) of the discrete variable n.

If we call spectrum of a signal its Fourier-transformed counterpart, the fun-
damental rule of sampling is the following:

Rule 1.3 Sampling a continuous-time signal with sampling rate Fs produces a
discrete-time signal whose frequency spectrum is a periodic replication of the
spectrum of the original signal, and the replication period is Fs. The Fourier
variable ω for functions of discrete variable is converted into the frequency
variable f (in Hz) by means of

ω = 2πfT =
2πf
Fs

. (7)

Fig. 1 shows an example of frequency spectrum of a signal sampled with
sampling rate Fs. In the example, the continuous-time signal had all and only
the frequency components between −Fb and Fb. The replicas of the original
spectrum are sometimes called images.

Given the simple rules that we have just introduced, it is easy to understand
the following Sampling Theorem, introduced by Nyquist in the twenties and
popularized by Shannon in the forties:

Theorem 1.1 A continuous-time signal x(t), whose spectral content is limited
to frequencies smaller than Fb (i.e., it is band-limited to Fb) can be recovered
from its sampled version x̂(n) = x(nT ) if the sampling rate Fs = 1/T is such
that

Fs > 2Fb . (8)
3This periodicity is due to the periodicity of the complex exponential of the Fourier transform.
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/2Fs Fs f-F 0

X(f)

Fb bs -F

Figure 1: Frequency spectrum of a sampled signal

It is also clear how such recovering might be obtained. Namely, by a linear
reconstruction filter capable to eliminate the periodic images of the base band
introduced by the sampling operation. Ideally, such filter doesn’t apply any
modification to the frequency components lower than the Nyquist frequency,
defined as FN = Fs/2, and eliminates the remaining frequency components
completely.

The reconstruction filter can be defined in the continuous-time domain by
its impulse response, which is given by the function

h(t)
4
= sinc(t) =

sin (πt/T )
πt/T

, (9)

which is depicted in fig. 2.

−5 0 5
−1

0

1

time in sampling intervals

Impulse response of the Reconstruction Filter

si
nc

Figure 2: sinc function, impulse response of the ideal reconstruction filter

Ideally, the reconstruction of the continuous-time signal from the sampled
signal should be performed in two steps:
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• Conversion from discrete to continuous time by holding the signal con-
stant in time intervals between two adjacent sampling instants. This is
achieved by a device called a holder. The cascade of a sampler and a
holder constitutes a sample and hold device.

• Convolution with an ideal sinc function.

The sinc function is ideal because its temporal extension is infinite on both
sides, thus implying that the reconstruction process can not be implemented
exactly. However, it is possible to give a practical realization of the reconstruc-
tion filter by an impulse response that approximates the sinc function.

Whenever the condition (8) is violated, the periodic replicas of the spec-
trum have components that overlap with the base band. This phenomenon is
called aliasing or foldover and is avoided by forcing the continuous-time ori-
ginal signal to be bandlimited to the Nyquist frequency. In other words, a filter
in the continuous-time domain cuts off the frequency components exceeding
the Nyquist frequency. If aliasing is allowed, the reconstruction filter can not
give a perfect copy of the original signal.

Usually, the word aliasing has a negative connotation because the aliasing
phenomenon can make audible some spectral components which are normally
out of the frequency range of hearing. However, some sound synthesis tech-
niques, such as frequency modulation, exploit aliasing to produce additional
spectral lines by folding onto the base band spectral components that are out-
side the Nyquist bandwidth. In this case where the connotation is positive, the
term foldover is preferred.

1.3 Discrete-Time Spectral Representations
We have seen how the sampling operation essentially changes the nature of

the signal domain, which switches from a continuous to a discrete set of points.
We have also seen how this operation is transposed in the frequency domain as
a periodic replication. It is now time to clarify the meaning of the variables
which are commonly associated to the word “frequency” for signals defined
in both the continuous and the discrete-time domain. The various symbols are
collected in table 1.1, where the limits imposed by the Nyquist frequency are
also indicated. With the term “digital frequencies” we indicate the frequencies
of discrete-time signals.

Appendix A.8.3 shows how it is possible to define a Fourier transform for
functions of a discrete variable. Here we can re-express such definition, as
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Nyquist Domain Symbol Unit
[−Fs/2 . . . 0 . . . Fs/2] f [Hz] = [cycles/s]
[−1/2 . . . 0 . . . 1/2] f/Fs [cycles/sample] digital
[−π . . . 0 . . . π] ω = 2πf/Fs [radians/sample] freqs.
[−πFs . . . 0 . . . πFs] Ω = 2πf [radians/s]

Table 1.1: Frequency variables

a function of frequency, for discrete-variable functions obtained by sampling
continuous-time signals with sampling interval T . This transform is called the
Discrete-Time Fourier Transform (DTFT) and is expressed by

Y (f) =
+∞
∑

n=−∞
y(nT )e−j2π

f
Fs
n . (10)

We have already seen that the function Y (f) is periodic4 with period Fs.
Therefore, it is easy to realize that the DTFT can be inverted by an integral
calculated on a single period:

y(nT ) =
1
Fs

∫ Fs/2

−Fs/2
Y (f)ej2πfnT df . (11)

In practice, in order to compute the Fourier transform with numeric means
we must consider a finite number of points in (10). In other words, we have to
consider a window of N samples and compute the discrete Fourier transform
on that signal portion:

Ŷ (f) =
N−1
∑

n=0

ŷ(n)e−j2π
f
Fs
n . (12)

In (12) we have taken a window of N samples (i.e., NT seconds) of the sig-
nal, starting from instant 0, thus forming an N -point vector. The result is still
a function of continuos variable: the larger the window, the closer is the func-
tion to Y (f). Therefore, the “windowing” operation introduces some loss of
precision in frequency analysis. On the other hand, it allows to localize the
analysis in the time domain. There is a tradeoff between the time domain and

4Indeed, the expression (10) can be read as the Fourier series expansion of the periodic sig-
nal Y (f) with coefficients y(nT ) and components which are “sinusoidal” in frequency and are
multiples of the fundamental 1/Fs.
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the frequency domain, governed by the Uncertainty Principle which states that
the product of the window length by the frequency resolution ∆f is constant:

∆fN = 1 . (13)

Example 2. This example should clarify the spectral effects induced by
sampling and windowing. Consider the causal complex exponential function
in continuous time

y(t) =
{

es0t t ≥ 0
0 t < 0 , (14)

where s0 is the complex number s0 = a+jb. To visualize such complex signal
we can consider its real part

<(y(t)) = <(eatejbt) = eat cos (bt) , (15)

and obtain fig. 3.a from it.
The Laplace transform of function (14) has been calculated in appendix A.8.1.

It can be reduced to the Fourier transform by the substitution s = jΩ:

Y (Ω) =
1

jΩ− s0
. (16)

The magnitude of the complex function (16) is drawn in solid line in fig. 3.
The sampled signal is also Fourier-transformable in closed form, by redu-

cing the Z transform obtained in appendix A.8.3 by the substitution z = ejω .
The formula turns out to be5

Y (ω) =
1

1− es0/Fse−jω
, (17)

and its magnitude is drawn in dashed line in fig. 3 for Fs = 50Hz. We can
see that sampling induces a periodic replication in the spectrum and that the
periodicity is established by the sampling rate. The fact that the spectrum is
not identically zero for frequencies higher than the Nyquist limit determines
aliasing. This can be seen, for instance, in the heightening of the peak at the
frequency of the damped sinusoid.

If we consider only the sampled signal lying within a window of N = 7
samples, we can compute the DTFT by means of (12) and obtain the third curve
of fig. 3. Two important artifacts emerge after windowing:

5If we compare this formula with (57) of the appendix A, we see that here the variable s0 in the
exponent is divided by Fs. Indeed, the discrete-variable functions of appendix A.8.3 correspond
to signals sampled with unit sampling rate.
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• The peak is enlarged. In general, we wave a main lobe for each relev-
ant spectral component, and the width of the lobe might prevent from
resolving two components that are close to each other. This is a loss of
frequency resolution due to the uncertainty principle.

• There are side lobes (frequency leakage) due to the discontinuity at the
edges of the rectangular window. Smaller side lobes can be obtained by
using windows that are smoother at the edges.

Unfortunately, for signals that are not known analytically, the analysis can
only be done on finite segments of sampled signal, and the artifacts due to
windowing are not eliminable. However, as we will show in sec. 4.1.3, the
tradeoff between width of the main lobe and height of the side lobes can be
explored by choosing windows different from the rectangular one.

(a) (b)

0 0.5 1
−1

0

1
Exponentially−decayed sinusoid

t [s]

y

0 50 100
−60

−50

−40

−30

−20

−10
Frequency response of a damped sinusoid

f [Hz]

|Y
| [

dB
]

Figure 3: (a): Exponentially-decayed sinusoid, obtained as the real part of the
complex exponential y(t) = es0t, with s0 = −10 + j100; (b): Frequency
analysis of the complex exponential y(t) = es0t. Transform of the continuous-
time signal (continuous line), transform of the signal sampled at Fs = 50Hz
(dashed line), and transform of the sampled signal windowed with a 7-sample
rectangular window (dash-dotted line)

To conclude the example we report the Octave/Matlab code (see the ap-
pendix B) that allows to plot the curves of fig. 3. The computation of the DTFT
is particularly instructive. We have expressed the sum in (12) as a vector-matrix
multiply, thus obtaining a compact expression that is computed efficiently. We
also notice how Matlab and Octave manage vectors of complex numbers with
the proper arithmetics.
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% script that visualizes the effects of
% sampling and windowing
global_decl;
platform(’octave’); %put either ’octave’ or ’matlab’
a = - 10.0; b = 100;
s0 = a + i * b;
t = [0:0.001:1];
y = exp(s0*t); % complex exponential
subplot(2,2,1); plot(t,real(y));
eval(mygridon);
title(’Exponentially-decayed sinusoid’);
xlabel(’t [s]’); ylabel(’y’);
eval(myreplot);
pause;
f = [0:0.1:100];
Y = 1 ./ (i * 2 * pi * f - s0*ones(size(f)));

% closed-form Fourier transform
subplot(2,2,2); plot(f, 20*log10(abs(Y)), ’-’);
title(’Frequency response of a damped sinusoid’);
xlabel(’f [Hz]’); ylabel(’|Y| [dB]’);
hold on;
Fs = 50;
Ysamp = 1 ./ (1 - exp(s0/Fs) * exp(- i*2*pi*f/Fs)) / Fs;

% closed-form Fourier transform of the sampled signal
plot(f,20*log10(abs(Ysamp)),’--’);
n = [0:6];
y = exp(s0*n/Fs);
Ysampw = y * exp(-i*2*pi/Fs*n’*f) / Fs;

% Fourier transform of the windowed signal
% obtained by vector-matrix multiply

plot(f,20*log10(abs(Ysampw)),’-.’); hold off;
eval(myreplot);

###

Finally, we define the Discrete Fourier Transform (DFT) as the collection
of N samples of the DTFT of a discrete-time signal windowed by a length-N
rectangular window. The frequency sampling points (called bins) are equally
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spaced between 0 and Fs according to the formula

fk =
kFs
N

. (18)

Therefore, the DFT is given by

Y (k) =
N−1
∑

n=0

y(n)e−j
2π
N kn, k = [0 . . . N − 1] . (19)

The DFT can also be expressed in matrix form. Just consider y(n) and Y (k)
as elements of two N -component vectors y and Y related by

Y = Fy , (20)

where F is the Fourier matrix, whose generic element of indices k, n is

Fk,n = e−j
2π
N kn . (21)

It is clear that the sequence y can be recovered by premultiplication of the
sequence Y by the matrix F−1, which is the inverse Fourier matrix. This can
be expressed as

y(n) =
1
N

N−1
∑

k=0

Y (k)ej
2π
N kn, n = [0 . . . N − 1] , (22)

which is called the Inverse Discrete Fourier Transform.
The Fast Fourier Transform (FFT) [65, 67], is a fast algorithm for com-

puting the sum (19). Namely, the FFT has computational complexity [24] of
the order of N logN , while the trivial procedure for computing the sum (19)
would take an order ofN2 steps, thus being intractable in many practical cases.
The FFT can be found as a predefined component in most systems for digital
signal processing and sound processing languages. For instance, there is an
fft builtin function in Octave, CSound, CLM (see the appendix B).

1.4 Discrete-Time Systems
A discrete-time system is any processing block that takes an input sequence

of samples and produces an output sequence of samples. The actual processing
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can be performed sample by sample or as a sequence of transformations of data
blocks.

The linear and time-invariant systems are particularly interesting because
a theory is available that describes them completely. Since we have already
seen in sec. 1.1 what we mean by linearity, here we restate the concept with
formulas. If y1(n) and y2(n) are the system responses to the inputs x1(n) and
x2(n) then, feeding the system with the input

x(n) = a1x1(n) + a2x2(n) (23)

we get, at each discrete instant n

y(n) = a1y1(n) + a2y2(n) . (24)

In words, the superposition principle does hold.
The time invariance is defined by considering an input sequence x(n),

which gives an output sequence y(n), and a version of x(n) shifted by D
samples: x(n−D). If the system is time invariant, the response to x(n−D) is
equal to y(n) shifted byD samples, i.e. y(n−D). In other words, the time shift
can be indifferently put before or after a time-invariant system. Cases where the
time invariance does not hold are found in systems that change their function-
ality over time or that produce an output sequence at a rate different from that
of the input sequence (e.g., a decimator that undersamples the input sequence).

An important property of linear and time-invariant (LTI) systems is that,
in a cascade of LTI blocks the order of such blocks is irrelevant for the global
input-output relation.

As we have already mentioned for continuous-time systems, there are two
important system descriptions: the impulse response and the transfer function.
LTI discrete-time systems are completely described by either one of these two
representations.

1.4.1 The Impulse Response
Any input sequence can be expressed as a weighted sum of discrete im-

pulses properly shifted in time. A discrete impulse is defined as

δ(n) =
{

1 n = 0
0 n 6= 0 . (25)

If the impulse (25) gives as output a sequence (called, indeed, the impulse re-
sponse) h(n) defined in the discrete domain, then a linear combination of shif-
ted impulses will produce a linear combination of shifted impulse responses.
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Therefore, it is easy to be convinced that the output can be expressed by the
following general convolution6:

y(n) = (h ∗ x)(n) =
∑

m

x(m)h(n−m) =
∑

m

h(m)x(n−m) , (26)

which is the discrete-time version of (6).
The Z transform H(z) of the impulse response is called transfer function

of the LTI discrete-time system. By analogy to what we showed in sec. 1.1,
the input-output relationship for LTI systems can be described in the transform
domain by

Y (z) = H(z)X(z) , (27)

where the input and output signals X(z) and Y (z) have been capitalized to
indicate that these are the Z transforms of the signals themselves.

The following general rule can be given:

• A linear and time-invariant system working in continuous or discrete
time can be represented by an operation of convolution in the time do-
main or, equivalently, by a complex multiplication in the (respectively
Laplace or Z) transform domain. The results of the two operations are
related by a (Laplace or Z) transform.

Since the transforms can be inverted the converse statement is also true:

• The convolution between two signals in the transform domain is the
transform of a multiplication in the time domain between the antitrans-
forms of the signals.

1.4.2 The Shift Theorem
We have seen how two domains related by a transform operation such as

the Z transform are characterized by the fact that the convolution in one domain
corresponds to the multiplication in the other domain. We are now interested
to know what happens in one domain if in the other domain we perform a shift
operation. This is stated in the

Theorem 1.2 (Shift Theorem) Given two domains related by a transform op-
erator, the shift by τ in one domain corresponds, in the transform domain, to a
multiplication by the kernel of the transform raised to the power τ .

6The reader is invited to construct an example with an impulse response that is different from
zero only in a few points.
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We recall that the kernel of the Laplace transform7 is e−s and the kernel of
the Z transform is z−1. The shift theorem can be easily justified in the discrete
domain starting from the definition of Z transform. Let x(n) be a discrete-time
signal, and let y(n) be its version shifted by an integer number τ of samples.
With the variable substitution N = n− τ we can produce the following chain
of identities, which proves the theorem:

Y (z) =
∞
∑

n=−∞
y(n)z−n =

∞
∑

n=−∞
x(n− τ)z−n =

=
∞
∑

N=−∞

x(N)z−N−τ = z−τX(z) . (28)

1.4.3 Stability and Causality

The notion of causality is rather intuitive: it corresponds to the experience
of exciting a system and getting its response back only in future time instants,
i.e. in instants that follow the excitation time along the time arrow. It is easy
to realize that, for an LTI system, causality is enforced by forbidding non-zero
values to the impulse response for time instants preceding zero. Non-causal
systems, even though not realizable by sample-by-sample processing, can be
of interest for non-realtime applications or where a processing delay can be
tolerated.

The notion of stability is more delicate and can be given in different ways.
We define the so-called bounded-input bounded-output (BIBO) stability, which
requires that any input bounded in amplitude might only produce a bounded
output, even though the two bounds can be different. It can be shown that hav-
ing BIBO stability is equivalent to have an impulse response that is absolutely
summable, i.e.

∞
∑

−∞
|h(n)| <∞ . (29)

In particular, a necessary condition for BIBO stability is that the impulse re-
sponse converges toward zero for time instants diverging from zero.

It is easy to detect stability on the complex plane for LTI causal systems [58,
66, 65]. In the continuous-time case, the system is stable if all the poles are on
the left of the imaginary axis or, equivalently, if the strip of convergence (see

7This is the kernel of the direct transform, being es the kernel of the inverse transform.
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appendix A.8.1) ranges from a negative real number to infinity. In the discrete-
time case, the system is stable if all the poles are within the unit circle or,
equivalently, the ring of convergence (see appendix A.8.3) has the inner radius
of magnitude less than one and the outer radius extending to infinity.

Stability is a condition that is almost always necessary for practical real-
izability of linear filters in computing systems. It is interesting to note that
physical systems can be locally unstable but, in virtue of the principle of en-
ergy conservation, these instabilities must be compensated in other points of
the systems themselves or of the other systems they are interacting with. Ho-
wever, in numeric implementations, even local instabilities can be a problem,
since the numerical approximations introduced in the representations of vari-
ables can easily produce diverging signals that are difficult to control.

1.5 Continuous-time to discrete-time system
conversion

In many applications, and in particular in sound synthesis by physical mod-
eling, the design of a discrete-time system starts from the description of a
physical continuous-time system by means of differential equations and con-
straints. This description of an analog system can itself be derived from the
simplification of the physical reality into an assembly of basic mechanical ele-
ments, such as springs, dampers, frictions, nonlinearities, etc. . Alternatively,
our continuous-time physical template can result from measurements on a real
physical system. In any case, in order to construct a discrete-time system cap-
able to reproduce the behavior of the continuous-time physical system, we need
to transform the differential equations into difference equations, in such a way
that the resulting model can be expressed as a signal flowchart in discrete time.

The techniques that are most widely used in signal processing to discret-
ize a continuous-time LTI system are the impulse invariance and the bilinear
transformation.

1.5.1 Impulse Invariance
In the method of the impulse invariance, the impulse response h(n) of the

discrete-time system is a uniform sampling of the impulse response hs(t) of
the continuous-time system, rescaled by the width of the sampling interval T ,
according to

h(n) = Ths(nT ) . (30)
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In the usual practice of digital filter design, the constant T is usually neglected,
since the design stems from specifications for the discrete-time filter, and the
conversion to continuous time is only an intermediate stage. Since one should
introduce 1/T when going from discrete to continuous time, and T when re-
turning to discrete time, the overall effect of the constant is canceled. Vice
versa, if we start from a description in continuous time, such as in physical
modeling, the constant T should be considered.

From the sampling theorem we can easily deduce that the frequency re-
sponse of the discrete-time system is the periodic replication of the frequency
response of the continuous-time system, with a repetition period equal to Fs =
1/T . In terms of “discrete-time frequency” ω (in radians per sample), we can
write

H(ω) =
∞
∑

k=−∞

Hs

(

jω

T
+ j

2π
T
k

)

=
∞
∑

k=−∞

Hs (jΩ + j2πFsk) . (31)

The equation (31) shows that the frequency components in the two domains,
discrete and continuous, can be identical in the base band only if the continuous-
time system is bandlimited. If this is not the case (and it is almost never the
case!), there will be some aliasing that introduces spurious components in the
band of interest of the discrete-time system. However, if the frequency response
of the continuous-time system is sufficiently close to zero in high frequency,
the aliasing can be neglected and the resulting discrete-time system turns out
to be a good approximation of the continuous-time template.

Often, the continuous-time impulse response is derived from a decompos-
ition of the transfer function of a system into simple fractions. Namely, the
transfer function of a continuous-time system can be decomposed8 into a sum
of terms such as

Hs(s) =
a

s− sa
, (32)

which are given by impulse responses such as

hs(t) = aesat1(t) , (33)

where 1(t) is the ideal step function, or Heaviside function, which is zero for
negative (anticausal) time instants. Sampling the (33) we produce the discrete-
time response

h(n) = Ta
(

esaT
)n

1(n) , (34)

8This holds for simple distinct poles. The reader might try to extend the decomposition to the
case of coincident double poles.
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whose transfer function in z is

H(z) =
Ta

1− esaT z−1
. (35)

By comparing (35) and (32) it is clear what is the kind of operation that we
should apply to the s-domain transfer function in order to obtain the z-domain
transfer function relative to the impulse response sampled with period T .

It is important to recognize that the impulse-response method preserves the
stability of the system, since each pole of the left s hemiplane is matched with
a pole that stays within the unit circle of the z plane, and vice versa. However,
this kind of transformation can not be considered a conformal mapping, since
not all the points of the s plane are coupled to points of the z plane by a relation9

z = esT . An important feature of the impulse-invariance method is that, being
based on sampling, it is a linear transformation that preserves the shape of the
frequency response of the continuous-time system, at least where aliasing can
be neglected.

It is clear that the method of the impulse invariance can be used when the
continuous-time reference model is a lowpass or a bandpass filter (see sec. 2 for
a treatment of filters). If the template is an high-pass filtering block the method
is not applicable because of aliasing.

1.5.2 Bilinear Transformation

An alternative approach to using the impulse invariance to discretize con-
tinuous systems is given by the bilinear transformation, a conformal map that
creates a correspondence between the imaginary axis of the s plane and the
unit circumference of the z plane. A general formulation of the bilinear trans-
formation is

s = h
1− z−1

1 + z−1
. (36)

It is clear from (36) that the dc component j0 of the continuous-time system
corresponds to the dc component 1 + j0 of the discrete-time system, and the
infinity of the imaginary axis of the s plane corresponds to the point −1 +
j0, which represents the Nyquist frequency in the z plane. The parameter h
allows to impose the correspondence in a third point of the imaginary axis of

9To be convinced of that, consider a second order continuous-time transfer function with simple
poles and a zero and convert it with the method of the impulse invariance. Verify that the zero does
not follow the same transformation that the poles are subject to.
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the s plane, thus controlling the compression of the axis itself when it gets
transformed into the unit circumference.

A particular choice of the parameter h derives from the numerical integ-
ration of differential equations by the trapezoid rule. To understand this point,
consider the transfer function (32) and its relative differential equation that
couples the input variable xs to the output variable ys

dys(t)
dt

− says(t) = axs(t) . (37)

If we sample the output variable with period T we can write

ys(nT ) = ys(nT − T ) +
∫ nT

nT−T
ẏs(τ)dτ , (38)

where ẏs = dys(t)
dt , and integrate the (38) with the trapezoid rule, thus obtaining

ys(nT ) ≈ ys((n− 1)T ) + (ẏs(nT ) + ẏs((n− 1)T ))T/2 . (39)

By replacing (37) into (39) and setting y(n) = ys(nT ) we get a difference
equation represented, in virtue of the shift theorem 1.2, by the transfer function

H(z) =
a(1 + z−1)T/2

1− saT/2− (1 + saT/2)z−1
, (40)

which can be obviously obtained from Hs(s) by bilinear transformation with
h = 2/T .

It is easy to check that, with h = 2
T , the continuos-time frequency f = 1

πT
maps into the discrete-time frequency ω = π

2 , i.e. half the Nyquist limit. More
generally, half the Nyquist frequency of the discrete-time system corresponds
to the frequency f = h

2π of the continuous-time system. The more h is high,
the more the low frequencies are compressed by the transformation.

To give a practical example, using the sampling frequency Fs = 44100Hz
and h = 2

T = 88200, the frequency that is mapped into half the Nyquist
rate of the discrete-time system (i.e., 11025Hz), is f = 14037.5Hz. The same
transformation, with h = 100000 maps the frequency f = 15915.5Hz to half
the Nyquist rate. If we are interested in preserving the magnitude and phase
response at f = 11025Hz we need to use h = 69272.12.
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1.6 Quantization

With the adjectives “numeric” and “digital” we connote systems working
on signals that are represented by numbers coded according to the conventions
of appendix A.9. So far, in this chapter we have described discrete-time sys-
tems by means of signals that are functions of a discrete variable and having
a codomain described by a continuous variable. Actually, the internal arith-
metic of computing systems imposes a signal quantization, which can produce
various kinds of effects on the output sounds.

For the scope of this book the most interesting quantization is the linear
quantization introduced, for instance, in the process of conversion of an analog
signal into a digital signal. If the word representing numerical data is b bits
long, the range of variation of the analog signal can be divided into 2b quant-
ization levels. Any signal amplitude between two quantization levels can be
quantized to the closest level. The processes of sampling and quantization are
illustrated in fig. 4 for a wordlength of 3 bits. The minimal amplitude differ-
ence that can be represented is called the quantum interval and we indicate it
with the symbol q. We can notice from fig. 4 that, due to two’s complement
representation, the representation levels for negative amplitude exceed by one
the levels used for positive amplitude. It is also evident from fig. 4 how quant-

y(t)

2q

0

-2q

-4q
tT 5T 10T

Figure 4: Sampling and 3-bit quantization of a continuous-time signal

ization introduces an approximation in the representation of a discrete-time
signal. This approximation is called quantization error and can be expressed as

η(n)
4
= yq(n)− y(n) , (41)

where the symbol yq(n) indicates the value y(n) quantized by rounding it to
the nearest discrete level. From the viewpoint of the designer, the quantization
noise can be considered as a noise superimposed to the unquantized signal.
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This noise takes values in the range

−q
2
≤ η ≤ q

2
, (42)

and it is spectrally colored according to the nature and form of the unquantized
signal.

What follows is a superficial analysis of quantization noises. In order to
do a rigorous analysis we should assume that the reader has a background in
random variables and processes. We rather refer to signal processing books [58,
67, 65] for a more accurate exposition.

In order to study the effects of quantization noise analytically, it is often
assumed that it is a white noise (i.e., a noise with a constant-magnitude spec-
trum) with values uniformly distributed in the interval (42), and that there is no
correlation between the noise and the unquantized signal. This assumption is
false in general but, nevertheless, it leads to results which are good estimates of
many actual behaviors. The uniformly-distributed white noise has a zero mean
but it has a nonzero quadratic mean (i.e., a power) with value

η2 =
1
q/2

∫ q/2

0

η2dη =
q2

12
. (43)

In the frequency domain, the quantization noise is interpreted by means of a
spectrum such as that depicted in fig. 5, which represents the square of the
magnitude of the Fourier transform. The area of the dashed rectangle is equal
to the power η2. Usually the root-mean-square value (or RMS value) of the

0

η

f

2
|E|

-F  /2 F  /2ss

2 /F  s

Figure 5: Squared magnitude spectrum of an ideal quantization noise

quantization noise is given, and this is defined as

ηrms =
√

η2 =
q√
12

, (44)
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which can be directly compared with the maximal representable value in order
to get the signal-to-quantization noise ratio (or SNR)

SNR = 20 log10

q2b−1

q/
√

12
= 20 log10 (2b

√
3) ≈ 4.7 + 6 b dB . (45)

As a general rule, each further quantization bit increases the SNR by 6dB.
Therefore, with 16 bits we have a signal-to-quantization noise ratio of about
101.1dB. When we are given a SNR of 96.3dB with 16 bits, it means that the
ratio has been computed using the maximum value q/2 of the quantization
noise and not its RMS value, which is more significant for the human ear. The
definition (45) is that proposed by Steiglitz [102].

The assumptions on the statistical properties of the quantization noise are
better verified if the signal is large in amplitude and wide in its frequency ex-
tension. For quasi-sinusoidal signals the quantization noise is heavily colored
and correlated with the unquantized signal, in such an extent that some additive
noise called dither is sometimes introduced in order to whiten and decorrelate
the quantization noise. In this way, the perceptual effects of quantization turn
out to be less severe.

By considering the quantization noise as an additive signal we can easily
study its effects within linear systems. The operations performed by a discrete-
time linear system, especially when done in fixed-point arithmetics, can indeed
modify the spectral content of noise signals, and different realizations of the
same transfer functions can behave very differently as far as their immunity
to quantization noise is concerned. Several quantizations can occur within the
realization of a linear system. For instance, the multiplication of two fixed-
point numbers represented with b bits requires 2b−1 bits to represent the result
without any precision loss. If successive operations use operands represented
with b bits it is clear that the least-significant bits must be eliminated, thus
introducing a quantization. The effects of these quantizations can be studied
resorting to the additive white noise model, where the points of injection of
noises are the points where the quantization actually occurs.

The fixed-point implementations of linear systems are subject to disap-
pointing phenomena related to quantization: limit cycles and overflow oscil-
lations. Both phenomena can be expressed as nonzero signals that are main-
tained even when the system has stopped to produce usuful signals. The limit
cycles are usually small oscillations due to the fact that, because of rounding,
the sources of quantization noise determine a local amplification or attenu-
ation of the signal (see fig. 4). If the signals within the system have a physical
meaning (e.g., they are propagating waves), the limit cycles can be avoided by
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forcing a lossy quantization, which truncates the numbers always toward zero.
This operation corresponds to introducing a small numerical dissipation. The
overflow oscillations are more serious because they produce signals as large
as the maximum amplitude that can be represented. They can be produced by
operations whose results exceed the largest representable number, so that the
result is slapped back into the legal range of two’s complement numbers. Such
a distructive oscillation can be avoided by using overflow-protected operations,
which are operations that saturate the result to the largest representable number
(or to the most negative representable number).

The quantizations introduce nonlinear elements within otherwise linear struc-
tures. Indeed, limit cycles and overflow oscillations can persist only because
there are nonlinearities, since any linear and stable system can not give a per-
sistent nonzero output with a zero input.

Quantization in floating point implementations is usually less of a concern
for the designer. In this case, quantization occurs only in the mantissa. There-
fore, the relative error

ηr(n)
4
=
yq(n)− y(n)

y(n)
, (46)

is more meaningful for the analysis. We refer to [65] for a discussion on the
effects of quantization with floating point implementations.

Some digital audio formats, such as the µ-law and A-law encodings, use
a fixed-point representation where the quantization levels are distributed non
linearly in the amplitude range. The idea, resemblant of the quasi logarithmic
sensitivity of the ear, is to have many more levels where signals are small and
a coarser quantization for large amplitudes. This is justified if the signals be-
ing quantized do not have a statistical uniform distribution but tend to assume
small amplitudes more often than large amplitudes. Usually the distribution
of levels is exponential, in such a way that the intervals between points in-
crease exponentially with magnitude. This kind of quantization is called log-
arithmic because, in practical realizations, a logarithmic compressor precedes
a linear quantization stage [69]. Floating-point quantization can be considered
as a piecewise-linear logarithmic quantization, where each linear piece corres-
ponds to a value of the exponent.



Chapter 2

Digital Filters

For the purpose of this book we call digital filter any linear, time-invariant
system operating on discrete-time signals. As we saw in chapter 1, such a sys-
tem is completely described by its impulse response or by its (rational) transfer
function. Even though the adjective digital refers to the fact that parameters
and signals are quantized, we will not be too concerned about the effects of
quantization, that have been briefly introduced in sec. 1.6. In this chapter, we
will face the problem of designing impulse responses or transfer functions that
satisfy some specifications in the time or frequency domain.

Traditionally, digital filters have been classified into two large families:
those whose transfer function doesn’t have the denominator, and those whose
transfer function have the denominator. Since the filters of the first family ad-
mit a realization where the output is a linear combination of a finite number of
input samples, they are sometimes called non-recursive filters1. For these sys-
tems, it is more customary and correct to refer to the impulse response, which
has a finite number of non-null samples, thus calling them Finite Impulse Re-
sponse (FIR) filters. On the other hand, the filters of the second family admit
only recursive realizations, thus meaning that the output signal is always com-
puted by using previous samples of itself. The impulse response of these filters
is infinitely long, thus justifying their name as Infinite Impulse Response (IIR)
filters.

1Strictly speaking, this definition is not correct because the same transfer functions can be
realized in recursive form

23



24 D. Rocchesso: Sound Processing

2.1 FIR Filters
An FIR filter is nothing more than a linear combination of a finite number

of samples of the input signal. In our examples we will treat causal filters,
therefore we will not process input samples coming later than the time instant
of the output sample that we are producing.

The mathematical expression of an FIR filter is

y(n) =
N
∑

m=0

h(m)x(n−m) . (1)

In eq. 1 the reader can easily recognize the convolution (26), here specialized
to finite-length impulse responses. Since the time extension of the impulse re-
sponse is N + 1 samples, we say that the FIR filter has length N + 1.

The transfer function is obtained as the Z transform of the impulse response
and it is a polynomial in the powers of z−1:

H(z) =
N
∑

m=0

h(m)z−m = h(0) + h(1)z−1 + · · ·+ h(N)z−N . (2)

Since such polynomial has order N , we also say that the FIR filter has order
N .

2.1.1 The Simplest FIR Filter
Let us now consider the simplest nontrivial FIR filter that one can imagine,

the averaging filter

y(n) =
1
2
x(n) +

1
2
x(n− 1) . (3)

In appendix B.1 it is illustrated how such filter can be implemented in Oc-
tave/Matlab in two different ways: block processing or sample-by-sample pro-
cessing. The simplest way to analyze the behavior of the filter [97] is probably
the injection of a complex sinusoid having amplitude A and initial phase φ, i.e.
the signal x(n) = Aej(ω0n+φ). Since the system is linear we do not loose any
generality by considering unit-amplitude signals (A = 1). Since the system is
time invariant we do not loose any generality by considering signals with ini-
tial zero phase (φ = 0). Since the complex sinusoid can be expressed as the
sum of a cosinusoidal real part and a sinusoidal imaginary part, we can ima-
gine that feeding the system with such a complex signal corresponds to feeding
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two copies of the filter, the one with a cosinusoidal real signal, the other with a
sinusoidal real signal. The output of the filter fed with the complex sinusoid is
obtained, thanks to linearity, as the sum of the outputs of the two copies.

If we replace the complex sinusoidal input in eq. (3) we readily get

y(n) =
1
2
ejω0n +

1
2
ejω0(n−1) = (

1
2

+
1
2
e−jω0)ejω0n =

= (
1
2

+
1
2
e−jω0)x(n) . (4)

We see that the output is a copy of the input multiplied by the complex number
( 1

2 + 1
2e
−jω0), wich is the value taken by the transfer function at the point

z = ejω0 . In fact, the transfer function (2) can be rewritten, for the case under
analysis, as

H(z) =
1
2

+
1
2
z−1 , (5)

and its evaluation on the unit circle (z = ejω) gives the frequency response

H(ω) =
1
2

+
1
2
e−jω . (6)

For an input complex sinusoid having frequency ω0, the frequency response
takes value

H(ω0) =
1
2

+
1
2
e−jω0 = (

1
2
ejω0/2 +

1
2
e−jω0/2)e−jω0/2 =

= cos (ω0/2)e−jω0/2 , (7)

and we see that the magnitude response and the phase response are, respect-
ively

|H(ω0)| = cos (ω0/2) (8)

and
∠H(ω0) = −ω0/2 . (9)

These are respectively the magnitude and argument of the complex number
that is multiplied by the input function in (4). Therefore, we have verified a
general property of linear and time-invariant systems, i.e., sinusoidal inputs
give sinusoidal outputs, possibly with an amplitude rescaling and a phase shift2.

2The reader can easily verify that this is true not only for complex sinusoids, but also for real
sinusoids. The real sinusoid can be expressed as a combination of complex sinusoids and linearity
can be applied.
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If the frequency of the input sine is thought of as a real variable ω in the
interval [0, π), the magnitude and phase responses become a function of such
variable and can be plotted as in fig. 1. At this point, the interpretation of such
curves as amplification and phase shift of sinusoidal inputs should be obvious.
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Figure 1: Frequency response (magnitude and phase) of an averaging filter

In order to plot curves such as those of fig. 1 it is not necessary to calculate
closed forms of the functions representing the magnitude (8) and the phase
response (9). Since with Octave/Matlab we can directly operate on arrays of
complex numbers, the following simple script will do the job:

global_decl; platform(’octave’);
w = [0:0.01:pi]; % frequency points
H = 0.5 + 0.5*exp(- i * w ); % complex freq. resp.
subplot(2,2,1); plot(w, abs(H)); % plot the magnitude
xlabel(’frequency [rad/sample]’);
ylabel(’magnitude’);
eval(myreplot);
subplot(2,2,2); plot(w, angle(H)); % plot the phase
xlabel(’frequency [rad/sample]’);
ylabel(’phase [rad]’);
eval(myreplot);

The averaging filter is the simplest form of lowpass filter. In a lowpass filter
the high frequencies are more attenuated than the low frequencies. Another
way to approach the analysis of a filter is to reason directly in the plane of the
complex variable z. In this plane (fig. 2) two families of points are marked: the
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points where the transfer function vanishes, and the points where it diverges to
infinity. Let us rewrite the transfer function as the ratio of two polynomials in
z

H(z) =
1
2
z − z0

z
, (10)

where z0 = −1 is the root of the numerator. The roots of the numerator of a
transfer function are called zeros of the filter, and the roots of the denominator
are called poles of the filter. Usually, for reasons that will emerge in the fol-
lowing, only the nonzero roots are counted as poles or zeros. Therefore, in the
example (10) we have only one zero and no pole.

In order to evaluate the frequency response of the filter it is sufficient to
replace the variable z with ejω and to consider ejω as a geometric vector whose
head moves along the unit circle. The difference between this vector and the
vector z0 gives the cord drawn in fig. 2. The cord length doubles3 the magnitude
response of the filter. Such a chord, interpreted as a vector with the head in
ejω , has an angle that can be subtracted from the vector angle of the pole at the
origin, thus giving the phase response of the filter at the frequency ω.
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Figure 2: Single zero (◦) and pole in the origin (×)

The following general rules can be given, for any number of poles and
zeros:

• Considered a point ejω on the unit circle, the magnitude of the frequency
response (regardless of constant factors) at the frequency ω is obtained
by multiplication of the magnitudes of the vectors linking the zeros with

3Do not forget the scaling factor 1
2

in (10).
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the point ejω , divided by the magnitudes of the vectors linking the poles
with the point ejω .

• The phase response is obtained by addition of the phases of the vectors
linking the zeros with the point ejω , and by subtraction of the phases of
the vectors linking the poles with the point ejω .

It is readily seen that poles or zeros in the origin do only contribute to the phase
of the frequency response, and this is the reason for their exclusion from the
total count of poles and zeros.

The graphic method, based on pole and zero placement on the complex
plane is very useful to have a rough idea of the frequency response. For in-
stance, the reader is invited to reconstruct fig. 1 qualitatively using the graphic
method..

The frequency response gives a clear picture of the behavior of a filter
when its inputs are stationary signals, which can be decomposed as constant-
amplitude sinusoids. Therefore, the frequency response represents the steady-
state response of the system. In practice, even signals composed by sinusoids
have to be turned on at a certain instant, thus producing a transient response that
comes before the steady-state. However, the knowledge of the Z transform of a
causal complex sinusoid and the knowledge of the filter transfer function allow
us to study the overall response analytically. As we show in appendix A.8.3,
the Z transform of causal exponential sequence is

X(z) =
1

1− ejω0z−1
. (11)

If we multiply, in the z domain, X(z) by the transfer function H(z) we get

Y (z) = H(z)X(z) =
1
2

(1 + z−1)
1

1− ejω0z−1
=

=
1
2

1
1− ejω0z−1

+
1
2

z−1

1− ejω0z−1
. (12)

The second term of the last member of (12) is, by the shift theorem, the trans-
form of a causal complex sinusoidal sequence delayed by one sample. There-
fore, the overall response can be thought of as a sum of two identical sinusoids
shifted by one sample and this turns out to be another sinusoid, but only after
the first sampling instant. The first instant has a different behavior since it is
part of the transient of the response (see fig. 3). It is easy to realize that, for an
FIR filter, the transient lasts for a number of samples that doesn’t exceed the
order (memory) of the filter itself. Since an order-N FIR filter has a memory
of N samples, the transient is at most N samples long.
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Figure 3: Response of an FIR averaging filter to a causal cosine: input and
delayed input (◦), actual response (×)

2.1.2 The Phase Response

If we filter a sound with a nonlinear-phase filter we alter its time-domain
wave shape. This happens because the different frequency components are sub-
ject to a different delay while being transferred from the input to the output of
the filter. Therefore, a compact wavefront is dispersed during its traversal of
the filter. Before defining this concept more precisely we illustrate what hap-
pens to the wave shape that is impressed by a hammer to the string in the
piano. The string behaves like a nonlinear-phase filter, and the dispersion of
the frequency components becomes increasingly more evident while the wave
shape propagates away from the hammer along the string. Fig. 4 illustrates the
string displacement signal as it is produced by a physical model (see chapter 5
for details) of the hammer-string system. The initial wave shape progressively
loses its initial form. In particular, the fact that high frequencies are subject to
a smaller propagation delay than low frequencies is visible in the form of little
precursors, i.e., small high-frequency oscillations that precede the return of the
main components of the wave shape. Such an effect can be experienced with
an aerial ropeway like those that are found in isolated mountain houses. If we
shake the rope energetically and keep our hand on it, after a few seconds we
perceive small oscillations preceding a strong echo.

The effects of the phase response of a filter can be better formalized by
introducing two mathematical definitions: the phase delay and the group delay.
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Figure 4: Struck string: string displacement at the bridge termination

The phase delay is defined as

τph
4
= −∠H(ω)

ω
, (13)

i.e., at any frequency, it is given by the phase response divided by the frequency
itself. In practice, given the phase-response curve, the phase delay at one point
is obtained as the slope of the straight line that connects that point with the
origin. The group delay is defined in differential terms as

τgr
4
= −d∠H(ω)

dω
. (14)

Therefore, the group delay at one point of the phase-response curve, is equal
to the slope of the curve. The fig. 5 illustrates the difference between phase
delay and group delay. It is clear that, if the phase is linear, the two delays are
equal and coincident with the slope of the straight line that represents the phase
response.

The difference between local slope and slope to the origin is crucial to
understand the physical meaning of the two delays. The phase delay at a cer-
tain frequency point is the delay that a single frequency component is subject
to when it passes through the filter, and the quantity (13) is, indeed, a delay
in samples. Vice versa, in order to interpret the group delay let us consider
a local approximation of the phase response by the tangent line at one point.
Locally, propagation can be considered linear and, therefore, a signal having
frequency components focused around that point has a time-domain envelope
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Figure 5: Phase delay and group delay

that is delayed by an amount proportional to the slope of the tangent. For in-
stance, two sinusoids at slightly different frequencies are subject to beats and
the beat frequency is the difference of the frequency components (see fig. 6).
Therefore, beats are a frequency local phenomenon, only dependent on the re-
lative distance between the components rather than on their absolute positions.
If we are interested in knowing how the beat pattern is delayed by a filter, we
should consider local variations in the phase curve. In other words, we should
consider the group delay.
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Figure 6: Beats between a sine wave at 100 Hz and a sine wave at 110 Hz

In telecommunications the group delay is often the most significant between
the two delays, since messages are sent via wave packets localized in a narrow
frequency band, and preservation of the shape of such packets is important.
Vice versa, in sound processing it is more meaningful to consider the set of
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frequency components in the audio range as a whole, and the phase delay is
more significant. In both cases, we have to be careful of a problem that often
arises when dealing with phases: the phase unwrapping. So far we have defined
the phase response as the angle of the frequency response, without bothering
about the fact that such an angle is defined univocally only between 0 and 2π.
There is no way to distinguish an angle θ from those angles obtained by addi-
tion of θ with multiples of 2π. However, in order to give continuity to the phase
and group delays, we have to unwrap the phase into a continuous function. For
instance, the Matlab Signal Processing Toolbox provides the function unwrap
that unwraps the phase in such a way that discontinuities larger than a given
threshold are offset by 2π. In Octave we can use the function unwrap found
in the web repository of this book.

Example 1. Fig. 7 shows the phase response of the FIR filter H(z) =
0.5− 0.2z−1 − 0.3z−2 + 0.8z−3 before and after unwrapping. The following
Octave/Matlab script allows to plot the curve in fig. 7. It is illustrative of the
usage of the function unwrap with the default unwrapping threshold set to π.

w = [0:0.01:pi];
H = 0.5 - 0.2*exp(-i*w ) - 0.3*exp(-2*i*w ) + \

0.8*exp(-3*i*w ) ;
plot(w, unwrap(angle(H)), ’-’); hold on;
plot(w, angle(H), ’--’); hold off;
xlabel(’frequency [rad/sample]’);
ylabel(’phase [rad]’);
title(’Phase response’);
% replot; % Octave only

###

2.1.3 Higher-Order FIR Filters

An FIR filter is nothing more than the realization of the operation of con-
volution (1). The filter coefficients are the samples of the impulse response.

The FIR filters having an impulse response that is symmetric are partic-
ularly important, since the phase of their frequency response is linear. More
precisely, a symmetric impulse response is such that

h(n) = h(N − n), n = [0, . . . , N ] , (15)

http://www.sci.univr.it/~rocchess/htmls/..../unwrap.m


Digital Filters 33

0 1 2 3
−10

−8

−6

−4

−2

0

2

frequency [rad/sample]

ph
as

e 
[ra

d]

Phase response

Figure 7: Wrapped (dashed line) and unwrapped (solid line) phase response of
a third order FIR filter having impulse response: 0.5 -0.2 -0.3 0.8

and an antisymmetric impulse response is such that

h(n) = −h(N − n), n = [0, . . . , N ] . (16)

It is possible to show that the symmetry (or antisymmetry) of the impulse re-
sponse is a sufficient condition to ensure the linearity of phase4. This property
is important to ensure the invariance of the shape of signals going through the
filter. For instance, if a sawtooth signal is the input of a linear-phase lowpass
filter, the output is still a sawtooth signal with rounded corners.

In order to prove that symmetry is a sufficient condition for phase linearity
for anN -th order FIR filter (withN odd integer), we write the transfer function
as

H(z) = h(0) + · · ·+ h(
N − 1

2
)z−

N−1
2 +

+ h(
N − 1

2
)z−

N+1
2 + · · ·+ h(0)z−N

=

N−1
2
∑

n=0

h(n)
(

z−n + z−N+n
)

. (17)

4Actually, for antisymmetric odd-length filters, linear phase is achieved if h(N−1
2

) = 0
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The frequency response can be expressed as

H(ω) =

N−1
2
∑

n=0

h(n)
(

e−jωn + ejω(−N+n)
)

=

N−1
2
∑

n=0

h(n)e−jω
N
2

(

e−jω(n−N2 ) + ejω(n−N2 )
)

(18)

= e−jω
N
2 2

N−1
2
∑

n=0

h(n) cos (ω(n− N

2
)) .

In the latter term we have isolated the phase contribution from a (real) weighted
sum of sinusoidal functions. The phase contribution is a straight line having
slope −N/2, as we have already seen in the special case of the first-order
averaging filter (5). Where the real term changes sign there are indeed 180◦

phase shifts, so that we should more precisely say that the phase is piecewise
linear. However, phase discontinuities at isolated points do not alter the overall
constancy of group delay, and they are nevertheless irrelevant because at those
points the magnitude is zero.

The same property of piecewise phase linearity holds for antisymmetric
impulse responses and for even values of N .

At this point, we are going to introduce a very useful FIR filter. It is lin-
ear phase and it has order 2 (i.e., length 3). The averaging filter (5) was also a
linear phase filter, but it is not possible to change the shape of its frequency
response without giving up the phase linearity. In fact, filters having form
H(z) = h(0) + h(1)z−1 can have linear phase only if h(0) = ±h(1), and
this force them to have a magnitude response such as that of fig. 1 or like its
high-pass mirrored version5. The filter that we are going to analyze has transfer
function

H(z) = a0 + a1z
−1 + a0z

−2 . (19)

The impulse response is symmetric and, therefore, its phase response is linear.
The frequency response can be calculated as

H(ω) = a0 + a1e
−jω + a0e

−2jω

= e−jω
(

a0e
jω + a1 + a0e

−jω)

= e−jω (a1 + 2a0 cosω) . (20)

5The reader can analyze the filter H(z) = 0.5− 0.5z−1 and verify that it is a highpass filter.
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As we have anticipated, the phase is linear and we have a phase delay of one
sample. The magnitude of the frequency response is a function of the two para-
meters a0 and a1. Therefore, the designer has two degrees of freedom to con-
trol, for instance, the magnitude of the frequency response at two distinct fre-
quencies.

A first property that one might want to impose is a lowpass shape to the
frequency response. The reader, starting from (20), can easily verify that a
sufficient condition to ensure that the magnitude of the frequency response
is a decreasing monotonic function is that

a1 ≥ 2a0 ≥ 0 . (21)

If we want to set the magnitude A1 at the frequency ω1 and the magnitude A2

at the frequency ω2 we have to solve the linear system of equations

a1 + 2a0 cosω1 = A1
a1 + 2a0 cosω2 = A2 ,

that can be expressed in matrix form as
[

1 2 cosω1

1 2 cosω2

] [

a1

a0

]

=
[

A1

A2

]

. (22)

For instance, if ω1 = 0.01, ω2 = 2.0,A1 = 1.0 andA2 = 0.5, in Octave/Matlab
a system such as this can be written and solved with the script

w1 = 0.01; w2 = 2.0;
A1 = 1.0; A2 = 0.5;
A = [ 1 2*cos(w1) ; 1 2*cos(w2)];
b = [A1 ; A2];
a = A \ b; % solution of the system b = A a

and the solutions returned for the variables a1 and a0 are, respectively,

a=
0.64693
0.17654

The frequency response of this filter is shown in fig. 8. If we design the
second-order filter by specification of the frequency response at two arbitrary
frequencies, we can easily get a magnitude response larger than one at zero fre-
quency (also called dc frequency). Especially in signal processing flowgraphs
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Figure 8: Frequency response (magnitude (a) and phase (b)) of the length-3
linear phase FIR filter with coefficients a0 = 0.17654 and a1 = 0.64693

having loops it is often desirable to normalize the maximum value of the mag-
nitude response to one, in such a way that amplifications generating instabil-
ities can be avoided. Of course, it is always possible to rescale the filter input
or output by a scalar that is reciprocal to H(0) = a1 + 2a0 so that the re-
sponse is forced to be unitary at dc6. Instead of drawing the pole-zero diagram
of the filter, let us represent the contours of the logarithm of the magnitude
of the transfer function, evaluated on the complex plane in a square centered
on the origin (see fig. 9). The effects of the double pole in the origin and of
the zeros z = −0.29695 and z = −3.36754 are clearly visible. A filter such
as (8) has been proposed as part of an algorithm for synthesis of plucked string
sounds [104].

We have seen that an FIR filter is the realization of a convolution between
the input signal and the sequence of coefficients. The computation of this con-
volution can be made explicit in a language such as Octave and, indeed, this
is what we have done in the appendix B.1 for the simple filter of length 2. For
high-order filters it is more convenient to use algorithms that increase the ef-
ficiency of convolution. In Octave, there is the function fftfilt that, given
a vector b of coefficients and an input signal x, returns the output of the FIR
filter7. In order to perform this computation, the fftfilt computes an FFT

6The reader is invited to reformulate the system (22) with ω1 = 0 and ω2 = π. This corres-
ponds to setting the magnitude at dc and Nyquist rate.

7In Matlab, the same function is available in the Signal Processing Toolbox. In any case, the
Octave version fftfilt, avaliable in the web repository of this book, can also be used in Matlab.

http://www.sci.univr.it/~rocchess/htmls/..../fftfilt.m
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Figure 9: Magnitude of the transfer function [in dB] of an order-2 FIR filter on
the complex z plane

of the coefficients and an FFT of the input signal, it multiplies the two trans-
forms point by point (convolution in the time domain is multiplication in the
transform domain), and it applies an inverse FFT to the result. Since the FFT of
a length-N sequence has complexity of the order of N logN and the point-by-
point multiply has complexity of the order of N , the convolution computed in
this way has complexity of the order of N logN . For sequences longer than a
few samples, such a procedure is much faster than direct convolution. For even
longer sequences, it is convenient to decompose the sequences into blocks and
repeat the operations block by block. The partial results are then recomposed
by partial addition of neighboring blocks of results. The detailed explanation
of this technique is reported in several signal processing books, such as [67].

Most sound processing languages and real-time sound processing environ-
ments have primitive functions to compute the output of FIR filters. For in-
stance, in SAOL (see appendix B.2) there is the function fir(input, h0,
h1, h2, ...) that takes the input signal and the filter coefficients as argu-
ments.

Example 2. In order to strengthen our understanding of FIR filters, we
approach the design of a 10-th order linear phase filter having unit response at
dc and an attenuation of 20dB at Fs/6. The impulse response of a 10-th order
(or length 11) filter can be considered as the convolution of the responses of
5 2-nd order filters. Therefore, it is sufficient to design a length-3 filter with
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a slighter attenuation at Fs/6 and to convolve five copies of this filter. The
reader is invited to design the filter and to experience its effect using a sound
processing language or real-time environment. A related task is the design of
a highpass filter of the same length having a magnitude response that is sym-
metric to the response of the lowpass filter. Is there any law of symmetry that
relates the coefficients of the two filters? How are the zeros distributed in the
complex plane in the two cases? A further interesting exercise is the analysis
and experimentation of the frequency response of the parallel connection of the
two filters.

Development. The Octave/Matlab script that follows answers most of the ques-
tions. The remaining questions are left to the reader.

global_decl;
plat = platform(’octave’);
w0=0; A0=1; % Response at dc
w1=pi/3; A1=0.1^(1/5); % Response at Fs/6 (1/5 of 20 dB)
%% coefficients of the length-3 FIR filter
A = [1 2*cos(w0); 1 2*cos(w1)]; b = [A0; A1];
a = A\b;
a1 = a(1)
a0 = a(2)
w = [0:0.01:pi];
%% frequency response of the length-3 FIR filter
H = a0 + a1*exp(-i*w) + a0*exp(-i*2*w);
%% frequency response of the length-11 FIR filter
%% (cascade of 5 length-3 filters)
H11 = H.^5;
subplot(2,2,1); plot(w, 20*log10(abs(H11)));
xlabel(’frequency [rad/sample]’);
ylabel(’magnitude [dB]’);
axis([0,pi,-90,0]); grid;
eval(myreplot);
pause;
%% pole-zero plot
%% In Matlab, it can be done with
%% the single line:
%% zplane(roots([a0,a1,a0]),0);
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w_all = [0:0.05:2*pi];
subplot(2,2,2); plot(exp(i*w_all), ’.’); hold on;
zeri = roots([a0, a1, a0]);
plot(real(zeri),imag(zeri), ’o’);
plot(0,0, ’x’); hold off;
xlabel(’Re’);
ylabel(’Im’);
axis ([-1.2, 1.2, -1.2, 1.2]);
if (plat==’matlab’) axis (’square’); end;
eval(myreplot);
pause;
k = [0:10]’; kernelw = exp(-i*k*w);
aa = H11 / kernelw
subplot(2,2,3); plot([0:10],real(aa),’+’);
xlabel(’samples’);
ylabel(’h’);
grid;
axis;
eval(myreplot);
aa2 = conv([a0 a1 a0],[a0 a1 a0]);
aa3 = conv(aa2,[a0 a1 a0]);
aa4 = conv(aa3,[a0 a1 a0]);
aa5 = conv(aa4,[a0 a1 a0])
%% verify that aa5 = aa:
%% by composition of convolutions we get
%% the same length-11 filter

In the first couple of lines the script converts the specifications for a length-
3 FIR filter. Then, this elementary filter is designed using the technique previ-
ously presented in this section. The frequency response H11 of the length-11
filter is obtained by exponentiation of the length-3 filter to the fifth power. The
magnitude of the frequency response is depicted in fig. 10. We see that the
specifications are met. However, the response is not monotonically decreasing.
This is due to the fact that the specifications are quite demanding, thus imped-
ing the satisfaction of (21). In fact, the coefficients turn out to be a0 = 0.369
and a1 = 0.262, and the zeros are not real but complex conjugate, as shown in
the pole-zero plot of fig. 11. The impulse response of the 10-th order FIR filter
is obtained from its frequency response by solving in [a0a1 . . . a10] the matrix
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Figure 10: Magnitude of the frequency response of the length-11 filter

equation

[a0a1 . . . a10]









1
e−jω

. . .
e−j10ω









= H11(ω) , (23)

which is all contained in the lines

k = [0:10]’; kernelw = exp(-i*k*w);
aa = H11 / kernelw;

Finally, the ending lines of the script aim at verifying that the same impulse
response can be obtained by iterated convolution of the 2-nd order impulse
response. The length-11 impulse response is shown in fig. 12.

###

2.1.4 Realizations of FIR Filters
The digital filters, especially FIR filters, are implementable as a sequence

of operations “multiply-and-accumulate”, often called MAC. In order to run an
N-th order FIR filter we need to have, at any instant, the current input sample
together with the sequence of the N preceding samples. TheseN samples con-
stitute the memory of the filter. In practical implementations, it is customary to
allocate the memory in contiguous cells of the data memory or, in any case, in
locations that can be easily accessed sequentially. At every sampling instant,
the state must be updated in such a way that x(k) becomes x(k − 1), and this
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Figure 11: Pole-zero plot for the length-3 FIR filter

seems to imply a shift of N data words in the filter memory. Indeed, instead of
moving data, it is convenient to move the indexes that access the data. Consider
the scheme depicted in fig. 13, which represents the realization of an FIR filter
of order 3.
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Figure 13: Circular buffer that implements a 3-rd order FIR filter



Digital Filters 43

The three memory words are put in an area organized as a circular buffer.
The input is written to the word pointed by the index and the three preceding
values of the input are read with the three preceding values of the index. At
every sample instant, the four indexes are incremented by one, with the trick of
beginning from location 0 whenever we exceed the lengthM of the buffer (this
ensures the circularity of the buffer). The counterclockwise arrow indicates
the direction taken by the indexes, while the clockwise arrow indicates the
movement that should be done by the data if the indexes would stay in a fixed
position. In fig. 13 we use small triangles to indicate the multiplications by the
filter coefficients. This is a notation commonly used for multiplications within
the signal flowgraphs that represent digital filters. As a matter of fact, an FIR
filter contains a delay line since it stores N consecutive samples of the input
sequence and uses each of them with a delay of N samples at most. The points
where the circular buffer is read are called taps and the whole structure is called
a tapped delay line.

2.2 IIR Filters

In general, a causal IIR filter is represented by a difference equation where
the output signal at a given instant is obtained as a linear combination of
samples of the input and output signals at previous time instants. Moreover,
an instantaneous dependency of the output on the input is also usually included
in the IIR filter. The difference equation that represents an IIR filter is

y(n) = −
N
∑

m=1

amy(n−m) +
M
∑

m=0

bmx(n−m) . (24)

Eq. (24) is also called Auto-Regressive Moving Average (ARMA) representa-
tion. While the impulse response of FIR filters has a finite time extension, the
impulse response of IIR filters has, in general, an infinite extension. The trans-
fer function is obtained by application of the Z transform to the sequence (24).
In virtue of the shift theorem, the Z transform is a mere operatorial substitution
of each translation by m samples with a multiplication by z−m. The result is
the rational function H(z) that relates the Z transform of the output to the Z
transform of the input:

Y (z) =
b0 + b1z

−1 + · · ·+ bMz
−M

1 + a1z−1 + · · ·+ aNz−N
X(z) = H(z)X(z) . (25)
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The filter order is defined as the degree of the polynomial in z−1 that is the
denominator of (25).

2.2.1 The Simplest IIR Filter

In this section we analyze the properties of the simplest nontrivial IIR filter
that can be conceived: the one-pole filter having coefficients a1 = − 1

2 and
b0 = 1

2 :

y(n) =
1
2
y(n− 1) +

1
2
x(n) . (26)

The transfer function of this filter is

H(z) =
1/2

1− 1
2z
−1

. (27)

If the filter (26) is fed with a unit impulse at instant 0, the response will be:

y = 0.5, 0.25, 0.125, 0.0625, . . . . (28)

It is clear that the impulse response is nonzero over an infinitely extended sup-
port, and every sample is obtained by halving the preceding one. Similarly to
what we did for the first-order FIR filter, we analyze the behavior of this filter
using a complex sinusoid having magnitudeA and initial phase φ, i.e. the signal
Aej(ω0n+φ). Since the system is linear, we do not loose any generality by con-
sidering unit-magnitude signals (A = 1). Moreover, since the system is time
invariant, we do not loose generality by considering signals having the initial
phase set to zero (φ = 0). In a linear and time-invariant system, the steady-state
response to a complex sinusoidal input is a complex sinusoidal output. To have
a confirmation of that, we can consider the reversed form of (26)

x(n) = 2y(n)− y(n− 1) , (29)

and replace the output y(n) with a complex sinusoid, thus obtaining

x(n) = 2ejω0n − ejω0(n−1) = (2− e−jω0)y(n) . (30)

Eq. (30) shows that a sinusoidal output gives a sinusoidal input, and vice versa.
The input sinusoid gets rescaled in magnitude and shifted in phase. Namely,
the output y is a copy of the input multiplied by the complex quantity 1

2−e−jω0 ,



Digital Filters 45

which is the value taken by the transfer function (27) at the point z = ejω0 .
The frequency response is

H(ω) =
1/2

1− 1
2e
−jω , (31)

and there are no simple formulas to express its magnitude and phase, so that we
have to resort to the graphical representation, depicted in fig. 14. This simple
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Figure 14: Frequency response (magnitude (a) and phase (b)) of a one-pole IIR
filter

filter still has a lowpass shape. As compared to the first-order FIR filter, the
one-pole filter gives a steeper magnitude response curve. The fact that, for a
given filter order, the IIR filters give a steeper (or, in general, a more complex)
frequency response is a general property that can be seen as an advantage in
preferring IIR over FIR filters. The other side of the coin is that IIR filters can
not have a perfectly-linear phase. Furthermore, IIR filters can produce numer-
ical artifacts, especially in fixed-point implementations.

The one-pole filter can also be analyzed by watching its pole-zero distri-
bution on the complex plane. To this end, we rewrite the transfer function as
a ratio of polynomials in z and give a name to the root of the denominator:
p0 = 1

2 . The transfer function has the form

H(z) =
1
2

z

z − 1
2

=
1
2

z

z − p0
. (32)

We can apply the graphic method presented in sec. 2.1.1 to have a qualitative
idea of the magnitude and phase responses. In order to do that, we consider the
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point ejω on the unit circle as the head of the vectors that connect it to the pole
p0 and to the zero in the origin. Fig. 15 is illustrative of the procedure. While
we move along the unit circumference from dc to the Nyquist frequency, we
go progressively away from the pole, and this is reflected by the monotonically
decreasing shape of the magnitude response.
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Figure 15: Single pole (×) and zero in the origin (◦)

To have a complete picture of the filter behavior we need to analyze the
transient response to the causal complex exponential. The Z transform of the
input has the well-known form

X(z) =
1

1− ejω0z−1
. (33)

A multiplication of X(z) by H(z) in the Z domain gives

Y (z) = H(z)X(z) =
1
2

1
1− 1

2z
−1

1
1− ejω0z−1

=
1/2

1− 2ejω0

1
1− 1

2z
−1

+
1/2

1− 1/2e−jω0

1
1− ejω0z−1

, (34)

where we have done a partial fraction expansion of Y (z). The second ad-
dendum of the last member of (34) represents the steady-state response, and
it is the product of the Z transform of the causal complex exponential sequence
by the filter frequency response evaluated at the same frequency of the input
signal. The first addendum of the last member of (34) represents the transient
response and it can be represented as a causal exponential sequence:

yt(n) = Ap0
n , (35)
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where A = 1/2
1−2ejω0 . Since |p0| < 1 (i.e., the pole is within the unit circle), the

transient response is doomed to die out for increasing values of n. In general,
for causal systems, the stability condition (29) of chapter 1 is shown to be
equivalent to having all the poles within the unit circle. If the condition is not
satisfied, even if the steady-state response is bounded, the transient will diverge.
In terms of Z transform, a system is stable if the region of convergence is a
geometric ring containing the unit circumference; the system is causal if such
ring extends to infinity out of the circle, and it is anticausal if it extends down
to the origin.

It is useful to evaluate the time needed to exhaust the initial transient. We
define the time constant τn (in samples) of the filter as the time taken by the
exponential sequence p0

n to reduce its amplitude to 1% of the initial value. We
have

p0
τn = 0.01 , (36)

and, therefore,

τn =
ln 0.01
ln p0

, (37)

where the logarithm can be evaluated in any base. In our example, where p0 =
1/2, we obtain τn ≈ 6.64 samples. The time constant in seconds τ is obtained
by multiplication of τn by the sampling rate. This way of evaluating the time
constant corresponds to evaluating the time needed to attenuate the transient
response by 40dB. When we refer to systems for artificial reverberation such
lower threshold of attenuation is moved to 60dB, thus corresponding to 0.1%
of the initial amplitude of the impulse response.

In the case of higher-order IIR filters, we can always do a partial fraction
expansion of the response to a causal exponential sequence, in a way similar to
what has been done in (34), where each addendum but the last one corresponds
to a single complex pole of the transfer function. The transient response of
these systems is, therefore, the superposition of causal complex exponentials,
each corresponding to a complex pole of the transfer function. If the goal is to
estimate the duration of the transient response, the pole that is closest to the
unit circumference is the dominant pole, since its time constant is the longest.
It is customary to define the time constant of the whole system as the constant
associated with the dominant pole.

2.2.2 Higher-Order IIR Filters
The two-pole IIR filter is a very important component of any sound pro-

cessing environment. Such filter, which is capable of selecting the frequency
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components in a narrow range, can find practical applications as an elementary
resonator.

Instead of starting from the transfer function or from the difference equa-
tion, in this case we begin by positioning the two poles in the complex plane at
the point

p0 = rejω0 (38)

and at its conjugate point p0
∗ = re−jω0 . In fact, if p0 is not real, the two

poles must be complex conjugate if we want to have a real-coefficient transfer
function. In order to make sure that the filter is stable, we impose |r| < 1. The
transfer function of the second-order filter can be written as

H(z) =
G

(1− rejω0z−1)(1− re−jω0z−1)

=
G

1− r(ejω0 + e−jω0)z−1 + r2z−2
=

G

1− 2 r cosω0z−1 + r2z−2

=
G

1 + a1z−1 + a2z−2
(39)

where G is a parameter that allows us to control the total gain of the filter.
As usual, we obtain the frequency response by substitution of z with ejω in

(31):

H(ω) =
G

1− 2 r cosω0e−jω + r2e−2jω
. (40)

If the input is a complex sinusoid at the (resonance) frequency ω0, the output
is, from the first of (39):

H(ω0) =
G

(1− r)(1− re−2jω0)
=

=
G

(1− r)(1− r cos 2ω0 + j r sin 2ω0)
. (41)

In order to have a unit-magnitude response at the frequency ω0 we have to
impose

|H(ω0)| = 1 (42)

and, therefore,
G = (1− r)

√

1− 2r cos 2ω0 + r2 . (43)

The frequency response of this normalized filter is reported in fig. 16 for r =
0.95 and ω0 = π/6. It is interesting to notice the large step experienced by the
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Figure 16: Frequency response (magnitude (a) and phase (b)) of a two-pole IIR
filter

phase response around the resonance frequency. This step approaches π as the
poles get closer to the unit circumference.

It is useful to draw the pole-zero diagram in order to gain intuition about
the frequency response. The magnitude of the frequency response is found by
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Figure 17: Couple of poles on the complex plane

taking the ratio of the product of the magnitudes of the vectors that go from
the zeros to the unit circumference with the product of the magnitudes of the
vectors that go from the poles to the unit circumference. The phase response
is found by taking the difference of the sum of the angles of the vectors start-
ing from the zeros with the sum of the angles of the vectors starting from the
poles. If we move along the unit circumference from dc to the Nyquist rate,
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we see that, as we approach the pole, the magnitude of the frequency response
increases, and it decreases as we move away from the pole. Reasoning on the
complex plane it is also easier to figure out why there is a step in the phase
response and why the width of this step converges to π as we move the pole
toward the unit circumference. In the computation of the frequency response it
is clear that, in the neighborhood of a pole close to the unit circumference, the
vector that comes from that pole is dominant over the others. This means that,
accepting some approximation, we can neglect the longer vectors and consider
only the shortest vector while evaluating the frequency response in that region.
This approximation is useful to calculate the bandwidth ∆ω of the resonant
filter, which is defined as the difference between the two frequencies corres-
ponding to a magnitude attenuation by 3dB, i.e., a ratio 1/

√
2. Under the sim-

plifying assumption that only the local pole is exerting some influence in the
neighboring area, we can use the geometric construction of fig. 18 in order to
find an expression for the bandwidth [67]. The segment P0A is

√
2 times larger

A

P

B
P

0

0

∆ω

Figure 18: Graphic construction of the bandwidth. P0 is the pole. P0P ≈ 1−r.

than the segment P0P . Therefore, the triangle formed by the points P0AP has
two, orthogonal, equal edges and AB = 2P0P = 2(1 − r). If AB is small
enough, its length can be approximated with that of the arc subtended by it,
which is the bandwidth that we are looking for. Summarizing, for poles that
are close to the unit circumference, the bandwidth is given by

∆ω = 2(1− r) . (44)

The formula (44) can be used during a filter design stage in order to guide the
pole placement on the complex plane.
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The transfer function (39) can be expanded in partial fractions as

H(z) =
G

(1− rejω0z−1)(1− re−jω0z−1)

=
G/(1− e−j2ω0)
1− rejω0z−1

− Ge−j2ω0/(1− e−j2ω0)
1− re−jω0z−1

, (45)

and each addendum is the Z transform of a causal complex exponential se-
quence. By manipulating the two sequences algebraically and expressing the
sine function as the difference of complex exponentials we can obtain the ana-
lytic expression of the impulse response8

h(n) =
Grn

sinω0
sin (ω0n+ ω0) . (46)

The impulse response is depicted in fig. 19, which shows that a resonant filter
can be interpreted in the time domain as a damped oscillator with a character-
istic frequency that corresponds to the phase of the poles in the complex plane.
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Figure 19: Impulse response of a second-order resonant filter

As we have anticipated in sec. 2.2.1, the time constant is determined by
evaluating the distance of one of the poles from the unit circumference. In the
specific case that we are examining, such a time constant is

τn =
ln 0.01

ln r
=

ln 0.01
ln 0.95

≈ 90 samples , (47)

8The reader is invited to work out the expression (46).
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and we can verify from fig. 19 that this value makes sense.
Example 3. With the example that follows we face the problem of do-

ing a practical implementation of a filter. The platform that we adopt is the
CSound language (see appendix B.2) and our prototypical implementation is
the second-order all-pole IIR filter. This simple example can be extended to
higher-order filters.

We design an “orchestra” of two instruments: an excitation instrument and
a filtering block. The excitation block generates white noise. The filtering block
extracts from the noise the components in a band around a center frequency,
passed as a parameter, that corresponds to the phase of the pole9. Another para-
meter is the decay time of the response of the resonant filter, which is related
to the resonance bandwidth. The Csound orchestra that implements our two
blocks is:

; res.orc: by Francesco Scagliola and Davide Rocchesso
sr=44100
kr=44100
ksmps=1
nchnls=1

ga1 init 0
gamp init 30000

instr 1

; white noise generator
a1 rand gamp
ga1 = a1 ; sound to be passed to the filter

endin

instr 2

; p4 central frequency
; p5 decay time

ipi = 3.141592654

9Indeed, the central frequency of the passing frequency band is not coincident with the phase
of the complex pole, since the conjugate pole can exert some influence and slightly modify the
frequency response in the neighborood of the other pole. However, for our purposes it is not dan-
gerous to mix the two concepts, provided that the resulting spectrum corresponds to our needs.
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ithres = 0.01
; the duration of the frequency response

; is measured in seconds until the response
; goes below the threshold 20*log10(ithres)

; [-40 dB]
iw0 = 2*ipi*p4/sr

; frequency correspondent to the pole phase
ir = exp((1/(sr*p5))*log(ithres))

; radius of the pole
ia1 = -2*ir*cos(iw0)

; coefficient a1 of the filter denominator
ia2 = ir*ir

; coeff. a2 of the filter denominator
ig = (1-ir)*sqrt(1-2*ir*cos(2*iw0)+ir*ir)* \

10*sqrt(p5)
; coefficient to have unit gain at the
; center of the band

izero = 0
as1 init izero ; initialize the filter status
as2 init izero

afilt = -ia1*as1-ia2*as2+ig*ga1
; difference equation

out afilt

as2 = as1 ; filter status update
as1 = afilt

endin

The orchestra can be experimented with the score

;instr. time durat. freq. decay
i1 0 30.0
i2 0 5 700 0.1
i2 5 5 700 1.0
i2 10 5 1700 0.2
i2 15 5 2900 2.0
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i2 20 5 700 1.0
i2 20 5 1700 1.5
i2 20 5 2900 2.0

The sounds resulting from the score performance are represented in the
sonogram of fig. 20, where larger magnitudes are represented by darker points.
In the filtering instrument, the filter coefficients are computed according to the
formulas (47) and (39), starting from the given decay time and central fre-
quency. Moreover, the signal is rescaled by a gain such that the magnitude of
the frequency response is one at the central frequency. Empirically, we have
found that, in order to keep some homogeneity in the output energy level even
for very narrow frequency responses, it is useful to insert a further factor equal
to ten times the square root of the decay time. Another observation concerns
the difference equation. This equation uses two state variables as1 and as2,
used to store the previous values of the output. The state variables are updated
in the final two lines of the instrument.

It is interesting to reduce the control rate in the orchestra, for instance by
a factor ten. The resulting sounds will have fundamental frequencies lowered
by the same factor and the spectrum will be repeated at multiples of sr/10.
This kind of artifacts is often found when writing explicit filtering structures
in CSound and using a sample rate different from the control rate. The reason
for such a strange behavior is found in the special block processing used by
the CSound interpreter, which uses sr/kr variables for each signal variable
indicated in the orchestra, and updates all these variables in the same cycle.
This means that, as a matter of fact, we get sr/kr filters, each working at a
reduced sample rate on a signal undersampled by a factor sr/kr. The samples
of the partial results are then interleaved to give the signal at the sampling rate
sr. The output of each of the undersampled filters is subject to an upsampling
that produces the sr/kr periodic replicas of the spectrum.

###

Positioning the zeros

We have seen how the poles can be positioned within the unit circle in order
to give resonances at the desired frequency and with the desired bandwidth.
The ratio between the central frequency and the width of a band is often called
quality factor and indicated with the symbol Q.

In many cases, it is necessary to design a filter having a flat frequency re-
sponse (in magnitude) except for a narrow zone around a frequency ω0 where
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Figure 20: Sonogram of a musical phrase produced by filtering white noise

it amplifies or attenuates. The resonant filter that we have just introduced can
be modified for this purpose by introducing a couple of zeros positioned near
the poles. In particular, the numerator of the transfer function will be the poly-
nomial in z−1 having roots at z0 = r0e

jω0 and at z0
∗ = r0e

−jω0 . By means of
a qualitative analysis of the pole-zero diagram we can realize that, if r0 < r we
have a boost of the frequency response, and if r0 > r we have an attenuation
(a notch) of the response around ω0. The reader is invited to do this qualitat-
ive analysis on her own and to write the Octave/Matlab script that produces
fig. 21, which is obtained using the values r0 = 0.9 and r0 = 1.0. We notice
that the phase jumps down by 2π radians when we cross a zero laying on the
unit circumference.

2.2.3 Allpass Filters

Imagine that we are designing a filter by positioning its poles within the
unit circle in the complex plane. For each complex pole pi, let us introduce a
zero zi = 1/pi∗ in the transfer function. In other words, we form the pole-zero
couple

Hi(z) =
z−1 − pi∗

1− piz−1
, (48)

which places the pole and the zero on reciprocal points about the unit circum-
ference and along tha same radius that links them to the origin. Moving along
the circumference we can realize that the vectors drawn from the pole and the
zero have lengths that keep a constant ratio. A more accurate analysis can be
done using the frequency response of this pole-zero couple, which is written as
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Figure 21: Frequency response (magnitude and phase) of an IIR filter with two
poles (r = 0.95) and two zeros. The notch filter (dashed line) has the zeros
with magnitude 1.0. The boost filter (solid line) has the zeros with magnitude
0.9.

Hi(ω) =
e−jω − pi∗

1− pie−jω
= e−jω

1− pi∗ejω

1− pie−jω
. (49)

It is clear that numerator and denominator of the fraction in the last member
of (49) are complex conjugate one to each other, thus meaning that the rational
function has unit magnitude at any frequency. Therefore, the couple (49) is the
fundamental block for the construction of an allpass filter, whose frequency
response is obtained by multiplication of blocks such as (49).

The allpass filters are systems that leave all frequency component mag-
nitudes unaltered. Stationary sinusoidal input signals can only be subject to
phase delays, with no modification in magnitude. The phase response and
phase delay of the fundamental pole-zero couple are depicted in fig. 22 for
values of pole set to p1 = 0.9 and p1 = −0.9. A second-order allpass fil-
ter with real coefficients is obtained by multiplication of two allpass pole-zero
couples, where the poles are the conjugate of each other. Fig. 23 shows the
phase response and the phase delay of a second order allpass filter with poles
in p1 = 0.9 + i0.2 and p2 = 0.9 − i0.2 (solid line) and in p1 = −0.9 + i0.2
and p2 = −0.9 − i0.2 (dashed line). It can be shown that the phase response
of any allpass filter is always negative and monotonically decreasing [65]. The
group and phase delays are always functions that take positive values. This
fact allows us to think about allpass filters as media where signals propagate
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Figure 22: Phase of the frequency response (a) and phase delay (b) for a first-
order allpass filter. Pole in p1 = 0.9 (solid line) and pole in p1 = −0.9 (dashed
line)

with a frequency-dependent delay, without being subject to any absorption or
amplification.

The reader might think that the allpass filters are like open doors for audio
signals, since the phase shifts are barely distinguishable by the human hearing
system. Actually, this is true only for stationary signals, i.e., signals formed
by stable sinusoidal components. Real-world sounds are made of transients at
least as much as they are made of stationary components, and the transient
response of allpass filters can be characterized according to what we showed
in sec. 2.2. During transients, the phase response plays an important role for
perception, and in this sense the allpass filters can modify the sound signals
appreciably. For instance, very-high-order allpass filters are used to construct
artificial reverberators. These filters usually have a long time constant, so that
the effects of their phase response are mainly perceived in the time domain in
the form of a reverberation tail.

The importance of allpass filters becomes readily evident when they are
inserted into complex computational structures, typically to construct filters
whose properties should be easy to control. We will see an example of this use
of allpass filters in sec. 2.3.
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Figure 23: Phase of the frequency response (a) and phase delay (b) for a
second-order allpass filter. Poles in p1,2 = 0.9 ± i0.2 (solid line) and p1,2 =
−0.9± i0.2 (dashed line)

2.2.4 Realizations of IIR Filters
So far, we have studied the IIR filters by analysis of transfer functions or

impulse responses. In this section we want to face the problem of implementing
these filters as computational structures that can be directly coded using sound
processing languages or real-time sound processing environments.

Consider a second-order filter with two poles and two zeros, which is rep-
resented by the transfer function (25) with N = M = 2. This can be realized
by the signal flowgraph of fig. 24, where the nodes having converging edges
are considered as points of addition, and the nodes having diverging edges are
considered as branching points. Such a realization is called Direct Form I.

z-1

z-1

z-1

z-1

x yb

b

b

0

1

2

-a 1

-a 2

Figure 24: Second-order filter, Direct Form I

Signal flowgraphs can be manipulated in several ways, thus leading to al-
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ternative realizations having different numerical properties and, possibly, more
computationally efficient. For instance, if we want to implement a filter as a
cascade of second-order cells such as that of fig. 24, we can share, between
two contiguous cells, the unit delays that are on the output stage of the first
cell, with the unit delays that are on the input stage of the second cell, thus
saving a number of memory accesses.

We are going to show some other kind of manipulation of signal flow-
graphs, in the special case of the realization of the second-order allpass filter,
which has the property

bi = a2−i, i = 0, 1, 2 . (50)

A first transformation comes from the observation that the structure of fig. 24
is formed by the cascade of two blocks, each being linear and time invariant.
Therefore, the two blocks can be commuted without altering the input-output
behavior. Moreover, from the block exchange we get a flowgraph with two
side-to-side stages of pure delays, and these stages can be combined in one
only. The realization of these transformations is shown in fig. 25 and it is called
Direct Form II.

z-1

z-1

-a 1

-a 2

x y2a

a1

Figure 25: Second-order allpass filter, Direct Form II

Another transformation that can be done on a signal flowgraph without
altering its input-output behavior is the transposition [65]. The transposition of
a signal flowgraph is done with the following operations:

• Inversion of the direction of all the edges

• Transformation of the nodes of addition into branching nodes, and vice
versa

• Exchange of the roles of the input and output edges
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The transposition of a realization in Direct Form II leads to the Transposed
Form II, which is shown in fig. 26. Similarly, the Transposed Form I is obtained
by transposition of the Direct Form I.

z-1

z-1

a1

2a

-a 2

-a 1

x y

Figure 26: Second-order allpass filter, Transposed Form II

By direct manipulation of the graph, we can also take advantage of the
properties of special filters. For instance, in an allpass filter, the coefficients of
the numerator are the same of the denominator, in inverted order (see (50)).
With simple transformations of the graph of the Direct Form II it is possible
to obtain the realization of fig. 27, which is interesting because it only has two
multiplies. In fact, the multiplications by −1 can be avoided by replacing two
additions with subtractions.

z-1

z-1

-a 1

x 2a

z-2

-1

-1

y

Figure 27: Second-order allpass filter, realization with two multipliers and four
state variables

A special structure that plays a very important role in signal processing is
the lattice structure, which can be used to implement FIR and IIR filters [65]. In
particular, the IIR lattice filters are interesting because they have physical ana-
logues that can be considered as physical sound processing systems. The lattice
structure can be defined in a recursive fashion as indicated in fig. 28, where
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HaM−1 is an order M − 1 allpass filter, kM is called reflection coefficient and
it is a real number not exceeding one. Between the signals x and y there is an

z-1

x y

-k

k

ya

H    a M-1
H    a M

M

M

Figure 28: Lattice filter

all-pole transfer function 1/A(z), while between the points x and ya there is
an allpass transfer function HaM (z) having the same denominator A(z). More
precisely, it can be shown that, if HaM−1 is an allpass stable transfer function
and |kM | < 1, then HaM is an allpass stable transfer function. Proceeding
with the recursion, the allpass filter HaM−1 can be realized as a lattice struc-
ture, and so on. The recursion termination is obtained by replacing Ha1 with a
short circuit. The lattice section having coefficient kM can be interpreted as the
junction between two cylindrical lossless tubes, where kM is the ratio between
the two cross-sectional areas. This number is also the scaling factor that an in-
coming wave is subject to when it hits the junction, so that the name reflection
coefficient is justified. To have a physical understanding of lattice filters, think
of modeling the human vocal tract. The lattice realization of the transfer func-
tion that relates the signals produced by the vocal folds to the pressure waves
in the mouth can be interpreted as a piecewise cylindrical approximation of the
vocal tract. In this book, we do not show how to derive the reflection coeffi-
cients from a given transfer function [65]. We just give the result that, for a
second-order filter, a denominator such as A(z) = 1 + a1z

−1 + a2z
−2 gives

the reflection coefficients10

k1 = a1/(1 + a2) (51)
k2 = a2 .

10Verify that the filter is stable if and only if |k1| < 1 and |k2| < 1.
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2.3 Complementary filters and filterbanks
In sec. 2.2.4 we have presented several different realizations of allpass

filters because they find many applications in signal processing [76]. In par-
ticular, a couple of allpass filters is often combined in a parallel structure
in such a way that the overall response is not allpass. If Ha1 and Ha2 are
two different allpass filters, their parallel connection, having transfer function
Hl(z) = Ha1(z) + Ha2(z) is not allpass. To figure this out, just think about
frequencies where the two phase responses are equal. At these points the signal
will be doubled at the output of H(z). On the other hand, at points where the
phase response are different by π (i.e., they are in phase opposition), the outputs
of the two branches cancel out at the output. In order to design a lowpass filter
it is sufficient to connect in parallel two allpass filters having a phase response
similar to that of fig. 29.The same parallel connection, with a subtraction in-
stead of the addition at the output, gives rise to a highpass filter Hh(z), and
it is possible to show that the highpass and the lowpass transfer functions are
complementary, in the sense that |Hl(ω)|2 + |Hh(ω)|2 is constant in frequency.
Therefore, we have the compact realization of a crossover filter, as depicted in

ω

π

Η a

Figure 29: Phase responses of two allpass filters that, if connected in parallel,
give a lowpass filter

fig. 30, which is a device with one input and two outputs that conveys the low
frequencies to one outlet, and the high frequencies to the other outlet. Devices
such as this are found not only in loudspeakers, but also in musical instrument
models. For instance, the bell of woodwinds transmits to the air the high fre-
quencies and reflects the low frequencies back to the bore.

The idea of connecting two allpass filters in parallel can be applied to the
realization of resonant complementary filters. In particular, it is interesting to
be able to tune the bandwidth and the center frequency independently. To con-
struct such a filter, one of the two allpass filters is replaced by the identity (i.e.,
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Figure 30: Crossover implemented as a parallel of allpass filters and a lattice
junction

a short circuit) while the other one is a second order allpass filter (see fig. 31).
Recall that, close to the frequency ω0 that corresponds to the pole of the filter,
the phase response takes values that are very close to −π (see fig. 23). There-
fore, the frequency ω0 corresponds to a minimum in the overall frequency re-
sponse. In other words, it is the notch frequency. The closer is the pole to the
unit circumference, the narrower is the notch. The lattice implementation of
this allpass filter allows to tune the notch position and width independently,
since the two reflection coefficients have the form [76]

k1 = − cosω0 (52)

k2 =
1− tanB/2
1 + tanB/2

,

where B is the bandwidth for 3dB of attenuation.

H  (z)

1/2
x

a

y

Figure 31: Notch filter implemented by means of a second-order allpass filter

A structure that allows to convert a notch into a boost with a continuous
control is obtained by a weighted combination of the complementary outputs
and it is shown in fig 32. For values of k such that 0 < k < 1 the filter is a
notch, while for k > 1 the filter is a boost.
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Figure 32: Notch/boost filter implemented by means of a second-order allpass
filter and a lattice section

Filters such as those of figures 31 and 32, whose properties can be con-
trolled by a few parameters decoupled with each other, are called parametric
filters. For thorough surveys on structures for parametric filtering, with ana-
lyses of numerical properties in fixed-point implmentations, we refer the reader
to a book by Zölzer [109] and an article by Dattorro [29].

2.4 Frequency warping
Section (1.5.2) has shown how the bilinear transformation distorts the fre-

quency axis while maintaining the “shape” of the frequency response. Such
transformation is a so-called conformal transformation [62] of the complex
plane onto itself. In this section we are interested in conformal transformations
that map the unit circumference (instead of the imaginary axis) onto itself, in
such a way that, if applied to a discrete-time filter, they give a new discrete-time
filter having the same stability properties.

Indeed, the simplest non-trivial transformation of this kind is a bilinear
transformation

z−1 =
a+ θ−1

1 + aθ−1
. (53)

The transformation (53) is allpass and, therefore, it maps the unit circumfer-
ence onto itself. Moreover, if the transformation (53) is applied to a discrete-
time filter described by a transfer function in z, it preserves the filter order in
the variable θ.

The reason for using conformal maps in digital filter design is that it might
be easier to design a filter using a warped frequency axis. For instance, to
design a presence filter it is convenient to start from a second-order reson-
ant filter prototype having center frequency at π/2 and tunable bandwidth and
boost. Then, it is possible to compute the coefficient of the conformal trans-
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formation (53) in such a way that the resonant peak gets moved to the desired
position [62]. Conformal transformations of order higher than the first are of-
ten used to design multiband filters starting from the design of a lowpass filter,
or to satisfy demanding specifications on the slope of the transition band that
connects the pass band from the attenuated band.

When designing digital filters to be used in models of acoustic systems,
the transformation (53) can be useful, especially if it is specialized in order to
optimize some psychoacoustic-based quality measure. Namely, the warping of
the frequency axis can be tuned in such a way that it resembles the frequency
distribution of critical bands in the basilar membrane of the ear [99]. Similarly
to what we saw in section 1.5.2 for the bilinear transformation, it can be shown
that a first-order conformal map is determined by setting the correspondence
in three points, two of them being ω = 0 and ω = π. The mapping of the
third point is determined by the coefficient a to be used in (53). Surprisingly
enough, a simple first-order transformation is capable to follow the distribu-
tion of critical bands quite accurately. Smith and Abel [99], using a technique
that minimizes the squared equation error, have estimated the value that has
to be assigned to a for sampling frequencies ranging from 1Hz to 50KHz, in
order to have a ear-based frequency distribution. An approximate expression to
calculate such coefficient is

a(Fs) ' 1.0211
[

2
π

arctan (76 · 10−6Fs)
]1/2

− 0.19877 . (54)

As an exercise, the reader can set a value of the sampling rate Fs, and compute
the value of a by means of (54). Then the curve that maps the frequencies in
the θ plane to the frequencies in the z plane can be drawn and compared to the
curve obtained by uniform distribution of the center frequencies of the Bark
scale11 [99, 111] that are below the Nyquist rate.

A psychoacoustics-driven frequency warping is also useful to design digital
filters in such a way that the approximation error gets distributed on the fre-
quency axis in a way that is most tolerable by our ears. The procedure consists
in transforming the desired frequency response according to (53), and design-
ing a digital filter that approximates it using some filter design method [65].
Then the inverse conformal mapping (unwarping) is applied on the resulting
digital filter. Some filter design techniques, beyond giving a better approxima-
tion in a psychoacoustic sense, take advantage of the expansion of low frequen-

11The center frequencies (in Hz) of the Bark scale are: 50, 150, 250, 350, 450, 570, 700, 840,
1000, 1170, 1370, 1600, 1850, 2150, 2500, 2900, 3400, 4000, 4800, 5800, 7000, 8500, 10500,
13500, 20500, 27000
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cies induced by the warping map, because low-frequency sharp transitions get
smoother and the design algorithms become less sensitive to numerical errors.



Chapter 3

Delays and Effects

Most acoustic systems have some component where waves can propagate,
such as a membrane, a string, or the air in an enclosure. If propagation in these
media is ideal, i.e., free of losses, dispersion, and nonlinearities, it can be sim-
ulated by delay lines.

A delay line is a linear time-invariant, single-input single-output system,
whose output signal is a copy of the input signal delayed by τ seconds. In
continuous time, the frequency response of such system is

HDs(jΩ) = e−jΩτ . (1)

Equation (1) tells us that the magnitude response is unitary, and that the phase
is linear with slope τ .

3.1 The Circular Buffer
A discrete-time realization of the system (1) is given by a system that im-

plements the transfer function

HD(z) = z−τFs
4
= z−m , (2)

where m is the number of samples of delay. When the delay τ is an integral
multiple of the sampling quantum, m is an integer number and it is straight-
forward to implement the system (2) by means of a memory buffer. In fact, an
m-samples delay line can be implemented by means of a circular buffer, that is

67
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a set of M contiguous memory cells accessed by a write pointer IN and a read
pointer OUT, such that

IN = (OUT +m)%M , (3)

where the symbol % is used for the quotient modulo M . At each sampling
instant, the input is written in the location pointed by IN, the output is taken
from the location pointed by OUT, and the two pointers are updated with

IN = (IN + 1)%M
OUT = (OUT + 1)%M . (4)

In words, the pointers are incremented respecting the circularity of the buffer.
In some architectures dedicated to sound processing, memory organization

is optimized for wavetable synthesis, where a stored waveform is read with
variable increments of the reading pointer. In these architectures, a quantity of
2r memory locations is available, and from these M = 2s locations (with s <
r) are uniformly chosen among the 2r available cells. In this case the locations
of the circular buffer are not contiguous, and the update of the pointers is done
with the operations

IN = (IN + 2r−s)%2r

OUT = (OUT + 2r−s)%2r . (5)

In practice, since the addresses are r-bit long, there is no need to compute
the modulo explicitly. It is sufficient to do the sum neglecting any possible
overflow. Of course, the (3) is also replaced by

IN = (OUT +m2r−s)%2r . (6)

3.2 Fractional-Length Delay Lines
It might be thought that, choosing a sufficiently high sampling rate, it is

always possible to use delay lines having an integer number of samples. Actu-
ally, there are some good reasons that lead us to state that this is not the case in
sound synthesis and processing.

In sound synthesis, the models have to be carefully tuned without resorting
to very high sample rates. In particular, it is easy to verify that using integer-
length delays in physical models we get errors in fundamental frequencies that
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go well beyond the just noticeable difference in pitch1 (see the appendix C).
For instance, for a pressure wave propagating in air at normal temperature con-
ditions, the spatial discretization given by the sampling rate Fs = 44100Hz
gives intervals of 0.0075m, a distance that can produce well-perceivable pitch
differences in a wind instrument.

Another reason for using fractional delays is that we often want to vary
the delay lengths continuously, in order to reproduce effects such as glissando
or vibrato. The adoption of integer-length delays would produce annoying dis-
continuities.

The most widely used techniques for implementing fractional delays are
interpolation by FIR filters or by allpass filters. These two techniques are, in
some sense, complementary. The choice of one of the two has to be made ac-
cording to the peculiarities of the system to be simulated or of the architecture
chosen for the implementation. In any case, a delay of length m is obtained by
means of a delay line whose length is equal to the integer part of m, cascaded
with a block capable to approximate a constant phase delay equal to the frac-
tional part of m. We recall that the phase delay at a given frequency ω is the
delay in time samples experienced by the sinusoidal component at frequency
ω. For instance, consider a linear filtering block enclosed in a feedback loop
(see sec. 3.4): the frequency of the k-th resonance fk of the whole feedback
system is found at the points where the phase response equates the multiples
of 2π. At these frequencies, the components reappear in phase every round trip
in the loop, thus reinforcing their amplitude at the output. The phase delay at
frequency fk is therefore the effective delay length at that frequency, that is
the length of an ideal (linear phase) delay line that gives the same k-th reson-
ance. Fig. 1 shows a phase curve and its crossings with multiples of 2π giving
a distribution of resonances.

3.2.1 FIR Interpolation Filters

The easiest and most intuitive way to obtain a variable-length delay is to
linearly interpolate the output of the line with the content of its preceding cell
in the memory buffer. This corresponds to using the first-order FIR filter

Hl(z) = c0 + c1z
−1 . (7)

1To figure this out, the reader can consider an m-sample delay line in a feedback loop. It gives
a harmonic series of partials whose fundamental is f0 = Fs

m
(see sec. 3.4). The set of integer

delay lengths that give the best approximation to a tempered scale can be found and the curve of
fundamental frequency errors can be drawn.
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Figure 1: Graphical construction to find the series of resonances produced by
a linear block in a feedback loop. The slope of the dashed lines indicates the
phase delay at each resonance frequency.

Given a certain phase delay

τph0 = − 1
ω0

arctan
−c1 sinω0

c0 + c1 cosω0
(8)

that has to be obtained at a given frequency ω0, the following formulas give the
coefficient values:

c0 + c1 = 1
c1 = 1

1+
sin (ω0)

tan (τph0
ω0)−cos (ω0)

≈ τph0 , (9)

where the approximation is valid in the low-frequency range. The first of the (9)
is needed in order to normalize the low-frequency response to one. In the spe-
cial case that c0 = c1 = 1

2 (averaging filter) the phase is linear and the delay
is of half a sample. Unfortunately, the magnitude response of this interpolator
is lowpass with a zero at the Nyquist frequency. Fig. 2 shows the magnitude,
phase, and phase delay responses for several first-order linear interpolators. We
can see that the phase is linear in most of the audio range, but the magnitude
varies from the allpass to the lowpass with a zero at the Nyquist rate. When
the interpolator is inserted within a feedback loop, its lowpass behavior can be
treated as an additional frequency-dependent loss, which should be somewhat
taken into account.

Interpolation filters can be of order higher than the first. We can do quad-
ratic, cubic, or other polynomial interpolations. In general, the problem of
designing an interpolator can be turned into the design of an l-th order FIR
filter approximating a constant and linear phase frequency response. Several
criteria can be adopted to drive the approximation problem. One approach is
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Figure 2: Magnitude, phase, and phase delay responses of a linear interpolation
filter (1− α) + αz−1 for α = k/16, k = 0, . . . , 16

to impose that the first L derivatives of the error function will be zero at zero
frequency. In this way we obtain maximally-flat filters whose coefficients are
the same used in Lagrange interpolation as it is taught in numerical analysis
courses. For a thorough treatment of interpolation filters we suggest reading
the article [51]. Here we only point out that using high orders allows to keep
the magnitude response close to unity and a phase response close to linear in
a wide frequency band. Of course, this is paid in terms of computational com-
plexity.

In special architectures, where the access to delay lines is governed by (5)
and (6), the linear interpolation is implemented very efficiently by using the
r − s bits that are not used to access the 2s-samples delay line. In fact, if the
address is computed using r bits, the r − s least significant bits represent the
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fractional part of the delay or, equivalenty, the coefficient c1 of the interpolator.
Therefore, it is sufficient to access two consecutive delay cells and keep the
values c0 and c1 = 1− c0 in two registers. The implementation of a glissando
with these architectures is immediate and free from complications.

3.2.2 Allpass Interpolation Filters

Another widely used technique to obtain the fractional part of a desired
delay length makes use of unit-magnitude IIR filters, i.e., allpass filters. Since
the magnitude of these filters is constant there is no frequency-dependent atten-
uation, a property that can never be ensured by FIR filters. The simplest allpass
filter has order one, and it has the following transfer function:

Ha(z) =
c+ z−1

1 + cz−1
. (10)

In order to make sure that the filter is stable, the coefficient c has to stay within
the unit circle. Moreover, if we stick with real coefficients, c belongs to the
real axis. The phase delay given by the filter (10) is shown in fig. 3 for several
values of the coefficient c. It is clear that the phase delay is not as flat as in the
case of the FIR interpolator, depicted in fig. 2.
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Figure 3: Phase response and phase delay of a first-order allpass filter for the
values of the coefficient c = 1.998k/17− 0.999, k = 0, . . . , 16

It is easy to verify2 that, at frequencies close to dc, the phase response

2The proof of (11) is left to the reader as a useful exercise.
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of (10) takes the approximate form

∠H(ω) ≈ − sin (ω)
c+ cos (ω)

+
c sin (ω)

1 + c cos (ω)
≈ −ω 1− c

1 + c
, (11)

where the first approximation is obtained by replacing the argument of the
arctan with the function value and the second approximation, valid in an even
smaller neighborhood, is obtained by approximating sinx with x and cosx
with 1. The phase and group delay around dc are

τph(ω) ≈ τgr(ω) ≈ 1− c
1 + c

. (12)

Therefore, the filter coefficient c can be easily determined from the desired
low-frequency delay as

c =
1− τph(0)
1 + τph(0)

. (13)

Fig. 3 shows that the delay of the allpass filter is approximately constant
only in a narrow frequency range. We can reasonably assume that such range,
for positive values of c smaller than one, extends from 0 to Fs/5. With Fs =
50kHz we see that at Fs/5 = 10kHz we have an error of about 0.05 time
samples. In a note at that frequency produced by a feedback delay line, such an
error produces a pitch deviation smaller than 1%. For lower fundamental fre-
quencies, such as those found in actual musical instruments, the error is smaller
than the just noticeable difference measured with slow pitch modulations (see
the appendix C).

If the first-order filter represents an elegant and efficient solution to the
problem of tuning a delay line, it has also the relevant side effect of detuning
the upper partials, due to the marked phase nonlinearity. Such detuning can be
tolerated in most cases, but has to be taken into account in some other contexts.
If a phase response closer to linear is needed, we can use higher-order allpass
filters [51]. In some cases, especially in sound synthesis by physical modeling,
a specific inharmonic distribution of resonances has to be approximated. This
can be obtained by designing allpass filters that approximate a given phase
response along the whole frequency axis. In these cases the problem of tuning
is superseded by the most difficult problem of accurate partial positioning [83].

With allpass interpolators it is more complicated to handle continuous delay
length variations, since the recursive structure of the filter does not show an ob-
vious way of transferring memory cells from and to the delay line, as it was in
the case of the FIR interpolator, which is constructed on the delay line by a
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certain number of taps. Indeed, the glissando can be implemented with the all-
pass filter by adding a new cell to the delay line whenever the filter coefficient
becomes one and, at the same time, zeroing out the filter state variable and the
coefficient. What is really more complicated with allpass filters is to handle
sudden variations of the delay length, as they are found, for instance, when a
finger hole is opened in a wind instrument. In this case, the recursive nature of
allpass filters causes annoying transients in the output signal. Ad hoc structures
have been devised to cancel these transients [51].

3.3 The Non-Recursive Comb Filter
Sounds, propagating in the air, come into contact with surfaces and objects

of various kinds and this interaction produces physical phenomena such as re-
flection, refraction, and diffraction. A simple and very important phenomenon
is the reflection of sound about a planar surface. Due to a reflection such as
this, a listener receives two delayed copies of the same signal. If the delay is
larger than about a hundred milliseconds, the second copy is perceived as a
distinguished echo, while if the delay is smaller than about ten milliseconds,
the effect of a single reflection is perceived as a spectral coloration.

A simple model of single reflection can be constructed starting from the
basic blocks described in this and in the preceding chapters. It is constructed as
an m-samples delay line, with the incidental fractional part of m obtained by
FIR interpolation or allpass filtering, cascaded with an attenuation coefficient
g, possibly replaced by a filter if a frequency-dependent absorption has to be
simulated. The output of this lossy delay line is summed to the direct signal.
Let us analyze the structure in the case that m is integer and g is a positive
constant not exceeding 1.

The difference equation is expressed as

y(n) = x(n) + g · x(n−m) , (14)

and, therefore, the transfer function is

H(z) = 1 + gz−m . (15)

In the case that g = 1, it is easy to see by using the De Moivre formula (see
section A.6) that the frequency response of the comb filter has the following
magnitude and group delay:

|H(ω)| =
√

2(1 + cos (ωm))
τgr,H(ω) = m

2 ,
(16)
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and it is straightforward to verify that the frequency band ranging from dc to the
Nyquist rate comprises m zeros (antiresonances), equally spaced by Fs/mHz.
The phase response3 is piecewise linear with discontinuities of π at the odd
multiples of Fs/2m.

If g < 1, it is easy to see that the amplitude of the resonances is

P = 1 + g , (17)

while the amplitude of the points of minimum (halfway between contiguous
resonances) is

V = 1− g . (18)

An important parameter of this filtering structure, called non-recursive comb
filter (or FIR comb), is the peak-to-valley ratio

P

V
=

1 + g

1− g
. (19)

Fig. 4 shows the response of a non-recursive comb filter having length m =
11samples and a reflection attenuation g = 0.9. The shape of the frequency
response justifies the name comb given to the filter.
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Figure 4: Magnitude of the frequency response of the comb FIR filter having
coefficient g = 0.9 and delay length m = 11

The zeros of the comb filter are evenly distributed along the unit circle at
the m-th roots of −g, as shown in figure 5.

3The reader is invited to calculate and plot the phase response.
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Figure 5: Zeros and poles of an FIR comb filter

3.4 The Recursive Comb Filter
A simple model of one-dimensional resonator can be constructed using the

basic blocks presented in this and in the preceding chapters. It is composed
by an m-samples delay line, with the incidental fractional part of m obtained
by FIR interpolation or allpass filtering, in feedback loop with an attenuation
coefficient g, possibly replaced by a filter in order to give different decay times
at different frequencies. Let us analyze the whole filtering structure in the case
that m is integer and g is a positive constant not exceeding 1.

The difference equation is expressed as

y(n) = x(n−m) + g · y(n−m) , (20)

and the transfer function is

H(z) =
z−m

1− gz−m
. (21)

Whenever g < 1, the stability is ensured. In the case that g = 1, the frequency
response of the filter has the following magnitude and group delay:

|H(ω)| = 1
2 sin (ωm/2)

τgr,H(ω) = m
2 ,

(22)

and it is easy to verify that the frequency band ranging from dc to the Nyquist
rate comprisesm vertical asymptotes (resonances), equally spaced by Fs/mHz.
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If g = 1 the filter is at the limit of stability, and this is the only case when the
phase response is piecewise linear4, starting with the value −π/2 at dc, with
discontinuities of π at the even multiples of Fs/2m.

If g < 1, it is easy to verify that the amplitude of the resonances is

P =
1

1− g
, (23)

while the amplitude of the points of minimum (halfway between contiguous
resonances) is

V =
1

1 + g
. (24)

An important parameter of this filtering structure, called recursive comb
filter (or IIR comb), is the peak-to-valley ratio

P

V
=

1 + g

1− g
. (25)

Fig. 6 shows the frequency response of a recursive comb filter having a
delay line of m = 11 samples and feedback attenuation g = 0.9. The shape of
the magnitude response justifies the name comb given to the filter.
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Figure 6: Magnitude and phase delay response of the recursive comb filter
having coefficient g = 0.9 and delay length m = 11

The poles of the comb filter are evenly distributed along the unit circle at
the m-th roots of g, as shown in figure 7.

4The reader is invited to calculate and plot the phase response.
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Figure 7: Zeros and poles of an IIR comb filter

In sound synthesis by physical modeling, a recursive comb filter can be in-
terpreted as a simple model of lossy one-dimensional resonator, like a string,
or a tube. This model can be used to simulate several instruments whose res-
onator is not persistently excited. In fact, if the input is a short burst of filtered
noise, we obtain the basic structure of the plucked string synthesis algorithm
due to Karplus and Strong [47].

3.4.1 The Comb-Allpass Filter
The filter given by the difference equation (20) has a frequency response

characterized by evenly-distributed resonances. With a slight modification of
its structure, such filter can be made allpass. In other words, the magnitude re-
sponse of the filter can be made flat even though the impulse response remains
almost the same (20). The modification is just a direct path connecting the in-
put of the delay line to the filter output, as it is depicted in fig. 8. It is easy to

z

-g

g

x y
-m

Figure 8: Allpass comb filter
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see that the transfer function of the filter of fig. 8, called the allpass comb filter
can be written as

H(z) =
−g + z−m

1− gz−m
, (26)

which has the structure of an allpass filter. It is interesting to note that the
direct path introduces a nonzero sample at the time instant zero in the impulse
response. All the following samples are just a scaled version of those of the
impulse response of the comb filter, with a scaling factor equal to 1− g2. The
time properties, such as the time decay, are substantially unvaried. The allpass
comb filter does not introduce any coloration in stationary signals. On the other
hand, its effect is evident on signals exhibiting rapid transients, and for these
signals we can not state that the filter is transparent.

3.5 Sound Effects Based on Delay Lines
Many of the effects commonly used in electroacoustic music are obtained

by composition of time-varying delay lines, i.e., by lines whose length is modu-
lated by slowly-varying signals. In order to avoid discontinuities in the signals,
it is necessary to interpolate the delay lines in some way. The interpolation
by means of allpass filters is applicable only for very slow modulations or
for narrow-width modulations, since sudden changes in the state of allpass fil-
ters give rise to transients that can be perceived as signal distortions [30]. On
the other hand, linear (or, more generally, polynomial) interpolation introduces
frequency-dependent losses whose magnitude is dependent on the fractional
length of the delay line. As the delay length is varied, these variable losses give
an amplitude distortion due to amplitude modulation of the various frequency
components. Coupled to amplitude modulation, there is also phase modula-
tion due to phase nonlinearity of the interpolator, in both cases of FIR and IIR
interpolation.

The terminology used for audio effects is not consistent, as terms such as
flanger, chorus, and phaser are often associated with a large variety of effects,
that can be quite different from each other. A flanger is usually defined as an
FIR comb filter whose delay length is sinusoidally modulated between a min-
imum and a maximum value. This has the effect of expanding and contracting
the harmonic series of notches of the frequency response. The name flanger
derives from the old practice, used long ago in the analog recording studios,
to alternatively slow down the speed of two tape recorders or two turntables
playing the same music track by pressing a finger on the flanges.
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The name phaser is most often reserved for structures similar to the comb
FIR filter, with the difference that the notches are not harmonically distributed.
Orfanidis [67] proposes to use, instead of the delay line, a bunch of paramet-
ric notch filters such as those presented in sec. 2.2.4. Each notch is control-
lable in its frequency position and width. Smith [96], instead, proposes to use
a large allpass filter instead of the delay line. If this allpass filter is obtained as
a cascade of second-order allpass sections, it becomes possible to control and
modulate the position of any single pole couple, which represent all the single
notches of the overall response. A common feature of flangers and phasers is
the relatively large distance between the notches. Vice versa, if the notches are
very dense, the term chorus is preferred. Orfanidis [67], suggests to implement
a chorus as a parallel of FIR comb filters, where the delay lengths are randomly
modulated around values that are slightly different from each other. This should
simulate the deviations in time and height that are found in performances of a
choir singing in unison. Vice versa, Dattorro [30] says that a chorus can be ob-
tained by same structure used for the flanger, with a difference that the delay
lengths have to be set to larger values than for the flanger. In this way, the
notches are made more dense. For the flanger the suggested nominal delay is
1msec and for the chorus it is 5msec. If the objective is to recreate the effect of
a choir singing in unison, the fact of having many notches in the spectrum is
generally disliked. Dattorro [30] proposes a partial solution that makes use of a
recursive allpass filter, where the delay line is read by two pointers, one is kept
fixed and produces the feedback signal, the other is varied to pick up the signal
that is fed directly to the output. In this way, when both the pointers are at the
nominal position, the structure does not introduce any coloration for stationary
signals.

A final remark is reserved to the spatialization of these comb-based effects.
In general, flanging, phasing, and chorusing effects can be obtained from two
different time-varying allpass chains, whose outputs feed different loudspeak-
ers. In this case, sums and subtractions between signals at the different frequen-
cies happen “on air” in a way dependent from position. Therefore, the spatial
sensation is largely due to the different spectral coloration found in different
points of the listening area.

Exercise

The reader is invited to write a chorus/flanger based on comb or allpass
comb filters using a language for sound processing (e.g., CSound). As an in-
put signal, try a sine wave and a noisy signal. Then, implement a phaser by
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cascading several first-order allpass filters having coefficients between 0 and 1.

3.6 Spatial sound processing
The spatial processing of sound is a wide topic that would require at least

a thick book chapter on its own [82]. Here we only describe very briefly a few
techniques for sound spatialization and reverberation. In particular, techniques
for sound spatialization are different if the target display is by means of head-
phones or loudspeakers.

3.6.1 Spatialization
Spatialization with headphones

Humans can localize sound sources in a 3D space with good accuracy using
several cues. If we can rely on the assumption that the listener receives the
sound material via a stereo headphone we can reproduce most of the cues that
are due to the filtering effect of the pinna–head–torso system, and inject the
signal artificially affected by this filtering process directly to the ears.

Sound spatialization for headphones can be based on interaural intensity
and time differences (see the appendix C). It is possible to use only one of
the two cues, but using both cues will provide a stronger spatial impression.
Of course, interaural time and intensity differences are just capable of mov-
ing the apparent azimuth of a sound source, without any sense of elevation.
Moreover, the apparent source position is likely to be located inside the head
of the listener, without any sense of externalization. Special measures have to
be taken in order to push the virtual sources out of the head.

A finer localization can be achieved by introducing frequency-dependent
interaural differences. In fact, due to diffraction the low frequency components
are barely affected by IID, and the ITD is larger in the low frequency range.
Calculations done with a spherical head model and a binaural model [49, 73]
allow to draw approximated frequency-dependent ITD curves, one being dis-
played in fig. 9.a for 30o of azimuth. The curve can be further approximated
by constant segments, one corresponding to a delay of about 0.38ms in low
frequency, and the other corresponding to a delay of about 0.26ms in high
frequency. The low-frequency limit can in general be obtained for a general
incident angle θ by the formula

ITD =
1.5δ
c

sin θ , (27)
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where δ is the inter-ear distance in meters and c is the speed of sound. The cros-
sover point between high and low frequency is located around 1kHz. Similarly,
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Figure 9: Frequency-dependent interaural time (a) and intensity (b) difference
for azimuth 30o.

the IID should be made frequency dependent. Namely, the difference is larger
for high-frequency components, so that we have IID curves such as that repor-
ted in fig. 9.b for 30o of azimuth. The IID and ITD are shown to change when
the source is very close to the head [32]. In particular, sources closer than five
times the head radius increase the intensity difference in low frequency. The
ITD also increases for very close sources but its changes do not provide signi-
ficant information about source range.

Several researchers have measured the filtering properties of the system
pinna - head - torso by means of manikins or human subjects. A popular col-
lection of measurements was taken by Gardner and Martin using a KEMAR
dummy head, and made freely available [36, 38, 2]. Measurements of this kind
are usually taken in an anechoic chamber, where a loudspeaker plays a test sig-
nal which invests the head from the desired direction. The directions should be
taken in such a way that two neighbor directions never exceed the localization
blur, which ranges from about ±3◦ in azimuth for frontal sources, to about
±20◦ in elevation for sources above and slightly behind the listener [13]. The
result of the measurements is a set of Head-Related Transfer Functions (HRIR)
that can be directly used as coefficients of a pair of FIR filters. Since the decay
time of the HRIR is always less than a few milliseconds, 256 to 512 taps are
sufficient at a sampling rate of 44.1kHz.

A cookbook of HRIRs and direct convolution seems to be a viable solu-
tion for providing directionality to sound sources using current technology. A
fundamental limitation comes from the fact that HRIRs vary widely between
different subjects, in such an extent that front-back reversals are fairly common
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when listening through someone else’s HRIRs. Using individualized HRIRs
dramatically improves the quality of localization. Moreover, since we uncon-
sciously use small head movements to resolve possible directional ambiguities,
head-motion tracking is also desirable.

There are some reasons that make a model of the external hearing system
more desirable than a raw catalog of HRIRs. First of all, a model might be im-
plemented more efficiently, thus allowing more sources to be spatialized in real
time. Second, if the model is well understood, it might be described with a few
parameters having a direct relationship with physical or geometric quantities.
This latter possibility can save memory and allow easy calibration.

Modeling the structural properties of the system pinna - head - torso gives
us the possibility to apply continuous variation to the positions of sound sources
and to the morphology of the listener. Much of the physical/geometric proper-
ties can be understood by careful analysis of the HRIRs, plotted as surfaces,
functions of the variables time and azimuth, or time and elevation. This is the
approach taken by Brown and Duda [19] who came up with a model which can
be structurally divided into three parts:

• Head Shadow and ITD

• Shoulder Echo

• Pinna Reflections

Starting from the approximation of the head as a rigid sphere that diffracts a
plane wave, the shadowing effect can be effectively approximated by a first-
order continuous-time system, i.e., a pole-zero couple in the Laplace complex
plane:

sz =
−2ω0

α(θ)
(28)

sp = −2ω0 , (29)

where ω0 is related to the effective radius a of the head and the speed of sound
c by

ω0 =
c

a
. (30)

The position of the zero varies with the azimuth θ (see fig. 10 of the ap-
pendix C)) according to the function

α(θ) = 1.05 + 0.95 cos
(

θ − θear
150◦

180◦
)

, (31)
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where θear is the angle of the ear that is being considered, typically 100◦ for
the right ear and −100◦ for the left ear. The pole-zero couple can be directly
translated into a stable IIR digital filter by bilinear transformation, and the res-
ulting filter (with proper scaling) is

Hhs =
(ω0 + αFs) + (ω0 − αFs)z−1

(ω0 + Fs) + (ω0 − Fs)z−1
. (32)

The ITD can be obtained by means of a first-order allpass filter [65, 100] whose
group delay in seconds is the following function of the azimuth angle θ:

τh(θ) =
a

c
+
{

−ac cos (θ − θear) if 0 ≤ |θ − θear| < π
2

a
c

(

|θ − θear| − π
2

)

if π2 ≤ |θ − θear| < π
. (33)

Actually, the group delay provided by the allpass filter varies with frequency,
but for these purposes such variability can be neglected. Instead, the filter (32)
gives an excess delay at DC that is about 50% that given by (33). This increase
of the group delay at DC is exactly what one observes for the real head [49], and
it has already been outlined in fig. 9. The overall magnitude and group delay
responses of the block responsible for head shadowing and ITD are reported in
fig. 10.

-20

-15

-10

-5

0

5

10

15

20

0.1 1 10

m
ag

ni
tu

de
 [d

B
]

frequency [kHz]

100
130
160
190
220
250

0

5

10

15

20

25

30

0.1 1 10

gr
ou

p 
de

la
y 

[s
am

pl
es

]

frequency [kHz]

250
220
190
160
130
100

Figure 10: Magnitude and Group Delay responses of the block responsible for
head shadowing and ITD (Fs = 44100Hz). Azimuth ranging from θear to
θear + 150◦.

In a rough approximation, the shoulder and torso effects are synthesized in
a single echo. An approximate expression of the time delay can be deduced by
the measurements reported in [19, fig. 8]

τsh = 1.2
180◦ − θ

180◦

(

1− 0.00004
(

(φ− 80◦)
180◦

180◦ + θ

)2
)

[msec] , (34)
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where θ and φ are azimuth and elevation, respectively (see fig. 10 of the ap-
pendix C). The echo should also be attenuated as the source goes from frontal
to lateral position.

Finally, the pinna provides multiple reflections that can be obtained by
means of a tapped delay line. In the frequency domain, these short echoes trans-
late into notches whose position is elevation dependent and that are frequently
considered as the main cue for the perception of elevation [48]. A formula for
the time delay of these echoes is given in [19].

The structural model of the pinna - head - torso system is depicted in Fig. 11
with all its three functional blocks, repeated twice for the two ears. The only
difference in the two halves of the system is in the azimuth parameter that is θ
for the right ear and −θ for the left ear.
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Figure 11: Structural model of the pinna - head - torso system

3D panning

The most popular and easy way to spatialize sounds using loudspeakers is
amplitude panning. This approach can be expressed in matrix form for an arbit-
rary number of loudspeakers located at any azimuth though nearly equidistant
from the listener. Such formulation is called Vector Base Amplitude Panning
(VBAP) [72] and is based on a vector representation of positions in a Cartesian
plane having its center in the position of the listener. In the two-loudspeaker



86 D. Rocchesso: Sound Processing

θl
θ

L L

R R

g

g

l

l

u

Figure 12: Stereo panning

case (figure 12), the unit-magnitude vector u pointing toward the virtual source
can be expressed as a linear combination of the unit-magnitude column vectors
lL and lR pointing toward the left and right loudspeakers, respectively. In mat-
rix form, this combination can be expressed as

u = L · g =
[

lL lR
]

[

gL
gR

]

. (35)

Except for degenerate loudspeaker positions, the linear system of equations
(35) can be solved in the vector of gains g. This vector has not, in general,
unit magnitude, but can be normalized by appropriate amplitude scaling. The
solution of system (35) implies the inversion of matrix L, but this can be done
beforehand for a given loudspeaker configuration.

The generalization to more than two loudspeakers in a plane is obtained by
considering, at any virtual source position, only one couple of loudspeakers,
thus choosing the best vector base for that position.

The generalization to three dimensions is obtained by considering vector
bases formed by three independent vectors in space. The vector of gains for
such a 3D vector base is obtained by solving the system

u = L · g =
[

lL lR lZ
]





gL
gR
gZ



 . (36)

Of course, having more than three loudspeakers in a 3D space implies, for any
virtual source position, the selection of a local 3D vector base.
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As indicated in [72], VBAP ensures maximum sharpness in sound source
location. In fact:

• If the virtual source is located at a loudspeaker position only that loud-
speaker has nonzero gain;

• If the virtual source is located on a line connecting two loudspeakers
only those two loudspeakers have nonzero gain;

• If the virtual source is located on the triangle delimited by three adjacent
loudspeakers only those three loudspeakers have nonzero gain.

The formulation of VBAP given here is consistent with the low frequency
formulation of directional psychoacoustics. The extension to high frequencies
have been also proposed with the name Vector Base Panning (VBP) [68].

Room within a room

A different approach to spatialization using loudspeakers can be taken by
controlling the relative time delay between the loudspeaker feeds. A model
supporting this approach was introduced by Moore [60], and can be described
as a physical and geometric model. The metaphor underlying the Moore model
is that of the Room within a Room, where the inner room has holes in the walls,
corresponding to the positions of loudspeakers, and the outer room is the virtual
room where sound events have to take place (fig. 13). The simplest form of

12

3 4

Figure 13: Moore’s Room in a Room Model

spatialisation is obtained by drawing direct sound rays from the virtual sound
source to the holes of the inner room. If the outer room is anechoic these are
the only paths taken by sound waves to reach the inner room. The loudspeakers
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will be fed by signals delayed by an amount proportional to the length of these
paths, and attenuated according to relationship of inverse proportionality valid
for propagation of spherical waves. In formulas, if li is the path length from
the source to the i-th loudspeaker, and c is the speed of sound in air, the delay
in seconds is set to

di = li/c , (37)

and the gain is set to

gi =
{

1
li
, li > 1

1, li < 1
. (38)

The formula for the amplitude gain is such that sources within the distance of
1m from the loudspeaker5 will be stuck to unity gain, thus avoiding the asymp-
totic divergence in amplitude implied by a point source of spherical waves.

The model is as accurate as the physical system being modeled would per-
mit. A listener within a room would have a spatial perception of the outside
soundscape whose accuracy will increase with the number of windows in the
walls. Therefore, the perception becomes sharper by increasing the number of
holes/loudspeakers. Indeed, some of the holes will be masked by some walls,
so that not all the rays will be effective 6 (e.g. the rays to loudspeaker 3 in
fig. 13). In practice, the directional clarity of spatialisation is increased if some
form of directional panning is added to the base model, so that loudspeakers
opposite to the direction of the sound source are severely attenuated. With this
trick, it is not necessary to burden the model with an algorithm of ray-wall
collision detection.

The Moore model is suitable to provide consistent and robust spatialization
to extended audiences [60]. A reason for robustness might be found in the fact
that simultaneous level and time differences are applied to the loudspeakers.
This has the effect to increase the lateral displacement [13] even for virtual
sources such that the rays to different loudspeaker have similar lengths. In-
deed, the localization of the sound source gets even sharper if the level control
is driven by laws that roll off more rapidly than the physical 1/d law of spher-
ical waves. In practical realizations, the best results are obtained by tuning the
model after psychophysical experimentation [54].

An added benefit of the Room within a Room model is that the Doppler
effect is intrinsically implemented. As the virtual sound source is moved in the
outer room the delay lines representing the virtual rays change their lengths,
thus producing the correct pitch shifts. It is true that different transpositions

5This distance is merely conventional.
6We are neglecting diffraction from this reasoning.
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might affect different loudspeakers, as the variations are different for different
rays, but this is consistent with the physical robustness of the technique.

The model of the Room within a Room works fine if the movements of the
sound source are confined to a virtual space external to the inner room. This
corresponds to an enlargement of the actual listening space and it is often a
highly desirable situation. Moreover, it is natural to model the physical proper-
ties of the outer room, adding reflections at the walls and increasing the number
of rays going from a sound source to the loudspeakers. This configuration, il-
lustrated in fig. 13 with first-order reflections, is a step from spatialization to
reverberation.

3.6.2 Reverberation

Classic reverberation tools

In the second half of the twentieth century, several engineers and acousti-
cians tried to invent electronic devices capable to simulate the long-term effects
of sound propagation in enclosures [14]. The most important pioneering work
in the field of artificial reverberation has been that of Manfred Schroeder at
the Bell Laboratories in the early sixties [88, 89, 90, 91, 93]. Schroeder in-
troduced the recursive comb filters (section 3.4) and the delay-based allpass
filters (section 3.4.1) as computational structures suitable for the inexpensive
simulation of complex patterns of echoes. These structures rapidly became
standard components used in almost all the artificial reverberators designed
until nowadays [61]. It is usually assumed that the allpass filters do not intro-
duce coloration in the input sound. However, this assumption is valid from a
perceptual viewpoint only if the delay line is much shorter than the integration
time of the ear, i.e. about 50ms [111]. If this is not the case, the time-domain
effects become much more relevant and the timbre of the incoming signal is
significantly affected.

In the seventies, Michael Gerzon generalized the single-input single-output
allpass filter to a multi-input multi-output structure, where the delay line of m
samples has been replaced by a order-N unitary network [40]. Examples of
trivial unitary networks are orthogonal matrices, parallel connections of delay
lines, or allpass filters. The idea behind this generalization is that of increasing
the complexity of the impulse response without introducing appreciable col-
oration in frequency. According to Gerzon’s generalization, allpass filters can
be nested within allpass structures, in a telescopic fashion. Such embedding is
shown to be equivalent to lattice allpass structures [39], and it is realizable as
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long as there is at least one delay element in the block A(z) of fig. 8.
An extensive experimentation on structures for artificial reverberation was

conducted by Andy Moorer in the late seventies [61]. He extended the work
done by Schroeder [90] in relating some basic computational structures (e.g.,
tapped delay lines, comb and allpass filters) with the physical behavior of ac-
tual rooms. In particular, it was noticed that the early reflections have great
importance in the perception of the acoustic space, and that a direct-form FIR
filter can reproduce these early reflections explicitly and accurately. Usually
this FIR filter is implemented as a tapped delay line, i.e. a delay line with mul-
tiple reading points that are weighted and summed together to provide a single
output. This output signal feeds, in Moorer’s architecture, a series of allpass
filters and a parallel of comb filters(see fig. 14) . Another improvement in-
troduced by Moorer was the replacement of the simple gain of feedback delay
lines in comb filters with lowpass filters resembling the effects of air absorption
and lossy reflections.

The construction of high-quality reverberators is half an art and half a sci-
ence. Several structures and many parameterizations were proposed in the past,
especially in non-disclosed form within commercial reverb units [29]. In most
cases, the various structures are combinations of comb and allpass elementary
blocks, as suggested by Schroeder in the early works. As an example, we look
more carefully at the Moorer’s preferred structure [61], depicted in fig.14. The
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block (a) takes care of the early reflections by means of a tapped delay line.
The resulting signal is forwarded to the block (b), which is the parallel of a
direct path on one branch, and a delayed, attenuated diffuse reverberator on the
other branch. The output of the reverberator is delayed in such a way that the
last of the early echoes coming out of block (a) reaches the output before the
first of the non-null samples coming out of the diffuse reverberator. In Moorer’s
preferred implementation, the reverberator of block (b) is best implemented as
a parallel of six comb filters, each with a first-order lowpass filter in the loop,
and a single allpass filter. In [61], it is suggested to set the allpass delay length
to 6ms and the allpass coefficient to 0.7. Despite the fact that any allpass filter
does not add coloration in the magnitude frequency response, its time response
can give a metallic character to the sound, or add some unwanted roughness
and granularity. The feedback attenuation coefficients gi and the lowpass fil-
ters of the comb filters can be tuned to resemble a realistic and smooth decay.
In particular, the attenuation coefficients gi determine the overall decay time
of the series of echoes generated by each comb filter. If the desired decay time
(usually defined for an attenuation level of 60dB) is Td, the gain of each comb
filter has to be set to

gi = 10−3
mi
TdFs , (39)

where Fs is the sample rate and mi is the delay length in samples. Further
attenuation at high frequencies is provided by the feedback lowpass filters,
whose coefficient can also be related with decay time at a specific frequency
or fine tuned by direct experimentation. In [61], an example set of feedback
attenuation and allpass coefficients is provided, together with some suggested
values of the delay lengths of the comb filters. As a rule of thumb, they should
be distributed over a ratio 1 : 1.5 between 50 and 80ms. Schroeder suggested a
number-theoretic criterion for a more precise choice of the delay lengths [91]:
the lengths in samples should be mutually coprime (or incommensurate) to
reduce the superimposition of echoes in the impulse response, thus reducing the
so called flutter echoes. This same criterion might be applied to the distances
between each echo and the direct sound in early reflections. However, as it was
noticed by Moorer [61], the results are usually better if the taps are positioned
according to the reflections computed by means of some geometric modeling
technique, such as the image method [3, 18]. Indeed, even the lengths of the
recirculating delays can be computed from the geometric analysis of the normal
modes of actual room shapes.
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Feedback Delay Networks

In 1982, J. Stautner e M. Puckette [101] introduced a structure for artifi-
cial reverberation based on delay lines interconnected in a feedback loop by
means of a matrix (see fig. 15). Later, structures such as this have been called
Feedback Delay Networks (FDNs). The Stautner-Puckette FDN was obtained
as a vector generalization of the recursive comb filter (20), where them-sample
delay line was replaced by a bunch of delay lines of different lengths, and the
feedback gain g was replaced by a feedback matrix G. Stautner and Puckette
proposed the following feedback matrix:

G = g









0 1 1 0
−1 0 0 −1
1 0 0 −1
0 1 −1 0









/
√

2 . (40)

Due to its sparse special structure, G requires only one multiply per output
channel.
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Figure 15: Fourth-order Feedback Delay Network

More recently, Jean-Marc Jot investigated the possibilities of FDNs very
thoroughly. He proposed to use some classes of unitary matrices allowing effi-
cient implementation. Moreover, he showed how to control the positions of the
poles of the structure in order to impose a desired decay time at various fre-
quencies [44]. His considerations were driven by perceptual criteria with the
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general goal x to obtain an ideal diffuse reverb. In this context, Jot introduced
the important design criterion that all the modes of a frequency neighborhood
should decay at the same rate, in order to avoid the persistence of isolated,
ringing resonances in the tail of the reverb [45]. This is not what happens in
real rooms though, where different modes of close resonance frequencies can
be differently affected by wall absorption [63]. However, it is generally be-
lieved that the slow variation of decay rates with frequency produces smooth
and pleasant impulse responses.

Referring to fig. 15, an FDN is built starting fromN delay lines, each being
τi = miTs seconds long, where Ts = 1/Fs is the sampling interval. The FDN
is completely described by the following equations:

y(n) =
N
∑

i=1

cisi(n) + dx(n)

si(n+mi) =
N
∑

j=1

ai,jsj(n) + bix(n) (41)

where si(n), 1 ≤ i ≤ N , are the delay outputs at the n-th time sample. If
mi = 1 for every i, we obtain the well known state space description of a
discrete-time linear system [46]. In the case of FDNs,mi are typically numbers
on the orders of hundreds or thousands, and the variables si(n) are only a small
subset of the system state at time n, being the whole state represented by the
content of all the delay lines.

From the state-variable description of the FDN it is possible to find the
system transfer function [80, 84] as

H(z) =
Y (z)
X(z)

= cT [D(z−1)−A]−1b + d. (42)

The diagonal matrix D(z) = diag (z−m1 , z−m2 , . . . z−mN ) is called the delay
matrix, and A = [ai,j ]N×N is called the feedback matrix.

The stability properties of a FDN are all ascribed to the feedback matrix.
The fact that ‖A‖n decays exponentially with n ensures that the whole struc-
ture is stable [80, 84].

The poles of the FDN are found as the solutions of

det[A−D(z−1)] = 0 . (43)

In order to have all the poles on the unit circle it is sufficient to choose a
unitary matrix. This choice leads to the construction of a lossless prototype but
this is not the only choice allowed.
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In practice, once we have constructed a lossless FDN prototype, we must
insert attenuation coefficients and filters in the feedback loop (blocks Gi in
figure 15). For instance, following the indications of Jot [45], we can cascade
every delay line with a gain

gi = αmi . (44)

This corresponds to replacing D(z) with D(z/α) in (42). With this choice of
the attenuation coefficients, all the poles are contracted by the same factor α.
As a consequence, all the modes decay with the same rate, and the reverbera-
tion time (defined for a level attenuation of 60dB) is given by

Td =
−3Ts
logα

. (45)

In order to have a faster decay at higher frequencies, as it happens in real en-
closures, we must cascade the delay lines with lowpass filters. If the attenuation
coefficients gi are replaced by lowpass filters, we can still get a local smooth-
ness of decay times at various frequencies by satisfying the condition (44),
where gi and α have been made frequency dependent:

Gi(z) = Ami(z), (46)

where A(z) can be interpreted as per-sample filtering [43, 45, 98].
It is important to notice that a uniform decay of neighbouring modes, even

though commonly desired in artificial reverberation, is not found in real en-
closures. The normal modes of a room are associated with stationary waves,
whose absorption depends on the spatial directions taken by these waves. For
instance, in a rectangular enclosure, axial waves are absorbed less than ob-
lique waves [63]. Therefore, neighbouring modes associated with different dir-
ections can have different reverberation times. Actually, for commonly-found
rooms having irregularities in the geometry and in the materials, the response is
close to that of a room having diffusive walls, where the energy rapidly spreads
among the different modes. In these cases, we can find that the decay time is
quite uniform among the modes [50].

The most delicate part of the structure is the feedback matrix. In fact, it
governs the stability of the whole structure. In particular, it is desirable to start
with a lossless prototype, i.e. a reference structure providing an endless, flat
decay. The reader interested in general matrix classes that might work as pro-
totypes is deferred to the literature [44, 84, 81, 39]. Here we only mention the



Delay Lines and Effects 95

class of circulant matrices, having general form 7

A =









a(0) a(1) . . . a(N − 1)
a(N − 1) a(0) . . . a(N − 2)
. . .
a(1) . . . a(N − 1) a(0)









.

The stability of a FDN is related to the magnitude of its eigenvalues, which
can be computed by the Discrete Fourier Transform of the first raw, in the
case of a circulant matrix. By keeping these eigenvalues on the unit circle (i.e.,
magnitude one) we ensure that the whole structure is stable and lossless. The
control over the angle of the eigenvalues can be translated into a direct control
over the degree of diffusion of the enclosure that is being simulated by the
FDN. The limiting cases are the diagonal matrix, corresponding to perfectly
reflecting walls, and the matrix whose rows are sequences of equal-magnitude
numbers and (pseudo-)randomly distributed signs [81].

Another critical set of parameters is given by the lengths of the delay lines.
Several authors suggested to use lengths in samples that are mutually coprime
numbers in order to minimize the collision of echoes in the impulse response.
However, if the FDN is linked to a physical and geometrical interpretation, as
it is done in the Ball-within-the-Box model [79], the delay lengths are derived
from the geometry of the room being simulated and the resulting digital reverb
quality is related to the quality of the actual room. In the case of a rectangular
room, a delay line will be associated to a harmonic series of normal modes,
all obtainable from a plane wave loop that bounces back and forth within the
enclosure.

Convolution with Room Impulse Responses

If the impulse response of a target room is readily available, the most faith-
ful reverberation method would be to convolve the input signal with such a
response. Direct convolution can be done by storing each sample of the im-
pulse response as a coefficient of an FIR filter whose input is the dry signal.
Direct convolution becomes easily impractical if the length of the target re-
sponse exceeds small fractions of a second, as it would translate into several
hundreds of taps in the filter structure. A solution is to perform the convolution
block by block in the frequency domain: Given the Fourier transform of the
impulse response, and the Fourier transform of a block of input signal, the two

7A matrix such as this is used in the Csound babo opcode.



96 D. Rocchesso: Sound Processing

can be multiplied point by point and the result transformed back to the time
domain. As this kind of processing is performed on successive blocks of the
input signal, the output signal is obtained by overlapping and adding the par-
tial results [65]. Thanks to the FFT computation of the discrete Fourier trans-
form, such technique can be significantly faster. A drawback is that, in order
to be operated in real time, a block of N samples must be read and then pro-
cessed while a second block is being read. Therefore, the input-output latency
in samples is twice the size of a block, and this is not tolerable in practical
real-time environments.

The complexity–latency tradeoff is illustrated in fig. 16, where the direct-
form and the block-processing solutions can be located, together with a third
efficient yet low-latency solution [37, 64]. This third realization of convolution
is based on a decomposition of the impulse response into increasingly-large
chunks. The size of each chunk is twice the size of its predecessor, so that the
latency of prior computation can be occupied by the computations related to
the following impulse-response chunk. Details and discussion on convolution

co
m

pl
ex

ity

latency

Block-based FFT

Non-uniform
block-based FFT

Direct form FIR

Figure 16: Complexity Vs. Latency tradeoff in convolution

were presented in sec. 2.5.
Even if we have enough computer power to compute convolutions by long

impulse responses in real time, there are still serious reasons to prefer rever-
beration algorithms based on feedback delay networks in many practical con-
texts. The reasons are similar to those that make a CAD description of a scene
preferable to a still picture whenever several views have to be extracted or the
environment has to be modified interactively. In fact, it is not easy to modify
a room impulse response to reflect some of the room attributes, e.g. its high-
frequency absorption, and it is even less obvious how to spatialize the echoes
of the impulse response in order to get a proper sense of envelopment. If the
impulse response is coming from a spatial rendering algorithm, such as ray
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tracing, these manipulations can be operated at the level of room description,
and the coefficients of the room impulse response transmitted to the real-time
convolver. In the low-latency block based implementations of convolution, we
can even have faster update rates for the smaller early chunks of the impulse
response, and slower update rates for the reverberant tail. Still, continuous vari-
ations of the room impulse response are easier to be rendered using a model of
reverberation operating on a sample-by-sample basis.
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Chapter 4

Sound Analysis

Sounds are time-varying signals in the real world and, indeed, all of their
meaning is related to such time variability. Therefore, it is interesting to de-
velop sound analysis techniques that allow to grasp at least some of the dis-
tinguished features of time-varying sounds, in order to ease the tasks of under-
standing, comparison, modification, and resynthesis.

In this chapter we present the most important sound analysis techniques.
Special attention is reserved on criteria for choosing the analysis parameters,
such as window length and type.

4.1 Short-Time Fourier Transform
The Short-Time Fourier Transform (STFT) is nothing more than Fourier

analysis performed on slices of the time-domain signal. In order to slightly
simplify the formulas, we are going to present the STFT under the assumption
of unitary sample rate (Fs = T−1 = 1).

There are two complementary views of STFT: the filterbank view, and the
DFT-based view.

4.1.1 The Filterbank View

Assume we have a prototype ideal lowpass filter, whose frequency response
is depicted in fig. 1. Let w(·) and W (·) be the impulse response and transfer
function, respectively, of such prototype filter.

99
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Figure 1: Frequency response of a prototype lowpass filter

We define modulation of a signal y(n) by a carrier signal ejω0n as the
(complex) multiplication y(n)ejω0n. This translates, in the frequency domain,
into a frequency shift by ∆ω = ω0 (shift theorem 1.2 of chapter 1). In other
words, modulating a signal means moving its low frequency content onto an
area around the carrier frequency. On the other hand, we call demodulation of
a signal y(n) its multiplication by e−jω0n, that brings the components around
ω0 onto a neighborhood of dc.

By demodulation we can obtain a filterbank that slices the spectrum (between
0Hz and Fs) in N equal non-overlapping portions. Namely, we can translate
the input signal in frequency and filter it by means of the prototype lowpass fil-
ter in order to isolate a specific slice of the frequency spectrum. This procedure
is reported in fig. 2.

4.1.2 The DFT View

The scheme of fig. 2 can be obtained by Fourier transformation of a “win-
dowed” sequence. We recall from section 1.3 that the DTFT of an infinite se-
quence is

Y (ω) =
+∞
∑

n=−∞
y(n)e−jωn . (1)

If the DTFT is computed on a portion of y(·), weighted by an analysis
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Figure 2: Decomposition of a signal into a set of non-overlapping frequency
slices. ω0, . . . , ωN−1 are the central frequencies of the bands of the analysis
channels.

window w(m− n), we get a frame of the STFT:

Ym(ω) =
+∞
∑

n=−∞
w(m− n)y(n)e−jωn =

= e−jωm
+∞
∑

r=−∞
w(r)y(m− r)ejωr , (2)

where the third member of the equality is obtained by defining r
4
= m − n,

and m is a variable accounting for the temporal dislocation of the window.
Therefore, the STFT turns out to be a function of two variables, one can be
thought of as frequency, the other is essentially a time shift.

The DTFT is a periodic function of a continuous variable, and it can be
inverted by means of an integral computed over a period

w(m− n)y(n) =
1

2π

∫ π

−π
Ym(ω)ejωndω . (3)

By a proper alignment of the window (m = n) we can compute, if w(0) 6=
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0

y(n) =
1

2πw(0)

∫ π

−π
Yn(ω)ejωndω . (4)

The STFT in its formulation (2) can be seen as convolution

Ym(ω) = (w ∗ ye)(m) , (5)

where ye(n) = y(n)e−jωn is the demodulated signal. If w is set to the impulse
response of the ideal lowpass filter, and if we set ω = ωk, we get a channel
of the filterbank of fig. 2. In general, w(·) will be the impulse response of a
non-ideal lowpass filter, but the filterbank view will keep its validity.

In practice, we need to compute the STFT on a finite set of N points. In
what follows we assume that the window is R ≤ N samples long, so that we
can use the DFT on N points, thus obtaining a sampling of the frequency axis
between 0 and 2π in multiples of 2π/N .

The k-th point in the transform domain (said the k-th bin of the DFT) is
given by

Ym(k) =
N−1
∑

n=0

w(m− n)y(n)e−j
2πkn
N (6)

and, by means of an inverse DFT

w(m− n)y(n) =
1
N

N−1
∑

k=0

Ym(k)ej
2πkn
N . (7)

By a proper alignment of the window (m = n), and assuming that w(0) 6=
0 we get

y(n) =
1

Nw(0)

N−1
∑

k=0

Yn(k)e
j2πkn
N . (8)

More generally, we can reconstruct (resynthesis) the time-domain signal by
means of

y(n) =
1

Nw(m− n)

N−1
∑

k=0

Ym(k)e
j2πkn
N , (9)

where w(m − n) 6= 0, which is true, given an integer n0, for a non-trivial
window defined for

m+ n0 ≤ n ≤ m+ n0 +R− 1 . (10)
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Example

Figure 3 illustrates the operations involved in analysis and resynthesis of a
frame of STFT (R = 5, N = 8).

N=8

R=5

0
n

n

w(n) = w(−n)

w(3 − n)

y(n)

n

n

0

0

0

m = 3

Y  (0) Y  (7)3 3

8

8

8

8
7

DFT

IDFT

time−centered window

reconstruction of 5 samples 
of y(n)

0 11/w(2) 1/w(−2)

y(5)y(1)

w(3 − n) y(n)

5

Figure 3: Analysis and resynthesis of a frame of STFT.

4.1.3 Windowing

The rectangular window

The simplest analysis window is the rectangular window

wR(n) =
{

1 n = 0, . . . , R− 1
0 elsewhere

, (11)
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Considered a filter having 11 as its impulse response, the frequency response
is found by Fourier-transformation of wR(n):

WR(ω) =
+∞
∑

n=−∞
wR(n)e−jωn =

R−1
∑

n=0

e−jωn =
1− e−jωR

1− e−jω
=

4
= sincR(ω) = e−jω

R−1
2

sin ωR
2

sin ω
2

. (12)

The real part of the function sincR(ω) is plotted in figure 4 for different values
of the window length R.
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Figure 4: sincR(ω) for different values of window length R.

In figure 4, it can be noticed that 2π/R is the zero closest to dc. Therefore,
we can say that if we use the rectangular window as a prototype of filter repres-
ented in figure (2), the equivalent bandwidth is 2π/R. If we neglect aliasing for
a moment, we realize that we can decimate each channel Ym(ωk) by a factor
R without loosing any information.

A superficial look at the expression (12) seems to indicate that the shif-
ted replicas of sincR produce aliasing in the base band

(

− 2π
R ,

2π
R

)

. Indeed, if
we sum R shifted replicas we verify that the aliasing components cancel out.
Therefore, with this window, it is possible to decimate the output channels by
a factor equal to the window length. Furthermore, if we choose N = R, we
can perform one FFT per frame and advance the window by N samples at each
step.



Sound Analysis 105

According to (7), the reconstruction (resynthesis) of the analyzed signal
can be obtained by filterbank summation, as depicted in figure 5. The recon-
struction can be interpreted as a bank of oscillators driven by the analysis data.
The two stages represented in figures 2 and 5, taken as a whole, are often called
the phase vocoder.

ω0Y  (    )m

ωm N−1Y  (        )

0ω

ω
e N−1 n

n
e

y(m)

 j

 j

1/ N w(0)

Figure 5: Reconstruction of a signal from a set of non-overlapping frequency
slices. ω0, . . . , ωN−1 are the central frequencies of the bands of the analysis
channels.

Between the analysis stage of figure 2 and the synthesis stage of figure 5, a
decimation stage can be inserted. Namely, with the rectangular window we can
reduce the intermediate sampling rate down to Fs/R. Of course, in order to do
the filter bank summation of figure 5, an interpolation stage will be needed to
take the sampling rate back to Fs.

For the rectangular window, the window is shifted in time by R samples
after each DFT computation. This temporal shift is technically called hop size.
In the case of the rectangular window, hop sizes smaller than R do not add any
information to the analysis.
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Commonly-used windows

In practice, signal analysis is seldom performed using rectangular windows,
because its frequency response has side lobes that are significantly high thus
potentially inducing erroneous estimations of frequency components. In gen-
eral, there is a tradeoff between the main-lobe width and the side-lobe level that
can be exploited by choosing or designing an appropriate window. Table 4.1
describes concisely the form and features of the most-commonly used analysis
windows.

Window
Name

w(n)
in −R−1

2 ≤ n ≤ R−1
2

Main-lobe Width
(× π

R )
Side-lobe Level
[dB]

Rectangular 1 4 -13.3
Hann 1

2

(

1 + cos
(

2πn
R

))

8 -31.5
Hamming 0.54 + 0.46 cos 2πn

R 8 -42.7
Blackman 0.42 + 0.5 cos 2πn

R +
0.08 cos 4πn

R

12 -58.1

Table 4.1: Characteristics of popular windows.

Each window is characterized by the main-lobe width and the side-lobe
level. The larger the main-lobe width the smaller is the decimation that I can
introduce between the analysis and synthesis stages. This has a consequence in
the choice of the hop size. For instance, using Hann1 or Hamming windows I
have to use at least a hop size equal to R/2 in order to preserve all information
at the analysis stage. Moreover, the larger the main-lobe width, the more dif-
ficult is to separate two frequency components that are close to each other. In
other words, we have a reduction in frequency resolution for windows with a
large main lobe.

The side-lobe level indicates how much a sinusoidal component affects the
DFT bins nearby. This phenomenon, called leakage, can induce an analysis
procedure to detect false spectral peaks, or measurements on actual peaks can
be affected by errors. For a given resolution considered to be acceptable, it is
desirable that the side-lobe level be as small as possible.

The window length is chosen according to the tradeoff between spectral
resolution and temporal resolution governed by the uncertainty principle. The

1The Hann window is often called Hanning window, probably for the same reason that in the
US you may prefer saying “I xerox this document” rather than “I copy this document using a Xerox
copier”.
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STFT analysis is based on the assumption that, within one frame, the signal is
stationary. The more the window is short, the closer the assumption is to truth,
but short windows determine low spectral resolution.

The windows described in this section have a fixed shape. When they are
multiplied by an ideal lowpass impulse response they impose a fixed transition
bandwidth, i.e. a certain frequency space between the passband and the stop-
band. There are other, more versatile windows, that allow to tune their behavior
by means of a parameter. The most widely used of these adjustable windows
is the Kaiser window [58], whose parameter β can be related to the transition
bandwidth.

Zero padding

It is quite common to use a window whose length R is smaller than the
numberN of points used to compute the DFT. In thise way, we have a spectrum
representation on a larger number of points, and the shape of the frequency
response can be understood more easily. Usually, the sequency of R points is
extended by means of N − R zeros, and this operation is called zero padding.
Extending the time response with zeros corresponds to sampling the frequency
response more densely, but it does not introduce any increase in frequency
resolution. In fact, the resolution is only determined by the length and shape of
the effective window, and additional zeros can not change it.

Consider the zero-padded signal

y(n) =
{

x(n) n = 0, . . . , R− 1
0 n = R, . . . , N − 1 . (13)

The DFT is found as

Y (k) =
N−1
∑

n=0

y(n)e
−j2πkn

N =
R−1
∑

n=0

y(n)e
−j2πkn

N =

= ResamplingN (X,R) , (14)

where the notation ResamplingN (X,R) indicates the resampling on N points
of R points of the discrete-time signal X , obtained as DFT(x) = X .

Exercise

Draw the time-domain shape and the frequency response of each of the
windows of table 4.1. Then, using a Rectangular, a Hann, and a Blackman
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window, analyze the signal

x(n) = 0.8 sin (2πf1n/Fs) + sin (2πf2n/Fs) , (15)

where f1 = 0.2Fs and f2 = 0.23Fs, using N = R = 64. See the effects of
halfing and doubling N = R, and observe the presence of leakage. Finally,
repeat the exercise with R = 32, and N = 64 or N = 128.

4.1.4 Representations
One of the most useful visual representations of audio signals is the sono-

gram, also called spectrogram, that is a color- or grey-scale rendition of the
magnitude of the STFT, on a 2D plane where time and frequency are the ortho-
gonal axes.

Figure 6 shows the sonogram of the signal analyzed in exercise 4.1.3. Time
is on the horizontal axis and frequency is on the vertical axis. Another useful
visualization is the 3D plot, also called waterfall plot in sound analysis pro-
grams, when the analysis frames are presented one after the other from back
to front. Figure 7 shows the 3D representation of the same signal analysis of
figure 6.

Figure 6: Sonogram representation of the signal (15). N = 128 and R = 64.

The Matlab signal processing toolbox, as well as the octave-forge pro-
ject (see the appendix B), provide a function specgram that can be used to
provide plots similar to those of figures 6 and 7. Specifically, these figures have
been obtained by means of the octave script:
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Figure 7: 3D STFT representation of the signal (15). N = 128 and R = 64.

Fs = 44100;
f1 = 0.2 * Fs;
f2 = 0.23 * Fs;
NMAX = 4096;
n = [1:NMAX];
x1 = 0.8 * sin (2*pi*f1/Fs*n);
x2 = sin (2*pi*f2/Fs*n);
y = x1 + x2;
N = 128;
R = 64;
[S,f,t] = specgram(y, N, Fs, hanning(R), R/2);
S = abs(S(2:N/2,:)); # magnitude in Nyquist range
S = S/max(S(:)); # normalize magnitude so

# that max is 0 dB.
imagesc(flipud(log(S))); # display in log scale
mesh(t,f(1:length(f)-1),log(S));
gset view 35, 65, 1, 1.2
xlabel(’time [seconds]’);
ylabel(’frequency [Hz]’);
zlabel(’[dB]’);
replot;

In this example, the DFT length has been set to N = 128, the analysis
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window is a Hann window with length R = 64, and the hop size to R/2. If the
window length is doubled, the two components separate much more clearly, as
shown in figure 8.

Figure 8: Sonogram representation of the signal (15). N = 128 and R = 128.

4.1.5 Accurate partial estimation
If the signal under analysis has a sinusoidal component that stays in between

two adjacent DFT bins, the magnitude spectrum is similar to that reported in
figure 9. We notice the two following phenomena:

• The sinusoidal component “leaks” some of its energy into bins that stay
within a neighborhood of its theoretical position;

• It is difficult to determine the exact frequency of the component from
visual inspection.

To overcome the latter problem, we describe two techniques: parabolic inter-
polation and phase following.

Parabolic interpolation

Any kind of interpolation can be applied to estimate the value and position
of a frequency peak in the magnitude spectrum of a signal. Degree-two poly-
nomial interpolation, i.e. parabolic interpolation, is particularly convenient as
it uses only three bins of the magnitude spectrum.
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Figure 9: DFT image (magnitude) of a sinusoidal component.

Taken three adjacent bins of the magnitude DFT, we assign them the co-
ordinates (x0, y0), (x1, y1), and (x2, y2). Then, we simply apply the Lagrange
interpolation formula

y =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
y0 +

(x− x0)(x− x2)
(x1 − x0)(x1 − x2)

y1 +

+
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
y2 . (16)

Since

x1 − x0 = x2 − x1 = ∆f =
Fs
N

(17)

is the frequency quantum, any point in the parabola has coordinates (x, y) re-
lated by

y = [(x− x1)(x− x2)y0 − 0.5(x− x0)(x− x2)y1 +

+ (x− x0)(x− x1)y2]
1

2∆f2 . (18)

From this expression, it is straightforward to find the peak as the point where
the derivative vanishes: y′ = dy

dx = 0.
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Phase following

Let us assume that the signal to be analyzed can be expressed as a sum of
sinusoids with time-varying amplitude and frequency (sinusoidal model, see
sec. 5.1.1):

y(t) =
I
∑

i=1

Ai(t)ejφi(t) , (19)

with

φi(t) =
∫ t

−∞
ωi(τ)dτ , (20)

being ωi the frequency of the i-th partial.
The k-th bin of the m-th frame of the STFT gives

Ym(k) =
N−1
∑

n=0

w(m− n)Ai(n)ejφi(n)e−j
2π
N kn (21)

= e−j
2π
N km

m
∑

r=m−N+1

w(r)Ai(m− r)ejφi(m−r)ej
2π
N kr . (22)

In order to proceed with the accurate partial frequency estimation, we have
to make a

Assumption 1 Frequency and amplitude of the i-th component are constant
within a STFT frame:

φi(m− r) = φi(m)− rωi (23)
A(m− r) = A(m) (24)

We see that

Ym(k) = e−j
2π
N kmA(m)ejφ(m)W (

2π
N
k − ωi(m)) , (25)

where A(m)ejφ(m) contain the amplitude and instantaneous phase of the si-
nusoid that falls within the k-th bin, and W ( 2π

N k − ωi(m)) is the window
transform. If we have access to the instantaneous phase, we can deduce the
instantaneous frequency by back difference between two adjacent frames. This
can be done as long as we deal with the problem of phase unwrapping, due to
the fact that the phase is known modulo 2π.

It can be shown [52, pag. 287–288] that phase unwrapping can be unam-
biguous under
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Assumption 2 Said H the hop size and 2π
N the separation between adjacent

bins, let
2π
N
H < π . (26)

The assumption 2 holds for rectangular windows and imposes H < N
2 .

For Hann or Hamming windows the hop size must be such that H < N
4 (75%

overlap). Therefore the frame rate to be used for accurate partial estimation is
higher than the minimal frame rate needed for perfect reconstruction.

4.2 Linear predictive coding (with Federico Fontana)

The analysis/synthesis method known as linear predictive coding (LPC)
was introduced in the sixties as an efficient and effective mean to achieve
synthetic speech and speech signal communication [92]. The efficiency of the
method is due to the speed of the analysis algorithm and to the low bandwidth
required for the encoded signals. The effectiveness is related to the intelligibil-
ity of the decoded vocal signal.

The LPC implements a type of vocoder [10], which is an analysis/synthesis
scheme where the spectrum of a source signal is weighted by the spectral com-
ponents of the target signal that is being analyzed. The phase vocoder of fig-
ures 2 and 5 is a special kind of vocoder where amplitude and phase informa-
tion of the analysis channels is retained and can be used as weights for complex
sinusoids in the synthesis stage.

In the standard formulation of LPC, the source signals are either a white
noise or a pulse train, thus resembling voiced or unvoiced excitations of the
vocal tract, respectively.

The basic assumption behind LPC is the correlation between the n-th sample
and the P previous samples of the target signal. Namely, the n-th signal sample
is represented as a linear combination of the previous P samples, plus a resid-
ual representing the prediction error:

x(n) = −a1x(n− 1)− a2x(n− 2)− · · · − aPx(n− P ) + e(n) . (27)

Equation (27) is an autoregressive formulation of the target signal, and the
analysis problem is equivalent to the identification of the coefficients a1, . . . aP
of an allpole filter. If we try to minimize the error in a mean square sense, the
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problem translates into a set of P equations

P
∑

k=1

ak
∑

n

x(n− k)x(n− i) = −
∑

n

x(n)x(n− i) , (28)

or
P
∑

k=1

akR(i− k) = −R(i) , i = 1, . . . , P , (29)

where
R(i)

4
=
∑

n

x(n)x(n− i) (30)

is the signal autocorrelation.
In the z domain, equation (27) reduces to

E(z) = A(z)X(z) (31)

where A(z) is the polynomial with coefficients a1 . . . aP . In the case of voice
signal analysis, the filter 1/A(z) is called the allpole formant filter because, if
the proper order P is chosen, its magnitude frequency response follows the en-
velope of the signal spectrum, with its broad resonances called formants. The
filter A(z) is called the inverse formant filter because it extracts from the voice
signal a residual resembling the vocal tract excitation. A(z) is also called a
whitening filter because it produces a residual having a flat spectrum. However,
we distinguish between two kinds of residuals, both having a flat spectrum: the
pulse train and the white noise, the first being the idealized vocal-fold excita-
tion for voiced speech, the second being the idealized excitation for unvoiced
speech. In reality, the residual is neither one of the two idealized excitations. At
the resynthesis stage the choice is either to use an encoded residual, possibly
choosing from a code book of templates, or to choose one of the two idealized
excitations according to a voiced/unvoiced decision made by the analysis stage.

When the target signal is periodic (voiced speech), a pitch detector can be
added to the analysis stage, so that the resynthesis can be driven by periodic
replicas of a basic pulse, with the correct inter-pulse period. Several techniques
are available for pitch detection, either using the residual or the target sig-
nal [53]. Although not particularly efficient, one possibility is to do a Fourier
analysis of the residual and estimate the fundamental frequency by the tech-
niques of section 4.1.5.

Summarizing, the information extracted in a frame by the analysis stage
are:
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• the prediction coefficients a1, . . . , aP ;

• the residual e;

• pitch of the excitation residual;

• voiced/unvoiced information;

• signal energy (RMS amplitude).

These parameters, possibly modified, are used in the resynthesis, as explained
in section 5.1.3.

The equations (29) are solved via the well-known Levinson-Durbin recur-
sion [53], which provides the reflection coefficients of the lattice realization of
the filter 1/A(z). As we mentioned in section 2.2.4, the reflection coefficients
are related to a piecewise cylindrical modelization of the vocal tract. The LPC
analysis proceeds by frames lasting a few milliseconds. In each frame the sig-
nal is assumed to be stationary and a new estimation of the coefficients is made.
For the human vocal tract, P = 12 is a good estimate of the degrees of freedom
that are needed to represent most articulations.

Besides its applications in voice coding and transformation, LPC can be
useful whenever it is necessary to represent the shape of a stationary spectrum.
Spectral envelope extraction by LPC analysis can be accurate as long as the
filter order is carefully chosen, as depicted in figure 10. The accuracy depends
on the kind of signal that is being analyzed, as the allpole nature of the LPC
filter gives a spectral envelope with rather sharp peaks.
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Figure 10: DFT image (magnitude) of a target signal and frequency response
of allpole filters, identified via LPC with three different values of the order P .



Chapter 5

Sound Modelling

5.1 Spectral modelling

5.1.1 The sinusoidal model
A sound is expressed according to the sinusoidal model if it has the form

y(t) =
I
∑

i=1

Ai(t)ejφi(t) , (1)

where φi(t) =
∫ t

−∞ ωi(τ)dτ , and Ai(t) and ωi(t) are the i-th sinusoidal-
component instantaneous magnitude and frequency, respectively. In practice,
we consider discrete-time real signals. Therefore, we can write

y(n) =
I
∑

i=1

Ai(n) cos (φi(n)) , (2)

with

φi(n) =
∫ nT

0

ωi(τ)dτ + φ0,i . (3)

In principle, if I is arbitrarily high, any sound can be expressed according
to the sinusoidal model. This principle states the generality of the additive syn-
thesis approach. Actually, the noise components would require a multitude of
sinusoids, and it is therefore convenient to treat them separately by introduction

117
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of a “stochastic” part e(n):

y(n) =
I
∑

i=0

Ai(n) cos (φi(n))

︸ ︷︷ ︸

Deterministic Part

+ e(n)
︸︷︷︸

Stochastic Part

. (4)

The separation of the stochastic part from the deterministic part can be done
by means of the Short-Time Fourier Transform using the scheme of figure 1.
Here, we rely on the fact that the STFT analysis retains the phases of the si-
nusoidal components, thus allowing a reconstruction that preserves the wave
shape [94]. In this way, the deterministic part can be subtracted from the ori-
ginal signal to give the stochastic residual. One popular implementation of the
scheme in figure 1 is found in the software sms, an acronym for spectral mod-
eling synthesis1 [5].

Peak 
Detection
and 
Continuation

FFT

Additive
Synthesis

Spectral 
Fitting

sound

Analysis
Window

phase

magnitude
Magnitude trajectory

Frequency trajectory

Phase trajectory

Deterministic
  ComponentSmoothing window

residual

Filter Noise
LevelCoefficients

Figure 1: Separation of the sinusoidal components from a stochastic residual.

1The executable of sms is freely downloadable from http://www.iua.upf.es/˜sms/

http://www.iua.upf.es/~sms/
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Peak detection and continuation

In order to separate the sinusoidal part from the residual we have to de-
tect and track the most prominent frequency peaks, as they are indicators of
strong sinusoidal components. One strategy is to draw “guides” across the
STFT frames [94], in such a way that prolongation by continuity fills local
holes that may occur in peak trajectories. If a guide detects missing evidence
of the supporting peak for more than a certain number of frames, the guide is
killed. Similarly, we start new guides as long as we detect a persistent peak.
Therefore, the generation and destruction of peaks is governed by hysteresis
(see figure 2).

Birth

Death

Figure 2: Hysteretic procedure for guide activation and destruction.

In order to better capture the deterministic structure during transients, it is
better to run the analysis backward in time, since in most cases a sharp attack
is followed by a stable release, and peak tracking is more effective when stable
states are reached gradually and suddenly released, rather than vice versa.

If we can rely on the assumption of harmonicity of the analyzed sounds, the
partial tracking algorithm can be “encouraged” by superposition of a harmonic
comb onto the spectral profile.

For a good separation, frequencies and phases must be determined accur-
ately, following the procedures described in section 4.1.5. Moreover, for the
purpose of smooth resynthesis, the amplitudes of partials should be interpol-
ated between frames, the most common choice being linear interpolation. Fre-
quencies and phases should be interpolated as well, but one should be careful to
ensure that the frequency track is always the derivative of the phase track. Since
a third-order polynomial is uniquely determined by four degrees of freedom,
by using a cubic interpolating polynomial one may impose the instantaneous
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phases and frequencies between any couple of frames.

Resynthesis of the sinusoidal components

In the resynthesis stage, the sinusoidal components can be generated by
any of the methods described in section 5.2, namely the digital oscillator in
wavetable or recursive form, or the FFT-based technique. The latter will be
more convenient when the sound has many sinusoidal components.

The DTFT of a windowed sinusoidal signal is the transform of the window,
centered on the frequency of the sinusoid, and multiplied by a complex number
whose magnitude and phase are the magnitude and phase of the sine wave.
A signal that is the weighted sum of sinusoids gives rise, in the frequency
domain, to a weighted sum of window transforms centered around different
central frequencies.

If the window has a

A. sufficiently-high sidelobe attenuation,

we are allowed to consider only a restricted neighborhood of the window trans-
form peak. The sound resynthesis can be achieved by anti-transformation of a
series of STFT frames, and by the procedure of overlap and add applied to the
time-domain frames. The signal reconstruction is free of artifacts if

B. the shifted copies of the window overlap and add to give a constant.

If w is the window that fulfills property (A), and ∆ is the window that
fulfills property (B), we can use w for the analysis and multiply the sequence
by ∆/w after the inverse transformation [35]. Using two windows gives good
flexibility in satisfying both the requirements (A) and (B). A particularly simple
and effective window that satisfies property (B) is the triangular window.

This FFT-based synthesis (or FFT−1 synthesis) is convenient when the si-
nusoidal model gives many sine components, because its complexity is largely
due to the cost of FFT, which is independent on the number of components. It
is quite easy to introduce noise components with arbitrary frequency distribu-
tion just by adding complex numbers with the desired magnitude (and arbitrary
phase) in the frequency domain.

Extraction of the residual

The extraction of a broad-spectrum noise residual could be performed either
in the frequency domain or, as proposed in figure 1, directly by subtraction in
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the time domain. This is possible because the STFT analysis preserves the in-
formation on phase, thus allowing a waveshape preservation. The stochastic
component can be itself represented on a frame-by-frame basis, but the cor-
responding frame can be smaller than the analysis frame so that transients are
captured more accurately.

Residual spectral fitting

The stochastic component is modeled as broad-band noise filtered by a
linear coloring block. Such decomposition corresponds to a subtractive syn-
thesis model [78], whose parameters may be obtained by LPC analysis (see
section 4.2). However, if the purpose of the sines-plus-noise decomposition is
that of sound modification, it is more convenient to model the stochastic part
in the frequency domain. The magnitude spectrum of the residual can be ap-
proximated by means of a piecewise-linear function, that is described by the
coordinates of the joints. The time-domain resynthesis can be operated in the
time domain by inverse FFT, after having imposed the desired magnitude pro-
file and a random phase profile.

Sound modifications

The sinusoidal model is interesting because it allows to apply musical trans-
formations to sounds that are taken from actual recordings. The separation of
the stochastic residual from the sinusoidal part allows a separate treatment of
the two components.

Examples of musical transformations are:

Coloring: The spectral profile can be changed at will;

Emphasizing: The stochastic or the sinusoidal components can be exagger-
ated;

Time Stretching: the temporal extension of the sound can be altered without
pitch modifications and with limited artifacts;

Pitch Shifting: The pitch can be transposed without changing the sound length
and with limited artifacts;

Morphing: for instance,

• The spectral envelope of a sound can be imposed to another sound;



122 D. Rocchesso: Sound Processing

• A residual from a different sound can be used for resynthesis.

Figure 3 shows the framework for performing these musical modifications.

Musical
Transformations

Musical
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Synthesis

Subtractive
Synthesis

Frequency

Magnitude

Intensity

Coefficients

Noise

Magnitude

Frequency

Spectral Shape Stochastic

Deterministic (sinusoidal)

Sound
Control

Part

Part

Figure 3: Framework for performing music transformations.

5.1.2 Sines + Noise + Transients

The fundamental assumption behind the sinusoids + noise model is that
sound signals can are composed of slowly-varying sinusoids and quasi-stationary
broadband noises. This view is quite schematic, as it neglects the most interest-
ing part of sound events: transients. Sound modifications would be much more
easily achieved if transients could be taken apart and treated separately. For
instance, in most musical instruments extending the duration of a note does
not have any effect on the quality of the attack, which should be maintained
unaltered in a time-stretching task.

For these reasons, a new sines + noise + transients (SNT) framework for
sound analysis was established [108]. The key idea of practical transient ex-
traction comes from the observation that, as sinusoidal signals in the time do-
main are mapped to well-localized spikes in the frequency domain, by duality
short pulses in the time domain would correspond to sine-like curves in the
frequency domain. Therefore, the sinusoidal model can be applied in the fre-
quency domain to represent these sinusoidal components. The scheme of the
SNT decomposition is represented in figure 4.

The DCT block in figure 4 represents the operation of Discrete Cosine
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Figure 4: Decomposition of a sound into sines + noise + transients.

Transform, defined as

C(k) = α
N−1
∑

n=0

x(n) cos
(

(2n+ 1)kπ
2N

)

. (5)

The DCT has the property that an impulse is transformed into a cosine, and
a cluster of impulses becomes a superposition of cosines. Therefore, in the
transformed domain it makes sense to use the sinusoidal model and to extract
a second residue that is given by transient components.

5.1.3 LPC Modelling
As explained in section 4.2, the Linear Predictive Coding can be used to

model piecewise stationary spectra. The LPC synthesis proceeds according to
the feedforward scheme of figure 5. Essentially, it is a subtractive synthesis
algorithm where a spectrally-rich excitation signal is filtered by an allpole fil-
ter. The excitation signal can be the residual e that comes directly from the
analysis, or it is selected from a code book. Alternatively, we can make use of
voiced/unvoiced information to generate an excitation signal that can either be
a random noise or a pulse train. In the latter case, the pulse repetition period is
derived from pitch information, available as a parameter.

Between the analysis and synthesis stages, several modifications are pos-
sible:

• pitch shifting, obtained by modification of the pitch parameter;

• time stretching, obtained by stretching the window where the signal is
assumed to be stationary;

• data reduction, by model order reduction or residual coding.
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Figure 5: LPC Synthesis

5.2 Time-domain models
While the description of sound is more meaningful if done in the spectral

domain, in many applications it is convenient to approach the sound synthesis
directly in the time domain.

5.2.1 The Digital Oscillator
We have seen in section 5.1.1 how a complex sound made of several sinus-

oidal partials is conveniently synthesized by the FFT−1 method. If the sinus-
oidal components are not too many, it may be convenient to synthesize each
partial by means of a digital oscillator.

From the obvious identity

ejω0(n+1) = ejω0ejω0n , (6)

said ejω0n = xR(n) + jxI(n), it is evident that the oscillator can be imple-
mented by one complex multiplication, i.e., 4 real multiplications, at each time
step:

xR(n+ 1) = cosω0xR(n)− sinω0xI(n) (7)
xI(n+ 1) = sinω0xR(n) + cosω0xI(n) . (8)

The initial amplitude and phase can be imposed by scaling the initial phasor
ejω00 and adding a phase shift to its exponent. It is easy to show2 that the
calculation of xR(n+ 1) can also be performed as

xR(n+ 1) = 2 cosω0xR(n)− xR(n− 1) , (9)
2The reader is invited to derive the difference equation 9
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or, in other words, as the free response of the filter

HR(z) =
1

1− 2 cosω0z−1 + z−2
=

1
(

1− e−jω0z−1
)(

1− ejω0z−1
) . (10)

The poles of the filter (10) lay exactly on the unit circumference, at the limit of
the stability region. Therefore, after the filter has received an initial excitation,
it keeps ringing forever.

If we call xR1 and xR2 the two state variables containing the previous
samples of the output variable xR, an initial phase φ0 can be imposed by set-
ting3

xR1 = sin (φ0 − ω0) (11)
xR2 = sin (φ0 − 2ω0) . (12)

The digital oscillator is particularly convenient to perform sound synthesis
on general-purpose processors, where floating-point arithmetics is available at
no additional cost. However, this method for generating sinusoids has two main
drawbacks:

• Updating the parameter (i.e., the oscillation frequency) requires com-
puting a cosine function. This is a problem for audio rate modulations,
where to compute a modulated sine we need to compute a cosine at each
time sample.

• Changing the oscillation frequency changes the sinusoid amplitude as
well. Therefore, some amplitude control logic is needed.

5.2.2 The Wavetable Oscillator
The most classic and versatile approach to the synthesis of periodic wave-

forms (sinusoids included) is the cyclic reading of a table where a waveform
period is pre-stored. If the waveform to be synthesized is a sinusoid, symmetry
considerations allow to store only one fourth of the period and play with the
index arithmetic to reconstruct the whole period.

Call buf[] the buffer that contains the waveform period, or wavetable.
The wavetable oscillator works by circularly accessing the wavetable at mul-
tiples of an increment I and reading the wavetable content at that position.

3The reader can verify, using formulas (29–32) of appendix A, that xR(0) = sinφ0, given
xR(−1) = xR1 and xR(−2) = xR2.
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If B is the buffer length, and f0 is the frequency that we want to generate
at the sample rate Fs, the increment has to be set to

I =
Bf0

Fs
. (13)

It is easy to realize that the reading pointer accesses the wavetable at indexes
that are, in general, fractional. Therefore, some form of interpolation has to
be used. The following strategies have an increasing degree of accuracy (and
complexity):

Truncation: buf[bindexc]

Rounding: buf[bindex + 0.5c]

Linear Interpolation: buf[bindexc] (index− bindexc) +
buf[bindexc] (1− index + bindexc)

Higher-order polynomial interpolation

“Multirate” interpolation: the problem is re-casted as a sampling-rate con-
version.

By increasing the complexity of interpolation it is possible, given a certain
level of acceptable digital noise, to decrease the wavetable size [41]. The linear
interpolation is particularly attractive for implementations in custom or special-
ized hardware (see section B.5.1 of the appendix B). The most-significant bits
of the index can be used to access the buffer locations, and the least-significant
bits are used to approximate the quantity (index− bindexc) in the computa-
tion of the interpolation.

Sampling-rate conversion

The problem of designing a wavetable oscillator can be re-casted as a prob-
lem of sampling-rate conversion, i.e., transforming a signal sampled at rate Fs,1
into its copy re-sampled at rate Fs,2. If Fs,2

Fs,1
= L

M , with L and M irreducible
integers, we can re-sample by:

1. Up-sampling by a factor L

2. Low-pass filtering

3. Down-sampling by a factor M .
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Figure 6 represents these three operations as a cascade of linear (but non-
time-invariant) blocks, where the upward arrow denots upsampling (or introdu-
cing zeros between non-zero samples) and the downward arrow denotes down-
sampling (or decimating).

L Mh(n)
x(n) x’ y’ y(m)

F F  L F  L F  L/Ms s ss

Figure 6: Block decomposition of re-sampling

Figure 7 shows the spectral effects of the various stages of resampling when
L/M = 3/2.
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Figure 7: Example of re-sampling with L/M = 3/2

If the interpolation is realized by sampling-rate conversion the problem re-
duces to designing a good lowpass filter. However, since the resampling ratio
L/M changes for each different pitch that is obtained from the same wavetable,
the characteristics of the lowpass filter have to be made pitch-dependent. Al-
ternatively, a set of filters can be designed to accomodate all possible pitches,
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and the appropriate coefficient set is selected at run time [55].

5.2.3 Wavetable sampling synthesis
The wavetable sampling synthesis is the extension of the wavetable oscil-

lator to

• Non-sinusoidal waveforms;

• Wavetables storing several periods.

Usually, this kind of sound synthesis is based on the following tricks:

• The attack transient is reproduced “faithfully” by straight sampling;

• A selection of periods of the central part of the sound (sustain) is stored
in a buffer and cyclically read (loop). The increment is selected in order
to produce the desired pitch;

• The keyboard4 is divided into segments of contiguous notes (splits).
Each split uses transpositions of the same sample;

• Different dynamic levels are obtained by

– Sampling at different dynamic levels and obtaining the intermedi-
ate samples by interpolation, or

– Sampling fortissimo notes and obtaining lower intensities by dy-
namic filtering (usually lowpass).

In wavetable sampling synthesis, the control signals are extremely import-
ant to achieve a natural sound behavior. The control signals are tied to the
evolution of the musical gesture, thus evolving much more slowly than audio
signals. Therefore, a control rate can be used to generate signals for

• Temporal envelopes (e.g., Attack - Decay - Sustain - Release);

• Low-Frequency Oscillators (LFO) for vibrato and tremolo;

• Dynamic control of filters.

4The keyboard metaphor is used very often even for sound timbres that do not come from
keyboard instruments.
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5.2.4 Granular synthesis (with Giovanni De Poli)

Short wavetables can be read at different speeds and the resulting sound
grains can be concatenated and overlapped in time. This time-domain approach
to sound synthesis is called granular synthesis. Granular synthesis starts from
the idea of analyzing sounds in the time domain by representing them as se-
quences of short elements called “grains”. The parameters of this technique are
the waveform of the grain gk(·), its temporal location lk and amplitude ak

sg(n) =
∑

k

akgk(n− lk) . (14)

A complex and dynamic acoustic event can be constructed starting from a large
quantity of grains. The features of the grains and their temporal locations de-
termine the sound timbre. We can see it as being similar to cinema, where a
rapid sequence of static images gives the impression of objects in movement.
The initial idea of granular synthesis dates back to Gabor [26], while in music
it arises from early experiences of tape electronic music. The choice of para-
meters can be via various criteria driven by interpretation models. In general,
granular synthesis is not a single synthesis model but a way of realizing many
different models using waveforms that are locally defined. The choice of the
interpretation model implies operational processes that may affect the sonic
material in various ways.

The most important and classic type of granular synthesis (asynchronous
granular synthesis) distributes grains irregularly on the time-frequency plane
in form of clouds [77]. The grain waveform is

gk(i) = wd(i) cos(2πfkTsi) , (15)

where wd(i) is a window of length d samples, that controls the time span
and the spectral bandwidth around fk. For example, randomly scattered grains
within a mask, which delimits a particular frequency/amplitude/time region,
result in a sound cloud or musical texture that varies over time. The dens-
ity of the grains within the mask can be controlled. As a result, articulated
sounds cane be modeled and, wherever there is no interest in controlling the
microstructure exactly, problems involving the detailed control of the temporal
characteristics of the grains can be avoided. Another peculiarity of granular
synthesis is that it eases the design of sound events as parts of a larger tem-
poral architecture. For composers, this means a unification of compositional
metaphors on different scales and, as a consequence, the control over a time
continuum ranging from the milliseconds to the tens of seconds. There are
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psychoacoustic effects that can be easily experimented by using this algorithm,
for example crumbling effects and waveform fusions, which have the corres-
ponding counterpart in the effects of separation and fusion of tones.

5.3 Nonlinear models

5.3.1 Frequency and phase modulation
The most popular non-linear synthesis technique is certainly frequency

modulation (FM). In electrical communications, FM has been used for dec-
ades, but its use as a sound synthesis algorithm in the discrete-time domain is
due to John Chowning [23]. Essentially, Chowning was doing experiments on
different extents of vibrato applied to simple oscillators, when he realized that
fast vibrato rates produce dramatic timbral changes. Therefore, modulating the
frequency of an oscillator was enough to obtain complex audio spectra.

Chowning’s FM model is:

x(n) = A sin (ωcn+ I sin (ωmn)) = A sin (ωcn+ φ(n)) , (16)

where ωc is called the carrier frequency, ωm is called the modulation fre-
quency, and I is the modulation index. Strictly speaking, equation (16) rep-
resents a phase modulation because it is the instantaneous phase that is driven
by the modulator. However, when both the modulator and the carrier are si-
nusoidal, there is no substantial difference between phase modulation and fre-
quency modulation. The instantaneous frequency of (16) is

ω(n) = ωc − Iωm cos (ωmn) , (17)

or, in Hertz,
f(n) = fc − Ifm cos (2πfmn) . (18)

Figure 8 shows a pd patch implementing the simple FM algorithm. The
modulation frequency is used to control an oscillator directly, while the car-
rier frequency controls a phasor˜ unit generator. This block generates the
cyclical phase ramp that, when given as index of a cosinusoidal table, produces
the same result as the osc unit generator. However, this decomposition of the
oscillator into two parts (i.e., the phase generation and the table read) allows to
sum the output coming from the modulator directly to the phase of the carrier.

Given the carrier and modulation frequencies, and the modulation index, it
is possible to predict the distribution of components in the frequency spectrum
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Figure 8: pd patch for phase modulation. Adapted from a help patch of the pd
distribution.

of the resulting sound. This analysis is based on the trigonometric identity [1]

x(n) = A sin (ωcn+ I sin (ωmn))

= A











J0(I) sin (ωcn)
︸ ︷︷ ︸
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∞
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Jk(I)
[

sin ((ωc + kωm)n) + (−1)k sin ((ωc − kωm)n)
]

︸ ︷︷ ︸

side frequencies



























,

where Jk(I) is the k-th order Bessel function of the first kind. These Bessel
functions are plotted in figure 9 for several values of k (number of side fre-
quency) and I (modulation index).

Therefore, the effect of phase modulation is to introduce side compon-
ents that are shifted in frequency from the fundamental by multiples of ωm
and whose amplitude is governed by Jk(I). Generally speaking, the larger the
modulation index, the wider is the sound bandwidth. Since the number of side
components that are stronger than one hundredth of the carrier magnitude is
approximately

M = I + 0.24I0.27 , (20)
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Figure 9: Bessel functions of the first kind

the bandwidth is approximately

BW = 2
(

I + 0.24I0.27
)

ωm ≈ 2Iωm . (21)

If the ratio ωc/ωm is rational the resulting spectrum is harmonic, and the
partials are multiple of the fundamental frequency

ω0 =
ωc
N1

=
ωm
N2

, (22)

where
N1

N2
=

ωc
ωm

,with N1, N2 irreducible couple . (23)

For instance, if N2 = 1, all the harmonics are present, and if N2 = 2 only the
odd harmonics are present.

When calculating the spectral components, some of the partials on the left
of the carrier may assume a negative frequency. Since sin (−θ) = − sin θ =
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sin (θ − π), these components have to be flipped onto the positive axis and
summed (magnitude and phase) with the components possibly already present
at those frequencies.

Complex carrier

We can have a bank of oscillators sharing a single modulator or, equival-
ently, a non-sinusoidal carrier. In this case, each sinusoidal component of the
complex carrier is enriched by side components as if it were the carrier of a
simple FM couple.

One application of FM with a complex carrier is the construction of vowel-
like spectra, as it was demonstrated by Chowning in the eighties. Each partial of
the carrier may be associated with the center of one formant, i.e. a prominent
lobe in the envelope of the magnitude spectrum. For a given person’s voice,
each vowel is characterised by a certain frequency distribution of formants.

Exercise

The reader is invited to implement an FM instrument (in, e.g., Octave or
pd) that reproduces the vowel /a/, whose formants are found at 700, 1200,
and 2500 Hz. How can a vibrato be implemented in such a way that the formant
position remains fixed?

Complex modulator

The modulating waveform can be non-sinusoidal. In this case the analysis
can be quite complicated. For instance, a modulator with two partials ω1 and
ω2, acting on a sinusoidal carrier, gives rise to the expansion

x(n) = A
∑

k

∑

m

Jk(I1)Jm(I2) sin ((ωc + kω1 +mω2)n) . (24)

Partials are found at the positions |ωc± kω1±mω2| . If ωM = MCD(ω1, ω2),
the spectrum has partials at |ωc±kωM |. For instance, a carrier fc = 700Hz and
a modulator with partials at f1 = 200Hz and f1 = 300Hz, produce a harmonic
spectrum with fundamental at 100Hz. The advantage of using complex mod-
ulators in this case is that the spectral envelope can be controlled with more
degrees of freedom.
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Feedback FM

A sinusoidal oscillator can be used to phase-modulate itself. This is a feed-
back mechanism that, with a unit-sample feedback delay, can be expressed as

x(n) = sin (ωcn+ βx(n− 1)) , (25)

where β is the feedback modulation index. The trigonometric expansion

x(n) =
∑

k

2
kβ
Jk(kβ) sin (kωcn) (26)

holds for the output signal. By a gradual increase of β we can gradually trans-
form a pure sinusoidal tone into a sawtooth wave [78]. If the feedback delay is
longer than one sample we can easily produce routes to chaotic behaviors as β
is increased [12, 15].

FM with Amplitude Modulation

By introducing a certain degree of amplitude modulation we can achieve
a more compact distribution of partials around the modulating frequency. In
particular, we can use the expansion5 [74]

eI cos (ωmn) sin (ωcn+ I sin (ωmn)) = sin (ωcn) + (27)

+
∞
∑

k=1

Ik

k
sin ((ωc + kωm)n) ,

to produce a sequence of partials that fade out as 1/k in frequency, starting
from the carrier. Figure 10 shows the magnitude spectrum of the sound pro-
duced by the mixed amplitude/frequency modulation (28) with carrier fre-
quency at 3000Hz, modulator at 1500Hz, modulation index I = 0.2, and
sample rate Fs = 22100Hz.

Discussion

The synthesis by frequency modulation was very popular in the eighties,
especially because it was implemented in the most successful synthesizer of all

5The reader is invited to verify the expansion (28) using an octave script with wm =
100; wc = 200; I = 0.2; n = [1:4096]; y1 = exp(I*cos(wm*n)) .*
sin(wc*n + I*sin(wm*n));
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Figure 10: Spectrum of a sound produced by amplitude/frequency modulation
as in (28).

times: the Yamaha DX7. At that time, obtaining complex time-varying spectra
with a few multiplies and adds was a major achievement. There was a theory
that allowed to predict the spectra given the parameter, and the bandwidth of
FM sounds could be controlled smoothly by means of the modulation index.
However, it proved difficult to obtain FM patches starting from the analysis of
real sounds, so that the most successful reproductions have been based on intu-
ition and multiple trials. Some of the parameters, such as the carrier/modulator
frequency ratio) are too critical and non-intuitive. Namely, little changes in
a modulator frequency produce dramatic changes in timbre. The modulation
index itself, despite displaying a global intuitive behavior, is related to each
single partial amplitude by means of exotic functions that have no relationship
with the human hearing system.

5.3.2 Nonlinear distortion

The sound synthesis by nonlinear distortion (NLD), or waveshaping [8], is
conceptually very simple: the oscillator output is used as argument of a non-
linear function. In the discrete-time digital domain, the nonlinear function is
stored in a table, and the oscillator output is used as index to access the table.

The interesting thing about NLD is that there is a theory that allows to
design the distorting table given certain specifications of the desired spectrum.
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If the oscillator is sinusoidal, we can formulate NLD as

x(n) = A cos (ω0n) (28)
y(n) = F (x(n)) . (29)

For the nonlinear function, we use Chebyshev polynomials [1]. The degree-n
Chebyshev polynomial is defined by the recursive relation:

T0(x) = 1
T1(x) = x

Tn(x) = 2xTn−1(x)− Tn−2(x) , (30)

and it has the property
Tn(cos θ) = cosnθ . (31)

In virtue of property (31), if the nonlinear distorting function is a degree-m
Chebyshev polynomial, the output y, obtained by using a sinusoidal oscillator
x(n) = cosω0n, is y(n) = cos (mω0n), i.e., the m-th harmonic of x.

In order to produce the spectrum

y(n) =
∑

k

hk cos (kω0n) , (32)

it is sufficient to use the linear composition of Chebyshev functions

F (x) =
∑

k

hkTk(x) (33)

as a nonlinear distorting function.
Varying the oscillator amplitude A, the amount of distortion and the spec-

trum of the output sound are varied as well. However, the overall output amp-
litude does also vary as a side effect, and some form of compensation has to be
introduced if a constant amplitude is desired. This is a clear drawback of NLD
as compared to FM. Time-varying spectral variations can also be introduced by
adding a control signal to the oscillator output x, so that the nonlinear function
is dynamically shifted.

5.4 Physical models
Instead of trying to model the air pressure signal as it appears at the en-

trance of the ear canal, we can simulate the physical behavior of mechan-
ical systems that produce sound as a side effect. If the simulation is accurate
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enough, we would obtain veridical sound dynamics and a detailed control in
terms of physical variables. This allows direct manipulation of the sound syn-
thesis model and direct coupling with gestural controllers.

5.4.1 A physical oscillator
Let us consider a simple mechanical mass-spring-damper system, as de-

picted in figure 11. Let f be an exogenous force that drives the system. It is
a mechanical series connection, as the components share the same x position
and the forces sum up to zero:

fm = fR + fk + f ⇒ mẍ = −Rẋ− kx+ f . (34)

By taking the Laplace transform of (34) (with null initial conditions) we get

R

km
f

x

Figure 11: Mass-Spring-Damper system

the algebraic relationship

s2mX(s) + sRX(s) + kX(s) = F (s) , (35)

and we can derive the transfer function between the forcing term f and the
displacement x:

H(s) =
X(s)
F (s)

=
1/m

s2 + R
ms+ k

m

. (36)

The system oscillates with characteristic frequency Ω0
4
=
√

k/m = 2πf0

and the damping coefficient is ρ
4
= R/m. The quality factor of the system is
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Q = Ω0/ρ and it is the number of cycles that the characteristic oscillation
takes to attenuate by a factor 1/eπ . The damping coefficient ρ is proportional
to the resonance bandwidth. If we use the bilinear transformation to discretize
the transfer function (36) we obtain the discrete-time system described by the
transfer function

H(z) =
1 + 2z−1 + z−2

mh2 +Rh+ k + 2(k −mh2)z−1 + (k +mh2 −Rh)z−2

=
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(37)

Therefore, the damped mechanical oscillator can be simulated by means of a
second-order discrete-time filter. For instance, the realization Direct Form I,
depicted in figure 24 of chapter 2, can be used for this purpose. We notice
that there is a delay-free path that connects the input f with the output x, and
this may represent a problem when connecting several simulations of physical
blocks together.

5.4.2 Coupled oscillators

Let us consider the system obtained by coupling the mass-spring-damper
oscillator with a second mass-spring system (see figure 12):

m1ẍ1 = −k1(x1 − x2)−R(ẋ1 − ẋ2) + f (38)
m2ẍ2 = −k1(x1 − x2)− k2x2 +R(ẋ1 − ẋ2) .

Using the Laplace transform, the system (39) can be converted into

R

k
f

k
mm

1
1

2

x

x x1 2

2

Figure 12: Two coupled mechanical oscillators
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X1(s) =
1

m1s2 +Rs+ k1
[F (s) + (k1 +Rs)X2(s)]

4
= H1(s) [F (s) +G(s)X2(s)]

X2(s) =
1

m2s2 +Rs+ (k1 + k2)
(k1 +Rs)X1(s)

4
= H2(s)G(s)X1(s) , (39)

and this can be represented as a feedback connection of filters, as depicted in
figure 13. This simple example gives us the possibility to discuss a few different

H (s)

G(s)

G(s)

H (s)2

f

E I

x

x2

1

1

R

Figure 13: Block decomposition of the coupled oscillators

ways of looking at physical models. One of these ways is the cellular approach,
where complex linear systems are obtained by connection of mass points (H1

and H2 in our example) and visco-elastic links. Such approach is the basis of
the CORDIS-ANIMA software developed at ACROE in Grenoble [20]. An-
other possibility, is to look for functional blocks in the system decomposition.
In figure 13 we have outlined three functional blocks:

E - exciter: a dynamic physical system that can elicit and sustain an oscilla-
tion by means of an external forcing term;

R - resonator: a dynamic physical system (with small losses) that sustains the
oscillations;
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I - interaction: a system that connects E and R in such a way that the physical
variables at the two ends are compatible.

Although in our example the resonator is a lumped mechanical oscillator, usu-
ally the resonator is a medium where waves propagate. Therefore the reson-
ator is a distributed system, described by partial differential equations (PDE).
Among the different ways of discretizing it, we mention

• Network of elementary coupled oscillators (cellular models);

• Numerical integration of the PDE (for instance, finite difference meth-
ods);

• Discretization of the solutions of the PDE (waveguide models).

The exciter is usually a lumped system described by ordinary differential
equations (ODE) that can be integrated using numerical methods, the bilin-
ear transformation, or the impulse invariance method. Often the exciter exhib-
its strong nonlinearities, such as the pressure-flow characteristic of a clarinet
reed [31].

The interaction block is the place where the different discretizations of the
exciter and resonator blocks talk to each other. Moreover, this is the right place
to insert sound component that are difficult to capture with a physical model,
either because the physics is too complicated or because we just don’t know
to model some phenomena. For instance, where the clarinet reed (exciter) is
connected to the bore (resonator), small flow-dependent noise bursts can be
injected to increase the simulation realism.

In a system such as the one of figure 13, if each block is separately discret-
ized a computability problem may arise when the blocks are connected to each
other. Namely, if the realization of each block has a delay-free input-output
path then a non-computable delay-free loop will appear in the model. There
are techniques to cope with these delay-free loops (implicit solvers) or to elim-
inate them [16].

5.4.3 One-dimensional distributed resonators

Physical systems such as strings or acoustic tubes can be idealized as one-
dimensional distributed resonators, described by a couple of dual variables,
here called Kirchhoff variables, which are functions of time and longitudinal
space. For a string, the Kirchhoff variables are force and velocity. For the
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acoustic tube, these variables are pressure and air flow. In any case, each of
these variables is governed by the wave equation [63]

∂2p(x, t)
∂t2

= c2
∂2p(x, t)
∂x2

, (40)

where c is the wave speed in the medium. The symbol p in (40) can be thought
of as the instantaneous and local air pressure inside a tube.

One of the most popular ways of solving PDEs such as (40) is finite dif-
ferencing, where a grid is constructed in the spatial and time variables, and
derivatives are replaced by linear combinations of the values on this grid. Two
are the main problems to be faced when designing a finite-difference scheme
for a partial differential equation: numerical losses and numerical dispersion.
There is a standard technique [70], [103] for evaluating the performance of a
finite-difference scheme in contrasting these problems: the von Neumann ana-
lysis. Replacing the second derivatives by central second-order differences6,
the explicit updating scheme for the i-th spatial sample of displacement (or
pressure) is:

p(i, n+ 1) = 2
(

1− c2∆t2

∆x2

)

p(i, n)− p(i, n− 1) +

+
c2∆t2

∆x2 [p(i+ 1, n) + p(i− 1, n)] , (41)

where ∆t and ∆x are the time and space grid steps. The von Neumann analysis
assumes that the equation parameters are locally constant and checks the time
evolution of a spatial Fourier transform of (41). In this way a spectral ampli-
fication factor is found whose deviations from unit magnitude and linear phase
give respectively the numerical loss (or amplification) and dispersion errors.
For the scheme (41) it can be shown that a unit-magnitude amplification factor
is ensured as long as the Courant-Friedrichs-Lewy condition [70]

c∆t
∆x
≤ 1 (42)

is satisfied, and that no numerical dispersion is found if equality applies in (42).
A first consequence of (42) is that only strings having length which is an in-
teger number of c∆t are exactly simulated. Moreover, when the string deviates

6The reader is invited to derive (41) by substituting in (40) the first-order spatial derivative with
the difference (p(i + 1, n) − p(i, n))/X , and the first-order time derivative with the difference
(p(i, n+ 1)− p(i, n))/T
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from ideality and higher spatial derivatives appear (physical dispersion), the
simulation becomes always approximate. In these cases, the resort to implicit
schemes can allow the tuning of the discrete algorithm to the amount of phys-
ical dispersion, in such a way that as many partials as possible are reproduced
in the band of interest [22].

It is worth noting that if c in equation (40) is a function of time and space,
the finite difference method retains its validity because it is based on a local (in
time and space) discretization of the wave equation. Another advantage of finite
differencing over other modeling techniques is that the medium is accessible
at all the points of the time-space grid, thus maximizing the possibilities of
interaction with other objects.

As opposed to finite differencing, which discretize the wave equation (see
eqs. (40) and (41)), waveguide models come from discretization of the solution
of the wave equation. The solution to the one-dimensional wave equation (40)
was found by D’Alembert in 1747 in terms of traveling waves 7:

p(x, t) = p+(t− x/c) + p−(t+ x/c) . (43)

Eq. (43) shows that the physical quantity p (e.g. string displacement or acous-
tic pressure) can be expressed as the sum of two wave quantities traveling
in opposite directions. In waveguide models waves are sampled in space and
time in such a way that equality holds in (42). If propagation along a one-
dimensional medium, such as a cylinder, is ideal, i.e. linear, non-dissipative
and non-dispersive, wave propagation is represented in the discrete-time do-
main by a couple of digital delay lines (Fig. 14), which propagates the wave
variables p+ and p−.

Let us consider deviations from ideal propagation due to losses and dis-
persion in the resonator. Usually, these linear effects are lumped and simulated
with a few filters which are cascaded with the delay lines. Losses due to ter-
minations, internal frictions, etc., give rise to gentle low pass filters, whose
parameters can be identified from measurements. Wave dispersion, which is
often due to medium stiffness, is simulated by means of allpass filters whose
effect is to produce a frequency-dependent propagation velocity [83]. The re-
flecting terminations of the resonator (e.g., a guitar bridge) can also modeled as
filters. In virtue of linearity and time invariance, all the filters can be condensed
in a single higher-order filtering block, and all the delays can be connected to
form a single longer delay line. As a result, we would get the recursive comb

7The D’Alembert solution can be derived by inserting the exponential eigenfunction est+vx

into (40)



Sound Modelling 143

(t)

(t)

(t - nT)

(t + nT)

p
+

p -

Wave Delay

Wave Delay

p
+

p -

Figure 14: Wave propagation propagation in a ideal (i.e. linear, non-dissipative
and non-dispersive) medium can be represented, in the discrete-time domain,
by a couple of digital delay lines.

filter, described in chapter 3, which forms the structure of the Karplus-Strong
synthesis algorithm [47].

One-dimensional waveguide models can be connected together by means
of waveguide junctions, thus forming digital waveguide networks, which are
used for simulation of multi-dimensional media (e.g., membranes [34]) or com-
plex acoustic systems (e.g., several strings attached to a bridge [17]). The gen-
eral treatment of waveguide networks is beyond the scope of this book [85].
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Appendix A

Mathematical Fundamentals

A.1 Classes of Numbers

A.1.1 Fields
Given a set F of numbers, two operations called sum and product over

these numbers, and some algebraic properties that we are going to enumerate,
F is called a field. The sum of two elements of the field u, v ∈ F is still an
element of the field and has the following properties:

S1, Associative Property : (u+ v) + w = u+ (v + w)

S2, Commutative Property : u+ v = v + u

S3, Existence of the Zero : There exists one and only element in F , called
the zero, that is the neutral element for the sum, i.e., u + 0 = u , for all
u ∈ F

S4, Existence of the Opposite : For each u ∈ F there exists one and only
element in F , called the opposite of u, and written as −u, such that
u+ (−u) = 0.

The product of two elements of the field u, v ∈ F is still an element of the field
and has the following properties:

P1, Associative Property : (uv)w = u(vw)

P2, Commutative Property : uv = vu

145
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P3, Existence of the Unity : There exists one and only element in F , called
the unity, that is the neutral element for the product, i.e., u1 = u , for all
u ∈ F

P4, Existence of the Inverse : For each u ∈ F different from zero, there ex-
ists one and only element in F , called the inverse of u, and written as
u−1, such that uu−1 = 1.

The two operations of sum and product are jointly characterized by the dis-
tributive properties:

D1, Distributive Property : u(v + w) = uv + uw

D2, Distributive Property : (v + w)u = vu+ wu

The existence of the opposite and the reciprocal implies the existence of two
other operations, namely, the difference u − v = u + (−v) and the quotient
u/v = u(v−1).

Given the properties of a field, we can say that the natural numbers N =
0, 1, . . . do not form a field since, for instance, they do not have an opposite.
Similarly, the integer numbers Z = . . . ,−2,−1, 0, 1, . . . do not form a field
because, in general, they do not have an inverse. On the other hand, the rational
numbers Q, which are given by ratios of integers, do satisfy all the properties
of a field.

The real numbersR are all those numbers that can be expressed in decimal
notation as x.y, where the number of digits of y is not necessarily bounded.
Real numbers can be obtained as the union of the set of rational numbers with
the set of transcendental numbers, i.e., those numbers that can not be expressed
as a ratio of integers. An example of transcendental number is π, which is
the ratio between the circumference and the diameter of any circle. The real
numbers do form a field, and the rationals are a subfield of the reals.

A.1.2 Rings
A set of numbers provided with sum and product, and such that the prop-

erties S1–4, P1 e D1–2 are satisfied is called a ring. If P2 is satisfied we have
a commutative ring, and if P3 is satisfied the ring has a unity. For instance, the
set Z of integer numbers forms a commutative ring with a unity.

Whenever we want to indicate the sets of ordered couples or triples of ele-
ments belonging to a field (or a ring) F we will use the notation F2 or F3,
respectively.
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A.1.3 Complex Numbers

The classes of numbers introduced so far are instrumental to a hierarchical
system, where the natural numbers are contained in the integers, which are
part of the rationals, and this latter class in contained in the real numbers. This
hierarchy is resemblant of the temporal evolution of the classes of numbers
since the antiquity to the XVI century. The extension of the hierarchy was
always motivated by the ease with which practical and formal problems could
be solved by manipulation of numerical symbols. The same kind of motivation
led to the introduction of the class of complex numbers. As we will see in
sec. A.3), they come into play when one wants to represent the solutions of a
second-order equation.

In order to define the complex numbers, we have to define the imaginary
unity i as that number that multiplied by itself (i.e., squared), gives −1. There-
fore,

i2
4
= ii = −1 . (1)

In several branches of engineering the symbol j is preferred to i, because it is
more easily distinguished from the symbol of current. In this book, the symbol
i is used exclusively.

Given the preliminary definition of i, the complex numbers are defined as
the couples

x+ iy (2)

where x and y are real numbers called, respectively, real and imaginary part of
the complex number.

Given two complex numbers c1 = x1 + iy1 and c2 = x2 + iy2 the four
operations are defined as follows1:

Sum : c1 + c2 = (x1 + x2) + i(y1 + y2)

Difference : c1 − c2 = (x1 − x2) + i(y1 − y2)

Product : c1c2 = (x1x2 − y1y2) + i(x1y2 + x2y1)

Quotient :
c1
c2

=
(x1x2 + y1y2) + i(y1x2 − x1y2)

x2
2 + y2

2
.

1The expressions can be derived by application of the usual algebraic operations on real num-
bers and by substituting i2 with −1. In order to derive the quotient, it is useful to multiply and
divide by x2 − iy2.
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If the introduction of complex numbers dates back to the XVI century, their
geometric interpretation, that gave an intuitive framework for widespread use,
was introduced in the XVIII century. The geometric interpretation is simply
obtained by considering the geometric number c = x+iy as a point of the plane
having coordinates x and y. This interpretation, depicted in fig. 1, allows to
switch from the orthogonal coordinates x and y to the polar coordinates ρ and
θ, called magnitude (or absolute value) and phase (or argument), respectively.
The x and y axes are called, respectively, the real and imaginary axes. The
magnitude of a complex number is calculated by application of the Theorem
of Pythagoras:

ρ2 = x2 + y2 = (x+ iy)(x− iy) = cc (3)

where c is the complex conjugate of c, also depicted in fig 12. The argument of
a complex number is the angle formed by the positive horizontal semi-axis with
the line conducted from the geometric point to the origin of the complex plane.
The argument is signed, and the sign is positive for anti-clockwise angles (see
fig. 1).

A.2 Variables and Functions
In mathematics, the entities that one works with are often arbitrary ele-

ments of a class of numbers. In these cases, the entities can be represented by a
variable x defined in a domain D. In this appendix, we have already used some
variables implicitly, for instance, to state the properties of a field.

When the domain is an interval of the field of real numbers having extremes
a and b, we can say that x is a continuous variable of the interval [a, b] and we
write a ≤ x ≤ b.

When every value of the variable x is associated with one and only one
value of another variable y we say that y is a function of x, and we write

y = f(x) . (4)

x is said to be the independent variable (argument) while y is the dependent
variable, and the set of values that it takes for different assumed by x in its
domain is called the codomain. If, for each x1 6= x2, f(x1) 6= f(x2), then
domain and codomain have a biunivocal correspondence. In that case the roles

2It is easy to show that the magnitude of the product is equal to the product of the magnitudes.
Vice versa, the magnitude of the sum is not equal to the sum of the magnitudes
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c = x + i y

ρ

θ
0

ρ

−θ

c = x − i y

y

x

Figure 1: Geometric interpretation of a complex number

of domain and codomain can be inverted, and it is possible to define an inverse
function x = f−1(y). In general, functions can have more than one independ-
ent variable, thus indicating a relation among many variables.

Often functions are defined by means of algebraic expressions, and associ-
ated with domains and interpretations for the variables. For instance, the pitch
h (in Hz) of the note produced by an ideal string can be expressed by the func-
tion

h =
1
2l

√

t

d
, (5)

where l is the length of the string in meters, t is the string tension in Newton,
and d is the density per unit length (Kg/m). This concise expression allows to
represent the pitch of a note whatever are the values of length, tension, and
density, as long as these values belong to the domain of non-negative real num-
bers (indicated byR+).

Functions can be graphically represented in the cartesian plane. The ab-
scissa corresponds with an independent variable, and the ordinate corresponds
to the dependent variable. If we have more than one dependent variable, only
one is represented in abscissa, and the other ones are set to constant values.
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For example, fig. 2 shows the function (5), with values of tension and dens-
ity 3 set to 952N and 0.0367Kg/m, respectively. The domain of string lengths
ranges from 0.5m to 4.0m.

0 1 2 3 4
0

50

100

150

200
Pitch of note as a function of string length

l [m]

h 
[H

z]

Figure 2: Pitch of a note as a function of string length

The chart of fig. 2 can be obtained by a simple script in Octave or Matlab:

r=0.0367; t=952; % definitions of density and tension
l=[0.5:0.01:4.0]; % domain for the string length
h=1./(2*l)*sqrt(t/r); % expression for pitch
plot(l,h);
grid;
title(’Pitch of note as a function of string length’);
xlabel(’l [m]’);
ylabel(’h [Hz]’);
% replot; % Octave only

In order to visualize functions of two variables, we can also use three-
dimensional representations. For example, the function (5) can be visualized
as in fig. 3 if the variables length and tension are defined over intervals and the
density is set to a constant. In such a representation, the function of two de-
pendent variables becomes a surface in 3D. The Octave/Matlab script for fig. 3
is the following:

r=0.0367; % definition of density
l=[0.5:0.1:4.0]; % domain for the string length

3These values are appropriate for the piano note C2.
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Figure 3: Pitch of a note as a function of string length and tension

t=[800:10:1200]; % domain for the string tension
h=(1./(2*l’)*sqrt(t./r))’; % expression for pitch
mesh(l,t,h);
grid; title(’Pitch of note as a function of string \

length and tension’);
xlabel(’l [m]’);
ylabel(’t [N]’);
zlabel(’h [Hz]’);
% replot; % Octave only

Of a multivariable function we can also give the contour plot, i.e., the plot of
curves obtained for constant values of the dependent variable. For example, in
the function (5), if we let the dependent variable to take only seven prescribed
values, the cartesian plane of length and tension displays seven curves (see
fig. 4). Each curve corresponds to an horizontal cut of the surface of fig. 3.

The Octave/Matlab script producing fig. 4 is the following:

r=0.0367; % definition of density
l=[0.5:0.1:4.0]; % domain for the string length
t=[800:10:1200]; % domain for the string tension
h=(1./(2*l’)*sqrt(t./r))’; % expression for pitch
% contour(h’, 7, l, t); % Octave only
co=contour(l, t, h, 7); % Matlab only
clabel(co); % Matlab only
title(’Pitch of note as a function of string \
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Figure 4: Contour plot of pitch as a function of string length and tension

length and tension’);
xlabel(’l [m]’);
ylabel(’t [N]’);
zlabel(’h [Hz]’);

A.3 Polynomials

An important class of one-variable functions is the class of polynomials,
which are weighted sums of non-negative powers of the independent variable.
Each power with its coefficient is called a monomial. A polynomial has the
form

y = f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n , (6)

where the numbers ai are called coefficients and, for the moment, they can be
considered as real numbers. The highest power that appears in (6) is called the
order of the polynomial.

The second-order polynomials, when represented in the x − y plane, pro-
duce a class of curves called parabolas, while third-order polynomials generate
cubic curves.

We call solutions, or zeros, or roots of a polynomial those values of the
independent variable that produce a zero value of the dependent variable. For
second and third-order polynomials there are formulas to derive the zeros in
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closed form. Particularly important is the formula for second-order polynomi-
als:

ax2 + bx+ c = 0 (7)

x =
−b±

√
b2 − 4ac

2a
. (8)

As it can be easily seen by application of (8) to the polynomial x2 + 1,
the roots of a real-coefficient polynomial are real numbers. This observation
was indeed the initial motivation for introducing the complex numbers as an
extension of the field of real numbers.

The Fundamental Theorem of Algebra states that every n-th order real-
coefficient polynomial has exactly n zeros in the field of complex numbers,
even though these zeros are not necessarily all distinct from each other. Moreover,
the roots that do not belong to the real axis of the complex plane, are couples
of conjugate complex numbers.

For polynomial of order higher than three, it is convenient to use numerical
methods in order to find their roots. These methods are usually based on some
iterative search of the solution by increasingly precise approximations, and are
often found in numerical software packages such as Octave.

In Octave/Matlab a polynomial is represented by the list of its coefficients
from an to a0. For instance, 1 + 2x2 + 5x5 is represented by
p = [5 0 0 2 0 1]
and its roots are computed by the function
rt = roots(p) .
In this example the roots found by the program are

rt =
-0.87199 + 0.00000i
0.54302 + 0.57635i
0.54302 - 0.57635i

-0.10702 + 0.59525i
-0.10702 - 0.59525i

and only the first one is real. If the previous result is saved in a variable rt,
the complex numbers stored in it can be visualized in the complex plane by the
directive

axis([-1,1,-1,1]);
plot(real(rt),imag(rt),’o’);
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Figure 5: Roots of the polynomial 1 + 2x2 + 5x5 in the complex plane

and the result is reported in fig. 5.
It can be shown that the real-coefficient polynomials form a commutat-

ive ring with unity if the operations of sum and product are properly defined.
The sum of two polynomials is a polynomial whose order is the highest of the
orders of the operands, and having coefficients which are the sums of the re-
spective coefficients of the operands. The product is done by application of the
usual distributive and associative properties to the product of sums of powers.
The order of the product is given by the sum of the orders of the polynomial
operands, and the k-th coefficient of the product is obtained by the coefficients
ai and bj of the operands by the formula

ck =
∑

i+j=k

aibj , (9)

where this notation indicates a sum whose addenda are characterized by a
couple of indices i, j that sum up to k.

As it can be seen from sec. 1.4, the polynomial multiplication is formally
identical to the convolution of discrete signals, and this latter operation is fun-
damental in digital signal processing.

A.4 Vectors and Matrices
Physicists use arrows to indicate physical quantities having both an intens-

ity and a direction (e.g., forces or velocities). These arrows, sometimes called
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vectors, are oriented according to the direction of the physical quantity and
their length is proportional to the intensity. These vectors can be located in the
plane (or the 3D space) as if they were departing from the origin. In this way,
they can be represented by the couple (or triple) of coordinates of their second
extremity. This representation allows to perform the sum of vectors and the
multiplication of a vector by a constant as the usual algebraic operations done
with each separate coordinate:

(x1, y1, z1) + (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2)
α(x1, y1, z1) = (αx1, αy1, αz1) (10)

More generally, an n-coordinate vector is defined in a fieldF as the ordered
set of n numbers4 xi ∈ F :

v = [x1, . . . , xn] . (11)

The set of all n-coordinate vectors defined in the field F , for which the
operations (10) give vectors within the set itself, form the n-dimensional vector
space Vn(F).

Every subset of Vn(F) that is closed5 with respect to the operations (10) is
called vector subspace of Vn(F). For instance, in the two-dimensional plane,
the points of a cartesian axis form a subspace of the plane. Similar, subspaces
of the plane are given by any straight line passing through the origin, and sub-
spaces of the 3D space are given by any plane passing through the origin.

m vectors v1, . . . ,vm, are said to be linearly independent if there is no
choice of m coefficients a1, . . . , am (the choice of all zeros is excluded) such
that

a1v1 + · · ·+ amvm = 0 . (12)

In the 2D plane, two points on different cartesian axes are linearly inde-
pendent, as are any two points belonging to different straight lines passing
through the origin. Viceversa, points belonging to the same straight line passing
through the origin are always linearly dependent.

It can be shown that, in an n-dimensional space Vn(F), every set ofm ≥ n
vectors is linearly dependent. A set of n linearly independent vectors (if they

4In this book, the square brackets are used to indicate vectors and matrices. This is also the
notation used in Octave. Moreover, the variables representing vectors or matrices are always typed
in bold font.

5A set I is closed with respect to an operation on its elements if the result of the operation is
always an element of I .
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exist) is called a basis of Vn(F), in the sense that any other vector ofVn(F)
can be obtained as a linear combination of the base vectors. For instance, the
vectors [1, 0, 0], [0, 1, 0], and [0, 0, 1] form a basis for the 3D space, but there
are infinitely many other bases.

Between any two vectors of the same vector space the operation of dot
product is defined, and it returns the scalar sum of the component-by-component
products. As a formula, the dot product is written as

v′w
4
=

n
∑

j=1

vjwj . (13)

By convention, with v we indicate a column vector, while v′ denotes its trans-
position into a row. Therefore, the operation (13) can be referred as a row-
column product.

A matrix can be considered as a list of vectors, organized in a table where
each element of the list occupies (by convention) one column. A matrix having
n rows and m columns defined over the field F can be written as

A =





a1,1 . . . a1,m

. . .
an,1 . . . an,m



 ∈ Fn×m . (14)

The multiplication of a matrix A ∈ Fn×m by a (column) vector v ∈
Vm(F) is defined as

Av =

















m
∑

j=1

a1,jvj

. . .
m
∑

j=1

an,jvj

















, (15)

i.e., as a (column) vector whose i-th element is given by the dot product of the
i-th row by the vector v.

The product of a matrix A ∈ Rl×m by a matrix B ∈ Rm×n can be ob-
tained as a list of vectors, each being the product of matrix A by a column
of B, and it is a matrix C ∈ Rl×n. The product is properly defined only if
the number of column of the first matrix is equal to the number of rows of
the second matrix. In general, the order of factors can not be reversed, i.e., the
matrix product is not commutative.

Given a matrix A, the matrix A′ obtained by exchanging each row with the
corresponding column is called the transposed of A.
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Languages such as Octave and Matlab were initially conceived as lan-
guages for matrix manipulation. Therefore, they offer data structures and builtin
operators for representing and manipulating matrices. For example, a matrix
A ∈ R2×3 can be represented as
A = [1, 2, 3; 4, 5, 6];
where the semicolon is used to separate one row from the following one. A
column vector can be entered as
b = [1; 2; 3];
or, alternatively, we can transpose a row vector
b = [1, 2, 3]’;
Given the definitions of the variables A and b, we can multiply the Matrix by
the vector and assign the result to a new vector variable c:
c = A * b
thus obtaining the result

c =

14
32

The product of a matrix A ∈ Rl×m by a matrix B ∈ Rm×n is represented
by
A * B
When we want to do element-wise operations between two or more vectors or
matrices having the same size, we just have to place a dot before the operator
symbol. For instance,
[1, 2, 3] .* [4, 5, 6]
returns the (row) vector [4 10 18] as a result.

Octave allows to operate on scalars, vectors, and matrices belonging to the
complex field, just by representing as a sum of real and imaginary parts (e.g.,
2 + 3i).

When we use Octave/Matlab to handle functions, or to draw their plot, we
usually operate on collections of points that are representative of the functions.
There is a concise way to assign to a variable all the values regularly spaced
(with step inc) between a min and a max:
x = [min, inc, max];
This kind of instruction has been used to plot the function of fig. 2. After hav-
ing defined the domain as the vector of points
l=[0.5: 0.1: 4.0];
the vector representing the codomain has been computed by application of the
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function to the vector l:
f=1./(2*l)*sqrt(t/r);

A.4.1 Square Matrices
The n-th order square matrices defined over a fieldF are a setFn×n which

is very important for its affinity with the classes of numbers. In fact, for these
matrices the sum and product are always defined and it is easy to verify that
the properties S1–4, P1, and D1–2 of appendix A.1 do hold. The property P3
is also verified and the neutral element for the product is found in the unit
diagonal matrix, which is a matrix that has ones in the main diagonal6 and zeros
elsewhere. In general, the commutativity is not ensured for the product, and a
matrix might not admit an inverse matrix, i.e., an inverse obeying to property
P4. In the terminology introduced in appendix A.1, the square matrices Fn×n
form a ring with a unity. This observation allows us to treat the square matrices
with compact notation, as a class of numbers which is not much different from
that of integers7.

A.5 Exponentials and Logarithms
Given a number a ∈ R+, it is clear what is its natural m-th power, that

is the number obtained multiplying a by itself m times. The rational power
a1/m, with m a natural number, is defined as the number whose m-th power
gives a. If we extend the power operator to negative exponents by reciprocation
of the positive power, we give meaning to all powers ar, with r being any
rational number. The extension to any real exponent is obtained by imposing
continuity to the power function. Intuitively, the function f(x) = ax describes
a continuous curve that “interpolates” the values taken at the points where x is
rational. The power operator has the following fundamental properties:

E1 : axay = ax+y

E2 :
ax

ay
= ax−y

6The main diagonal goes from the top leftmost corner to the bottom rightmost corner.
7Two important differences with the ring of integers is the non commutativity and the possib-

ility that two non-zero matrices multiplied together give the zero matrix (the zero matrix admits
non-zero divisors).
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E3 : (ax)y = axy

E4 : (ab)x = axbx .

The function f(x) = ax is called exponential with base a.
Given these preliminary definitions and properties, we define the logarithm

of y with base a
x = loga y , (16)

as the inverse function of y = ax. In other words, it is the exponent that must
be given to the base in order to get the argument y. Since the power ax has been
defined only for a > 0 and it gives always a positive number, the logarithm is
defined only for positive values of the independent variable y.

Logarithms are very useful because they translate products and divisions
into sums and differences, and power operations into multiplications. Simply
stated, by means of the logarithms it is possible to reduce the complexity of cer-
tain operations. In fact, the properties E1–3 allow to write down the following
properties:

L1 : loga xy = loga x+ loga y

L2 : loga
x

y
= loga x− loga y

L3 : loga xy = y loga x .

In sound processing, the most interesting logarithm bases are 10 and 2. The
base 10 is used to define the decibel (symbol dB) as a ratio of two quantities. If
the quantities x and y are proportional to sound pressures (e.g., rms level), we
say that x is wdB larger than y if x > y > 0 and

w = 20 log10

x

y
. (17)

When the quantities x and y are proportional to a physical power (or intensity),
their ratio in decibel is measured by using a factor 10 instead of 208 in (17).

The base 2 is used in all branches of computer sciences, since most com-
puting systems are based upon binary representations of numbers (see the ap-
pendix A.9). For instance, the number of bits that is needed to form an address
in a memory of 1024 locations is

log2 1024 = 10 . (18)
8In acoustics [86], the power is proportional to the square of a pressure. Therefore, applying

property L3, we fall back into the definition (17).
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In Octave/Matlab, the logarithms of x having base 2 and 10 are indicated
with log2(x) and log10(x), respectively. Fig. 6 shows the curves of the
logarithms in base 2 and 10. From these curves we can intuitively infer how, in
any base, log 1 = 0, and how the function approaches −∞ (minus infinity) as
the argument approaches zero.

0 0.5 1 1.5 2
−4

−3

−2

−1

0

1

Figure 6: Logarithms expressed in the fundamental bases 2 (solid line) and 10
(dashed line)

Given a logarithm expressed in base a, it is easy to convert it in the logar-
ithm expressed in another base b. The formula that can be used is

logb x =
loga x
loga b

. (19)

A base of capital importance in calculus is the Neper number e, a transcend-
ental number approximately equal to 2.7183. As we will see in appendix A.7.1,
the exponentials expressed in base e are eigenfunctions for the derivative oper-
ator. In other words, differential linear operators do not alter the form of these
exponentials. Moreover, the exponential with base e admits an elegant transla-
tion into an infinite series of addenda

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ . . . , (20)

where n! is the factorial of n and is equal to the product of all integers ranging
from 1 to n. It can be proved that the infinite sum on the right-hand side of (20)
gives meaning to the exponential function even where its argument is complex.
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A.6 Trigonometric Functions
Trigonometry describes the relations between angles and segments subten-

ded by these angles. The main trigonometric functions are easily visualized on
the complex plane, as in fig. 7, where the unit circle is explicitly represented.

R

I

θ

P

QO cos θ

sinθ

Figure 7: Trigonometric functions on the complex plane

An angle θ cuts on the unit circle an arc whose length is defined as the
measure in radians of the angle. Since the circumference has length 2π, the
360o angle measures 2π radians, and the 90o angle corresponds to π/2 radians.
The main trigonometric functions are:

Sine sin θ = PQ

Cosine cos θ = OQ

Tangent tan θ = PQ/OQ

It is clear from fig. 7 and from the Pythagoras’ theorem that, for any θ, the
identity

sin2 θ + cos2 θ = 1 (21)

is valid.
The angle, considered positive if oriented anti clockwise, can be considered

the independent variable of trigonometric functions. Therefore, we can use
Octave/Matlab to plot the main trigonometric functions, thus obtaining fig. 8.
These plots can be obtained as subplots of a same figure by the following
Octave/Matlab script:
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theta = [0:0.01:4*pi];
s = sin(theta);
c = cos(theta);
t = tan(theta);
subplot(2,2,1); plot(theta,s);
axis([0,4*pi,-1,1]);
grid; title(’Sine of an angle’);
xlabel(’angle [rad]’);
ylabel(’sin’);
% replot; % Octave only
subplot(2,2,2); plot(theta,c);
grid; title(’Cosine of an angle’);
xlabel(’angle [rad]’);
ylabel(’cos’);
% replot; % Octave only
subplot(2,2,3); plot(theta,t);
grid; title(’Tangent of an angle’);
xlabel(’angle [rad]’);
ylabel(’tan’);
axis([0,4*pi,-6,6]);
% replot; % Octave only

It is clear from the plots that the functions sine and cosine are periodic
with period 2π, while the function tangent is periodic with period π. Moreover,
the codomain of sine and cosine is limited to the interval [−1, 1], while the
codomain of the tangent takes values on all real axis. The tangent approaches
infinity for all the values of the argument that multiples of π/2, i.e. in these
points we have vertical asymptotes.

As we can see from fig. 7, a complex number c, having magnitude ρ and
argument θ, can be represented in its real and imaginary parts as

c = x+ iy = ρ cos θ + iρ sin θ . (22)

A fundamental identity, that links trigonometry with exponential functions,
is the Euler formula

eiθ = cos θ + i sin θ , (23)

which expresses a complex number laying on the unit circumference as an
exponential with imaginary exponent9. When θ is left free to take any real
value, the exponential (23) generates the so-called complex sinusoid.

9The actual meaning of the exponential comes from the series expansion (20)
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Figure 8: Trigonometric functions

Any complex number c having magnitude ρ and argument θ can be repres-
ented in compact form as

c = ρeiθ , (24)

and to it we can apply the usual rules of power functions. For instance, we can
compute the m-th power of c as

cm = ρmeimθ = ρm(cosmθ + i sinmθ) , (25)

thus showing that it is obtained by taking the m-th power of the magnitude and
multiplying by m the argument. The (25) is called De Moivre formula.

The order-m root of a number c is that number b such that bm = c. In
general, a complex number admitsm order-m distinct complex roots10. The De

10For instance, 1 admits two square roots (1 and -1) and four order-4 roots (1, -1, i, -i).
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Moivre formula establishes that11 the order-m roots of 1 are evenly distributed
along the unit circumference, starting from 1 itself, and they are separated by a
constant angle 2π/m.

At this point, we propose some problems for the reader:

• Prove the following identities, which are corollaries of the Euler identity

cos θ =
eiθ + e−iθ

2
, (26)

sin θ =
eiθ − e−iθ

2i
. (27)

• Prove the “most beautiful formula in mathematics” [59]

eiπ + 1 = 0 . (28)

• Prove, by means of the De Moivre formula, the following identities:

cos 2θ = cos2 θ − sin2 θ , (29)

sin 2θ = 2 sin θ cos θ . (30)

• Prove, by the representation of unit-magnitude complex numbers eiθ,
that the following identities are true:

cos (θ + φ) = cos θ cosφ− sin θ sinφ , (31)

sin (θ + φ) = cos θ sinφ+ sin θ cosφ . (32)

A.7 Derivatives and Integrals

A.7.1 Derivatives of Functions
Given the function y = f(x) (for the moment, we only consider functions

of one variable), it might be interesting to find the places where local maxima
and minima are located. It is natural, in such a search, to focus on the slope of

11The reader is invited to justify this statement by an example. The simplest non-trivial example
is obtained by considering the cubic roots of 1.
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the line that is tangent to the function curve, in such a way that local maxima
and minima are found where the slope of the tangent is zero (i.e., the tangent is
horizontal). This operation is possible for all regular functions, which are func-
tions without discontinuities and without sharp corners. Given this assumption
of regularity, the shape of the curve can be defined at any point, thus becom-
ing itself a function of the same independent variable. This function is called
derivative and is indicated with

y′ =
dy

dx
. (33)

The notation (33) recalls how the local shape of a curve can be computed:
the tangent line is drawn, two distinct points are taken on this line, the ratio
between the differences of coordinates y and x of the points is formed. As we
have already seen in appendix A.6, this operation corresponds to the computa-
tion of the trigonometric tangent, whose argument is the angle formed by the
tangent line with the horizontal axis. This observation should have made the
terminology more clear.

In fig. 9 the polynomial y = f(x) = 4 + 3x+ 2x2 − x3 is plotted for x ∈
[−4, 4], together with its derivative. As we can see, the derivative is positive
where f(x) is increasing, negative where f(x) is decreasing, and zero where
f(x) has a local extremal point.
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Figure 9: A degree-3 polyonomial and its derivative

The Octave/Matlab script used to produce fig. 9 is the following:

x = [-4:0.01:4]; % domain
poli = [-1 2 3 4]; % coefficients of a degree-3
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% polynomial
y = polyval(poli, x); % evaluation of the polynomial
% coefficients of the derivative of the polynomial
% polid = polyderiv(poli); % Octave only
polid = poli(1:length(poli)-1).*[length(poli)-1:-1:1];

% Matlab only
% (polyderiv is not available)

yp = polyval(polid, x); % evaluation of the derivative
plot(x, y, ’-’); hold on;
plot(x, yp, ’--’); hold off;
ylabel(’y, y‘’);
xlabel(’x’);
title(’y(x), dy/dx’);
grid;
% replot; % Octave only

In the script there are two new directives. The first one is the function in-
vocation polyval(poli, x), which returns the vector of values taken by
the polynomial, whose coefficients are specified in poli, in correspondence
with the points specified in x. The second directive is the function invocation
polideriv(poli), which returns the coefficient of the polynomial that is
the derivative of poli. This function is not available in Matlab, but it can be
replaced by an explicity calculation, as indicated in the script. The fact that
the derivative of a polynomial is still a polynomial is ensured by the deriva-
tion rules of calculus. Namely, the derivative of a monomial is a lower-degree
monomial given by the rule

d(axn)
dx

= anxn−1 . (34)

The derivative is a linear operator, i.e.,

• The derivative of a sum of functions is the sum of the derivatives of the
single functions

• The derivative of a product of a function by a constant is the product of
the constant by the derivative of the function

Another important property of the derivative is that it transforms the com-
position of functions in a product of functions. Given two functions y = f(x)
and z = g(y), the composed function z = g(f(x)) is obtained by replacing
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the domain of the second function with the codomain of the first one 12. The
derivative of the composed function is expressed as

dz

dx
= g′(y)f ′(x) =

dz

dy

dy

dx
, (35)

which remarks the effectiveness of the notation introduced for the derivatives.
For the purpose of this book, it is useful to know the derivatives of the main

trigonometric functions, which are given by

d sinx
dx

= cosx (36)

d cosx
dx

= − sinx (37)

d tanx
dx

=
1

cos2 x
(38)

Therefore, we can say that a sinusoidal function conserves its sinusoidal char-
acter (it is only translated along the x axis) when it is subject to derivation.
This property comes from the fact, already anticipated, that the exponential
with base e is an eigenfunction for the derivative operator, i.e.,

dex

dx
= ex . (39)

If we consider the complex exponential eix as the composition of an expo-
nential function with a monomial with imaginary coefficient, it is possible to
apply the linearity of derivative to the composed function and derive the for-
mulas (36) and (37).

In order to derive (38) we also have to know the rule to derive quotients of
functions. In general, products and quotients of functions are derived according
to

d [f(x)g(x)]
dx

= f ′(x)g(x) + f(x)g′(x) (40)

d [g(x)/f(x)]
dx

=
g′(x)f(x)− f ′(x)g(x)

f2(x)
. (41)

12For instance, log x2 is obtained by squaring x and then taking the logarithm or, by the property
L3 of logarithms, ...
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A.7.2 Integrals of Functions
For the purpose of this book, it is sufficient to informally describe the

defined integral of a function f(x), x ∈ R as the area delimited by the func-
tion curve and the horizontal axis in the interval between two edges a e b (see
fig. 10). When the curve stays below the axis the area has to be considered
negative, and positive when it stays above the axis. The defined integral is rep-
resented in compact notation as

∫ b

a

f(x)dx , (42)

and it takes real values.

y

xa b0

y=f(x)

Figure 10: Integral defined as an area

In order to compute an integral we can use a limiting procedure, by approx-
imating the curve with horizontal segments and computing an approximation of
the integral as the sum of areas of rectangles. If the segment width approaches
zero, the computed integral converges to the actual measure.

There is a symbolic approach to integration, which is closely related to
function derivation. First of all, we observe that for the integrals the properties
of linear operators do hold:

• The integral of a sum of functions is the sum of integrals of the single
functions

• The integral of a product of a function by a constant is the product of the
constant by the integral of the function.

Then, we generalize the integral operator in such a way that it doesn’t give a
single number but a whole function. In order to do that, the first integration
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edge is kept fixed, and the second one is left free on the x axis. This newly
defined operator is called indefinite integral and is indicated with

F (x) =
∫ x

a

f(u)du . (43)

The argument of function f(), also called integration variable, has been called
u to distinguish it from the argument of the integral function F ().

The genial intuition, that came to Newton and Leibniz in the XVII century
and that opened the way to a great deal of modern mathematics and science,
was that derivative and integral are reciprocal operations and, therefore, they
are reversible. This idea is translated in a remarkably simple formula:

F ′(x) = f(x) , (44)

which is valid for regular functions. The reader can justify the (44) intuitively
by thinking of the derivative of F (x) as a ratio of increments. The increment
at the numerator is given by the difference of two areas obtained by shifting
the right edge by dx. The increment at the denominator is dx itself. Called
m the average value taken by f() in the interval having length dx, such value
converges to f(x) as dx approaches zero.

F (x) is also called a primitive function of f(x), where the article a sub-
tends the property that indefinite integrals can differ by a constant. This is due
to the fact that the derivative of a constant is zero, and it justifies the fact that
the position of the first integration edge doesn’t come into play in the relation-
ship (44) between a function and its primitive.

At this point, it is easy to be convinced that the availability of a primitive
F (x) for a function f(x) allows to compute the definite integral between any
two edges a and b by the formula

∫ b

a

f(u)du = F (b)− F (a) . (45)

We encourage the reader to find the primitive functions of polynomials,
sinusoids, and exponentials. To acquire better familiarity with the techniques
of derivation and integration, the reader without a background in calculus is
referred to chapter VIII of the book [25].

A.8 Transforms
The analysis and manipulation of functions can be very troublesome oper-

ations. Mathematicians have tried to find alternative ways of expressing func-
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tions and operations on them. This research has expressed some transforms
which, in many cases, allow to study and manipulate some classes of functions
more easily.

A.8.1 The Laplace Transform
The Laplace Transform was introduced in order to simplify differential cal-

culus. The Laplace transform of a function y(t), t ∈ R is defined as a function
of the complex variable s:

YL(s) =
∫ +∞

−∞
y(t)e−stdt, s ∈ Γ ⊂ C , (46)

where Γ is the region where the integral is not divergent. The region Γ is always
a vertical strip in the complex plane, and within this strip the transform can be
inverted with

y(t) =
1

2πj

∫ σ+j∞

σ−j∞
YL(s)estds, t ∈ R . (47)

The edges of the integration (47) indicate that the integration is performed
along a vertical line with abscissa σ.

Example 1. The most important transform for the scope of this book is
that of the causal complex exponential function, which is defined as

y(t) =
{

es0t t ≥ 0 , s0 ∈ C
0 t < 0 . (48)

Such transform is calculated as13

YL(s) =
∫ +∞

−∞
y(t)e−stdt =

∫ +∞

0

es0te−stdt =
∫ +∞

0

e−(s−s0)tdt =

= − 1
s− s0

(e−(s−s0)∞ − e−(s−s0)0) =
1

s− s0
, (49)

and it is convergent for those values of s having real part that is larger than the
real part of s0. We have seen in appendix A.7 that the exponential function is an
eigenfunction for the operators derivative and integral, which are fundamental
for the description of physical systems. Therefore, we can easily understand
the practical importance of the transform (49).

13In a rigorous treatment, the notation e−(s−s0)∞ should be replaced by a limiting operation
for t→∞.
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###

A central property of the Laplace transform is given by the transformation
of the derivative operator into a multiply by s:

dy(t)
dt
↔ sYL(s)− [y(0)] , (50)

where the term within square brackets is the initial value in the case that y(t)
is a causal function, i.e. y(t) = 0 for any t < 0. Conversely, the integral is
converted into a division by the complex variable s:

∫ t

−∞
y(u)du↔ 1

s
YL(s) . (51)

Since physics describes systems by means of equations containing derivatives
and integrals, these equations can be transformed into polynomial equations by
means of the Laplace transform, and the calculus turns out to be simplified.

Example 2. The second Newton’s law states that, for a body having mass
m, the relationship among force f , mass, acceleration a, displacement x, and
time t, can be expressed by

f = ma = m
d2x

dt2
, (52)

where the notation d2x
dt2 indicates a second derivative, i.e. the derivative applied

twice. The relation (52) is Laplace-transformed into the polynomial equation

FL(s) = s2mXL(s)− [smx(0) +mx′(0)] , (53)

where the term within square brackets is determined by the initial condition of
displacement and velocity at time 0.

###

A.8.2 The Fourier Transform
The Fourier transform of y(t), t ∈ R, can be obtained as a specialization

of the Laplace transform in the case that the latter is defined in a region com-
prising the imaginary axis. In such case we define14

Y (Ω)
4
= YL(jΩ) , (54)

14Often the Fourier transform is defined as a function of f , where 2πf = Ω
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or, in detail,

Y (Ω) =
∫ +∞

−∞
y(t)e−jΩtdt , (55)

where jΩ indicates a generic point on the imaginary axis. Since the kernel
of the Fourier transform is the complex sinusoid (i.e., the complex eponen-
tial) having radial frequency Ω, we can interpret each point of the transformed
function as a component of the frequency spectrum of the function y(t). In
fact, given a value Ω = Ω0 and considered a signal that is the complex sinus-
oid y(t) = ejΩ1t, the integral (55) is maximized when choosing Ω0 = Ω1, i.e.,
when y(t) is the complex conjugate of the kernel 15. The codomain of the trans-
formed function Y (Ω) belongs to the complex field. Therefore, the spectrum
can be decomposed in a magnitude spectrum and in a phase spectrum.

A.8.3 The Z Transform

The domains of functions can be classes of numbers of whatever kind and
nature. If we stick with functions defined over rings, particularly important are
the functions whose domain is the ring of integer numbers. These are called
discrete-variable functions, to distinguish them from functions of variables
defined overR or C, which are called continuous-variable functions.

For discrete-variable functions the operators derivative and integral are re-
placed by the simplest operators difference and sum. This replacement brings
a new definition of transform for a function y(n), n ∈ Z:

YZ(z) =
+∞
∑

n=−∞
y(n)z−n, z ∈ Γ ⊂ C . (56)

The transform (56) is called Z transform and the region of convergence is a
ring16 of the complex plane. Within this ring the transform can be inverted.

Example 3. The Z transform of the discrete-variable causal exponential

15Exercise: find the Fourier transform of the causal complex exponential (48), with s0 = α +
jΩ0, and show that it has maximum magnitude for Ω = Ω0.

16A ring here is the area between two circles and not an algebraic structure.
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is17

YZ(z) =
+∞
∑

n=−∞
y(n)z−n =

+∞
∑

n=0

ez0nz−n =

=
+∞
∑

0

(ez0z−1)n =
1

1− ez0z−1
, (57)

and it is convergent for values of z that are larger than e<(z0) in magnitude18.
Similarly to what we saw for continuous-variable functions, the Fourier

transform for discrete-variable functions can be obtained as a specialization of
the Z transform where the values of the complex variable are restricted to the
unit circumference.

Y (ω) = YZ(ejω) , (58)

or, in detail,

Y (ω) =
+∞
∑

n=−∞
y(n)e−jωn . (59)

In this book, we use the symbol ω for the radian frequency in the case of
discrete-variable functions, leaving Ω for the continuous-variable functions.

###

A.9 Computer Arithmetics

A.9.1 Integer Numbers

In order to fully understand the behavior of several hardware and software
tools for sound processing, it is important to know something about the internal
representation of numbers within computer systems. Numbers are represented
as strings of binary digits (0 and 1), but the specific meaning of the string de-
pends on the conventions used. The first convention is that of unsigned integer

17The latter equality in (57) is due to the identity
+∞
∑

n=0

an =
1

1− a
, |a| < 1, which can be

verified by the reader with a = 1/2.
18<(x) is the real part of the complex number x
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numbers, whose value is computed, in the case of 16 bits, by the following
formula

x =
15
∑

i=0

xi × 2i , (60)

where xi is the i-th binary digit starting from the right. The binary digits are
called bits, the rightmost digit is called least significant bit (LSB), and the
leftmost digit is called the most significant bit (MSB). For instance, we have

01000011001001102 = 21 + 22 + 25 + 28 + 29 + 214 = 17190 , (61)

where the subscript 2 indicates the binary representation, being the usual decimal
representation indicated with no subscript.

The leftmost bit is often interpreted as a sign bit: if it is set to one it means
that the sign is minus and the absolute value is given by the bits that follow.
However, this is not the representation that is used for the signed integers. For
these numbers the two’s complement representation is used, where the leftmost
bit is still a sign bit, but the absolute value of a negative number is recovered
by bitwise complementation of the following bits, interpretation of the result
as a positive integer, and addition of one. For instance, with four bits we have

10102 = −(01012 + 1) = −(5 + 1) = −6 . (62)

The two’s complement representation has the following advantages:

• there is only one representation of the zero19.

• it has a cyclic structure: a unit increment of the largest representable pos-
itive number gives the negative number with the largest absolute value

• the sums between signed numbers are performed by simple bitwise op-
eration and without caring about the sign (a carry on the left can be
ignored)

We note that

• the negative number with the largest absolute value is 100 . . . 02. Its ab-
solute value exceeds that of the largest positive number (i.e., 011 . . . 12)
by one

• the negative number with the smallest absolute value is represented by
111 . . . 12

19Vice versa, the sign and magnitude representation has one positive and one negative zero
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• the range of the numbers representable in two’s complement with 16 bits
is [−215, 215 − 1] = [−32768, 32767]

• the range of the numbers representable in two’s complement with 8 bits
is [−27, 27 − 1] = [−128, 127]

Often, in computer memory words and addresses are organized as collec-
tions of 8-bit packets, called bytes. Therefore, it is useful to use a representation
where the bits are considered in packets of four units, each packet tacking in-
teger values from 0 to 15. This representation is called hexadecimal and, for
the numbers between 10 and 15, it uses the hexadecimal “digits” A, B, C, D,
E, F. For instance, a 16-bit binary number can be represented as

01001011001001102 = 4B2616 . (63)

A.9.2 Rational Numbers
We have two alternative possibilities to represent rational non-integer num-

bers:

• fixed point

• floating point

The fixed point representation is similar to the representation of integer
numbers, with te difference that we have a decimal point at a prescribed po-
sition. The digits are divided into two sets: the integer part and the fractional
part. The 16-bit representation, without sign and with 3 bits of integer part is

x =
2
∑

i=−13

xi × 2i , (64)

and is obtained by multiplication of the integer number on 16 bits by 2−13.
In the two’s complement representation, the operations can be done without
caring of the position of the decimal point, as we would be operating on integer
numbers. Often, the rational numbers are considered to be normalized to one,
i.e., to be limited to the range [−1, 1). In such a case, the decimal point is
placed before the leftmost binary digit.

For the floating point representation we can follow different conventions.
In particular, the IEEE 754 floating-point single-precision numbers obey to the
following rules
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• the number is represented as

1.xx . . . x2 × 2yy...y2 , (65)

where x are the binary digits of the mantissa and y are the binary digits
of the exponent

• The number is represented on 32 bits according to the following block
decomposition

– bit 31: sign bit

– bits 23–30: exponent yy . . . y in biased representation20, from the
most negative 00 . . . 0 to the most positive 11 . . . 1

– bits 0–22: mantissa in unsigned binary representation

The IEEE 754 standard of double-precision floating-point numbers uses 11 bits
for the exponent and 52 bits for the mantissa.

It should be clear that both the fixed- and the floating-point representa-
tions take a subset of rational numbers. Fixed-point numbers are equally spaced
between the minimum and the maximum representable value with a quantiz-
ation step equal to 2−d, where d is the number of digits on the right of the
decimal point. Floating-point numbers are unevenly distributed, being more
sparse for large values of the exponent and more dense for little exponents.
Floating-point numbers have the possibility to represent a large range, from
2 × 10−38 to 2 × 1038 in single precision, and from 2 × 10−308 to 2 × 10308

in double precision. Therefore, it is possible to do many computations without
worrying of errors due to overflow. Moreover, the high density of small num-
bers reduces the problems due to the quantization step. This is paid in terms of
a more complicated arithmetics.

20The bias is 127. Therefore, the exponent 1 is coded as 1 + 127 = 128 = 100000002. The
biased representation simplifies the bit-oriented sorting operations.



Appendix B

Tools for Sound Processing
(with Nicola Bernardini)

Audio signal processing is essentially an engineering discipline. Since en-
gineering is about practical realizations the discipline is best taught using real-
world tools rather than special didactic software. At the roots of audio sig-
nal processing there are mathematics and computational science: therefore we
strongly recommend using one of the advanced maths softwares available off
the shelf. In particular, we experienced teaching with Matlab, or with its Free
Software counterpart Octave 1. Even though much of the code can be ported
from Matlab to Octave with minor changes, there can still be some significant
advantage in using the commercial product. However, Matlab is expensive and
every specialized toolbox is sold separately, even though an less-expensive stu-
dent edition is available. On the other hand, Octave is free software distributed
under the GNU public license. It is robust, highly integrated with other tools
such as Emacs for editing and GNUPlot for plotting.

For actual sound applications, there are at least three other categories of
softwares for sound synthesis that it is worth considering: languages for sound
processing, interactive graphical building environments, and inline sound edit-
ors.

When sound applications are targeted to the market of information appli-
ances, it is likely that the processing algorithms will be implemented on low-
cost hardware specifically tailored for typical signal-processing operations.

1http://www.octave.org
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Therefore, it is also useful to look at how signal-processing chips are usually
structured.

B.1 Sounds in Matlab and Octave
In Octave/Matlab, monophonic sounds are simply one-dimensional vectors

(rows or columns), so that they can be transformed by means of matrix algebra,
since vectors are first–class variables. In these systems, the computations are
vectorized, and the gain in efficiency is high whenever looped operations on
matrices are transformed into compact matrix-algebra notation [9]. This peculi-
arity is sometimes difficult to assimilate by students, but the theory of matrices
needed in order to start working is really limited to the basic concepts and can
be condensed in a two-hours lecture.

Processing in Octave/Matlab usually proceeds using monophonic sounds,
as stereo sounds are simply seen as couples of vectors. It is necessary to make
clear what the sound sample rate is at each step, i.e., how many samples are
needed to produce one second of sound.

Let us give an example of how we can create a 440Hz sinusoidal sound,
lasting 2 seconds, and using the sample rate Fs = 44100Hz:

f = 440; % pitch in Hz
Fs= 44100; % sample rate in Hz
l = 2; % soundlength in seconds
Y = sin(2*pi*f/Fs*[0:Fs*l]); % sound vector

The sound is simply defined by application of the function sin() to a vec-
tor of Fs*l + 1 elements (namely, 88200 elements) containing an increasing
ramp, suitably scaled so that f cycles are represented in Fs samples.

Once the sound vector has been defined, one may like to listen to it. On
this point, Matlab and Octave present different behaviors, also dependent on
the machine and operating system where they are running. Matlab offers the
function sound() that receives as input the vector containing the sound and,
optionally, a second parameter indicating the sample rate. Without the second
parameter, the default sample rate is 8192Hz. Up to version 4.2 of Matlab, the
number of reproduction bits was 8 on a Intel-compatible machine. More recent
versions of Matlab reproduce sound vectors using 16 bits of sample resolution.
In order to reproduce the sound that we have produced with the above script
we should write

sound(Y, Fc);
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Up to now, in the core Octave distribution the function that allows to pro-
duce sounds from the Octave interpreter is playaudio(), that can receive
“filename” and “extension” as the first and second argument, respectively. The
extension contains information about the audio file format, but so far only the
formats raw data linear and mu-law are supported. Alternatively, the argument
of playaudio can be a vector name, such as Y in our example. The reproduc-
tion is done at 8 bits and 8192 Hz, but it would be easy to modify the function
so that it can use better quantizations and sample rates. Fortunately, there is the
octave-forge project 2 that contains useful functions for Octave which are not in
the main distribution. In the audio section we notice the following interesting
functions (quoting from the help lines):

sound(x [, fs]) Play the signal through the speakers. Data is a matrix
with one column per channel. Rate fs defaults to 8000 Hz. The signal is
clipped to [-1, 1].

soundsc(x, fs, limit) or soundsc(x, fs, [ lo, hi ])
Scale the signal so that [min(x), max(x)]→ [-1, 1], then play it through
the speakers at 8000 Hz sampling rate. The signal has one column per
channel.

[x, fs, sampleformat] = auload(’filename.ext’) Reads an
audio waveform from a file. Returns the audio samples in data, one
column per channel, one row per time slice. Also returns the sample rate
and stored format (one of ulaw, alaw, char, short, long, float, double).
The sample value will be normalized to the range [-1,1) regardless of
the stored format. This does not do any level correction or DC offset
correction on the samples.

ausave(’filename.ext’, x, fs, format) Writes an audio file
with the appropriate header. The extension on the filename determines
the layout of the header. Currently supports .wav and .au layouts. Data is
a matrix of audio samples, one row time step, one column per channel.
Fs defaults to 8000 Hz. Format is one of ulaw, alaw, char, short, long,
float, double

B.1.1 Digression
In Matlab versions older than 5, the function sound had a bug that is worth

analyzing because it sheds some light on risks that may be connected with the
2 http://www.sourceforge.net

http://www.sourceforge.net
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internal representations of integer numbers. Let us construct a sound as a casual
sequence of numbers having values 1 and −1:

Fs = 8192;
W=rand(size(0:Fs)) - 0.5;
for i = 1:length(W)

if (W(i)>0) W(i) = 1.0;
else W(i) = -1.0;
end;

end;

In order to be convinced that such sound is a spectrally-rich noise we can
plot its spectrum, that would look like that of fig. 1.

Surprisingly enough, in old Matlab versions on Intel-compatible architec-
tures if the sound W was played using sound(W) the audio outcome was, at
most, a couple of clicks corresponding to the start and end transients.
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Figure 1: Spectrum of a random 1 and -1 sequence

This can be explained by thinking that, on 8 bits, 256 quantization levels
can be represented. A number between −1.0 and +1.0 is recasted into the 8-
bits range by taking the integer part of its product by 128. The problem is that,
when the resulting integer number is represented in two’s complement, the
number +1.0 is not representable since, on 8 bits, the largest positive number
that can be represented is 127. Due to the circularity of two’s complement
representation, the multiplication 1.0×128 produces the number−128, which
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is also the representation of −1.0. Therefore, the audio device sees a constant
sequence of numbers equal to the most negative representable number, and it
does not produce any sound, except for the transients due to the initial and
final steps. Once the problem had been discovered and understood, the user
could circumvent it by rescaling the signal in a slightly larger range, e.g., [-1,
1.1].

In the Matlab environment the acquisition and writing of sound files from
and to the disk is done by means of the functions auread(), auwrite(),
wavread(), e wavwrite(). The former couple of functions work with files
in au format, while the latter couple work with files in the popular wav format.
In earlier version of Malab (before version 5) these functions only dealt with 8-
bit files, thus precluding high-quality audio processing. For users of old Matlab
versions, two routines are available for reading and writing 16-bit wav files,
called wavr16.m and wavw16.m, written by F. Caron and modified to ensure
Octave compatibility. An example of usage for wavr16() is

[L,R,format] = wavr16(’audiofile.wav’)

that returns the right and left channels of the file audiofile.wav, in the
L and R vectors, respectively. The two vectors are identical if the file is mono-
phonic. The returned vector format has four components containing format
information: the kind of encoding (indeed only PCM linear is recognized), the
number of channels, the sample rate, and the number of quantization bits.

An example of invocation of the function wavw16() is

wavw16(’audiofile.wav’, M, format)

where format is, again, a four-component vector containing format in-
formation, and M is a one- or two-column matrix containing the channels to be
written in a monophonic or stereophonic file.

Since sounds are handled as monodimensional vectors, sound processing
can be reduced in most cases to vectorial operations. The iterative, sample-
by-sample processing is quite inefficient with interpreters such as Octave or
Matlab, that are optimized to handle matrices. As an example of elementary
processing, consider a simple smoothing operation, obtained by substitution
of each input sound sample with the average between itself and the following
sample. Here is a script that does this operation in Octave, after having loaded
a monophonic sound file:

[L,R,format] = wavr16(’ma1.wav’);
S = (L + [L(2:length(L)); 0]) / 2; %‘‘smoothed’’ sound

http://www.sci.univr.it/~rocchess/htmls/corsi/
http://www.sci.univr.it/~rocchess/htmls/corsi/
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The operation is expressed in a very compact way by summation of the
vector L with the vector itself left-shifted by one position3. The smoothing
operation may be expressed iteratively as follows:

[L,R,format] = wavr16(’ma1.wav’);
S = L/2;
for i=1:length(L)-1
S(i) = (L(i) + L(i+1))/2;

end;

The code turns out to be less compact but, probably, more easily under-
standable. However, the running time is significantly higher because of the
for loop.

In the Matlab environment, there is a collection of functions called the Sig-
nal Processing Toolbox. In the examples of this book we do not use those func-
tions, preferring public-domain routines written for Octave, possibly modified
to be usable within Matlab. One such function is function is stft.m, that al-
lows to have a time-frequency representation of a signal. This can be useful for
time-frequency processing and representation, as in the script

SS = stft(S);
mesh(20*log10(SS));

whose result is a 3D representation of the time-frequency behavior of the
sound contained in S.

B.2 Languages for Sound Processing
In this section we briefly show how sounds are acquired and processed

using languages that have been explicitely designed for sound and music pro-
cessing.

The most widely used language is probably Csound, developed by Barry
Vercoe at the Massachusetts Institute of Technology and available since the
middle eighties. Csound is a direct descendant of the family of Music-N lan-
guages that was created by Max Mathews at the Bell Laboratories since the late
fifties. In this family, the language of choice for most computer-music com-
posers between the sixties and the eighties was Music V, that established a
standard in symbology of basic operators, called Unit Generators (UG).

3The last element is set to zero to fill the blank left by the left-shift operation on L. The reader
can extend the example in such a way that the input sound is overlapped and summed with its echo
delayed by 200ms.

http://www.sci.univr.it/~rocchess/htmls/corsi/
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According to the Music-N tradition, the UGs are connected as if they were
modules of an analog synthesizer, and the resulting patch is called an instru-
ment. The actual connecting wires are variables whose names are passed as
arguments to the UGs. An orchestra is a collection of instruments. For every
instrument, there are control parameters which can be used to determine the
behavior of the instrument. These parameters are accessible to the interpreter
of a score, which is a collection of time-stamped invocations of instrument
events (called notes). Fig. 2 shows a schematic description of how Music-V-
like languages work: a) is a Music-V source text4 while b) is its graphical rep-
resentation. The orchestra/score metaphor, the decomposition of an orchestra

Figure 2: Music-V file description

into non-interacting instruments, and the description of a score as a sequence
of notes, are all design decisions which were taken in respect of a traditional
view of music. However, many musical and synthesis processes do not fit well
in such a metaphorical frame. As an example, consider how difficult it is to
express modulation processing effects that involve several notes played by a
single synthesis instrument (such as those played within a single violin bow-

4picked up from [56, page 45]
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ing): it would be desirable to have the possibility of modifying the instrument
state as a result of a chain of weakly synchronized events (that is, to perform
some sort of per-thread processing). Instead, languages such as Music V rely
on special initialization steps encoded within instruments to handle articulatory
gestures involving several pitches.

Other models have been proposed for dealing with less rigid descriptions
of sound and music events. One such model is tied to the Nyquist language 5,
developed by the team of Roger Dannenberg at the Carnegie Mellon Univer-
sity [28]. This language provides a unified treatment of music and sound events
and is based on functional programming (Lisp language). Algorithmic manip-
ulations of symbols, processing of signals, and structured temporal modific-
ations are all possible without leaving a consistent framework. In particular,
Nyquist exploits the idea of behavioral abstraction, i.e. time-domain transform-
ations are interpreted in an abstract sense and the details are encapsulated in
descriptions of behaviors [27]. In other words, musical concepts such as dura-
tion, onset time, loudness, time stretching, are specified differently in different
UGs. Modern compositional paradigms benefit from this unification of control
signals, audio signals, behavioral abstractions and continuous transformations.

Placing some of the most widely used languages for sound manipulation
along an axis representing flexibility and expressiveness, the lower end is prob-
ably occupied by Csound while the upper one is probably occupied by Nyquist.
Another notable language which lies somewhere in between is Common Lisp
Music 6 (CLM), which was developed by Bill Schottstaedt as an extension of
Common Lisp [87]. If CLM is not too far from Nyquist (thanks to the underly-
ing Lisp language) there is another language closer to the other edge of the axis,
which represents a “modernization” of Csound. The language is called SAOL 7

and it has been adopted as the formal specification of Structured Audio for the
MPEG-4 standard [107]. SAOL orchestras and scores can be translated into C
language by means of the software translator SFRONT 8 developed by John
Lazzaro and John Wawrzynek at UC Berkeley.

The simple examples that we are presenting in this book are written in
Csound, and realizations in CLM and SAOL are presented for comparison.

5http://www.cs.cmu.edu/˜rbd/nyquist.html
6 http://www-ccrma.stanford.edu/software/clm/
7http://www.saol.net
8http://www.cs.berkeley.edu/˜lazzaro/sa/

http://www.cs.berkeley.edu/~lazzaro/sa/
http://www.saol.net
http://www-ccrma.stanford.edu/software/clm/
http://www.cs.cmu.edu/~rbd/nyquist.html
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B.2.1 Unit generator

The UGs are primitive modules that produce, modify, or acquire audio or
control signals. For audio signal production, particularly important primitives
are those that read tables (table) and run an oscillator (oscil), while for
producing control signals the envelope generators (line) are important. For
sound modification, there are UGs for digital filters (reson) and time-domain
processing, such as delays (delay). For sound acquisition, there are special
UGs (soundin).

According to the Music-V tradition, several UGs can be connected to form
complex instruments. The connections are realized by means of variables. In
Csound the instruments are collected in a file called orchestra. The instrument
parameters can be initialized by arguments passed at invocation time, called p-
fields. Invocations of events on single instruments are considered to be notes,
and they are collected in a second file, called score. The dichotomy between
orchestra and score, as well as the subdivision of the orchestra into autonomous
non-interacting entities called instruments, are design choices derived from a
rather traditional view of music composition. We have already mentioned how
certain kinds of operation with synthesis instruments do not fit well in this
view.

The way the control and communication variables are handled in instru-
ments made of several UGs is another crucial aspect to understand the effect-
iveness of a computer-music language. In Csound, variables are classified as:
audio-rate variables and control-rate variables. The former can vary at audio
rate, the latter are usually band-limited to a lower rate. In this way it is possible
to update the control variables at a lower rate, thus saving some computations.
Following the treatment of Roads [78], such run-time organization is called
block-oriented computation, as opposed to sample-oriented computation. This
is not to say that block-oriented computation are vectorized, or intrinsically
parallel on data blocks, but rather that control variables are not loaded in the
machine registers at each audio cycle.

The split of variables between audio rate and control rate does not offer
any semantic benefit for the composer, but it is only a way to reach higher
computation speeds. Vice versa, sometimes the sound designer is forced to
choose a control rate equal to the audio rate in order to avoid some artifacts.
Namely, this occurs in computational structures with delayed feedback loops9.

9Consider the case, pointed out to my attention by Gianantonio Patella, of a CSound instrument
with a feedback delay line. Since the UG delay is iterated seamlessly for a number of times equal
to the ratio between sample rate and control rate, the effective length of the delay turns out to be
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On the other hand, vectorized computations are an alternative way to arrange
the operations, that in many cases can lead to compact and efficient code, as it
was shown in the smoothing example of section B.1.

In the languages that we are considering there are UGs for time-frequency
processing that operate on a frame basis. Typically, the operations on a single
frame can be vectorized and we can have block-oriented computations when
the control rate coincides with the frame rate.

Csound also presents a third family of variables, the initialization variables,
whose value is computed only when a note starts in the score. In order to par-
tially overcome the problems of articulation between different notes, Csound
allows to hold a note (ihold), in such a way that the following note of the
same instrument can be treated differently during the initialization (tigoto).
For instance, these commands can be used to implement a smooth transition
between notes, as in a legato.

An interesting aspect that has to be considered is how the sound-processing
languages acquire pre-recorded material for processing. In Csound there is the
primitive soundin that acquires the samples from an audio file for as long
as the note that invoked the instrument remains active. Alternatively, with the
function table statement f a table can be loaded with the content of an audio
file, and such table can be read later on by UGs such as table or oscil.
This strategy allows to perform important modifications, such as transposition,
stretching, grain extraction, already at the reading stage.

The Csound architecture, largely inherited from Music V, is more oriented
toward sound synthesis than sound manipulation. For instance, a reverb contin-
ues to produce meaningful signal even when its input has ceased to be active,
and this fact has produced the practice to call the UG reverb by means of a
separate instrument that takes its input from global orchestra variables. On the
other hand, in CLM sound transformations are more clearly stated since any fil-
ter can have a sound file name among its parameters. For CLM, a reverb is any
filter whose invocation is made explicit as an argument of a sound-generation
function.

B.2.2 Examples in Csound, SAOL, and CLM
Let us face the problem of reading an audio fragment memorized in the file

“march.aiff” and to process it by means of a linearly-increasing transposition
a 100ms echo.

A Csound solution is found in the following orchestra and score files:

extended by such number of samples.
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; sweep.orc
sr = 22000 ;audio rate
kr = 220 ;control rate
ksmps = 100 ;audio rate / control rate
nchnls = 1 ;number of channels

instr 1 ;sound production
ilt = ftlen(1)/sr ;table length in samples
kfreq line 1, p3, p4

;linear envelope from 1 to p4 in p3 seconds
gas loscil 25000, kfreq/ilt, 1, 1/ilt, 0, 1, \

ftlen(1)
;frequency-varying oscillator on table 1
endin

instr 2 ;sound processing
as delay gas, p4 ;p4 seconds delay on global

;variable gas
out p5*as + gas ;input + delayed and

;attenuated signal
endin

; sweep.sco
; table stored from sound file
; # time size file skip format chan
f 1 0 1048576 1 "march.aiff" 0 0 1
; p1 p2 p3 p4 p5
i 1 0 25 2.0 ;sound-production note
i 2 0 25 0.1 1.0 ;sound-processing note

The code can be easily understood by means of the comments and by ref-
erence to the Csound manual [106]. We only observe that both the sound pro-
duction and processing are activated by means of notes on different instru-
ments. The communication between the two instruments is done by means of
the global variable gas. The audio file is preliminarly loaded in memory by
means of the statement f of the score file. The table containing the sound file
is then read by instrument 1 using the UG loscil, that is a sort of sampling
device where the reading speed and iteration points (loops) can be imposed.

To understand how SAOL is structurally similar to CSound but syntactic-
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ally more modern, we propose some SAOL code for the same solution to our
processing problem. The orchestra is

global {
outchannels 1;
srate 22000;
krate 220;

table tabl(soundfile, -1, "march.aiff");

route (bus1, generator);
// delay amplitude

send (effect; 0.1, 1.0; bus1);
}

instr generator(env_ext) {
// env_ext: target point of the linear envelope
// (from 1 to env_ext)

ksig freq;
asig signa;
imports table tabl;
ivar lentab;

lentab = ftlen(tabl)/s_rate; //table length in seconds

freq = kline(1, dur, env_ext);
signa = oscil(tabl, freq/lentab, 1);
output(signa);

}

instr effect(del,ampl) {
// del: echo delay in seconds
// ampl: amplitude of the echo

asig signa;

signa = delay(input, del);
output(input + ampl*signa);

}
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while the score reduces to the line

0.00
generator 25.0 2.0

In SAOL, variable names, parameters, and instruments are handled more
clearly. The block enclosed by the keyword global contains some features
shared by all instruments in the orchestra, such as the sample and control rate,
or the audio files that are accessed by means of tables. Moreover, this section
contains a configuration of the audio busses where signal travels. In the ex-
ample the generator instrument sends its output to the bus called bus1.
From here, signals are sent to the effect unit together with the processing
parameters del and ampl, In the global section it is possible to program
arbitrarily-complex paths among production and processing units.

Let us examine how the same kind of processing can be done in CLM. Here
we do not have an orchestra file, but we compose as many files as there are gen-
eration or processing instruments. Every instrument is defined by means of the
LISP macro definstrument, and afterwords it can be compiled and loaded
within the LISP environment as a primitive function. The code segment that is
responsible for audio sample generation is enclosed within the Runmacro, that
is expanded into C code at compilation time. In the past, the Run macro could
also generate code for the fixed-point Digital Signal Processor (DSP) Motorola
56000, that was available in NeXT computers, in order to speed up the com-
putations. In contemporary general-purpose computers there is no longer an
advantage in using DSP code, as the C-compiled functions are very efficient
and they do not suffer from artifacts due to fixed-point arithmetics.

Here is the CLM instrument that reads an audio file at variable speed:

(definstrument sweep (file &key
;; parameters:
;; DURATION of the audio segment to be
;; acquired (seconds)
;; AMPSCL: amplitude scaling
;; FREQ-ENV: frequency envelope

(duration 1.0) (ampscl 1.0) (freq-env
’(0 1.0 100 1.0)) )

(let ((f (open-input file)))
;; input file assigned to variable f

(let*
((beg 0) ;; initial inst.
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(end (+ beg
(floor (* sampling-rate duration))))

;; final inst.
(freq-read-env

(make-env :envelope freq-env ))
;; freq. env.

(sr-convert-a
(make-resample :file f :srate 1.0 ))

;; sr-convert-a:
;; var. containing the acquired file

(out-sig-a 0.0) ) ;; dummy var.
(Run

(loop for i from beg to end do
(setf out-sig-a

(* ampscl (resample sr-convert-a
(env freq-read-env))))

;; transposition envelope (in octaves)
(outa i out-sig-a)
(if *reverb* (revout i out-sig-a))

)))))

The reader can notice how, within the parentheses that follow the instru-
ment name (sweep), there are mandatory parameters, such as the file to be
read, and optional parameters, such as duration, ampscl, and freq-env.
For the optional parameters a default value is given. It is interesting how several
kinds of objects can be used as parameters, namely strings (file), numbers
(duration, ampscl), or envelopes with an arbitrary number of segments
(freq-env).

The intermediate code section contains various definitions of variables and
objects used by the instrument. In this section envelopes and UGs are pre-
pared to act as desired. The Run section contains a loop that is iterated for a
number of times equal to the samples to be produced. This loop contains the
signal processing kernel. The read at increasing pace is performed by the UG
resample, whose reading step is governed by the envelope passed as a para-
meter. The last code line sends the signal to the post-processing unit reverb,
when that is present. In our example, the post-processing unit is a second in-
strument, called eco:

(definstrument eco
(startime dur &optional (volume 1.0) (length 0.1))
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(let* (
(d1 (make-zdelay (* sampling-rate length)))
(vol volume)
(beg 0)
(end (+ beg (floor (* dur sampling-rate)))))

(run
(loop for i from beg to end do

(outa i (* vol (zdelay d1 (revin i))))
))

))

The eco instrument will have to be compiled and loaded as well. After, the
entire processing will be activated by

(with-sound (:reverb eco :reverb-data(1.0 0.1))
(sweep "march.wav" :duration 25 :freq-env

’(0 0.0 100 1.0)))

The macro with-sound operates a clear distinction between sound pro-
duction and modification, as any kind of modification is considered as a reverb.

The three sound-processing examples written in CSound, CLM, and SAOL
produce almost identical results10. The resulting sound waveshape and its sono-
gram are depicted in fig. 3. This figures has been obtained by means of the ana-
lysis program snd, a companion program of CLM (see section B.4). From the
sonogram we can visually verify that the audio file is read at increasing speed
and that such read does not contain discontinuities.

Figure 3: Waveshape and sonogram of a sound file that is echoed and read at
increasing speed

10Subtle differences are possible due to the diversity of implementation of the UGs.

http://www.sci.univr.it/~rocchess/sounds/sweep.wav
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B.3 Interactive Graphical Building Environments
In recent times, several software packages have been written to ease the task

of designing sound synthesis and processing algorithms. Such packages make
extensive use of graphical metaphors and object abstraction reducing the pro-
cessing flow to a number of small boxes with zero, one or more audio/control
inputs and outputs connected by lines, thus replicating once again the old and
well known modular synthesizer interface taxonomy.

The steady increase in performance of modern computers has allowed the
interactive use of these graphical building environments, that become effect-
ively rapid prototyping tools. The speed of modern processors allow sophistic-
ated signal computations at a rate faster than the sampling rate. For instance, if
the sampling rate is Fs = 44.1kHz, it is possible that the processor is capable to
produce one or more sound samples in a time quantum T = 1/Fs = 22.6µsec.
If such condition holds, even the languages of section B.2 can be used for
real-time processing, i.e., they can produce an audio stream directly into the
analog-to-digital converters. The user may alter this processing by control sig-
nals introduced by external means, such as MIDI messages11.

Initially, many interactive graphical building packages where created to
tame the daunting task of writing specialized code for dedicated signal pro-
cessing tasks. In these packages, each object would contain some portion of
DSP assembly code or microcode which would be loaded on-demand in the ap-
propriate DSP card. With a graphical interface the user would easily construct,
then, complex DSP algorithms with detailed controls coming from different
sources (audio, MIDI, sensors, etc.). Several such applications still exist and
are fairly widely used in the live-electronics music field (just to quote a few of
the latest (remaining) ones): the Kyma/Capybara environment written by Carla
Scaletti and Kurt Hebel 12, the ARES/MARS environment [7, 11, 21, 6] de-
veloped by IRIS-Bontempi, and the Scope package produced by the german
firm Creamware 13.

While these specialized packages for music composers and sound designers
are bound to disappear with the rapid and manifold power increase of general
purpose processors14, the concept of graphic object-oriented abstraction to eas-

11MIDI (Musical Instrument Digital Interface) is a standard protocol for communication of mu-
sical information

12 http://www.symbolicsound.com
13 http://www.creamware.de
14This is not a personal but rather a classic darwinian consideration: the maintenance costs of

such packages added to the intrinsinc tight binding of such code with rapidly obsolescent hardware
exposes them to an inevitable extinction.

http://www.creamware.de
http://www.symbolicsound.com
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ily visually construct signal processing algorithms has spur an entire new line
of software products.

The most widespread one is indeed the Max package suite conceived and
written by Miller Puckette at IRCAM. Born as a generic MIDI control logic
builder, this package has known an enormous expansion in its commercial ver-
sion produced by Cycling ’74 and maintained by Dave Zicarelli 15. A recent
extension to Max, written by Zicarelli, is MSP which features real-time signal
processing objects on Apple PowerMacs (i.e. on general-purpose RISC archi-
tectures). Another interesting path is being currently followed by Miller Puck-
ette himself who is the principal author of Pure Data (pd) [71], an open-source
public domain counterpart of Max which handles MIDI, audio and graphics
(extensions by Mark Danks 16). pd is developed keeping the actual processing
and its graphical display as two cooperating separate processes, thus enhancing
portability and easily modeling its processing priorities (sound first, graphics
later) on the underlying operating system thread/task switching capabilities.
pd is currently a very early-stage work-in-progress but it already features most
of the graphic objects found in the experimental version of Max plus several
audio signal processing objects. Its tcl/tk graphical interface makes its porting
extremely easy (virtually “no porting at all”)17.

B.3.1 Examples in ARES/MARS and pd
While the use of systems that are based on specialized digital signal pro-

cessors is fading out in the music and sound communities, those kinds of chips
still play a crucial role in communication and embedded systems. In general,
wherever one needs signal processing capabilities at a very low cost, digital
signal processors come into play, with their corollary of peculiar assembly
language and parallel datapaths. For this reason, it is useful to look at the
ARES/MARS workstation as a prototypical example of such systems, and to
see how our problem of sound echoing and continuous transposition would
have been solved with such system.

In the IRIS ARES/MARS workstation there is a host computer, that is used
to program the audio patches and the control environments, a micro-controller
that uses its proprietary real-time operating system to handle the control sig-
nals, and one or more digital signal processors that are used to process the

15 http://www.cycling74.com
16 http://www.danks.org/mark/GEM/
17 Pure Data currently runs on Silicon Graphics workstations, on Linux boxes and on Windows

NT platforms; sources and binaries can be found at http://crca.ucsd.edu/˜msp/software.html

http://crca.ucsd.edu/~msp/software.html
http://www.danks.org/mark/GEM/
http://www.cycling74.com
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Figure 4: A Pd screen shot

signals at audio rate. The audio patch that solves our processing problem is
shown in fig. 5. The input signal is directly taken from an analog-to-digital
converter, and the output signal is sent to a digital-to-analog converter.

There are two main blocks: the first, called HARMO, is responsible for input
signal transposition. The second, having a small clock as an icon, produces the
echo. Since we want a gradually-increasing transposition, the HARMO block is
controlled by a slowly-varying envelope, updated at a lower rate, programmed
to ramp from trasp_iniziale to trasp_finale. The transposed signal
goes into the delay unit and produces the echo that gets summed to the trans-
posed signal itself before being sent to the output. Among the parameters of
the HARMO and delay units, there are those responsible for memory manage-
ment, since both units use memory buffers that must be properly allocated, as
explained in section B.5.

Figure 6 shows a possible solution to our sweep-and-echo problem using
pd. Again, we have a harmo block that performs the pitch transposition. Ho-
wever, in pd this harmonizer is not a native module, but it is implemented
in a separate patch by means of cross-fading delay lines [110]. Similarly, the
ramped_phase block encapsulates the operations necessary to perform a
one-pass read of the wavetable containing the sound file. The subgraph in the
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Figure 5: MARS patch for echoing and linearly-increasing transposition

lower right corner represents the linear increase in pitch transposition, obtained
by means of the line UG and used by the harmo unit.

B.4 Inline sound processing
A completely different category of music software deals with inline sound

processing. The software included in this category implies direct user control
over sound on several levels, from its inner microscopic details up to its full
external form.

In its various forms, it allows the user to: (i) process single or multiple
sounds (ii) build complex sound structures into a sound stream (iii) view differ-
ent graphical representations of sounds. Hence, the major difference between
this category and the one outlined in the preceding paragraphs lies perhaps in
this software’s more general usage at the expense of less ’inherent’ musical
capabilities: as an example, the difference between single event and event or-
ganization (the above-mentioned orchestra/score metaphor and other organiz-
ational forms) which is pervasive in the languages for sound processing hardly
exists in this category. However, this software allows direct manipulation of
various sound parameters in many different ways and is often indispensable in
musical pre-production and post-production stages.

Compared to the Music-N-type software the one of this category belongs
to a sort of “second generation” computer hardware: it makes widespread and
intensive use of high-definition graphical devices, high-speed sound-dedicated
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Figure 6: pd patch for echoing and linearly-increasing transposition

hardware, large core memory, large hard disks, etc. . In fact, we will shortly
show that the most hardware-intensive software in music processing - the di-
gital live-electronics real-time control software - belongs to one of the sub-
categories exposed below.

B.4.1 Time-Domain Graphical Editing and Processing

The most obvious application for inline sound processing is that of graph-
ical editing of sounds. While text data files lend themselves very conveniently
to musical data description, high-resolution graphics are fundamental to this
specific field of applications where single-sample accuracy can be sacrificed to
a more intuitive sound event global view.

Most graphic sound editors allow to splice and process sound files in dif-
ferent ways.

As fig. 7 18 shows the typical graphical editor displays one or more sound-
files in the time-domain, allowing to modify it with a variety of tools. The
important concepts in digital audio editing can be summarised as follows:

18 The editor in this example is called Audacity, an Free Software audio editing
and processing application written by Dominic Mazzoni, Roger Dannenberg et al.[57]
( http://audacity.sourceforge.net ) for Unix, Windows and MacOs workstations.

http://audacity.sourceforge.net
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Figure 7: A typical sound editing application

• regions - these are graphically selected portions of sound in which the
processing and/or splicing takes place;

• in-core editing versus window editing - while simpler editors load the
sound in RAM memory for editing, the most professional ones offer
buffered on-disk editing to allow editing of sounds of any length: given
the current storage techniques, high-quality sound is fairly expensive in
terms of storage (ca. 100 kbytes per second and growing), on-disk edit-
ing is absolutely essential to serious editing;

• editing and rearranging of large soundfiles can be extremely expensive
in terms of hardware resources and hardly lend themselves to the gen-
eral editing features that are expected by any multimedia application:
multiple-level undos, quick trial-and-error, non-destructive editing, etc.:
several techniques have been developed to implement these features -
the most important one being the playlist, which allows soundfile editing
and rearranging without actually touching the soundfile itself but simply
storing pointers to the beginning and end of each region. As can be eas-
ily understood, this technique offers several advantages being extremely
fast and non-destructive;

In fig. 8, a collection of soundfiles is aligned on the time axis according to
a playlist indicating the starting time and duration of each soundfile reference
(i.e. a pointer to the actual soundfile). Notice the on-the-fly amplitude rescaling
of some of the soundfiles19

Graphical sound editors are extremely widespread on most hardware plat-
forms: while there is no current favourite application, each platform sports one

19ProTools c© is manufactured by Digidesign ( http://www.digidesign.com )

http://www.digidesign.com
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Figure 8: A snapshot of a typical ProTools c© editing session

or more widely used editors which may range from the US$ 10000 professional
editing suites for the Apple Macintosh to the many Free Software programs for
unix workstations. In the latter category, it is worthwile to mention the snd
application by Bill Schottstaedt 20 which features a back-end processing in
CLM. More precisely, sounds and commands can be exchanged back and forth
between CLM and snd, in such a way that the user can choose at any time the
most adequate between inline and language-based processing.

B.4.2 Analysis/Resynthesis Packages

Analysis/Resynthesis packages belong to a closely related but substantially
different category: they are generally medium-sized applications which offer
different editing capabilities. These packages are termed analysis/resynthesis
packages because editing and processing is preceded by an analysis phase
which extracts the desired parameters in their most significant and conveni-
ent form; editing is then performed on the extracted parameters in a variety of
ways and after editing, a resynthesis stage is needed to re-transform the edited
parameters into a sound in the time domain. In different forms, these applic-
ations do: (i) perform various types of analyses on a sound (ii) modify the
analysis data (iii) resynthesize the modified analysis.

20 http://www-ccrma.stanford.edu/software/snd/

http://www-ccrma.stanford.edu/software/snd/
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Many applications feature a graphical interface that allows direct editing
in the frequency-domain: the prototypical application in this field is Audio-
sculpt developed by Philippe Depalle, Chris Rogers and Gilles Poirot at the
IRCAM 21 (Institut de Recherche et Coordination Acoustique-Musique) for
the Apple Macintosh platform. Based on a versatile FFT-based phase vocoder
called SVP(which stands for Super Vocodeur de Phase), Audiosculpt is essen-
tially a drawing program which allows the user to “draw” on the spectrum
surface of a sound.

Figure 9: A typical AudioSculpt session

In fig. 9, some portions of the spectrogram have been delimited and differ-
ent magnitude reductions have been applied to them.

Other applications, such as Lemur 22, (running on Apple Macintoshes) [33]
or Ceres (developed by Oyvind Hammer at NoTam 23) perform different sets of
operations such as partial tracking and tracing, logical and algorithmic editing,
timbre morphing, etc.

The contemporary sound designer can also benefit from tools which are
specifically designed to transform sound objects in a controlled fashion. One

21 http://www.ircam.fr
22 http://www.cerlsoundgroup.org/Lemur/
23 http://www.NoTam.uio.no/

http://www.NoTam.uio.no/
http://www.cerlsoundgroup.org/Lemur/
http://www.ircam.fr
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such tool is SMS 24 (Spectral Modeling Synthesis), designed by Xavier Serra as
an offspring of his and Smith’s idea of analyzing sounds by decomposing them
into stochastic and deterministic components [95] or, in other words, noise
and sinusoids. SMS uses the Short-Time Fourier Transform (STFT) for ana-
lysis, tracking the most relevant peaks and resynthesizing from them the de-
terministic component of sound, while the stochastic component is obtained
by subtraction. The decomposition allows flexible transformations of the ana-
lysis parameters, thus allowing good-quality time warping, pitch contouring,
and sound morphing. In order to further improve the quality of transforma-
tions, extensions of the SMS model have been proposed though not included
in the distributed software yet. Namely, a special treatment of transients has
been devised as the way of getting rid of artifacts which can easily come into
play when severe transformations are operated [108]. SMS comes with a very
appealing graphical interface under Microsoft Windows, with a web-based in-
terface, and is available as a command-line program for other operating sys-
tems, such as the various flavors of unix. SMS uses an implementation of the
Spectral Description Interchange Format 25, which could potentially be used
by other packages operating transformations based on the STFT. As an ex-
ample, consider the following SMS synthesis score which takes the results of
analysis and resynthesizes with application of a pitch-shifting envelope and an
accentuation of inharmonicity:

InputSmsFile march.sms
OutputSoundFile exroc.snd
FreqSine 0 1.2 .5 1.1 .8 1 1 1
FreqSineStretch 0.2

B.5 Structure of a Digital Signal Processor
In this section we examine the ARES/MARS workstation as a prototyp-

ical case of hardware/software systems dedicated to digital audio processing.
Namely, we explain the internal arithmetics of the X20 processor, the compu-
tational core of the workstation, and the memory management system.

We have mentioned that the ARES/MARS workstation uses an expansion
board divided into two parts: a control part based on the microcontroller Mo-
torola MC68302, and an audio processing part based on two proprietary X20

24 http://www.iua.upf.es/˜sms/
25 http://cnmat.cnmat.Berkeley.edu/SDIF/

http://cnmat.cnmat.Berkeley.edu/SDIF/
http://www.iua.upf.es/~sms/
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processors. The X20 processor runs, for each audio cycle, a 512-instruction
microprogram, contained in a static external memory. Each microinstruction is
64 bits long, and it is computed in a 25ns machine cycle. Multiplying this cycle
by the 512 instructions we get the working sampling rate of the machine, that
is Fs = 39062.5Hz.

A rough scheme of the X20 processor is shown in figure 10, where we can
notice three units:

• Functional Unit: adder (ALU), multiplier (MUL), registers (RM), data
busses (C and Z);

• Data Memory Unit: data memories DMA and DMB, data busses (A, B,
and W);

• Control Unit: addresses of data memories (ADR), access to external
memory (FUN), connection to DAC/ADC audio bus, connection to mi-
croprogram memory and microcontroller (not shown in figure 10).

MUL ALU

RM RM

DMA RM DMBADR ADR

to DAC

from
FUN

to
FUN

from
ADC

Zbus Cbus

Wbus

Bbus

Abus

Figure 10: Block structure of the X20 processor

The computations are based on a circular data flow that involves the data
memories and the functional unit. The presence of two data memories and one
functional unit allows a parallel organization of microprograms. The data flow
can be divided into four phases:

• Data gathering from memories DMA, DMB, or external memory (FUN);
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• Selection of input data for the functional unit;

• Data processing by the functional unit;

• Insertion of the result back into the functional unit (by means of C and Z
busses) or memorization into the data memories (W bus).

B.5.1 Memory Management
The waveforms, tables, samples, or delay lines, are allocated in the external

memory26, that is organized in, at most, 16 banks of 1MWord27. Each word is
16 bits long. In order to access the external memory we have to specify the
base address in a 16-bit control word. Those bits are divided into two variable-
length fields, separated by a zero bit. On the right there are ones, in a number
n such that 32 × 2n is the size of the table28. The field on the left is a binary
number that denotes the ordinal number of the 32× 2n-words area allocated in
memory. For instance, the control word |0001|1101|1111|1111| (1DFF16 in
hexadecimal) represents the eight area of 16 KWords. Summarizing, in order
to select an external table, the user has to specify the memory bank (0 to 15),
the table size in powers of two, the offset, i.e., the ordinal number of table of
the dimension that we are considering. The 16-bit control word is indeed only
part of the 24-bit CWO register, the remaining 8 bits being used to select a
waveform derived from reading the fourth part of a sine wave, memorized in
1024 words of internal read-only memory.

In another 24-bit register, called VAD, the table-reading phase pointer is
stored. In order to access successive elements of the table, such register gets
summed with the content of a 24-bit increment register. For example, 4KWord
tables are accessed using an increment equal to 00100016, while for 2KWord
tables the increment is 00200016. A 4KWord table is not stored in contigu-
ous locations of the memory bank, but it uses locations that are seprated by
1024/4 = 001016 positions. The first 2 bytes of the increment account for this
distance. The extension of the phase to 3 bytes allows a fractional addressing,
with interpolations between logically-contiguous samples. For instance, con-
sider reading a 4KWord table: only the 12 most significant bits of the phase
are used to address the table, the remaining 12 bits29 being considered as the
fractional part of the address and assigned to a register ALFA. If the 12 bits

26Called FUN or function memory
271MWord is equal to 220 ≈ 1000000 words
28The minimal number of words in a table is, therefore, 32
29Actually, only the first 8.
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of the phase give the value n, an interpolated read of the table will return the
value 30

y = (1−ALFA)table(n) +ALFA table(n+ 1) (1)

With an increasing table size, the number of bits available for the fractional
part decreases, and indeed this corresponds to a decrease in accuracy of inter-
polation for tables larger than 64KWord.

B.5.2 Internal Arithmetics
The data memories of the X20 processor are made of 24-bit locations, and

24 bits are also used for the registers feeding the ALU and for the busses C,
Z, and W. On the other hand, we have only 16 bits for external functions and
for the registers feeding the MUL. The internal arithmetics of the X20 can be
summarized as:

• Representation of signals in two’s complement fixed point, with normal-
ization to one;

• Algebraic sum with 24-bit precision;

• Multiplication of two 16-bit numbers with 24-bit result;

• Tables and delay lines stored with 16-bit precision (FUN memory)

• 16-bit digital-to-analog and analog-to-digital conversion.

The addition can be performed as follows

• Normal mode: For the result, all the field of two’s complement 24-bit
numbers is used, with no handling of overflows.
Ex.: 50000016 + 40000016 = 90000016 = −70000016.

• Overflow-protected mode: when an overflow occurs the result is set to
the maximum or minimum representable number.
Ex.: 50000016 + 40000016 = 90000016 = 7FFFFF16.

• Zero-protected mode: every negative result is forced to be zero.

• Overflow- and Zero-protected mode: the sum is first executed in overflow-
protected mode, and any negative result is forced to be zero.

30The reader may observe that for ALFA equal to zero, the value table(n) is returned, while for
ALFA equal to one the returned value is table(n+ 1).
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The first mode is useful whenever one has to generate cyclic waveforms or
access to the memory cyclically, for instance to compute the phase pointer of
an oscillator. The second mode is used when we are doing signal processing,
since it protects from large-amplitude discontinuities and limit cycles (see sec-
tion 1.6). The following table shows some examples of sums performed with
the different modes31

a b a+b a+b (OVP) a+b (ZEP) a+b (OVPZEP)
-0.5 0.7 0.2 0.2 0.2 0.2
0.5 0.7 -0.8 1.0 0.0 1.0
0.5 -0.7 -0.2 -0.2 0.0 0.0
-0.5 -0.7 0.8 -1.0 0.8 0.0

Multiplications are performed on the 16 most-significant bits of the oper-
ands in order to give a 24-bit result. The multiplication can be summarized in
the following steps:

1) Consider only the 16 most-significant bits of the operands;

2) Multiply with 16-bit operand precision;

3) Consider only the 24 most-significant bits of the (31-bit) result.

The steps 1 and 3 imply quantization operations and precision loss. I passi 1
e 3 comportano delle operazioni di quantizzazione e pertanto comportano una
perdita di precisione. The following table shows some examples of multiplica-
tions expressed in decimal and hexadecimal notations32

a b ab a16 b16 ab16

1.0 1.0 0.999939 7FFFFF 7FFFFF 7FFE00
1.0 0.5 0.499985 7FFFFF 400000 3FFF80
0.001 0.001 0.000001 0020C5 0020C5 000008
-1.0 1.0 -0.99970 800000 7FFFFF 800100
-1.0 -1.0 -1.0 800000 800000 800000

The examples highlight the need of looking at the results of multiplications
with special care. The worst mistake is the one in the last line, where the result
is off by 200% !

31Copied from the online help system of the ARES/MARS workstation.
32Copied from the online help system of the ARES/MARS workstation.
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Another observation concerns the jump operations, that seem to be forbid-
den in an architecture that is based on the cyclic reading of a fixed number of
microinstructions. Indeed, there are conditional instructions, that can change
the selection of operands feeding the ALU according to a control value taken,
for instance, from bus C. The presence of these instructions justify the name
ALU for the adder, since it is indeed a Arithmetic Logic Unit.

B.5.3 The Pipeline
We have seen that the architecture of a Digital Signal Processor allows to

perform some operations in parallel. For instance, we can simultaneously per-
form data transfers, multiplication, and addition. Most digital filters are based
on the iterative repetition of operations such as

y = y + hisi (2)

where hi are the coefficients of the filter and si are memory words containing
the filter state. A DSP architecture such as the one of the X20 allows to specify,
in a single microinstruction, the product of two registers containing hi and si,
the accumulation of the product obtained at the prior cycle into another register
(containing y), and the register load with values hi and si to be used at the
next cycle. In other terms, the Multiply and Accumulate (MAC) operation is
distributed onto three clock cycles, but for each cycle three MAC operations
are in execution simultaneously. This is a realization of the principle of the
pipeline, where the sample being “manufactured” has a latency time of three
samples, but the frequency of sample delivery is one per clock cycle. In digital
filters, another fundamental operation is the state update. In practice, after si
has been used, it has to assume the value si−1. As it is shown in chapter 2,
such operation can be avoided by proper indexing of memory accesses (circular
buffering): Instead of moving the data with si ← si−1 we shift the indexes with
i← i− 1, in a circular fashion.
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Appendix C

Fundamentals of
psychoacoustics

Psychoacoustics is a “discipline within psychology concerned with sound,
its perception and the physiological foundations of hearing” [75]. A few con-
cepts and facts of psychoacoustics are certainly useful to the sound designer
and to any computer scientist interested in working with sound. Several books
provide a wider treatment of this topic, at different degrees of depth [86, 105,
42, 111].

C.1 The ear
The human ear is usually described as composed of three parts. This system

is schematically depicted in figure 1.

the outer ear: The pinna couples the external space to the ear canal. Its shape
is exploited by the hearing system to extract directional information from
incoming sounds. The ear canal is a tube (length l ≈ 2.6cm, diameter d ≈
0.6cm) closed on the inner side by a membrane called the ear drum. The
tube acts as a quarter-of-wavelength resonator, exciting frequencies in
the neighborhood of f0 = c

4l ≈ 3.3kHz, where c is the speed of sound
in air;

the middle ear: It transmits mechanical energy, received from the ear drum,
to the inner ear through a membrane called the oval window. To do so, it

207
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uses a chain of small bones, called the hammer, the anvil, and the stirrup;

the inner ear: It is a cavity, called cochlea, shaped like a snail shell, which is
shown rectified for clarity in figure 1. It contains a fluid and it is divided
by the basilar membrane into two chambers: the scala vestibuli and the
scala timpani. The length of the cochlea is about 3.5cm. Its diameter is
about 2mm at the oval window (base) and it gets narrower at the other
extreme (apex), where a narrow aperture (the helicotrema) allows the two
chambers to communicate. On top of the basilar membrane, the tectorial
membrane sustains about 16, 000 hair cells that pick up the transversal
motion of the basilar membrane and transmit it to the brain.
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Figure 1: Cartoon physiology of the ear

The vibrations of the oval window excite the fluid of the scala vestibuli. By
pressure differences between the scala vestibuli and scala timpani, the basilar
membrane oscillates and transversal waves are propagated. The basilar mem-
brane can be thought of as a string having a decreasing tension as we move
from the base to the apex. This tension changes by about four orders of mag-
nitude from base to apex. Along a string, the waves propagate at speed

c =

√

T

ρL
=

√

Tension
Linear density

, (1)

and the wavelength associated with the component at frequency f is

λ =
1
f

√

T

ρL
=
c

f
. (2)
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The impedance of the tube is z0 =
√
ρLT and, if vmax is the peak value of

transversal velocity, the wave power is

P =
1
2
z0v

2
max =

1
2

√

ρLTv
2
max . (3)

While a wave component at frequency f is propagating from the base to the
apex, its wavelength decreases (because tension decreases) and, due to the
physical requirement of power constancy, its amplitude increases. However,
this propagation is not lossless, and dissipation increases with the amplitude,
so that a frequency-dependent maximum region will emerge along the basilar
membrane (see figure 2). Since the high frequencies are more affected by
propagation losses, their characteristic resonance areas are cluttered close to
the base, while low frequencies are more widely distributed toward the apex.
About two thirds of the length of the cochlea is devoted to low frequencies
(about one fourth of the audio bandwidth), thus giving more frequency resolu-
tion to the slowly-varying components.
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Figure 2: Cartoon of the transversal velocity pattern elicited by an incoming
pure sine tone

C.2 Sound Intensity
Consider a sinusoidal point source in free space. It generates spherical pres-

sure waves that carry energy. The acoustic intensity is the power by unit surface
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that is carried by a wave front. It is a vectorial quantity having magnitude

I =
p2
max

2
1
z0

=
p2
max

2ρc
=
p2
RMS

ρc
, (4)

where pmax and pRMS are the peak and root-mean-square (RMS) values of
pressure wave, respectively, and z0 = ρc = density × speed is the impedance
of air.

At 1000Hz the human ear can detect sound intensities ranging from Imin =
10−12W/m2 (threshold of hearing) to Imax = 1W/m2 (threshold of pain).

Consider two spherical shells of areas a1 and a2, at distances r1 and r2

from the point source. The lossless propagation of a wavefront implies that the
intensities registered at the two distances are related to the areas by

I1a1 = I2a2 . (5)

Since the area is proportional to the square of distance from the source, we also
have

I1
I2

=
(

r2

r1

)2

. (6)

The intensity level is defined as

IL = 10 log10

I

I0
, (7)

where I0 = 10−12W/m2 is the sound intensity at the threshold of hearing. The
intensity level is measured in decibel (dB), so that multiplications by a factor
are turned into additions by an offset, as represented in table C.2. Similarly, the
sound pressure level is defined as

SPL = 20 log10

pmax
p0,max

= 20 log10

pRMS

p0,RMS
(8)

where p0,max and p0,RMS are the peak and RMS pressure values at the threshold
of hearing. For a propagating wave, we have that IL = SPL. For a standing
wave, since there is no power transfer and since IL is a power-based measure,
the SPL is more appropriate.

Given a reference tone with a certain value of IL at 1kHz, we can ask a
subject to adjust the intensity of a probe tone at a different frequency until it
matches the reference loudness perceptually. What we would obtain are the
Fletcher-Munson curves, or equal-loudness curves, sketched in figure 3. Each
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I IL
×1.26 +1
×2 +3
×10 +10

Table C.1: Relation between factors in the linear intensity scale and shifts in
the dB intensity-level scale
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Figure 3: Equal-loudness curves. The parameters express values of loudness
level in phons.

curve is parameterized on a value of loudness level (LL), measured in phons.
The loudness level is coincident with the intensity level at 1kHz.

Even though the Fletcher-Munson curves are obtained by averaging the re-
sponses of human subjects, the LL is still a physical quantity, because it refers
to the physical quantity IL and it does not represent the perceived loudness
in absolute terms. In other words, doubling the loudness level does not mean
doubling the perceived loudness. A genuine psychophysic measure is the loud-
ness in sones, which can be obtained as a function of LL by asking listeners
to compare sounds and decide when one sound is “twice as loud” as another.
Somewhat arbitrarily, a LL of 40 phons is set equal to 1 sone. Figure 4 repres-
ents a possible average curve that may emerge from an experiment. The stand-
ardized loudness scale (ISO) uses the straight line approximation of figure 4,
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that corresponds to the power law

L[sones] =
1

15.849

(

I

I0

)0.3

. (9)

Roughly speaking, an increment by 9 phons is needed to double the per-
ceived subjective loudness in sones. This holds for tones at the same frequency
or within the same critical band. In a physiological perspective, the critical band
can be defined as the band of frequencies whose positions along the basilar
membrane stay within the area excited by a single pure tone (see figure 2 and
section C.4). We can say that the intensities of uncorrelated signals effectively
sum:

I = I1 + I2 ; p2 = p2
1 + p2

2 ⇒ p =
√

p2
1 + p2

2 . (10)

For uncorrelated pure tones within a critical band, if the law represented
by the straight line in figure 4 does apply, if we double the intensity we have
3 phons of increment. Therefore, 3 doublings (×8) are needed to have an in-
crease by 9 phons. This is the increase that roughly corresponds to a doubling
in loudness. For example, 8 violins playing the same note at the same loudness
level are needed to effectively double the perceived loudness.

If two sounds are far apart in frequency, their intensities sum much more
effectively. In this case, using two sources at different frequencies also doubles
the loudness.
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Figure 4: Sones vs. phons
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Physics Psychophysics
Physical Sound Φ Perceived Sound Ψ
Intensity I, ∆I Loudness L, ∆L
Frequency f, ∆f Pitch p, ∆p
Duration d, ∆d Apparent Duration d̃, ∆d̃

Table C.2: Physics vs. Psychophysics

C.2.1 Psychophysics
In psychophysics, the Just Noticeable Difference (JND) of a physical quant-

ity is the minimal difference of that quantity that can be noticed in two stimuli,
or by modulation of a single stimulus. Sincy our perception is driven by neural
firings statistically distributed in time, the appropriate way to measure JNDs
is by subjective experimentation and statistical analysis. The random nature of
perception is indeed the cause of JNDs, because the accuracy of our internal
representations is limited by the intrinsic noise of these random processes.

The relation between physics and psychophysics is represented in table C.2.1
by means of three important acoustic quantities. The JNDs are represented by
the symbol ∆ preceding the physical or psychophysical variable name, in the
latter case being a mnemonic for the internal noise variance.

The construction of psychophysical scales relies on the Fechner’s idea1

that:

The value of the perceived quantity is obtained by counting
the JNDs, and the result of such counting is the same whether we
count physical or sensed JNDs. There is a “zero level” for sensa-
tion, i.e., the scale of sensations is a ratio scale (all four arithmetic
operations are allowed).

For instance, for loudness:

∆L ·NJND = L ⇒ NJND =
L

∆L
. (11)

If the JND is not constant:

NJND =
∫ L

0

dL

∆L(L)
. (12)

1Gustav Theodor Fechner (1801-1887) is considered the father of psychophysics.
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From the Fechner’s idea we have

NJND =
∫

dL

∆L(L)
=
∫

dI

∆I(I)
. (13)

Fechner’s psychophysics is based on two assumptions (exemplified for loud-
ness):

1. ∆L is constant;

2. ∆I is proportional to I , or ∆I
I = k, with k constant (Weber’s law).

Based on the two assumptions, the Fechner’s law is derived as

L = ∆L ·NJND = ∆L
∫

dI

kI
= k̃ log(I) , (14)

for a certain value of the constant k̃.
For the loudness of pure tones neither the assumption 1 nor 2 are valid.

Therefore, the Fechner’s law (14) does not hold2. However, the Fechner’s para-
digm is the basis of new developments that provide models matching the ex-
perimental results quite closely. More details can be found in [42, 4].

Experimental curves similar to that reported in figure 4 show in many cases
significant deviations from (14). For instance, the relation between intensity
and loudness is more similar to

L ∝ 3
√
I , (15)

as three doublings of intensity are needed for approximating one doubling in
loudness.

Power laws such as the (15) are the natural outcome of the so called direct
methods of psychophysical experimentation, where it is the sensation itself that
is the unit for measuring other sensations. Such experimental paradigm was
largely established by Stevens3, and it is the one in use when the experimenter
asks the subject to double or half the perceived loudness of a tone, or when a
direct magnitude production or estimation is used.

2Weber’s and Fechner’s laws are taken for granted quite often in human-computer interaction.
3Stanley Smith Stevens (1906-1973).
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C.3 Pitch

Periodic tones elicit a sensation of pitch, thus meaning that they can be
ordered on a scale from low to high. Many aperiodic or even stochastic sounds
can elicit pitch sensations, with different degrees of strength.

If we stick with pure tones for this section, pitch is the sensorial correlate
of frequency, and it makes sense to measure the frequency JND using the tools
of psychophysics. For instance, if a pure tone is slowly modulated in frequency
we may seek for the threshold of modulation audibility. The resulting curve of
average results would look similar to figure 5.
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Figure 5: JND in frequency for a slowly modulated pure tone.

Again, from the curve of figure 5 we notice a significant deviation from the
Weber’s law ∆f ∝ f . The physiological interpretation is that there is more
internal noise in the frequency detection in the very-low range.

If we integrate 1
∆f(f) we obtain a curve such as that of figure 6 that can be

interpreted as a subjective scale for pitch, whose unit is called mel. Convention-
ally 1000 Hz corresponds to 1000 mel. This curve shouldn’t be confused with
the scales that organize musical height. Musical scales are based on the sub-
division of the musical octave into a certain number of intervals. The musical
octave is usually defined as the frequency range having the higher bound that
has twice the value in Hertz of the first bound. On the other hand, the subjective
scale for pitch measures the subjective pitch relationship between two sounds,
and it is strictly connected with the spatial distribution of frequencies along the
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basilar membrane. In musical reasoning, pitch is referred to as chroma, which
is a different thing from the tonal height that is captured by figure 6.
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Figure 6: Subjective frequency curve, mel vs. Hz.

So far, we have described pitch phenomena referring to the position of hair
cells that get excited along the basilar membrane. Indeed, the place theory of
hearing is not sufficient to explain the accuracy of pitch perception and some
intriguing effects such as the virtual pitch. In this effect, if a pure tone at fre-
quency f1 is superimposed to a pure tone at frequency f2 = 3

2f1, the perceived
pitch matches the missing fundamental at f0 = f1/2. If the reader, as an excer-
cise, plots this superposition of waveforms, she may notice that the apparent
periodicity of the resulting waveform is 1/f0. This indicates that a temporal
processing of sound may occur at some stages of our perception. The hair cells
convey signals to the fibers of the acoustic nerve. These neural contacts fire at
a rate that depends on the transversal velocity of the basilar membrane and on
its lateral displacement. The rate gets higher for displacements that go from the
apex to the base, and this creates a periodicity in the firing rate that is multiple
of the waveform periodicity. Therefore, the statistical distribution of neural
spikes keep track of the temporal behavior of the acoustic signals, and this may
be useful at higher levels to extract periodicity information, for instance by
autocorrelation processes [86].

Even for pure tones, pitch perception is a complex business. For instance, it
is dependent on loudness and on the nature and quality of interfering sounds [42].
The pitch of complex tones is an overly complex topic to be discussed in this
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appendix. It suffices to know that pitch perception of complex tones is linked
to the third (after loudness and pitch) and most elusive attribute of sound, that
is timbre.

C.4 Critical Band
As illustrated in figure 6 of chapter 2, two pure tones whose frequencies are

close to each other give rise to the phenomenon of beating. In formula, from
simple trigonometry

sin Ω1t+ sin Ω2t = 2 sin
(Ω1 + Ω2)t

2
cos

(Ω1 − Ω2)t
2

, (16)

where the first sinusoidal term in the product can be interpreted as a carrier
signal modulated by the second, cosinusoidal term.

As we vary the distance between the frequencies Ω1 and Ω2, the resulting
sound is perceived differently, and a sense of roughness emerges for distances
smaller than a certain threshold. A schematic view of the sensed signal is rep-
resented in figure 7. The solid lines may be interpreted as time-varying sensed
pitch tracks. If they are far enough we perceive two tones. When they get closer,
at a certain point a sensation of roughness emerges, but they are still resolved.
As they get even closer, we stop perceiving two separate tones and, at a certain
point, we hear a single tone that beats. Also, when they are very close to each
other, the roughness sensation decreases.

The region where roughness gets in defines a critical band, and that fre-
quency region roughly corresponds to the segment of basilar membrane that
gets excited by the tone at frequency Ω1. The sensation of roughness is related
with that property of sound quality that is called consonance, and that can be
evaluated along a continuous scale, as reported in figure 8. We notice that the
maximum degree of dissonance is found at about one quarter of critical band-
width.

C.5 Masking
When a sinusoidal tone impinges the outer ear, it propagates mechanically

until the basilar membrane, where it affects the reception of other sinusoidal
tones at nearby frequencies. If the incoming 400Hz tone, called the masker,
has 70dB of IL, a tone at 600Hz has to be more than 30dB louder than its min-
iminal thresholding level in order to become audible in presence of the masker.
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Figure 7: Schematic representation of the subjective phenomena of beats and
roughness (adapted from [86])

This phenomenon is called masking and it is cartoonified in figure 9. Indeed,
masking is ill-defined in the immediate proximity of the masker, because there
the presence of beats may let the interference between masker and masked tone
become apparent.

Two features of masking can be noticed in figure 9. First, masking is much
more effective towards high frequencies (note also the log scale in frequency).
Second, high-intensity maskers spread their effects even more towards high fre-
quencies. The latter phenomenon is called upward spread of masking, and it is
due to the nonlinear behavior of the outer hair cells of the cochlea, whose stiff-
ness depends on the excitation they receive [4]. A high-frequency cell, excited
by a lower-frequency tone, increases its stiffness and becomes less sensitive to
components at its characteristic frequency.

In complex tones, the partials affect each other as far as masking is con-
cerned, so that it may well happen that in a tone with a few dozens of partials,
only five or six emerge from a collective masking threshold. In a sound coding
task, it is obvious that we should use all our resources (i.e., the bits) to encode
those partials, thus neglecting the components that are masked. This idea is the
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Figure 8: Degree of consonance between two sine tones as a function of their
frequency distance, measured as a fraction of critical bandwidth (Measurement
by Plomp and Levelt (1965) reported also in [105]).

basis for perceptual audio coding, as it is found in the MPEG-1 standard [69].
For coding purposes, it is also useful to look at temporal masking. Namely,

the effects of masking extend in the future for up to 40ms (forward masking),
and in the past for up to 10ms (backward masking). These temporal effects may
occur because the brain integrates sound information over time, and there are
inherent delays in this operation. Therefore, a soft tone preceding a louder tone
by a couple of milliseconds is likely to be just canceled from our perceptual
system.

C.6 Spatial sound perception
Classic psychoacoustic experiments showed that, when excited with simple

sine waves, the hearing system uses two strong cues for estimating the apparent
direction of a sound source. Namely, interaural intensity and time differences
(IID and ITD) are jointly used to that purpose. IID is mainly useful above
1500Hz, where the acoustic shadow produced by the head becomes effect-
ive, thus reducing the intensity of the waves reaching the contralateral ear. For
this high-frequency range and for stationary waves, the ITD is also far less re-
liable, since it produces phase differences in sine waves which often exceed
360◦. Below 1500Hz the IID becomes smaller due to head diffraction which
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Figure 9: Schematic view of masking level for a sinusoidal masker at 400Hz at
30, 50, and 70 dB of intensity level.

overcomes the shadowing effect. In this low-frequency range it is possible to
rely on phase differences produced by the ITD. IID and ITD can only par-
tially explain the ability to discriminate among different spatial directions. In
fact, if the sound source would move laterally along a circle (see figure 10)
the IID and ITD would not change. The cone formed by the circle with the
center of the head has been called cone of confusion. Front-back and vertical

x

y

z

φ
θ

Figure 10: Interaural polar coordinate system and cone of confusion

discrimination within a cone of confusion are better understood in terms of
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broadband signals and Head-Related Transfer Functions (HRTF). The system
pinna - head - torso acts like a linear filter for a plane wave coming from a given
direction. The magnitude and phase responses of this filter are very complex
and direction dependent, so that it is possible for the listener to disambiguate
between directions having the same, stationary, ITD and IID. In some cases, it
is advantageous to think about these filtering effects in the time domain, thus
considering the Head-Related Impulse Responses (HRIR) [13, 82].



222 D. Rocchesso: Sound Processing



Appendix D

GNU Free Documentation
License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

PREAMBLE
The purpose of this License is to make a manual, textbook, or other func-

tional and useful document “free” in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program should

223
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come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book.
We recommend this License principally for works whose purpose is instruction
or reference.

D.1 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-
free license, unlimited in duration, to use that work under the conditions stated
herein. The “Document”, below, refers to any such manual or work. Any mem-
ber of the public is a licensee, and is addressed as “you”. You accept the license
if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or au-
thors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus,
if the Document is in part a textbook of mathematics, a Secondary Section may
not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and
a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
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represented in a format whose specification is available to the general pub-
lic, that is suitable for revising the document straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discour-
age subsequent modification by readers is not Transparent. An image format is
not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LATEX input format, SGML or XML us-
ing a publicly available DTD, and standard-conforming simple HTML, Post-
Script or PDF designed for human modification. Examples of transparent im-
age formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License re-
quires to appear in the title page. For works in formats which do not have any
title page as such, “Title Page” means the text near the most prominent appear-
ance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section
name mentioned below, such as “Acknowledgements”, “Dedications”, “En-
dorsements”, or “History”.) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ” ac-
cording to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.
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D.2 VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright no-
tices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever to
those of this License. You may not use technical measures to obstruct or control
the reading or further copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section D.3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

D.3 COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have prin-
ted covers) of the Document, numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent copy
along with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy
of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the
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public.
It is requested, but not required, that you contact the authors of the Doc-

ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

D.4 MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the

conditions of sections D.2 and D.3 above, provided that you release the Modi-
fied Version under precisely this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the Mod-
ified Version to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

A Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B List on the Title Page, as authors, one or more persons or entities re-
sponsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release you
from this requirement.

C State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D Preserve all the copyright notices of the Document.

E Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

F Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.
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H Include an unaltered copy of this License.

I Preserve the section Entitled “History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

K For any section Entitled “Acknowledgements” or “Dedications”, Pre-
serve the Title of the section, and preserve in the section all the substance
and tone of each of the contributor acknowledgements and/or dedications
given therein.

L Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not con-
sidered part of the section titles.

M Delete any section Entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N Do not retitle any existing section to be Entitled “Endorsements” or to
conflict in title with any Invariant Section.

O Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections
as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties–for example,
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statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorse-
ment of any Modified Version.

D.5 COMBINING DOCUMENTS
You may combine the Document with other documents released under this

License, under the terms defined in section D.4 above for modified versions,
provided that you include in the combination all of the Invariant Sections of all
of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and mul-
tiple identical Invariant Sections may be replaced with a single copy. If there
are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in
the various original documents, forming one section Entitled “History”; like-
wise combine any sections Entitled “Acknowledgements”, and any sections
Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

D.6 COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other docu-

ments released under this License, and replace the individual copies of this
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License in the various documents with a single copy that is included in the col-
lection, provided that you follow the rules of this License for verbatim copying
of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

D.7 AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the copyright resulting from the compila-
tion is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section D.3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire ag-
gregate, the Document’s Cover Texts may be placed on covers that bracket the
Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

D.8 TRANSLATION
Translation is considered a kind of modification, so you may distribute

translations of the Document under the terms of section D.4. Replacing Invari-
ant Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include
a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English
version of this License and the original versions of those notices and disclaim-
ers. In case of a disagreement between the translation and the original version
of this License or a notice or disclaimer, the original version will prevail.
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If a section in the Document is Entitled “Acknowledgements”, “Dedica-
tions”, or “History”, the requirement (section D.4) to Preserve its Title (sec-
tion D.1) will typically require changing the actual title.

D.9 TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as

expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

D.10 FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the

GNU Free Documentation License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License “or
any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your doc-
uments

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright c©YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the
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GNU Free Documentation License, Version 1.2 or any later ver-
sion published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled “GNU Free Docu-
mentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combin-
ation of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.
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circular buffering, 205
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formant filter, 114
formants, 114
fortissimo, 128
forward masking, 219
Fourier matrix, 11
frame, 186
frame rate, 186
frequency JND, 215
frequency leakage, 9
frequency modulation, 6, 130
frequency resolution, 8
frequency response, 3
frequency warping, 65
frequency-dependent absorption, 74
Fundamental Theorem of Algebra, 153

gestural controllers, 137

grains, 129
granular synthesis, 129
graphical building environments, 192
group delay, 29
guides, 119

hair cells, 208
hammer, 208
harmonizer, 194
Head-Related Impulse Responses, 221
Head-Related Transfer Function, 82
Head-Related Transfer Functions, 221
helicotrema, 208
hexadecimal, 175
holder, 6
hop size, 105
HRIR, 82, 221
HRTF, 221
hysteresis, 119
Hz, 75

IID, 81, 219
IIR, 23
IIR comb, 77
images, 4
imaginary unity, 147
impedance of the tube, 209
impulse invariance, 15
impulse response, 2, 12
increment, 126
indefinite integral, 169
independent variable, 148
Infinite Impulse Response, 23
initialization, 186
inner ear, 208
instantaneous frequency, 130
instrument, 183
intensity level, 210
interaural intensity and time differences,

219
inverse, 146
Inverse Discrete Fourier Transform, 11
inverse formant filter, 114
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inverse function, 149
inverse matrix, 158
ITD, 81, 219

JND, 213
jump operations, 205
Just Noticeable Difference, 213
just noticeable difference, 69, 73

Karplus-Strong synthesis, 143
kernel of the Fourier transform, 172
kernel of the transform, 13
Kirchhoff variables, 140
Kyma/Capybara, 192

Lagrange interpolation, 71, 111
Laplace Transform, 170
lattice structure, 60
leakage, 106
least significant bit, 174
LFO, 128
limit cycles, 21
linear and time-invariant systems, 12
linear predictive coding, 113
linear quantization, 19
linear systems, 1
linear time-invariant, 1
linearly independent, 155
localization blur, 82
logarithm, 159
loop, 128
loops, 187
lossless prototype, 93
lossy delay line, 74
lossy quantization, 22
loudness, 211
loudness level, 211
Low-Frequency Oscillators, 128
low-latency block based implementa-

tions of convolution, 97
lowpass filter, 26
LPC, 113
LPC analysis, 121

LTI, 1, 12

magnitude, 148
magnitude response, 25
magnitude spectrum, 172
main lobe, 9
main-lobe width, 106
mantissa, 176
masker, 217
masking, 218
mass points, 139
mass-spring-damper system, 137
Matlab, 177
matrix, 156
matrix product, 156
Max, 193
mel, 215
memory buffers, 194
middle ear, 207
MIDI, 192
missing fundamental, 216
modulation, 100
modulation frequency, 130
modulation index, 130
Morphing, 121
most significant bit, 174
MSP, 193
MUL, 201
Multiply and Accumulate (MAC), 205
multiply-and-accumulate, 40
Multirate, 126
multivariable function, 151
musical octave, 215
Musical scales, 215

Neper number, 160
NLD, 135
non-recursive comb filter, 75
non-recursive filters, 23
nonlinear distortion, 135
normal modes, 94
notch, 55
notes, 183
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Nyquist frequency, 5
Nyquist language, 184

Octave, 177
one-dimensional distributed resonators,

140
one-dimensional resonator, 78
opposite, 145
orchestra, 183, 185
ordinary differential equations, 140
orthogonal coordinates, 148
outer ear, 207
outer hair cells, 218
oval window, 207
overflow oscillations, 21
overflow-protected operations, 22
overlap and add, 120

p-fields, 185
parabolic interpolation, 110
parameters, 183
parametric filters, 64
partial differential equations, 140
partial fraction expansion, 46
passband, 107
patch, 183
pd, 193
per-thread processing, 184
phase, 148
phase delay, 29
phase following, 110
phase modulation, 130
phase opposition, 62
phase response, 25
phase spectrum, 172
phase unwrapping, 32, 112
phase vocoder, 105
phaser, 79
phons, 211
pinna, 207
pipeline, 205
pitch, 215
Pitch Shifting, 121

pitch shifting, 123
place theory of hearing, 216
plucked string synthesis, 78
polar coordinates, 148
pole, 2
pole-zero couple, 55
poles of the filter, 27
polynomials, 152
post-processing unit, 190
power, 158
precursors, 29
prediction coefficients, 115
prediction error, 113
presence filter, 64
primitive function, 169
pulse train, 113
Pure Data, 193

quality factor, 54, 137
quantization error, 19
quantization levels, 19
quantization noise, 19
quantization step, 176
quantum interval, 19

radians, 161
rapid prototyping tools, 192
real-time processing, 192
reconstruction filter, 5
rectangular window, 9, 103
recursive comb filter, 77
reflection coefficient, 61
reflection coefficients, 115
region of convergence, 47
regular functions, 165
residual, 113
resonances, 76
resonator, 76
resynthesis, 102, 105, 120
ring, 146
RMS, 210
rms level, 159
RMS value, 20
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Room within a Room, 87
root-mean-square value, 20
roots, 152
roughness, 217

sample and hold, 6
sample-oriented computation, 185
sampler, 6
sampling, 3
sampling interval, 3
Sampling Theorem, 4
sampling-rate conversion, 126
SAOL, 184
sawtooth wave, 134
scala timpani, 208
scala vestibuli, 208
Scope, 192
score, 183, 185
second-order filter, 48
shift operation, 13
Short-Time Fourier Transform, 99
side components, 131
side lobes, 106
side-lobe level, 106
signal flowchart, 15
signal flowgraph, 58
signal flowgraphs, 43
Signal Processing Toolbox, 182
signal quantization, 19
signal-to-quantization noise ratio, 21
signed integers, 174
Sine, 161
sines + noise + transients, 122
sines-plus-noise decomposition, 121
sinusoidal model, 112, 117
SISO, 1
smoothing, 181
sms, 118
SNR, 21
SNT, 122
solutions, 152
sones, 211
sonogram, 54, 108, 191

sound bandwidth, 131
sound modification, 121
sound pressure level, 210
source signal, 113
spatial processing, 81
spectral envelope, 133
spectral modeling synthesis, 118
spectral resolution, 106
spectrogram, 108
spectrum, 4, 172
splits, 128
stability, 14
standardized loudness scale, 211
standing wave, 210
state space description, 93
state update, 205
state variables, 54
steady-state response, 28, 46
STFT, 99
stirrup, 208
stochastic part, 118
stochastic residual, 118
stopband, 107
subjective scale for pitch, 215
subtractive synthesis, 123
superposition principle, 1
sustain, 128
symmetric impulse response, 32

Tangent, 161
tapped delay line, 43
taps, 43
target signal, 113
tectorial membrane, 208
Temporal envelopes, 128
temporal masking, 219
temporal processing of sound, 216
temporal resolution, 106
threshold of hearing, 210
threshold of pain, 210
timbre, 217
time constant, 47
time invariance, 12
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Time Stretching, 121
time stretching, 123
transfer function, 2, 13
transforms, 170
transient response, 28, 46
transients, 122
transition band, 65
transition bandwidth, 107
transposed, 156
Transposed Form I, 60
Transposed Form II, 60
transposition, 156
transposition of a signal flowgraph, 59
trapezoid rule, 18
traveling waves, 142
tremolo, 128
two’s complement representation, 174

Uncertainty Principle, 8
uncertainty principle, 106
unit diagonal matrix, 158
Unit Generators (UG), 182
unity, 146
unsigned integer, 173
unvoiced, 113
unwarping, 65
upward spread of masking, 218

variable, 148
VBAP, 85
Vector Base Amplitude Panning, 85
Vector Base Panning, 87
vector space, 155
vector subspace, 155
vectors, 155
vibrato, 128
virtual pitch, 216
visco-elastic links, 139
vocal-fold excitation, 114
vocoder, 113
voiced, 113
vowel-like spectra, 133

waterfall plot, 108
wave equation, 141
wave packets, 31
waveguide junctions, 143
waveguide models, 140, 142
waveshape preservation, 121
waveshaping, 135
wavetable, 125
wavetable oscillator, 125
wavetable sampling synthesis, 128
Weber’s law, 214
white noise, 20, 113
whitening filter, 114
window, 7

X20 processor, 200

Yamaha DX7, 135

Z transform, 172
zero, 2, 145
zero padding, 107
zeros, 152
zeros of the filter, 27
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