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Preface

Approaches to the problems of designing speech and language processing algorithms
for human machine communication used to be taken from the perspectives of lin-
guistics and speech science, until the late 1970s. Due to the advances in comput-
ing and statistical modeling, data driven pattern recognition methods have become a
fast moving research area during the past two decades and contributed much to the
progress in this field. As the era of information age continues to develop, we witness
an ever increasing need in intelligent human-machine communications, as well as the
creation of machine understandable metadata for Web content and other information
sources. This handbook is to fill the need of a systematic and up-to-date presentation
of new pattern recognition approaches in speech and language processing.

The book starts with fundamentals and recent theoretical advances in pattern recog-
nition with an emphasis on classifier design criteria and optimization procedures.
It covers several recent research advances in this area, such as the minimum error
rate (MCE) method, the minimum Bayes risk approach, adaptive system design and
decision rules, neural networks, distributed recognizers, and decision fusion. These
methods depart from the conventional paradigm which links a classifier design to
the classical problem of distribution estimation. Instead, more meaningful criteria
are introduced which significantly improve the discrimination power of a classifier,
particularly when applied to speech problems in which the notion of data distribution
is difficult to realize.

The second part of the book is, therefore, specially focused on the approaches and
methods applied to speech processing. It covers topics such as Bayes minimum risk
approach to speech recognition, large vocabulary speech recognition based on statis-
tical methods, recognition of spontaneous speech in dialogue interaction, speech and
speaker verification, and audio information retrieval and indexing. These chapters
provide a comprehensive coverage of recent advances in applying pattern recogni-
tion to real systems in speech and audio processing.

The third part of the book is devoted to topics of pattern recognition in language
processing. It contains chapters in language modeling based on latent semantic in-
dexing, salient information representation and processing in natural language dia-
logue system, statistical machine translation, methods in topic detection, tracking,
and name identity identification. These topics are new trends in language process-
ing, and significant progress has been made in recent years. It has a direct impact to
the practice and implementation of information processing systems for Web content,
broadcast news, and other content-rich information resources.

This book is a collective effort, motivated by the excitement of the new advances in
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this field and the urgent need to bring these advances to a general audience. The con-
tributing authors of this book are leading experts in the field of speech and language
processing. Attempts are made to make each chapter self-contained and compre-
hensible for readers with general background in pattern recognition and information
processing. It is intended to be a handbook or reference textbook for researchers,
graduate students, and advanced undergraduate students who want to follow the new
advances in pattern recognition. Sufficient references are provided at the end of each
chapter to serve as an entry point for an interested reader to pursue further.

We would like to thank all contributors of this book. Without their commitment and
quality of work, this book would not be possible. We appreciate the support and
encouragement from our colleagues at Avaya Labs Research during the preparation
of this book. It was a pleasant working experience with CRC Press - their technical
support was very helpful to us.

Wu Chou
Biing-Hwang Juang
Basking Ridge, New Jersey
September; 2002
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1.1 Introduction

Pattern recognition is a fast moving research area. The advent of powerful comput-
ing devices and the success of statistical approaches, such as hidden Markov model
for speech and language processing, triggered a renewed pursuit for more powerful
statistical methods to further reduce the pattern recognition error rate and improve
the robustness of the pattern classifier across various adverse conditions. Among
this new pursuit, the use of discriminant function methods in pattern recognition
has emerged as a promising approach, and it is applied successfully to speech and
language processing. This chapter is intended to provide a revisit to the statistical
formulation of the minimum classification error (MCE) based discriminative meth-
ods in speech and language processing, take a critical view of the approach, provide
a comprehensive overview of the field, and hopefully inspire other innovations that
would potentially lead to new discriminative methods in pattern recognition.

Although the statistical formulation of MCE based discriminative methods has its
root in the classical Bayes decision theory, it departs from the conventional paradigm

This chapter is developed based on “Discriminant-function-based minimum recognition error rate pattern-recognition
approach to speech recognition,” by Wu Chou, appeared in Proceedings of The IEEE, Vol. 83, No. 8, (©2000 IEEE.
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which links a recognition task to the problem of distribution estimation. Instead, it
takes a discriminant function based statistical pattern classification approach, and for
a given family of discriminant function, optimal classifier/recognizer design involves
finding a set of parameters which minimize the empirical pattern recognition error
rate. The use of discriminant function in pattern recognition was started many years
ago. One classical example of using discriminant function for classifier design in
statistical literature is the two class classification problem using linear discriminant
functions [28, 31]. In particular, a window based method was described in [28] for
the two class classification problem using linear discriminant functions that minimize
the probability of classification error rate. The focus of this chapter is on the recent
development of the general MCE based discriminative methods. The discriminant
functions that we encounter are usually non-linear and often related to the structure
of the statistical framework used in speech and language processing such as hidden
Markov models.

The reason of taking a discriminant function based approach to classifier design, as
will be further elaborated, is due mainly to the fact that we lack complete knowledge
of the form of the data distribution and training data are inadequate, particularly in
dealing with speech and language problems. The performance of a recognizer is
normally defined by its expected recognition error rate, and an optimal recognizer
should be the one that achieves the least expected rate of recognition error. The
difference between the distribution estimation based approach and the discriminant
function based MCE approach lies in the way the recognition error is expressed
and in the computational steps that would lead to the minimization of such error
functions. A key to the development of the MCE method is a new error function
which incorporates the recognition operation and performance in a functional form,
from which the performance of the classifier can be directly evaluated and optimized.
Classifier design without assuming the knowledge of class posterior probabilities,
which are the basis of the distribution estimation based classier design, has been
studied in many areas. In particular, Tsypkin [112] and Amari [5, 2] pioneered this
approach for self-learning and self-organizing nets. They formulated the problem of
self-learning into a classification problem which consists of optimal partitioning of
the observation space into regions, Xy, for which the expected risk, R, is minimized.
In addition, a mathematical minimization procedure, generalized probabilistic de-
scent (GPD) algorithm or stochastic approximation, was proposed as a means for
classifier design under this framework. Since then, various loss functions have been
used in designing classifiers, including those popular mean-square error based loss
functions. However, many tractable loss functions do not have a direct relation to
the recognition error rate minimization, and therefore, albeit based on discriminant
functions, they are not directly related to recognition error rate which should be the
most sensible choice for classifier design.

Over the past decade, the MCE based approach has been developed to overcome the
fundamental limitations of the traditional approach and to directly link the classifier
design problem to classification error rate minimization. In order to alleviate the
dependency on the class posterior distributions, a discriminant function based MCE
approach was proposed by Juang et al. [50] as an alternative to optimal classifier de-
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sign. Although this approach applies to the pattern recognition problem in general,
it finds various applications in speech and language processing. It was first applied
to dynamic time warping based pattern recognition systems [16, 56]. Application to
hidden Markov model based continuous speech recognition systems was formulated
as a segmental and string model based MCE approach [18, 19], and successful ap-
plications of this approach were reported in [20, 27, 35, 39, 80, 81]. This approach
was further extended to form a combined string model, in which training of other
model components in speech and language processing can be achieved under a uni-
fied MCE framework [22, 41]. It was applied to discriminative model combination
[13, 79] and to applications in speaker identification and verification [74, 36, 62].
The basic idea of the MCE approach was further developed for applications in utter-
ance verification problems [101, 111, 77]. A general framework of combining de-
tection and verification in speech recognition and understanding was also proposed,
in which the discriminant function based pattern recognition approach was applied
in both detection and verification processes [54, 60].

We begin in the next section with a brief review of the Bayes decision theory and
its application to the formulation of statistical pattern recognition problem. We in-
troduce the discriminant function based statistical pattern recognition approach in
Section 3. In Section 4, we provide a brief introduction to speech recognition and
hidden Markov modeling. The discriminant function based MCE pattern recognition
approach and its application to HMM based speech recognition systems are intro-
duced in Section 5. Comparisons are made to other criteria in speech recognition
and in particular, we study the relation between MCE and MMI (maximum mutual
information) criteria in classifier design in the second half of Section 5. In Section 6,
we study the embedded string model based MCE approach and its extension to the
higher level combined string model. We discuss issues and applications in discrim-
inative model combination, discriminative language model estimation, and discrim-
inative feature extraction under the general theoretical framework of the combined
string model. Section 7 is devoted to applications of discriminant function based
pattern recognition approach in verification and identification. The discriminant
function approach is studied for various applications in speech and language pro-
cessing, such as speaker identification and verification, utterance verification, recog-
nition based on generalized confidence measures, detection and verification based
approach in speech recognition and understanding. The chapter is summarized with
discussions in Section 8.

1.2 Optimal Classifier from Bayes Decision Theory

For an M class classification problem, a classifier is to classify each random sample
x into one of the M classes. We denote these classes by C;, i = 1,2,..., M. The
classifier C'(x) defines a mapping from the sample space z € X to the discrete

© 2003 by CRC Press LLC



categorical set C; € Y. Let P(z,C;) be the joint probability distribution of  and
C';, a quantity which is assumed to be known to the designer of the classifier. In other
words, the designer has full knowledge of the random nature of the source. From the
set of joint probability distributions, the marginal and the conditional probability
distributions can be easily calculated.

In order to characterize the performance of the classifier, every class pair (4, ) can be
associated with a cost or loss function e j; which signifies the cost of classifying (or
recognizing) a class ¢ observation into a class j event. The loss function is generally
non-negative with e;; = 0 representing correct classification. The loss function is a
function from X x Y — R where R is the set of real numbers. In classification, we
make a decision C'(z) for observing a random sample z. Since P(C'; | x) is the class
posterior probability that the random input z is from C ;, the average loss associated
with making a decision C'(z) = C; can be defined as [31]

R(Ci|z) = Zem (C; | @) (1.1)

This leads to a reasonable performance measure for the classifier, i.e., the expected
loss, defined as

L= /R )| 2)dP(z) 12)

where C'(z) represents the classifier’s decision (assuming one of the M “values,” C'y,
Cs, ..., Chr), based on a random observation x drawn from a probability distribution
P(x). The decision function, C'(x), depends on the classifier design. Obviously, if
the classifier is so designed that for every x

R(C(x) | z) = miin R(C; | x), (1.3)

the expected loss in equation (1.2) will be minimized.
For many applications, including speech recognition, the loss function e ;; is usually
chosen to be the zero-one loss function defined by

0,i=j
eij = ‘7 ihj=1,2,...,.M (1.4)
Li#]

which assigns no loss to correct classification and a unit loss to any error, regardless
of the class. With this type of loss function, the expected loss L is thus the error
probability of classification or recognition. The conditional loss becomes

R(Ci|z) =) P(Cj|z)=1-P(C;| X). (1.5)
i#]

The optimal classifier that achieves minimum £ is thus the one that implements the
following:

Cx)=C; if P(C;|z)=maxP(C;]|x). (1.6)
j
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For minimum error rate classification, the classifier employs the decision rule of (1.6)
which is called the “maximum a posterior” (MAP) decision. The minimum error rate
achieved by MAP decision is called “Bayes risk”. When all posterior probabilities
are known, the classifier based on MAP rule is an optimal classifier based on the
Bayes decision theory. However, if these probabilities are not known or the decision
rule is not based on the class posterior probability, then we cannot use this result
directly.

In practice, these probabilities have to be estimated from a training data set with
known class labels. The classical Bayes decision theory thus effectively transforms
the classifier design problem into a distribution estimation problem. This is the basis
of the Bayesian statistical approach to pattern recognition which can be stated as:
given (or collect) a set of training data (observations) {z 1, Z2, ..., Zx } with known
class labels, estimate the a posterior probabilities P(C; | x),7 =1,2,..., M for any
x to implement the maximum a posterior decision for minimum Bayes risk. The a
posterior probability P(C; | z) can be rewritten as

P(C;|z) = P(z | C;)P(C;)/P(z) . 1.7

Since P(z) is not a function of the class index and thus has no effect in the MAP
decision, the needed probabilistic knowledge can be represented by the class prior
P(C;) and the conditional probability P(z | C;).

There are several issues associated with this classical approach. First, the distribu-
tions usually have to be parameterized in order for them to be practically useful for
the implementation of the MAP rule of (1.6). The classifier designer therefore has to
determine the right parametric form of the distributions. For most of the real world
problems, this is a difficult task. Our choice of the distribution form is often lim-
ited by the mathematical tractability of the particular distribution functions and is
very likely to be inconsistent with the actual distribution. This means that the true
MAP decision can rarely be implemented and the minimum Bayes risk generally
remains an unachievable lower bound. Second, given a parameterized distribution
form, the unknown parameters defining the distribution have to be estimated from
a finite amount of labeled training data, requiring that the estimation method has to
be able to produce consistent parameter values when the size of the training samples
varies. Third, it requires a training data set of sufficient size in order to have reli-
able parameter estimates. But in practice and for speech and language processing
in particular, training data are always sparse compared to all possible realizations
and variations in human speech and language. These three basic issues point out
a fundamental fact; that is, despite the conceptual optimality of the Bayes decision
theory and its applications to pattern recognition, it cannot always be accomplished
in practice, because most practical “MAP” decisions in speech and language pro-
cessing are not true MAP decisions. This understanding is critical for the discussion
that follows.
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1.3 Discriminant Function Approach to Classifier Design

Discriminant functions on the other hand are those functions which characterize the
decision rule of the classifier. They may or may not be probability or likelihood
based functions, and they can come from different parametric families, including
those families which have no relation to the parametric form of the class posterior
distribution P(C'; | x) as required in the classical Bayes decision theory. One well
studied family of discriminant function is the linear discriminant function which has
computational advantages and due to its analytic form, has received considerable
attention and theoretical development for its design. To illustrate the concept, we
consider the case of a two class {M;, M>} classification problem. The classifier
uses a discriminant function g(x) such that

{if g(z) > 0, then x is classified to M (L.8)
if g(z) <0, then x is classified to M»
Linear discriminant functions are those functions of the form
g(z) =w"z 4w (1.9)
where wT = [wy,wa, - -+ ,wg] and wy a real number. Or more generally,
g(z) = wo + w11 (2)+,. .., +wpdr(z) = a"y(x) (1.10)
where
al = [wo,wi,...,wi] = [wo, w’]
y' =1L, 08] = [1,87] (L.1D)

where T is the transposition notation, and the ¢; are known linearly independent
functions of z.
For M class classification problem using discriminant functions, a set of discriminant
functions {g;(z) | i = 1,..., M} are used, and the classifier C(x) is defined such
that

Cx)=1 iff I =argmaxg;(z). (1.12)

When the loss function R(C'(z) | z) is specified, the problem of optimal classifier
design using discriminant functions becomes a minimization problem of finding a
best set of discriminant functions {g;(z) | ¢ = 1,..., M} from a class of discrimi-
nant functions which minimizes the expected loss £ as defined in Eq. (1.2). In other
words, the classifier design problem is to find

(Gi(z) |i=1,...,M}= argmin /R(C(x)|az)dP(:n) (1.13)
pi(D)EF(XxY)

© 2003 by CRC Press LLC



where (X x Y') is the given family of discriminant functions. If the loss function
is given as in Eq. (1.4) and the particular set of discriminant functions used in the
classifier are the “true” class posterior probability P(C; | ), then Eq. (1.12) imple-
ments the same MAP decision rule as defined in Eq. (1.6). However, it is important
to point out that the discriminant function approach to the optimal classifier design
as specified in Eq. (1.13) often has an infinite number of solutions even for the same
classifier. Itis easy to see thatif {g;(z) | i = 1,..., M} is an optimal solution to Eq.
(1.13), then for any {(a,b) | a > 0,b € R}, {ag;(z) +b|i=1,..., M} is another
optimal solution and defines the same classifier. Again, this is quite different from
the distribution estimation based approach in pattern classification. If the discrimi-
nant functions are limited to the class posterior probabilities, any deviation from the
“true” class posterior probability P(C; | x) will result in a different classifier and
will be inferior to the optimal MAP classifier that achieves the minimum Bayes risk.

The use of discriminant functions in statistical pattern recognition is to solve the
classifier design problem when the exact form and value of the class posterior proba-
bilities P(C; | x) are not known (even with the help of training data) or the classifier
has to be based on a particular class of discriminant functions. These discriminant
functions in the classifier may come from either the model used to characterize the
generation process of the recognition objects or the practical consideration of math-
ematical tractability and algorithmic complexity. Classifying human speech meets
both scenarios. In particular, the method of hidden Markov modeling is a preva-
lent approach in providing statistical characterization of human speech, and the full
complexity of classifying spontaneous human speech is still too great to handle. In
the next section, we give a brief discussion of the speech recognition problem and
HMM-based acoustic modeling before introducing a discriminant function based ap-
proach to speech recognition.

1.4 Speech Recognition and Hidden Markov Modeling

Speech recognition is a problem of recognizing a word sequence from human speech.
It can be viewed as a communication problem. The human brain serves as the text
generator which generates the word string WW. The word string goes to the acoustic
channel which consists of a speaker’s articulatory apparatus and other acoustic pro-
cesses that convert the text string into an audible acoustic waveform. The acoustic
channel in verbal communication acts as a data transducer and composer. The speech
recognizer is a decoder which performs an inverse operation to decode the message
from the speech waveform. Therefore, a decoder performs a maximum a posterior
decision that determines the word sequence W such that

W = argmax P(W | X) = argmax P(X | W)P(W), (1.14)
w w
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where P(X | W) is the score from acoustic modeling, and P(W) is the score from
the language model. A typical speech recognition system consists of the following
basic components.

Acoustic feature extraction: Acoustic feature extraction is to extract the fea-
tures for speech recognition from the speech waveform. It typically includes
a short-time cepstral analysis which generates a feature vector of low fre-
quency (10-16) cepstral coefficients for every 10ms. Various signal process-
ing procedures are performed to separate the salient acoustic information for
speech recognition purposes. From now on, we will use the notation X =
(z1,...,27) to represent the acoustic observation feature vector sequence.

Acoustic modeling: Acoustic modeling provides statistical modeling for the
acoustic observation X. Hidden Markov modeling is the prevalent choice for
this purpose, although the neural network based approach is also used in many
systems. The model units can be based on semantically meaningful units, such
as words, or phonetically meaningful subword units such as phonemes.

Language modeling: Language modeling provides linguistic and grammar
constraints to the text sequence W. It is often based on statistical N-grams
language models. An N-gram language model is of the form P(w, | w;
,+-+,Wp_1), Which is the probability of observing word w,, given the word
history wy , ..., Wp—1.

Decoding engine: The decoding engine searches for the best word sequence
given the feature and the model. For speech recognition based on HMM mod-
eling, this is achieved through Viterbi decoding. For a discrete observation
probability based system, word string }V is given by

~

W = argmax P(X, Aw, | W), (1.15)
W

where Ajy, is the best state sequence given W, X and the model A. For
continuous density HMMs,

~

W = argmaxlog f(X, Aw, | W), (1.16)
w

which is based on the log-likelihood score along the best state sequence W .

1.4.1 Hidden Markov Modeling of Speech

Speech is generated from human articulator, and it is unique in many ways. When
we speak, our articulatory apparatus (the lips, jaw, tongue, and velum) modulates the
air pressure and flow to produce an audible sequence of sounds. Due to the physical
constraints, the articulator configuration cannot undergo very drastic changes, and
during the short interval where the articulatory configuration stays relatively con-
stant, a region of “quasi-stationarity” in the produced speech can often be observed.
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Hidden Markov modeling is a powerful statistical framework for time varying quasi-
stationary process and a popular choice for statistical modeling of speech signal.
Given a speech utterance, let X = (x1,Xa2,...,Xr) be a feature vector sequence
extracted from the speech waveform, where x; denotes a short-time vector measure-
ment, and it is conventionally a cepstral vector.

Further consider a first-order N-state Markov chain governed by a state transition
probability matrix A = [a;;], where a;; is the probability of making a transition
from state ¢ to state j. Assume that at £ = 0 the state of the system g is specified
by an initial state probability m; = P(go = 7). Then, for any state sequence q =
(go,q1, - - -, qr), the probability of q being generated by the Markov chain is

P(q| A, T) = T400g09, Cq105 "~ Cgr_1q7 - (1.17)

Suppose the system, when at state g;, puts out an observation x; according to a
distribution by, (x:) = P(x: | q¢), ¢t = 1,2,..., N. The hidden Markov model used
as a distribution for the speech utterance X is then defined as

P (X | mA{b}L,) = P(X|A) =Y P(X,q|A)
= Zq P(X | qQ, A) P(q | A) = Zq 71-(]0 Hf:l afh—ﬂ]tb(h (Xt) (1-18)

where A = (m, A, {b; }jvzl) is the parameter set for the model.

As can be seen in (1.18), {b,, } defines the distribution for short-time observations
and A characterizes the behavior and interrelationship between different states of the
speech generation process. In other words, the structure of a hidden Markov model
provides a reasonable means for characterizing the distribution of a speech signal.
Normally, N, the total number of states, is much smaller than 7', the time duration
of the speech utterance. The state sequence q displays a certain degree of stability
among adjacent ¢;s due to the above mentioned “quasi-stationarity”. The use of
HMMs as speech distributions is shown to be practically effective.

It should be noted that the choice of state observation distributions b4, (x;) is not
specified. Different choices of speech dimensions for the observation space may
require different forms of the state observation distribution. For cepstral vectors,
a mixture Gaussian density is commonly employed. Moreover, regardless of the
practical effectiveness of HMM in speech recognition, it should not be taken as the
true distribution form of speech, and therefore any recognition system or decision
rule that operates based on HMM is not going to achieve the minimum error rate as
implied in the true Bayes MAP decision.

In order to apply HMMs to speech recognition, three basic problems have to be re-
solved, namely, the evaluation problem, the decoding problem, and the estimation
problem [89, 47]. The evaluation problem is to estimate the probability P(X | A)
of observing the speech feature vector sequence X given the hidden Markov model.
The decoding problem is to find a best state sequence q which is optimal in a certain
sense given the speech feature sequence X. Since states in HMM are related to words
and word classes, the word sequence in speech utterance can be identified by tracing
through the word labels in state sequence q. The estimation problem is to estimate
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HMM parameters A from a given set of training samples according to some mean-
ingful criterion. The conventional approach is based on the maximum likelihood
(ML) principle, and the model parameter set A is estimated so that the likelihood
on the training data is maximized. Various highly efficient ML based algorithms are
developed in speech recognition for HMMs, such as Baum-Welch algorithm [7] and
segmental k-means algorithm [49]. More discussions of parameter estimation prob-
lem for HMMSs can be found in [47]. It should be noted that the conventional ML
method in speech recognition does not necessarily lead to a minimum error rate per-
formance for the recognizer. This is due mainly to 1) the likely mismatch between
the chosen distribution form and the actual speech data distribution, and 2) the finite
training (known) data set which is often inadequate.

1.5 MCE Classifier Design Using Discriminant Functions

As it is noted, without the knowledge of the form of the class posterior probabili-
ties required in the classical Bayes decision theory, classifier design by distribution
estimation often does not lead to an optimal performance. This motivates the effort
of searching for other alternative criteria in classifier design. In particular, criteria
of MMI (maximum mutual information) and MDI (minimum discriminative infor-
mation) are used in many applications [4, 84]. Although these methods demonstrate
significant performance advantages over the traditional ML approach, they are not
based on a direct minimization of a loss function which links to the classification
error rate.

Do-Tu et al. [28] studied MCE solution for the two class non-parametric classi-
fication problem using linear discriminant functions. They employed a windowed
scheme to overcome the problem of singular gradient functions associated with the
error count indicator function of the classifier. A general approach for multi-class
and non-linear discriminant functions are proposed by Juang et al. [50]. This gen-
eral approach is called “minimum classification error (MCE) method” in which the
classifier design and parameter estimation are to correctly discriminate the observa-
tions for best recognition/classification results rather than to fit the distributions to
the data.

1.5.1 MCE Classifier Design Strategy

Let us consider a set of class discriminant functions g;(z;A), i = 1,2,..., M, de-
fined by the parameter set A. The classifier C(z) is the one that for an object z:

Clx)=1 iff I =argmaxg;(v). (1.19)

The general MCE classifier design strategy is based on a special type of loss function.
Parameters of the classifier are estimated in such a way that minimizing the expected

© 2003 by CRC Press LLC



loss relates to a minimization of the recognition error rate of the classifier. This is
achieved through a three step process.
1) The misclassification measure in the MCE based approach is defined as

1/n
1

di(X) = —g:i(X; A) +log | 70— > explg; (X; A (1.20)
3,3t

where 7 is a positive number [18]. This misclassification measure is a continuous
function of the classifier parameters A and attempts to emulate the decision rule
given the discriminant function g;(z). For an i'" class utterance X, d;(X) > 0
implies misclassification and d;(X) < 0 means a correct decision. When 7 ap-
proaches oo, the term in the bracket is the L” norm on the discrete integer set
{j|Jj#1i73 =1,...,M} which converges to the || ||~ norm and becomes
max; j=; g;(X; A). By varying the value of  and M, one can take all the competing
classes into consideration, according to the individual significance, when searching
for the classifier parameter A.

2) The loss function is used for recognition error rate minimization. The misclassifi-
cation measure of (1.20) is embedded in a smooth zero-one function, for which any
member of the sigmoid function family is an obvious candidate. A general form of
the loss function can then be defined as:

(X5 A) = 0(d;(X)) (1.21)
where / is a sigmoid function, one example of which is

1
14 exp(—yd +6)

£(d) (1.22)
with # normally set to 0 and +y set to greater or equal to one. Clearly, when d;(X)
is much smaller than zero, which implies correct classification, virtually no loss is
incurred. When d;(X) is positive, it leads to a penalty which becomes essentially a
classification/recognition error count.

3) The classifier parameter estimation is based on the minimization of the expected
loss. For any unknown object X, the classifier performance is measured by

M
(X5A) =D Li(X;MI(X € C)) (1.23)

i=1

where 1(-) is the indicator function. The expected loss, which is related to recogni-
tion error rate, is given by

L(A) = Ex[I(X; A)]. (1.24)

This three-step definition emulates the classification operation as well as the recog-
nition error rate based performance evaluation in a smooth functional form, suitable
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for classifier parameter optimization. It should be pointed out that if the correct form
of the posterior probability Px(C; | x) is used, the Bayes minimum risk is then
expressed as

Z/ Py (Cy | x)1(z € Cy)dP(x), (1.25)

where X, = {z € x | PA(Ck | ) # max; Py(C; | )}, and x represents the entire
signal space. This can be approximated by the loss function in MCE approach as
follows:

Mz

L(A) = / PA(Ch | #)1r € CL(PA(CE | ) # max PA(C | 2))dP(@)
k;l
~3 / PA(Ch | 2)1(z € Ci)lu(di (23 AP (). (1.26)
k=1"Y Xk

An important point here is that approximation accuracy of Eq. (1.26) can be con-
trolled by varying the constants in the smooth MCE loss function. Based on the
criterion of (1.23), we can choose to minimize one of two quantities for the classifier
parameter search; one is the expected loss and the other the empirical loss.

1.5.2 Optimization Methods

The purpose of the training process in the MCE approach s to find a set of parameters
A so that a prescribed loss is minimized. As mentioned previously, the two kinds of
loss we focus on are the expected loss and the empirical loss.

1.5.2.1 Expected Loss

For a classification problem involving M different classes, the expected loss is de-
fined as

L(A) = Ex{{(X;A)} = Z/ (X ; A)dP(X). (1.27)

Various minimization algorithms can be used to minimize the expected loss. The
generalized probabilistic descent (GPD) algorithm is a powerful algorithm that can
be used to accomplish this task [2]. In GPD based minimization algorithm, the target
function L(A) is minimized according to an iterative procedure:

Aipr = Ay — U VX, A) A=, (1.28)

where Uy is a positive definite matrix [25], €; is a sequence of positive numbers, and
Ve(X¢, A) |a=a, is the gradient function of the loss function at A = A4, and X; is
the ¢-th training sample used in the sequential training process.

The convergence properties of GPD algorithm was studied in the literature (e.g. [25,
15, 100, 30]) and sometimes under the name of stochastic approximation. Under very
general conditions, the following convergence properties can be established [25]
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Property 1 Suppose the following conditions are satisfied:

oo [oe]
C1 Zetzoo, Zef<oo € > 0;
t=1 t=1
c2 : 30 <V < o0, suchthatforallt, the inner product

R; (Et, 9,5) =<< VK(X, At), H(X, Ay + etBtVE(X, At))Vﬂ(X, At) >< V,
where H is the Hessian matrix of second order partial derivatives;
C3 : A" =arg m/&n Ex{l(X,\)} isthe unique A such that

VL(A) |acr-= VEx {0(X,A)} [s=p-= 0.

Then, Ay given by
App1 = Ay — ¢ VUX, A) |a=n, (1.29)

will converge to A* almost surely (i.e. with probability one).

Condition C'3 can be considerably weakened. Even without condition C'3 the fol-
lowing is still true:
ExVI(X,Ay,) =0 (1.30)

where Ay, is a subsequence of A;. In this case, A, will converge to a local minimum
point A* where VL(A) [a=p+= 0.

Adapting the model parameters using a sample by sample updating formula as in
Eq. (1.28) is most efficient in terms of the use of available training samples. But
the single sample based gradient estimation can be noisy, leading to fluctuations dur-
ing the parameter estimation process. Batch mode adaptation schemes based on a
gradient estimate which is an average of every K samples can also be used. Other
variations to the original GPD algorithms are also possible choices to speed up the
convergence and reduce the fluctuation during the classifier training process. The
convergence properties of these related adaptation algorithms are based on various
statistical convergence theories such as martingale theory, potential functions, etc.,
and it is still a very active area of research. However, from an application point
of view, in order to apply this algorithm to speech recognition, such as a speech
recognition system using HMMs, the GPD algorithm has to accommodate various
constraints imposed on the HMM structures. In particular, the GPD algorithm is an
unconstrained minimization scheme that needs modification for solving minimiza-
tion problems with constraints. As will be shown shortly, one can utilize parameter
space transformations to resolve this issue. In this method, the original parameters
are updated through the inverse transform from the transformed parameter space to
the original parameter space. This is done in such a way that constraints on the orig-
inal parameters are always maintained. More detailed illustrations of this approach
are given in later sections.

1.5.2.2 Empirical Loss

For a given training data set consisting of I samples {X,--- , X}, the empirical
probability measure P; defined on the training data set is a discrete probability mea-
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sure which assigns equal mass at each sample. The empirical loss, on the other hand,
is thus expressed as

I M
1
)= 72> LX) € Cy) /KXAdPI (1.31)

j=11i=1

where j denotes the index of the training utterance X ; in the training set of size I,
and Pr is the empirical measure defined on the training set. If the training samples
are obtained by an independent sampling from a space with a fixed probability distri-
bution P, the empirical probability distribution P will converge to P in distribution
as I — oo. In other words, for any measurable function f,

/ fdpPy — / fdp. (1.32)

The empirical loss defined on the I independent training samples will converge to the
expected loss, as the sample size I increases. With sufficient training samples, the
empirical loss is an estimate of the expected loss. The goodness of this estimate is
determined by the training sample size I, and the convergence rate of the empirical
probability measure Py to the limit distribution P. Various upper bounds on the
convergence rate of the empirical probability measure can be found in [87].

1.5.3 Other Optimization Methods

It should be pointed out that although the GPD type of adaptation algorithm is ef-
fective and most popular, other optimization methods can also be used for error rate
minimization. MCE based classifier design is very specific on the form and structure
of the discriminant function and loss function regarding the classifier, and relatively
unrestricted to what particular optimization methods which are used to minimize
the loss. Many innovations are possible for better optimization results. In partic-
ular, methods of linear programming [85], gradient projection [40], and growth-
transformation [37, 52, 84] are also used for minimization of the expected loss in
MCE classifier design. In the growth transformation based approach, the goal is to
seek a transformation T'(z) such that f(T'z) > f(x), where z is a probability vector
(i.e., 2111 z; = 1 and z; > 0). This approach, sometimes referred to as extended
Baum-Welch (BW) algorithm in some literature, was originated from Baum-Eagon’s
inequality for f(z) being a polynomial with non-negative coefficients and homoge-
neous of degree d in its variables. It is extended to rational functions and applied to
speech recognition for maximum mutual information (MMI) training with discrete
probability codebooks [37]. Later it was further generalized to analytic functions
[52]. Since then, this approach was adopted for MCE training of HMM based speech
recognition systems with discrete probability densities [94].

In the growth-transformation based optimization approach, the model parameter 6
which is a component of the probability vector © is updated with the following re-
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estimation like formula

Sy 0 (29 4 D)
where D is a constant to be determined, and the sum in the denominator is taken
over all parameters belonging to the same distribution ©. It is shown in [37] that
there is a value D(©) such thatif D > D(0), Eq. (1.33) is a growth-transformation
and f(T(©)) = f(©) > f(©). However, Eq. (1.33) cannot be directly applied to
parameter estimation of continuous probability densities and new formulations for
continuous density HMMs are needed. Using a discrete approximation argument,
the growth-transformation method is extended to MMI-based parameter estimation
with continuous density HMMs, and new formulations of the growth-transformation
for continuous density HMMs in MMI training are derived [84]. More recently, an
elegant proof of the theoretical properties of the growth-transformation method for
MMI training is given in [3] which establishes the growth-transformation method
in a more general setting. But more work remains to be done in order to apply
the similar method for general MCE based parameter estimation with continuous
probability densities. It is interesting to note that if D is large then the convergence
of this algorithm is slow and if D is too large, the algorithm is practically not useful.
In order to get fast convergence, D needs to be as small as possible. Modifications
of the original algorithm and using search heuristics are attempted to speed up the
convergence, and performance improvements over the original approach are also
reported in [37, 84].

6=

(1.33)

1.5.4 HMM as a Discriminant Function

Following (1.18), we have several ways of using an HMM as the discriminant func-
tion. A basic component in (1.18) is the joint observation-state probability

T
gi(X,q;A) = POX,q; A) ==l T]al) |, 009 (x0), (1.34)

qt—14qt "qt
t=1

which is now defined as a component function g;(X, q; A) for class ¢ as well. The
discriminant function for class 7 can take several possible forms based on g ; (X, q; A):

1) 9i(X;0) =Y gi(X,q A), (1.35)
q
2) gi(X;A) Zm(gxgi(X,q; A), (1.36)
1 Q 1/
3) 9i(X;A) = {5 Zgi(X,q;A)“} (1.37)
q

where () is the total number of possible state sequences, and « is a positive
number, and

4) Functions of the above.

© 2003 by CRC Press LLC



Note that (1.35) is equivalent to the likelihood function, (1.36) is equivalent to the
maximum joint observation-state sequence probability, and (1.37) is a generalized
mixture model which approaches (1.36) when o — oco. We use the logarithm of
(1.36) as an example in our derivation because it is the most popular choice for
HMM based recognition systems associated with Viterbi decoding.

The algorithm based on (1.36) is often called segmental GPD [18].

We define, for X = (x1,X2,...,X7) and X; = [#41, T2, . .., tp] with D being
the dimension of x;,

gi(X5A) = log{mo?Xgi(X, q; A)} = log{g:(X,q; A)}

= Z [log aélt)—lﬁt + log bg’t) (xt)] + log ﬁé? (1.38)
t=1
where @ = (G, 4, - - - » @) is the optimal state sequence that achieves max g; (X, q; A).
q
We also assume that
(@ R 1.39
c]k Xt ujk ' Uk ( . )
where N [ - ] denotes a normal distribution, 052 are the mixture weights, /152) =

[,ujkg],{?: ; the mean vector, and R;Zk) the covariance matrix which, for simplicity, is

. . i @)
assumed to be diagonal, i.e., R;Zk) = (0% 112

It may be desirable to maintain the original constraints in the HMM as probability
measure, such as: 1) the function being non-negative, 2) Z ~a;; = 1foralli, and 3)

Yok c(k) = 1 for all j and etc. Also, we assume 0'( ) > 0. The following parameter
transformatlons allow us to maintain these constramts during parameter adaptation:

) ay—ay  wherea; = 3 (1.40)
() __, i) (i) _ _eaplcin™)
2) ¢y — ¢y, wherecy = &T(’;h“))’ (1.41)
(4)

3) e — gy = ", and (1.42)
4 o) 50— log o) 43
) Tike — ke = 108 jrp: (1.43)

(1.44)

It can be shown that for X,, € C; in the training set, discriminative adjustment of the
mean vector follows

aei(Xm A)

il (n +1) = i), (n) e (1.45)
Olre  1a=An
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where

e =0 (1.46)
3#5’1315 0d; 8#5'1315
o;
S = ) (1= () (147)
T (7)
81 b
‘9 ke 8 jke
and
0 i i -1 x ~(i
- logb) (x,) = el 2m) 2 R (0 () | 2 - i,
PYeo) 0
e Ojke

D 2
1 Tee (i
. exp{—i E ( 6 _:ug'k)l> } , (1.49)
{=1 Jk/

where 7 is the center slope of the exponential sigmoid function for /; as defined in
(1.22), and §(-) denotes the Kronecker delta function. Finally,

M+ 1) = 0y B (1) (1.50)
Similarly, for the variance ‘7%@)15’
(3 ~(1 af Xn,A
](Ic)l(n+1) y(k)l( )_ (~() ) (1'51)
T A=A,
where
o¢; d 810gb ) (x1)
— = —idi)] N 0@ =D ——— (1.52)
aO'jM t=1 aO'jM
8logb§i (Xt) (@) 0 y—ds2 | pli)-1/2 Lo~ (e _M%c)l 2
= ey (2m) R exp —52 —
90 i (=1 Okl
(9)
[z ) o)
[< mo > 1J (b]. (xt)) . (1.53)
ykl
Finally,

o (n+1) = exp{a\,(n + 1)} . (1.54)

Similar derivations for the transition probabilities and the mixture weights can be
easily accomplished [18, 51].
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As mentioned earlier, the GPD algorithm is a gradient based and unconstrained min-
imization method. In order to use for discriminant functions from certain families
such as probability density functions from HMMs, care must be taken such that those
probabilistic constraints are maintained. Transformations in Egs. (1.40, 1.41, 1.43)
are used for this purpose. Another important and perhaps the most difficult issue
in GPD based loss function minimization approach is how to design the step size.
One apparent reason is that we need a good step size to start with since the model
adaptation will be performed only a finite number of times. If the step size is too
large, the classifier will be degraded at the start and sequential learning cannot be
made successful. If the step size is too small, the convergence speed of the algorithm
is too slow and it is practically not useful. The step size problem is related to the
particular functional form of the loss function, and to the best of our knowledge, the
general solution to it is still lacking. Generally speaking, it should be related to the
eigenvalues of the Hessian matrix even though it is an iterative algorithm. For HMM
based systems using mixture Gaussian observation densities, parameters in the clas-
sifier have different sensitivities to the step size in parameter adaptation. One step
size can be too small for some parameters and too large for others. In particular, the
magnitude of variances in the mixture Gaussian observation densities can vary in the
range between 100 to 10 5. If using a constant step size for all mean vectors, the
algorithm will either not converge or will be too slow to become practically useless.
The transformation in Eq. (1.42) is critical and provides an effective solution to this
problem. In segmental GPD approach, the error rate minimization is performed on
the transformed mean vector normalized by its standard deviation. This takes away
the dependencies on the variance variations.

During GPD training, the training data can be reused and training can be iterated
several times on the same data to reach convergence. Methods from statistical data
sampling theory can also be applied here. Instead of sequentially using all training
samples, bootstrap resampling schemes or importance of sampling schemes can be
used here to extrapolate the sample data distribution or to adapt the classifier towards
some specific populations. With the advance of microprocessors, such methods have
become computationally feasible. The abovementioned segmental GPD algorithm
finds many applications in speech recognition. The recognition performance advan-
tage over the traditional distribution based ML approach is reported from various
sites and in different applications [18, 27, 35, 94, 81]. The success of this algorithm
in speech recognition provides experimental evidence that classifier design based on
error rate minimization is feasible even for dynamic patterns as difficult as speech.
Improved recognition performance over traditional distribution based ML approach
are also reported in areas outside of speech, such as OCR, image recognition, and
handwriting recognition [116].

1.5.5 Relation between MCE and MMI

In addition to the MCE criterion, other criteria are also used in so-called discrimina-
tive classifier design. For HMM based systems, the criteria of maximum mutual
information (MMI) [4], conditional maximum likelihood estimate (CMLE) [83],
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minimum discrimination information (MDI) [33], and H-criteria [38] are other al-
ternatives which have found their use in speech recognition. Among them, MMI is
most popular and applied in many applications with success. The MMI approach is
based on the mutual information (., X) between the acoustic observation X and
its correct lexical symbol W,.. For the N class classification problem, the logarithm
of the mutual information has the following form

_ p(WcaX) — p(X | WC)
T0We X0 =08 L ) = B SN pWp(x [ 10)
N
=ro(X) —log(>_ p(Wi)em X)) (1.55)
k=1

where W}, runs over all possible N class symbols, 7.(X) = logp(X | W,) and
rp(X) = logp(X | W) are the log-likelihood scores of X on the correct lexical
symbol and the k-th lexical symbol respectively. From Eq. (1.55),

PW.,X)

log P(W. | X) = log( P(X)

) =1(W,, X) + logp(W.), (1.56)
which relates I (., X) to the posterior probability p(W. | X). In MMI training, the
criterion of the classifier design and parameter estimation is to maximize the average
mutual information I (W, X)) on the training set. Experimental speech recognition
results indicate that classifier design based on the MMI criterion can lead to bet-
ter recognition performance than the conventional approach using the ML criterion
[84, 114]. Although this criterion is well founded in information theory, possessing
good theoretical properties and unique in many ways, it is not based on a direct min-
imization of the classification error rate and is quite different from the MCE based
approach. The relation between MMI and MCE is a very interesting topic and stud-
ied in [94, 103]. It is found that under certain conditions, direct comparisons can be
made between these two approaches. The discussion below is based on [94]. We
derive the explicit relations between MCE and MMI and from there, properties of
both approaches can be illustrated.

Let us assume {P(W},) = 1/N | k = 1,...,Wn}, a case of using a uniformly
distributed language model. The mutual information from Eq. (1.55) is given by

N
I(We, X) =ro(X) —log(}_ e™X)) +log N, (1.57)
k=1

and the MMI model parameter estimation criterion is

N
A = argmax Ex (I(W,, X)) = argmax Ex ((r.(X) — log(z e X)) 4 log N).
A A
k=1
(1.58)
The corresponding MCE approach, using the same r.(X) and r,(X) as in Eq.
(1.55), has the following form:
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e The misclassification measure

1
de(X) = —re(X) +log(— > enomt/n, (1.59)
kWi #W.

e The MCE model parameter estimation is

A = argmax Ex (£(d.(X)) (1.60)
A

where
1

1+ exp(—7yd.(X))

U(do(X)) = with v > 0. (1.61)

Consider the special case of n = 1, the following algebraic relations can be derived

do(X) +1log(N — 1) = —ro(X) +log( > e™™), (1.62)

kWi £ W,
N
ele(X)+log(N—1) 4 7 — e*?‘c<X>(Z e (X)), and (1.63)
N
—log(ede (I H08(N=1) 4 1) — p_(2) — log( Z e (X (1.64)
k=1

From Eq. (1.64), the logarithm of the mutual information can be expressed based on
the misclassification measure d.(X) of Eq. (1.61) in the MCE formulation

I(W,,X) = —log(e?(X)+10e(N=1) 4 1) 4 Jog N (1.65)
1

= log( T ed- () Tog(N—T) ) +1log N (1.66)

= log(¢(—(d.(X) + log(N —1))) + log N. (1.67)

From Eq. (1.67), it can be seen that the loss function in MMI is very different from
the one used in MCE approach. In addition to a constant shift log N, it is the loga-
rithm of the sigmoid function £() on the misclassification measure d .(X), not on the
sigmoid function itself as in MCE approach. The dynamic range of this loss function
is from log N to —oo. It is apparent that the MMI objective function is not trying
to approximate the recognition error rate function, and it’s optimality to classifier
design cannot be directly established from the error rate minimization consideration.
From the discriminant function point of view, MMI is to minimize the average mis-
classification measure d,.(X) if log(e®(X)+108(N=1)) in Eq. (1.65) is approximated
by d.(X). This interpretation is quite different from the posterior probability based
interpretation described in Eq. (1.56) which is based on distributional assumptions.
It explains the experimental recognition performance improvements obtained from
the MMI approach, even in the case where the distributional assumption is known
not valid.

© 2003 by CRC Press LLC



06F

05k

0ar

03F

02F

01f

FIGURE 1.1
A plot of the value of the derivative of the sigmoid function.

Based on Eqgs. (1.61) and (1.67), the MCE objective function is symmetrical around
the misclassification measure d. (X ), whereas the objective function in MMI is asym-
metrical. For correct recognition, where d.(X) < 0 and r.(X) is higher than the av-
erage incorrect competitive candidates, both the MCE and MMI objective functions
are bounded. They differ though in their sensitivity to the sign changes in d .(X).
The objective function in the MCE approach is directly related to the sign changes in
the misclassification measure d.(X). In the MMI objective function, the sign change
in d.(X) will not lead to a corresponding change in the sign of d .(X) + log(N — 1)
unless d.(X) is smaller than —log(/N — 1). Since N is the number of classes, this
can happen in MMI based approach only if d.(X) << 0. When d.(X) > 0, it indi-
cates a recognition error is committed by the recognizer on the random input X . The
objective function in the MCE approach is bounded no matter the value of d .(X).
As a contrast, the objective function in MMI is not bounded for d.(X) > 0. This
behavior may have some adverse effects in MMI based parameter estimation, since
it is based on the mutual information I (W, X) averaged over the entire training set.
Further insights can be gained by examining the gradient of the objective functions
associated with these two approaches. The gradient of the objective function in MCE
approach has the following form:

OL(W.,X) ,
o = G0 (d:(X) (1.68)
with (p(X W )"
Ge(X) = s E Gy k7 e
G.(X)=—- k=c
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where ¢ () is the derivative of the sigmoid function. On the other hand, the gradient
of the objective function in the MMI approach based on the misclassification measure
d.(X) is

OI(W,, X)

o)~ R (de(X) + log(N —1)). (1.70)

It can be seen that the gradient function in the MCE approach is based on the dif-
ferentiated sigmoid function which is concentrated on the class decision boundary
d.(X) = 0. The absolute value of the gradient function decreases monotonically if
the value of d.(X) moves away from the decision boundary. On the other hand, the
gradient of the objective function in MMI approach is the sigmoid function itself, a
function which is monotonic increasing and puts emphasis on extreme false classi-
fications (d.(X) > 0). Extreme false classifications are typically outliers. Without
proper control, the parameter estimation can be strongly influenced by the outliers,
and the estimation results may become biased. This problem can be acute in speech
recognition, since such outliers are often from wrong labeling and extreme mismatch
in acoustic conditions. Parameter estimation in discriminant function based approach
is to find an optimal partition of the sample space such that the recognition error rate
can be reduced. Therefore, a robust training algorithm based on the MCE crite-
rion should be more sensitive on the changes in the decision boundaries, since these
changes have direct impact on the recognition error rate. It is clear from Eq. (1.68)
that this property is embedded in the sigmoid function used in the MCE based ap-
proach. Based on Eq. (1.68) and Fig. 1.1, the model parameter adjustments in
sigmoid function based MCE approach are modulated by the derivative of the sig-
moid function whose value has a peak around d.(X) = 0, the simulated decision
boundary.

The MMI and MCE criteria have also been studied experimentally. Speech recogni-
tion experimental results of comparing these two approaches are reported by several
sites. In particular, a side by side study was given in [94]. In the study, MMI and
MCE classifier training were performed based on identical experimental setups and
using the same growth-transformation based optimization method for parameter es-
timation. It was found that both MMI and MCE can lead to speech recognition
performance improvements over the ML based approach, and the absolute error rate
reduction in the MCE approach is 5.3%, versus 2.5% in the MMI approach. It should
be pointed out that although explicit relation between the MMI and MCE approaches
can be established using the misclassification measure and under some special con-
ditions, the theoretical study as well as more extensive experimental studies between
these two criteria are far from complete and many questions remain to be answered.

1.5.6 Discussions and Comments

The MCE approach described in this section is a discriminant function based ap-
proach to pattern classification. The decision rule of the classifier is treated as a dis-
criminant function, and the parameter estimation involves minimizing the expected
loss incurred when these decision rules are applied in the classifier. The form of the
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loss function is critical in discriminant function based classier design. In the MCE
approach, the loss function is constructed in such a way that the recognition error
rate of the classifier is embedded in a smooth functional form and minimizing the
expected loss of the classifier has a direct relation to the classifier error rate reduc-
tion. This direct relation to recognition error rate in the MCE approach has several
advantages in classifier design:

e [tis meaningful in the sense of minimizing the empirical recognition error rate
of the classifier, and this property is not dependent on the parametric form of
the discriminant function nor its relation to the form of the true class posterior
distribution.

o If the true class posterior distributions are used as discriminant functions, the
asymptotic behavior of the classifier will approximate the minimum Bayes
risk.

The discriminant function formulation in the MCE approach makes it applicable
to various functional decision rules, including those decision rules which are not
based on probability functions, such as generalized linear discriminant functions,
etc. It also applies to cases where the parametric form of the discriminant function is
known to be different from the true class posterior distributions or the discriminant
function is selected from other considerations such as mathematical tractability and
algorithmic complexity.

The ML based distribution estimation approach to pattern recognition is from a dif-
ferent perspective. The probability distribution (PD) of the random source for recog-
nition is estimated by attributing to the source a parametric model PD and estimating
parameters of this PD from given training data. The optimal MAP decision rule is ap-
plied to the estimated model PDs as if they were the true probability measures. Such
an approach is referred to as the “plug-in” method in statistical literature. Denote the
distributions from the source as () and the distributions from the parametric model as
P. The statistics of the source generating the training data are not necessarily those
of the models, and the optimality results of the Bayes classifier cannot be applied
directly. It is studied in [32] that approaches of ML, MMI can be formulated as cases
in the MDI approach, and different assumptions are made about the true PDs of the
source to be modeled and the PDs that are used to model the source. The MDI inter-
pretation of the ML approach is that ML estimation of parameters in the model PDs
for a given source is equivalent to approximating the empirical distribution of the
source on the training data by PDs of the model in the MDI (i.e., Kullback-Leibler
distance or relative entropy) sense. In the ML based approach, the MDI measure to
be minimized has the following form:

N
MDIn(X) = Z q(m)D(Qxym=m || Px|rr=m) (1.71)

m=1

where g(m) is the prior probability of the m-th class, and D(Q x|r—m || Px|avr=m)
is the Kullback-Leibler distance between the empirical distribution of the source,
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and the distribution of the parametric model estimated from the training data for the
given training sample X conditioned on the class label m [32]. Thus a goodness
criterion for the ML estimate is introduced. If the PDs of the model include the true
PDs of the source, asymptotically it will lead to a Bayes classifier. However, such
properties may exist only under a model correctness assumption that the true PDs of
the source are covered in the PDs of the parametric model.

If the PDs of the model are rich enough to provide a good approximation to the
true PDs of the source, with sufficient training data, the recognition performance
may improve as it results in a better approximation to the true PDs of the source
through the empirical distribution based on the training data. But if the PDs of the
model are quite different comparing to PDs of the source, the achievable recogni-
tion performance may be very limited using the distribution estimation approach,
and discriminant function based classifier design should be more appropriate. In
speech recognition, many assumptions on the model PDs are made regarding the
speech generation process. Speech as a signal source for pattern recognition may
not be Markovian, nor should it be the case that conditioned on a given state, the
observation PDs should be an i.i.d. process. The success of HMMs in speech recog-
nition should not be construed as that the PDs of the model cover the true PDs of the
source. In fact, PDs from HMMs are quite limited comparing to the source PDs of
speech. Although the nature of source PDs are unknown and no fundamental achiev-
able recognition bounds (similar to Shannon bounds in coding theory) are available,
experimental results indicated that discriminant function based MCE approach can
lead to significant improvements in recognition performance over the ML based ap-
proach. The significance of the MCE approach in speech recognition is twofold.
First, a classifier design based on direct minimization of the recognition error rate
is a meaningful alternative to distribution estimation based approach. Second, the
PDs used in parametric modeling of speech are very limited compared to the true
PDs in the source, and the decision rule based on discriminant function approach
is a reasonable alternative to the “plug-in” MAP rule which is based on the model
correctness assumption.

1.6 Embedded String Model Based MCE Training

In the above mentioned development of the MCE training formalism, the utterance
observation X is assumed to be from one of the M classes. For recognition of con-
tinuous speech or for speech recognition using subword model units, X is a concate-
nated string of observations belonging to different classes. For example, a sentence
is a sequence of words, each of which is to be modeled by a distribution. The decod-
ing process in continuous speech recognition is to compare (implicitly) all possible
(word or subword) string models, and the word string whose string model has the
highest likelihood score is chosen as the decoded string. The likelihood score of
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FIGURE 1.2
A structure diagram of a context dependent head-body-tail digit model in
speech recognition.

the word string is typically a combination of scores from various models, including
the score from the acoustic model, language model, duration model, etc. The main
reason of adopting this type of string model is simply that the basic speech recog-
nition model units, which are used to form string models, can be estimated from a
finite amount of available training data. A prohibitive number of word strings can be
generated even from a very limited vocabulary, and to individually model each word
string is not practical to implement for strings with unknown length. On the other
hand, long term language models and context dependent acoustic models are used
extensively in speech recognition and provide much higher resolution for classifying
allophonic acoustic and linguistic events. The use of these detailed and long term
knowledge sources in speech recognition has extended the modeling dependencies
beyond the level of individual words to phrase groups or at the whole utterance level.
Therefore, new formulations are needed to extend the MCE approach to classifier
design in continuous speech recognition. In this section, we first describe a general
embedded string model based MCE paradigm for continuous speech recognition,
and from there, the MCE training for each component in the utterance based string
model can be achieved under this unified framework.

1.6.1 String Model Based MCE Approach

Discriminant functions based on string level modeling are necessary in continuous
speech recognition, because the classifier decision rules are based on the whole ut-
terance level global matching. The string model which describes the given word
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string, that best matches the input speech utterance, has to be determined by Viterbi
alignment process between all possible string models and the input speech utterance
X ={=1,...,2z7}. Forease of representation, we drop the non-acoustic parts in the
string model first and consider them separately later.

The string model for a given word string S in an HMM based speech recognition
system using continuous observation densities is given by

Sq = argmaxlog f(X,0s,,5¢ | A) (1.72)
Se

where Sg is a possible string model for word string S, © g, is the optimal state
sequence in the string model of Sg, A is the model set of all recognition model
units, and log f(X,©35,,Sq | A) is the log-likelihood score along the optimal state
sequence Og,. In the embedded string model based MCE training described in
[19], the discriminant function at the string level is based on the string model for
the correct word string and the string models of the /N most confusable word strings
obtained using a fast tree-trellis V-best search [104]. Let S = Wy,--- W, be an
arbitrary word string. Given the model set A, the optimal state sequence O g is a
function of the observation X, and the word string S is often determined by a Viterbi
decoding process. The top N best string hypotheses {S1,--- , Sy} can be defined
inductively as follows,

S = arggnaxlogf(X, ©s,S | A), (1.73)
Sk = argmax log f(X,0g,S | A). (1.74)
S#S1,+,SK_1
The discriminant functions, for k = 1,..., N, are
9(X, Sk, A) =log f(X,0s,,Sk | A), (1.75)

where Sy, is the k-th best string, A is the HMM set used in the /N-best decoding,
Oy, is the optimal path (state sequence) of the k-th string given the model set A, and
log f(X,0Os,, Sk | A) is the related log-likelihood score on the optimal path of the
k-th string.

For the correct string Sje,., the discriminant function is given by

Q(X: Slez:A) = 108; f(X7 G)Slemasl6$ | A)7 (176)

where S is the correct string, @, is the optimal alignment path and log f (X, O e,
Siex | A) is the corresponding log-likelihood score. These discriminant functions are
embedded in the MCE based loss function through the following steps:

1. The misclassification measure in embedded string model based MCE training
is defined as

d(X,A)Z—g(X,Szez,A)Jrlog{N% > eI(XoSebmys (177
Sk#Sien
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FIGURE 1.3
A diagram of the embedded string model based MCE training process.

2. The loss function in minimum string error rate training is defined as

1
where 7 is a positive constant, which controls the slope of the sigmoid func-
tion.

3. The expected loss which is associated with the string error rate is given by

L(A) = Bx[I(X, A)]. (1.79)

It should be noted that the situation in continuous speech recognition is quite differ-
ent from the finite M class classification problem where a fixed set of discriminant
functions can be pre-specified. The discriminant functions in the embedded string
model based MCE approach are dynamic, depending on the particular lexical word
string S, random input X, and a list of the N most competitive string models. The
N most competitive string models also depend on the string level model matching
of the utterance X against the current model set A. In the ML based distribution
estimation approach, the model parameters are estimated only from the training data
with the correct string model. The discriminative information existing in the compet-
ing string models is generally not used. The use of the sequential training procedure
based on GPD algorithm for parameter adaptation also makes this training proce-
dure “segmental” in the sense that the state segmentation of the speech utterance is
used to update the current model, and the updated model is used to introduce new
segmentation for the next training sample.
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One of the issues in acoustic modeling is how to model the word strings that are not
in the training set. In continuous speech recognition, the coverage of the training
material on the possible word strings is always limited, given the fact that a huge
number of word strings can occur in the language. These unseen strings are in gen-
eral very hard to model, and ML estimation is based on the seen training data and
cannot cover the cases which are unseen. The use of competing string models in
MCE training provides a better coverage of word strings, since many of them may
not actually occur in the training data. Those confusable word strings are selected
based on their confusibility with the correct lexical string given the current model set.
They are used to form the string model based discriminant measure and modeled in
the smooth MCE based loss function which relates to string error rate. A diagram of
the embedded string model based MCE training is given in Fig. 1.3

The embedded string model based MCE approach is well suited for acoustic model-
ing using detailed context dependent models, where separate acoustic model unit is
used to model phoneme with different left and right context. It can describe various
long span left and right context dependencies such as triphone, quinphone, etc. One
example of a cross-word context dependent model used in connected digit recogni-
tion is depicted in Fig. 1.2, which has a full expansion for all possible left and right
contexts at the word boundaries. The introduction of the embedded string model in
MCE training has two advantages:

o Itextends the MCE based discriminant function approach to continuous speech
recognition, where modeling each individual word string class is not feasible.

e It provides an exact emulation of the classifier in continuous speech recogni-
tion and embeds the utterance level speech manifestation in the basic recogni-
tion model units.

In embedded string model based MCE approach, the long term dependencies are
embedded in the basic speech recognition model units even if their original context
dependency definitions are not. It is observed in the experiments that many mono-
phone based context independent model units obtained from the MCE approach ex-
hibit speech recognition performance of context dependent model units [35]. The
embedded string model based MCE approach found applications in various recogni-
tion tasks and significant error rate reduction were observed [19, 20, 35, 81, 51, 27].
Although the string model based approach is the natural choice for string error rate
minimization, it is possible to include word level error effects in MCE training. One
modification proposed in [13] uses word error counts as the weights between the
correct lexical string model and the most confusable string model in the misclassifi-
cation measure. Let the lexical string model be S}¢, and the most confusable string
model S7, the misclassification measure with the word error count weighting has the
following form

d(X,A) = LD(Siex, S1)(—9(X, Stex, A) + g(X, S1, 7)) (1.80)

where LD(S)e,, S1) is the so called Levenshtein-distance between the correct refer-
ence word string S}, and the rival word string Sy, i.e. the number of errors con-
tained in S;. The rest of this MCE formulation follows the embedded string error
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based MCE approach. However, it should be noted that multiplying a positive con-
stant on the misclassification measure d(X, A) does not change its sign nor the string
error based MCE formulation. When v — 0o, the loss function will still converge to
the string error count function, although a word error based weighting is applied.

1.6.2 Combined String Model Based MCE Approach

As mentioned at the beginning of this section, the final decision in speech recogni-
tion is based on the combination of scores from various knowledge sources repre-
sented by different models. Assuming independence of each model, the final score
in the logarithm domain becomes a sum of log-likelihood scores from each individ-
ual model. In particular, in addition to the acoustic model, if a language model is
used and its score is weighted by a weighting factor A r,, the final likelihood score of
a candidate string is

log f(X |W) =log f(X | W)+ A log P(W). (1.81)

If the model correctness assumption is valid, the log-likelihood score should strictly
follow Eq. (1.14) and the score weighting factor A ;, = 1. However, in speech recog-
nition experiments and applications, it is found that a value of Ap with A\ # 1
demonstrates much better recognition performance [63], an indication that the true
distribution of the signal source departs from the assumption made by the model. The
language model factor Az, in speech recognition is often tuned and adjusted based on
the recognition results on the training and development data. The actual value of
the language model factor used in recognition is quite different from the one derived
from the model correctness assumption. The tuning procedure itself, being empiri-
cal, is a departure from the distribution based pattern recognition approach, and the
score combination can be considered as a problem of selecting discriminant func-
tions in pattern classification. The introduction of embedded string model makes it
possible to extend the discriminant function based approach to the level of handling
multi-model combinations and to the paradigm of combined string model training.
The combined string model can be done in the combination of the following two
directions. One is horizontal, scores from multiple models and different knowledge
sources are combined to form the final score, where each individual model may be
estimated separately based on different estimation methods, including using different
training data and constraints. Discriminative model combination [13] falls in this cat-
egory. Another important direction for model combination is to estimate the individ-
ual model parameters in the combined string model as an integrated component of the
final combined string model. Discriminative feature extraction [58], discriminative
language model estimation [21, 113], and embedded string model based estimation
using multiple knowledge sources [22] are such approaches, in which the discrimi-
nant function is constructed at the combined string model level, and the estimation of
parameters at each individual model is achieved by tracing down the model combina-
tion tree to each of its leaf nodes following a chain rule like relationship. Although it
can be computationally demanding to estimate all model parameters in such a global
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manner, the combined string model based approach nevertheless provides an exact
characterization of the decision process for even the most sophisticated recognition
applications, and it is applied successfully in many speech recognition systems. In
order to reduce the computational complexity, model training can be done in a selec-
tive way where some portion of the combined string model is assumed fixed while
estimating parameters in other selected components of the combined string model.
The training process is often iterated several times on the training data, where differ-
ent model components are selected at each iteration [22]. This integrated approach
will be further exemplified in the following subsections.

1.6.2.1 Discriminative Model Combination

The ability to combine multiple models from various knowledge sources in speech
recognition is important. This is because speech is a complicated source and can
be affected by many factors such as context, prosodics, vocal tract length, ambi-
ent environment, speaking style, mode of the speaker, accent, etc. Multiple signal
sources from multiple signal bands are also used in speech recognition [79]. Many
of these models or knowledge sources may not be based on probabilities, and a dis-
criminant function based approach is a suitable choice for model combination. Let
{A1,..., A} be the individual model components in the model combination. We
use the notation G(X | Aq,...,An) to denote the combined string model given
random input X, where G is the function selected for model combination. If G is

linear
M

G(X [ A1, An) = Meg(X | Ag), (1.82)
k=1

where g(X | Ay) is the score from the k-th model, and Ay, is the model combination
weights. Discriminative model combination based on the MCE approach is to embed
the combined string model based discriminant function G(X | Ay,...,Aps) in the
loss function and estimate the model combination factor A1, ..., Aas as parameters
in the combined string model. In particular, the misclassification measure in the
combined string model based MCE approach is

1 1
d(X,A) = =G(X, Stea, A) +log{ 57— D eGESIm (1.83)
Sk#Slex

and the loss function is defined as

1

l(X7A) = 1+e—'yd(X,A)’

(1.84)
where 7y is a positive constant, which controls the slope of the sigmoid function.
To determine model combination coefficients, many optimization methods can be
applied to estimate Aq,...,Aas which minimize the expected loss. The popular
GPD algorithm has a very simple form in this case [13]. Constraints on the value
of model combination coefficients can also be applied during parameter optimiza-
tion, depending on the nature of the knowledge sources used in the combined string
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model. Since estimating the model combination weights is a relatively simple con-
strained optimization problem, methods of linear programming, conjugate gradient
search, etc. become computationally applicable. Discriminative model combination
is applied in many applications under the name of combined string model [22, 21],
discriminative model combination [13], and universal stochastic engine [41]. The
MCE based discriminant function based approach provides a goodness criterion for
estimating and adjusting those “tuning parameters” in speech recognition, especially
when either a model correctness assumption is not valid or a unified framework is
needed to combine knowledge sources that are different in origin or nature. It should
be pointed out that discriminative model combination is very different from meth-
ods used to combine results from multiple recognizers, such as ROVER [34]. In
ROVER, it is based on a voting scheme, and it utilizes the diversity of the recogni-
tion errors from independent recognition systems to improve the recognition perfor-
mance. Discriminative model combination combines different knowledge sources
into one discriminant function. The component in the combined string model may
not be an independent recognizer, and it can be any knowledge source related to
the random input X. However, if each component in the combined string model is a
recognizer, both methods apply, and it is an interesting research topic to see how to
integrate them together towards a more discriminative combination based on outputs
from multiple recognition systems.

1.6.2.2 Discriminative Language Model Estimation

Language modeling is a critical component in speech recognition, and from the
source and model point of view, it provides the language level modeling of the
source. Moreover, a lot of words in speech are acoustically similar and some of
them (homophones) are even identical, such as “too” and “two”. If only based on
acoustic information, identification of these words and phrases in continuous speech
can be very difficult, and other knowledge sources, in particular a language model,
are needed. A statistical based n-gram language model is a popular choice in speech
recognition, and it has the following form P(wy, | wg—1,...,Wg—n+1) Which is the
estimated probability of observing word w, given the past n — 1 word history.

Because the number of possible n-gram probabilities grows exponentially with the
order n, lower order language models, such as unigram, bigram, trigram, and four-
gram, are used in various speech recognition tasks. The n-gram statistical language
model is typically estimated from a large text corpus independent of other knowledge
sources in speech recognition. Even with a very large text collection, only portions
of unique trigram and four-gram entries can be estimated due to sparseness of the
training data. Many language model entries rarely occur in the corpus and back-off
schemes (e.g., Katz back-offs [53]) are used to substitute the unseen language model
entries with their lower order back-off counterparts. The sparse data problem is a
serious issue in language model estimation, and in order to generate more entries,
the sample count cut-off threshold in language model estimation is usually set very
low, making the estimate far from being reliable. It is also obvious from the language
point of view that although the statistical n-gram language model is quite successful
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in speech recognition, it is not the “true” source model for speech. It is obvious that
human language has a much more complicated structure that often cannot be covered
by the simple structure of a fixed n-gram language model.

One direction of the combined string model based MCE approach is discriminative
language model estimation. Instead of treating language model estimation as a dis-
tribution estimation problem, it is proposed in [21] to formulate the language model
estimation as a problem of MCE training according to the combined string model. By
expanding the language model part in Eq. (1.82), parameters in the language model
can be embedded in the combined string model based MCE formulation, and their
values can be estimated based on the minimization of the expected loss. This ap-
proach differs from the conventional distribution based ML estimation for language
models. First, it is a discriminant function based approach and based on minimiza-
tion of a special loss function which relates to recognition error rate. Second, the
language model parameters become an integral part of the combined string model,
not isolate components derived from word occurrence frequencies. It is conditioned
on other knowledge sources, such as the acoustic model, duration model, etc.

Many constrained optimization methods can be applied to language model estima-
tion in the combined string model based approach to maintain probability constraints,
including transform based GPD adaptation, growth transform based optimization,
etc. In the combined string model based approach, language model estimation de-
pends on utterance level string model matching of all model components. The NV
most confusing string models are determined under the global combined string model
framework. Fast word graph search can be used to speed up the search process of
preparing competing string models [106]. Sparse training data is an issue which
deserves special attention. In order to alleviate the sparse data problem, discrimina-
tive language model training can be focused on terms with significant occurrences
or language model parameters which occur often such as language model back-off
weights, etc. [98, 113]. Discriminative language model estimation can also be used
in applications where language models are used as classifiers, such as call routing
[96] and dialogue state identification [113]. Experimental results indicate that dis-
criminative language model estimation can improve language model based classifiers
comparing to ML based language model estimation [98, 113].

1.6.3 Discriminative Feature Extraction

Most speech recognition systems use some type of spectral analysis on the windowed
raw speech waveform. Speech is represented as a sequence of short-time power spec-
tra or related recognition feature vectors. The two types of spectral analysis methods
most frequently employed are filter bank analysis and linear predication. Filter bank
approaches typically use a bank of bandpass filters. The frequency spacing of the
filters are either uniform spaced or critical-band-spaced following Bark scale or Mel
scale. These filters are generally highly overlapped and cover the relevant frequency
range of the input signal. Time and frequency resolution is an important factor in
the filter bank design. Spectrum intensity is often scaled logarithmically and the idea
of spectrum weighting is also used to control the feature sensitivity. However, most
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feature extractions are based on the analysis of human hearing capabilities, and thus
are not necessarily applicable to statistically based machine recognition.

The goal of discriminative feature extraction is to accomplish the speech recognition
feature extraction from the standpoint of minimizing the recognition error rate for
classification by machines. In place of the Bark scale from hearing, a new frequency
scaling [93] can be derived based on the classifier implemented by machines, and
other operations in feature extraction can be made discriminative based on the com-
bined string model MCE paradigm. Since these speech recognition feature vectors
are part of the combined string model, a goodness criterion of this approach can be
derived from the relation of minimization of the expected loss and recognition error
rate in the MCE formulation.

One application of discriminative feature extraction is in the design of cepstral lifters
[14]. Consider a sequence of speech recognition feature vectors based on the cepstral
vectors extracted from a short-time spectral analysis of the speech waveform. It is
well known that phoneme class identity useful to speech recognition exists locally in
the low frequency cepstral coefficients. Therefore, speech recognizers selectively use
this narrow region of cepstral components by applying cepstral weighting or littering
based on a windowing function or a lifter w(n). The design of cepstral lifter is to
control the non-information bearing cepstral variabilities in order to perform reliable
discrimination of sounds. One popular type of the lifter for cepstrum features is
based on a raised sine function of the form

_ J 1+ hsin(®F)  forn=1,...,L
“’(")_{0 forn <0,k > L,

where h is usually chosen as L/2, and L is typically 10 — 16 for speech of 4kHz
bandwidth. The weighted feature sequence w(n)c,, from the cepstral lifter, corre-
sponds to a smoothed log power spectrum. The justification of this type of lifter for
cepstral feature vectors is given in [46]. In discriminative feature extraction, lifter
design can be done according to the combined string model formulation, and instead
of relying on human hearing capabilities for choosing the right lifter, the lifter pa-
rameters can be estimated using the MCE criterion to minimize the recognition error
rate. Speech experiments using discriminative feature extraction based lifter were
performed in several tasks [14, 58].

1.7 Verification and Identification

Speaker verification and identification based on voice is an important area in speech
research and has been studied for several decades. The general problem of pattern
verification can be formulated as follows: given a random input signal X, we want
to verify if the signal X is from a signal source Sy. In making a decision regarding
the origin of the signal source, two types of errors can occur. One could mistakenly
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decide that X is not from the signal source Sp, while the true source of the signal
is Sp. This type of error in verification is referred to as a type I error, the error of
false rejection or missed detection. The second type of error is that X is accepted
as coming from the signal source So while the true source of signal is not Sg. This
type of error is often referred to as a type II error or the error of false acceptance.
The performance of a verification system is typically evaluated based on the combi-
nation of type I and type II errors. The problem of verification can be conveniently
formulated into a statistical hypothesis testing problem: given the test signal X, we
want to test the null hypothesis, Hy, against the alternative hypothesis, H1, where
Hy assumes that X is from the source Sy, and H; assumes that X is generated by
another source S;. In many applications, the alternative hypothesis H1 assumes only
that X is not generated from the known source Sy, and in such situations, H; is a
composite hypothesis as opposed to being a simple hypothesis.

In general, a test procedure divides the signal space S x into two regions Rx and
Ax = Sx — Rx, and we reject Hy if X € Rx and accept Hg if X € Ax. Rx is
often referred to as the critical region of the test. The probabilities of these two types
of errors can be expressed as

a = P(E,) = P(X € Rx | Hy), (1.86)

and
B =P(Ey) =P(X € Ax | Hi) =1- P(X € Rx | Hy). (1.87)

The power of the test, which is an important quantity to characterize the test, is given
by
v=P(X € Rx | Hy). (1.88)

In statistical hypothesis testing, one is often interested in finding the critical region
Rx such that the power of the test is maximized, or in other words, the type II error
is minimized, at a given level of type I error. A test which is optimal in this sense, is
often referred to as the most powerful test. There are plenty of studies available in the
statistical literature regarding the design of the optimal tests if P(X | H) and P(X |
H;) are known and fall into some specific distributions, such as the exponential
family [65]. In practice, the test procedure is often based on a test statistics 7'(X)
such that Hy is rejected if T'(X) > k. According to the Neyman-Pearson lemma,
T(X) can be based on probability ratio test T'(X) = P(X | Hy)/P(X | Hp) or
likelihood ratio test T(X) = f(X | H1)/f(X | Hp), and k is selected such that
the level of the type I error P(T'(X) > k | Hy) = a. However, in most practical
verification problems, we have no exact knowledge regarding the distributions of
null and alternative hypotheses. This problem is even more acute for the speech
signal, which is nonstationary, and the exact nature of speech generation process
is still largely unknown. Moreover, parameters of the speech model are estimated
from very sparse data points collected from known sources. With the correctness of
the model in question and the estimation errors due to sparse training samples for
the parameters of the model, the optimality of the test in the classical sense cannot
be realized, and discriminant function based methods can be used to improve the
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verification performance [74, 110, 107]. In the following subsections, more detailed
discussions are given to these approaches.

1.7.1 Speaker Verification and Identification

Authentication by voice has various applications in human-machine communica-
tion. Depending on application requirements, it can be classified into two categories,
namely speaker verification and speaker identification. Speaker verification involves
verifying the identity of a claimed speaker from a known speaker population, and
speaker identification involves identifying an unknown speaker from a known popu-
lation. A typical speaker verification system is shown in Fig. 1.4. Given a sequence
of speech feature vectors X and the claimed speaker identity I, the test statistics
score T'(X | Ar) can be computed from the corresponding speaker model A ;. The
test score is then compared with a threshold 77 associated with the claimed speaker
to decide if the claimed identity should be accepted or rejected.

Speaker modeling is the most critical part of a speaker verification system. Although
the speaker’s speech production process can be modeled directly based on the phys-
iological structure of the speaker’s articulatory apparatus such as the shape of the
vocal tract, etc., it is quite difficult in practice to uniquely extract such structural pa-
rameters from speech samples. Instead, indirect speaker modeling is often used in
which a set of speech models is created for each speaker based on a collection of
speaker specific speech training data. These speech models characterize the acoustic
manifestation of speech for a given speaker, which can be done based on various
criteria and depend on the type of the verification strategies. In order to model the
temporal structure in speech, HMMs are the most popular choice for speaker mod-
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eling, although other modeling techniques such as VQ codebook, neural networks,
etc., can also be used. HMMs are used in speaker verification to model the gen-
eral trend of the speech from a known speaker, and depending on applications and
the availability of annotated training data, it can be based on fixed phrases, broad
phonetic classes, whole words, or even subwords.

In speaker verification, the decision is based on the score of the test statistics T'(X).
For speaker identification problem, the speaker I is identified as the true speaker if

I = argmax T'(X, q). (1.89)
q

For speaker verification, we usually accept the claimed speaker identity I if the test
statistics for /-th speaker
T(X,I)> ;. (1.90)

The test statistics T'(X, q) can be directly based on the likelihood score of the speech
X in g-th speaker’s model f(X | A,). However, the normalized score function,
which is a form of the generalized likelihood ratio test f(X | Ag)/f(X | A7),
gives a much better speaker verification performance [99]. The likelihood f(X |
A7) models the acoustic space which does not belong to speaker ¢, and is often
obtained from the speaker cohort modeling. For each speaker g, a set of speakers,
who are most close to speaker ¢, is called a cohort set Cy, and can be identified
from the training data. The likelihood f(X | Aj) is modeled as a function of the
likelihood from competing f(X | A,) in the cohortset C,. Good speaker verification
performance is observed when f(X, A ;) is approximated by

f(X | Ag) = argmax f(X | A,). (1.91)

reCy

The discriminative function based MCE approach can be applied using a suitable
misclassification measure according to the test statistics [74]. For speaker verifica-
tion, the verification error can also be characterized by a mis-verification measure
based on the test statistics 7'(X, I), in a way similar to the misclassification measure
in recognition, and the MCE based discriminant function approach can be directly
adapted to minimize the verification error [74, 62]. In fact, the cohort modeling for-
mulation has a close relation to the misclassification measure in MCE approach. Ex-
perimental results indicated that the discriminant function based approach to speaker
identification and verification can lead to a significant reduction of the overall verifi-
cation error. The speaker test statistics are much better separated than the ML based
distribution estimation approach [74]. The system sensitivity to threshold selection
is much reduced and robustness of the system is improved [74, 78].

In addition to addressing the identification and verification problem as a special clas-
sification problem, methods of introducing the structure of statistical test in discrimi-
nant function based approach are also attempted. Minimum verification error (MVE)
training is such an approach [77, 109]. The main difference to MCE approach is
the use of two separate loss functions to model two types of errors in hypothe-
sis testing. The details of MVE approach are described below, and it exemplifies
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the discriminant function approach to speaker verification and identification. The
mis-verification measure, as opposed to the misclassification measure, for the g-th
speaker is defined as:

d,(X,A) = —9,(X,A) + G4(X,A)  if X from the claimed g-th speaker
1 —=Ge(X,A) + g4(X,A)  if X is not from the claimed g-th speaker,

where g4(X, A) is the log-likelihood score from the claimed g-th speaker model
and G4(X, A) is the score from the cohort speaker group C'z. The mis-verification
measure is embedded in a smooth sigmoid based loss function £(d(X, A)) as in the
MCE formulation. Two separate loss functions are used to describe the type I and
type II errors. The average loss for each type of errors approximates the empirical
type I and type II error rate on the training samples.

N;
1
Li(X,A) = A > £(d(X;, A)1(X; € Claimed Speaker) (1.93)
i=1

and
N>

Ly(X,A) = N% > £(d(X;, A)1(X; ¢ Claimed Speaker), (1.94)
i=1

where 1() is the indicator function. The overall expected loss of the MVE is given
by
L(X,A) = MLi(X,A) + X2 Lo (X, A), (1.95)

where A1 and A, are design parameters which control the influence of type I and type
II errors in the overall loss function. The model parameter estimation in MVE train-
ing is to minimize the expected loss of Eq. (1.95), which relates to the minimization
of empirical error rate of type I and type II errors. The goodness of this criterion is
justified from the discriminant function approach, and it is meaningful even when the
model correctness assumption cannot be established. Various speaker verification ex-
periments are conducted, and the discriminant function based approach demonstrates
significant performance advantages over the distribution estimation based approach
[74, 36, 62].

1.7.2 Utterance Verification

Utterance verification is to verify the content of the speech utterance against a claimed
(or hypothesized) text string. It can be used to verify the speech recognition result
and decide whether the decoded word string is reliable and should be accepted with
confidence. One new approach in utterance verification is to verify the information
content of the speech utterance against some known data stored in the user personal
profile, such as birth date, or against a database to which the information content of
the utterance provided by the user with claimed identity should match. This approach
of verifying the content of the utterance against a known database is called verbal in-
formation verification (VIV) [70]. Verbal information verification can be achieved
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without the need of collecting speaker specific training data. Utterance verification as
a statistical hypothesis testing problem has a close relation to the problem of speaker
verification. The discriminant function approach based on MCE or MVE can be
applied to utterance verification with the same fashion as it is applied to speaker ver-
ification. However, the purpose of utterance verification is to verify the information
content of the utterance not the identity of the speaker. As a consequence, instead
of using the speaker model, the confidence scores regarding the word content in the
utterance are used in utterance verification. There are many ways to form word and
string level confidence measure for utterance verification. In the approach described
in [110], the word level confidence score is based on the word level likelihood ratio
defined as follows:

L(X | Ho(W,))

TEWa) = T3 7, (7,)

(1.96)
where Ho(W,) and H; (W) are null and alternative hypotheses respectively for ver-
ifying random input X has word content W,. The likelihood of L(X | Ho(W,)) =
L(X | Aw,) is from the model for W, . The likelihood for the alternative hypothesis
L(X | Hi(W,)) is from a different model ¥y, which is modeled by two separate
HMMs (®w,, Qw,). ®w, is an HMM trained on all the training data in the co-
hort set of W,. It is used to model the composite acoustic space consists of other
words except W, and it is sometimes called anti-model to word W,. Q, is an-
other HMM which is a filler model to model non-keyword event. The likelihood of
L(X | Hi(W,)) based on these two types of HMM s is given as

LOX | Hi(W,) = (X | @w,) = [ (L(X | @w,)" + L(X | 0w, )75, (197)

where & is a positive constant. In discriminant function based utterance verification,
the mis-verification measure is

d(X,Wy) = —log L(X | Aw,) +log L(X | Ty, ). (1.98)
The mis-verification measure is embedded in a sigmoid type function of the form

1
Hd(X, Wo) = 77 exp[—byd(X, W,)] (1.99)

where 7 is a positive constant controlling the slope of the sigmoid function, and b
takes on the value of 41 and —1 as follows:

+1  ifW,eCR
b={ -1 ifW, € MR
-1 ifW, e NK

where C R refers to the cases that W, is correctly recognized, MR refers to the cases
that W, is mis-recognized, and N K refers to the cases that the input speech con-
tains no keyword. Based on Eq. (1.99), the discriminant function based MCE and
MVE approach can be applied as in the speaker verification. The above approach
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can be extended to string level verification and based on subword units enabling the
verification process vocabulary independent [108]. String level verification makes
the final rejection/acceptance decision on the keyword hypothesis made by the rec-
ognizer. Assuming independence, the string level likelihood ratio can be written as a
product of subword-level likelihood ratio:

N
L(Xp | Aw
T(X,wiws,...,wy) = [[ % (1.101)

By collecting terms of the numerator and denominator, the mis-verification measure
can be given as follows:

N
d(X,wy,...,wn) =Y {L(Xg | Au,) = L(Xp | To,)} (1.102)

k=1
where wy, . . ., wn can be based on the words or subwords according to the modeling

strategy used in application. The discriminant function based approach can then
be applied to verifying word strings. The construction of string level confidence
measure is an active research area, and various statistical criteria can apply. One
criterion often used in string level confidence measure is the mini-max principle,
which is to minimize the maximum risk of accepting each individual class (or word)
in the string. Word class dependent weighting can also be used which gives more
emphasis to verify salient words and information baring classes. Discussions of
forming various types of string level confidence measures are given in [76, 55] and
the references cited there.

The introduction of verification process in speech recognition opens a paradigm of
applying the discriminant function based approach in speech processing. Instead
of using model likelihood scores as is typical, one approach proposed in [60] is to
use generalized confidence score for decoding. The generalized confidence scores
is formed by integrating various knowledge sources. Examples of such knowledge
sources are frame acoustic likelihood, frame acoustic likelihood ratio, phone and
word duration penalties, word language probabilities, word insertion penalties, frame
energy penalties, prosodic confidence score, etc. A confidence score preprocessor is
used to convert the confidence score from each component into a suitable form for
combination. In particular, the non-likelihood ratio based knowledge source is con-
verted into the logarithm domain and integrated using a linear combination. The
likelihood ratio based knowledge source is first embedded in a sigmoid function to
control its dynamic range and then it is linear combined in the logarithm domain with
other components. Both discriminative model combination and discriminative utter-
ance verification are applied to integrate confidence scores from different knowledge
sources and to estimate model parameters and combination weights in the general-
ized confidence score, because the generalized confidence score may not be a prob-
ability based likelihood or a probability distribution. Moreover, the confidence score
components in the generalized confidence score can be based on different level of
information, such as frame level, state level, phone level, word level, etc. During
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the decoding process, those confidence score components are applied at different
times and at different layers of the decoding network according to their specifica-
tions. Therefore, the verification of the decoded partial word string can be done at
different phone, word, and phrase group junctions according to the verification based
likelihood ratio score components in the generalized confidence score. The decod-
ing process of this approach can be performed in a two pass fashion based on a word
graph or the IV best list obtained from the first pass search, or in a one pass search
which applies the generalized confidence score in search directly [60, 66].

Another approach of utilizing verification in speech recognition and understanding
is based on a detection and verification strategy [55]. In this approach, a key phrase
based detection using a general acoustic phonetic model is performed first. The
detected key phrases are processed in a verification module to verify the detected
key phrases and eliminate false alarms. Each key phrase is tagged with a semantic
tag and the verified key phrases are connected into sentence hypothesis using task-
specific semantic knowledge. A stack decoder is then used to search for the optimal
hypothesis that satisfy the semantic constraints. The optimal hypothesis from the
stack decoder is further verified at the sentence level based on both acoustic and se-
mantic information for the final output. The discriminant function based approach
is applied in both key phrase detection and verification to improve the system per-
formance. Details of this approach are given in [55, 54] and the references cited
there.

1.8 Summary

In this chapter, we examined the classical Bayes decision theory approach to the
problem of pattern classification, and discussed the implied assumptions and issues
as it is applied to the speech recognition problem. The classical Bayes decision the-
ory approach transforms the recognizer design problem to a problem of probability
distribution estimation. The limitation of the approach, however, comes from the
fact that the true form of the probability distributions of speech signal is realistically
unknown, and any assumed distribution form used in the model will deviate from the
true one of the source, resulting in suboptimal recognition performance and making
the minimum error probability as suggested by the Bayes approach unattainable.

In light of this limitation, the discriminant function based MCE approach was in-
troduced as an alternative to the distribution estimation based approach in pattern
recognition. It takes a discriminant function based statistical pattern classification
approach to classifier design. For a given set of discriminant functions, the classifier
design is to find a set of parameters which minimize the empirical recognition error
rate. This is achieved through a special loss function where minimizing the expected
loss relates to the reduction of the recognition error rate. The discriminant function
based MCE approach applies to cases where the traditional distribution estimation
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based approach does not apply, especially when the family of the discriminant func-
tions encountered in the classifier are not based on probability distributions. The
goodness of this approach is justified without the model correctness assumption, and
it applies to cases where the model correctness assumption is known to be invalid.
We formulated the basic theoretical framework of this approach and discussed its
relation to other criteria used in the classifier design. The development of MCE ap-
proach has led to a new paradigm in pattern recognition, and it leads to recognition
performance advantages over the conventional approach in many applications. We
studied various extensions of the MCE approach and provided theoretical justifica-
tions as well as implementation details when it was applied to different classification
problems in speech and language processing. This chapter is based on new devel-
opments in discriminant function based MCE approach during the past ten years.
Although attempts were made to provide a snapshot of research in this area, the ma-
terial covered in this chapter is by no means exhaustive. Research on discriminative
methods in pattern classification is a fast moving field with new problems and appli-
cations from various directions, and we are just at the beginning of realizing the new
potential of this approach in pattern recognition.
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Automatic speech recognition (ASR) systems are beginning to appear in a wide va-
riety of information systems. In automobiles or in miniature cellular phones, ASR
allows users to control electronic devices without using intrusive keyboards or key-
pads. In other applications, such as in searching unstructured audio-visual archives,
ASR promises access to information that would otherwise be inaccessible due to the
difficulty of searching through thousands of hours of recordings.

When ASR is incorporated into an information system it becomes just one aspect
of a complex and interrelated collection of automatic procedures. Overall system
performance will be measured not by ASR word error rate, but through task specific
evaluation criteria. When used in telephones, for example, a typical goal might be to
identify the person the user wishes to call while at the same time ignoring everything
else the user might say. In another application, such as audio mining, overall system
performance may be judged through precision and recall measures more commonly
used in information retrieval than in ASR. Given that different performance measure-
ments are likely to be used for different applications, it is desirable to create ASR
systems that are tuned for task-specific criteria. However, the maximum likelihood
techniques that underlie the training and decision processes of most current ASR sys-
tems are not sensitive to application specific goals. A promising approach towards
the construction of speech recognizers that are tuned for specific tasks is known as
Minimum Bayes-risk (MBR) automatic speech recognition.

The MBR framework assumes that a quantitative measure of recognition perfor-
mance is known and that recognition should be a decision process that attempts

© 2003 by CRC Press LLC



to minimize the expected error under this measure. The three components of this
decision process are: the given error measure; the space of possible decisions; and
a probability distribution that allows the measurement of expected error. While in
many practical situations the complexity of these components will prohibit the exact
implementation of the optimum MBR decision rule, we will present several compu-
tationally tractable algorithmic procedures that can be used to approximate the op-
timal system. Task-specific MBR recognizers will be compared to more commonly
used maximum likelihood recognition systems to show that MBR recognizers can
be constructed to yield improved performance under a variety of task specific error
measures. We will then discuss generalizations of MBR, with an emphasis on the
ROVER system combination procedure. As an application of ROVER and ROVER
variants, we will present results in system combination for multilingual ASR.

2.1 Minimum Bayes-Risk Classification Framework

In ASR, an acoustic observation sequence A = a1, as, ..., ar is to be mapped to a
word string W = w1, wa, ..., wy, where the words w; belong to a vocabulary V.
Assume that a language )V is known; for large vocabulary tasks it is usually the set
of all word strings over V. This language specifies the word strings that could pro-
duce any acoustic data seen by that ASR system. Furthermore, assume that the ASR
classifier makes its hypothesis selection from a set Wj, of word strings. This set,
called the hypothesis space of that classifier, would usually be a subset of the lan-
guage. In general, the hypothesis space could even be a function of the observation
A, say W', The ASR classifier can then be described as §(A) : A — W}

Let I(W, W) be a real valued loss function that describes the cost incurred when an
utterance W belonging to language WV is mistranscribed as W' € Wi, (W, W)
could be the word error rate (WER) measured by weighted Levenshtein distance [26,
34] for a speech transcription task, or some measure of semantic distance between
sentences for a speech understanding task.

Suppose the true distribution P(W, A) of speech and language is known; this as-
sumes that the true distribution that describes data encountered in practice is avail-
able. It would then be possible to measure classifier performance according to Bayes-
risk as

Epw,4)[l(W,5(4))]. 2.1

This is the expected loss when d(A) is used as the classification rule for data gener-
ated under P(W, A). Given a loss function and a distribution, the classification rule
that minimizes the Bayes-risk of Equation 2.1 is given by [1]

§(A) = argmin Y (W, W')P(W|A). (22)
W EWR wew
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While the sum in Equation 2.2 is carried out over the entire language of the recog-
nizer, only those word strings with nonzero conditional probability P(W|A) con-
tribute to the sum. Let W/ denote the subset of }V such that

A = (W e W|P(W|A) > 0}. (2.3)
Equation 2.2 can now be rewritten as

d(A) = argmin Z P(W|A). (2.4)
wr GWh Wewa

We shall refer to this classifier as the minimum Bayes-risk (MBR) classifier. It makes
its hypothesis selection by first computing an expected loss

SWy= > (W, W)P(W|A), 2.5)
wewa

for each word string W' in the hypothesis space. The hypothesis with the least
expected loss is then selected as its decision.

Since the observations in W serve as the evidence used by the MBR classifier, we
refer to W as the evidence space for the acoustic observations A. Similarly, the
distribution P(W|A) that defines the evidence space is referred to as the evidence
distribution.

We now show that specific loss functions can be defined so that two commonly used
classification methods, namely likelihood ratio hypothesis testing and maximum a-
posteriori classification, can be derived within the MBR framework.

2.1.1 Likelihood Ratio Based Hypothesis Testing

In hypothesis testing the observation A is classified as belonging to one of two
classes: a ‘null’ class that represents a desired statement about A, and an ‘alternative’
class that represents negation of the ‘null.” For instance, in a speaker verification task,
the null class represents the desired speaker and the alternative represents impostors.
Similarly, in an utterance verification task, the null class is the desired utterance and
the alternative is a set of similar sounding utterances.

Let H,, denote the null class and H, denote the alternative. The likelihood ratio tests
(LRT) for hypothesis testing classifies A according to the following decision rule

P(A|Hy)
H, if (A‘H)>t 2.6)
H, otherwise.

oLrT(4) = {
The threshold ¢ is set in an application specific manner; it determines the balance
between false rejection and false acceptance.
That the LRT is a special case of MBR classification can be seen by considering
an evidence space W, = {H,,, H,}, hypothesis space W), = {H,,, H,}, and loss
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function

ILrT(X,Y) = ty if X=H,,Y = H,, @7
0 ifX=H,Y==H,.

Under this loss function, the expected loss (Equation 2.5) of H ,, is
S(H,) =t P(A|H,)P(H,)

and that of H, is S(H,) = t2P(A|H,)P(H,). Therefore, H, is decided on if
S(H,) < S(H,),or P(A|H,)/P(A|H,) > t1P(H,)/t2P(H,). This is the deci-
sion rule of Equation 2.6 with t = t; P(H,)/t2 P(H,).

2.1.2 Maximum A-Posteriori Probability Classification

The MAP classifier makes its decision from the evidence space itself by selecting the
word string with the highest conditional probability. That is,

Imap(A) = argmax P(WW|A). (2.8)
Wew.
The MAP classifier can be derived as an MBR classifier by considering a hypothesis
space that is identical to the evidence space and a loss function that assigns equal
cost to all, say 1, to all misclassifications. That is, under the 0/1 loss function

n_J1 ifWw' #W
o (W, W) = { 0 otherwise 2.9
the classifier of Equation 2.4 becomes
§(A) = argmax P(W'|A) (2.10)
W'ewy,
where
P(W'|A) = > P(W|A). (2.11)

WeW. o1 (W,W')=0
This is the MAP classifier of Equation 2.8.

2.1.3 Previous Studies of Application Sensitive ASR

Risk minimization and application specific minimum cost classification have been
well studied and practiced in finance, defense, economics, and various other com-
mercial and non-commercial sectors. However, use of these methods in automatic
speech recognition has not been extensive. Early investigations into the minimum
Bayes-risk training criteria for speech recognizers were performed by Nadas [31, 32].
Since then, other researchers [30, 23] have used Bayes-risk based criteriain ASR sys-
tem training. Our focus in this chapter, however, is in minimum-risk classification
rather than estimation.
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Stolcke et.al. [36] proposed an approximation to a minimum Bayes risk classifier
for generation of minimum word error rate hypothesis from recognition N-best lists.
Other researchers [5, 27, 4, 38] have proposed posterior probability and confidence
based hypothesis selection strategies for word error rate reduction that have been
shown to be approximations to the MBR classifiers [13, 11, 10, 27, 15, 4]. These
approximations have resulted in significant improvements in system performance
and suggest that further work on minimum-risk classifiers for ASR may be beneficial.

While MBR recognizers attempt to provide a task specific hypothesis selection mech-
anism, parallel efforts have been going on developing task specific recognition tech-
niques by creating better task specific models. Notable among these are keyword
spotting [35, 39], phrase detection [24, 25], weighted word error rate minimiza-
tion [29], and identification of named entities in speech [3, 28].

2.2 Practical MBR Procedures for ASR

The algorithmic implementation of MBR recognizers is difficult for three reasons.
First, due to the large vocabulary size in many large vocabulary continuous speech
recognition (LVCSR) tasks, the evidence and hypothesis spaces in Equation 2.4 tend
to be quite large, even for short acoustic observation sequences. For instance, if
there are five words in the utterance and 20, 000 words in the vocabulary, there are
20, 000° possible word strings, all of which are allowed under an n-gram language
model. Second, the problem of large spaces is worsened by the fact that an ASR
recognizer often has to process many consecutive utterances. For example, the data
could be gathered over the course of an entire news broadcast or an entire ten minute
phone conversation. Consequently, the hypothesis and evidence spaces correspond
to all possible word strings over many utterances, making it even harder to perform
the search and sum computations of Equation 2.4. Finally, while there are efficient
dynamic programming techniques to implement the MAP recognizer, such methods
are not yet available for an MBR recognizer under an arbitrary loss function.

In this section we present two implementations of the MBR recognizer: first as an
N-best list rescoring procedure [36, 14], and second as a search over a recognition
lattice [10, 12]. MBR recognition is made possible in both these procedures by seg-
menting long acoustic data into sentence or phrase length segments (utterances) and
restricting the evidence and hypothesis spaces to manageable sets of word strings.
The assumptions involved in such segmentation, as well as the issues relating to the
distribution of the loss function over these segments, are discussed in Goel et al. [12].

Before presenting these procedures, a computational issue associated with the use of
hidden Markov models (HMM) in the evidence distribution will be addressed.

© 2003 by CRC Press LLC



2.2.1 Summation over Hidden State Sequences

Whereas in the discussion thus far it has been assumed that the true evidence distri-
bution is available, this is not the case in practice. This distribution is obtained by
applying the Bayes rule

P(W|A) = P(W)P(A|W)/P(A). (2.12)

Here P(W) is approximated using a language model; it is usually a Markov chain
based N-gram model. P(A|W) is usually approximated using a hidden Markov
model called the acoustic model.

Let S be the set of all the states in the acoustic HMM P(A|W). Let X’ denote the
set of all possible state sequences that could generate A. The probability P(A|W) is
computed as

P(AW) = Y P(A,X|W)

Xex
> P(X|W)P(AIX,W). (2.13)
Xex

The summation of Equation 2.13 is over all possible hidden state sequences. Even if
sequences for which P(X |W) is zero are discarded, this can still be very expensive
since the number of distinct hidden state sequences grows exponentially with the
number of frames in A.

A computationally feasible alternative is to modify the Equation 2.4 as follows

§(4)=  argmin Y UMW X), (W', X)) P(W, X, A)
(WX ewptxxa (W,X)EWA x XA
(2.14)

where X4 is a sparse sampling of the most likely state sequences in X
This rearrangement changes both the evidence and the hypothesis spaces from W g“
and Wit to WA x X4 and Wi x X4, respectively. It anticipates our search over
evidence and hypothesis spaces that contain word strings along with their HMM
state alignment information. In addition, it gives us the flexibility of working with
loss functions that depend on the state alignment of word strings. Also, in the above
we used Bayes rule and ignored the P(A) term which is constant for a given A.
For convenience we use W rather than (W, X), W, rather than WA x X4, and W),
rather than W;LL‘ x X in Equation 2.14, with the understanding that word sequences
in hypothesis and evidence spaces contain state alignment information with them.
With these changes, Equation 2.14 becomes

§(A) = argmin Y I(W,W')P(W, A). (2.15)
W'ewy, Wew,

Here A is a single utterance, and P (W, A) are lexical-acoustic joint probabilities
derived with state alignment information from an N-best list or a lattice.
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2.2.2 MBR Recognition with N-best Lists

An N-best list is a sorted enumeration of word strings and their associated state align-
ment, sorted in decreasing order of P(W, A). For example, an N-best list generated
in response to an utterance corresponding to “I LIVE IN A RURAL AREA” are
presented in Table 2.1.

The most direct approximation of Equation 2.15 is by N-best list rescoring proce-
dures as first proposed for WER minimization by Stolcke et al. [36] and later ex-
tended to general loss functions by Goel et al. [14]. In this approach, the evidence
and hypothesis spaces are restricted to the N-best lists produced by a recognizer.
They are denoted NV, and N}, respectively, resulting in

§(A) ~argmin Y (W, W')P(W, A). (2.16)
WeNw wen.

This approximation is particularly easy to implement for arbitrary loss functions.
However, the use of N-best lists may in some cases be too restrictive an approxima-
tion and search errors may result. Therefore, it is of interest to increase the size of
these two spaces to the recognition lattice, i.e., to consider more candidates in the
search and the sum.

2.2.3 MBR Recognition with Lattices

In the following we present a multistack prefix tree A* search algorithm that uses
recognition lattices as the hypothesis and evidence spaces. The development of the
algorithm proceeds as follows. We start by introducing statistical quantities derived
from the lattice that are needed by the search procedure. We then present a single
stack A* search directly over the lattices. This search is further refined by introduc-
ing a prefix tree, multistack strategy. For clarity of presentation we formulate the
A* search for minimization of WER. This is realized as a minimum-risk procedure
under a loss function based on Levenshtein distance, henceforth referred to as the
Levenshtein loss function. We end this section by a discussion of the feasibility of
the A* search for other loss functions.

2.2.3.1 Lattice Definitions

A recognition lattice is a compact representation for a large set of word strings and
their time boundaries.* Tt is an acyclic directed graph (N, €, ng,ne,p); N is the
set of nodes; £ is the set of edges; n, is the unique lattice start node, n, is the
unique lattice end node; and p : N' x £ — N specifies lattice connectivity. Each
node in the lattice is labeled by a word and a time. Each edge has a start node and
an end node. Edges are associated with the words at their end nodes and with the

*Lattices are generated using word strings and their state level alignment with the acoustic frames. How-
ever, we consider lattices in which the state alignment information is discarded and only the word time
boundaries are kept.
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time interval from their start node to their end node. They are also labeled by the
joint acoustic and language model log-probability that their word occurs during the
associated interval. This joint log-probability is conditioned on the history specified
by the start node of the edge. For example, in Figure 2.1, an edge identifies the
hypothesis that the word NOW begins at 0.6 sec and ends at 1.3 sec. The number
—2.3 on this edge is log-probability that the word NOW occurs between 0.6 sec and
1.3 sec., given that the word HELLO is present from the start of the acoustic data
until 0.6 sec.

A path or complete path is a sequence of connected nodes and links from 7 ¢ to
n. through the lattice. A path segment is a sequence of connected nodes from an
internal lattice node n; to another internal lattice node no; nq may be ns and no
may be n.. A partial path is a sequence of connected nodes and links from 7 4 to an
internal lattice node n; it may be a complete path if n is n.. The acoustic segment
corresponding to a path segment W, from n,, to n, shall be denoted A(W).

Let TV}, be a partial path from lattice start n to n,, W, be a path segment from n, to
ny, and W, be a path segment from n, to the lattice end n.. The acoustic segments
corresponding to these three path segments will be denoted A(W ), A(W,), and
A(W,), respectively. The sum of log-probabilities on the edges along W, gives
In P(W),, A(W))), the sum of log-probabilities along W, gives In P(W,, A(W,)|
W,), and the sum of log-probabilities along W, gives In P(W,, A(W,)|W,).

We introduce the partial path log-probability, the lattice backward log-probability,
and the lattice total probability of a partial hypothesis 1/, as follows. The partial
path log-probability of W, is

Ls(W,) = In {P(W,, A(W,,))} 2.17)
The lattice backward log-probability of W, is
Lo(Wy) = 0 { S, wemne PV, AW, ), 218)

where W, denotes the set of all complete paths in the lattice. The lattice total
probability of W, is

T(Wp) = exp{Ls(Wp) + Lp(Wp)} . (2.19)

Substituting the definitions of L (1) and L, (7¥,,) in Equation 2.19 we get

T(Wp) = exp ¢ In[P(W,, A(Wp))] + In Z P(We, A(We))|Wy)
We:Wp-WeEWiar

=expK In { Z P(We;A(We))|Wp)P(WpaA(Wp))}
We:Wp WeEWias
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FIGURE 2.1

An example lattice. The time marks correspond to the node times and the
word ending times. The numbers on the edges are logarithms of conditional
joint probabilities as described in the text. The partial path log-probability of
a partial hypothesis is the log of the probability of its path; the partial path
W, = (‘HELLO’,‘0.6’) in this lattice has value —1.6. The lattice backward
log-probability of a partial hypothesis 17, is the log of the sum of probabili-
ties of all lattice paths from end node of 17, to the lattice end node; for the
partial path W,, = (‘HELLO’,°0.6’) in this lattice these paths are indicated by
dotted lines and the lattice backward log-probability of this W, is —1.55. The
lattice total probability of a partial path is the exponentiated sum of its partial
path log-probability and lattice backward log-probability; its value is 0.043 for
W, = (‘HELLO?, ¢0.6’) in the lattice above.

=expy In { Z PW, - W, A)}

We:Wp WeEWiat

= > P(W, - W,, A)

We:W,-We€EWiar

The lattice total probability T (W) of a partial hypothesis W), could therefore be
interpreted as the joint probability of observing the acoustics A and all possible
complete hypotheses that have the prefix W,,. These probabilities are illustrated in
Figure 2.1.
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2.2.3.2 A* Search Under General Loss Functions

The set of all complete paths in the lattice, WW;,+, constitutes the hypothesis space
W, of Equation 2.15. It also forms the evidence space V. (Equation 2.15); the
associated joint log-probability In { P(W, A)} can be computed by adding the log-
probabilities on lattice edges along W. Therefore, on the lattice we would implement

§(A) = argmin > (W, W')P(W, A). (2.20)
W!'eEW)at WEWias

The goal is to find a complete hypothesis W', i.e., a path from n s to n, through the
lattice, such that its expected loss

SWy = > W, W')P(W,A) (2.21)
WeEWiat

is the least of all complete hypotheses in the lattice. This search for W’ can be effec-
tively implemented as an A* algorithm [17, 18, 19, 33] which proceeds by extending
partial hypotheses forward through the lattice.
Two cost functions are required for the search. The first cost function is associated
with each hypothesis W), whether partial or complete. Its value is a lower bound on
the expected loss (Equation 2.21) that can be obtained by extending the hypothesis
through the lattice to completion

C(W,) < We:W;pvivrelerat > UW, W, - W) P(W, A). (2.22)

WEWias

The second cost function is only associated with complete hypotheses. It is an over-
estimate of the expected loss of a complete hypothesis W'

cWh > > W, W)P(W,A). (2.23)
WeEWiat

Hypotheses are kept in a priority queue which is sorted by cost C, with the smallest
cost hypothesis at the top. We shall use the term “stack” to refer to the queue since
in speech recognition the A* algorithms have historically been presented in terms of
stacks [19, 33]. At every iteration the hypothesis at the top of the stack is extended.
When there is a complete hypothesis at the top, its second cost C' is computed. If this
over-estimated cost C is smaller than the under estimated cost C' of the next stack hy-
pothesis, or if there is no partial hypothesis left in the stack, the algorithm terminates.
We note that A* procedures usually employ an exact expected loss (Equation 2.21)
for complete hypotheses; however, this is prohibitively expensive to find in our case,
therefore we use the over-estimate.

2.2.3.3 Single Stack Search Under Levenshtein Loss Function

We now present usable cost functions for the Levenshtein distance L(W, W '). These
costs are not unique, and the efficiency of the search depends on the quality of both
the under-estimate C' and the over-estimate C'.
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As a technical aside, we note that the Levenshtein loss function is not sensitive to
the word time boundaries present in the lattice. Therefore, the word time boundaries
would be summed over during the search. Thus, this A* search implicitly provides
marginalization over different time segments of word strings present in the lattice.
Let Ws; denote the set of all complete and partial hypotheses in the stack. The
under-estimate for partial hypotheses is

C(W,) = Z min LW -Y, W, X) p T(W), (2.24)
WeW,, X:W,-Xew
Y:W-YEW

where W is the set of all possible word strings and their all possible time boundaries
that can be constructed by concatenating zero or more words of the vocabulary. The
derivation showing that this cost function satisfies Equation 2.22 is presented in Goel
et.al. [12].

The over estimate for a complete hypothesis W' can be computed as follows:

e For a hypothesis W in stack Wi, let N (W) be the length of the longest path
from its end node to the lattice end node n .

e Append each hypothesis W in the stack by N (W) instances of out of vocabu-
lary markers D. These markers do not match any word in the vocabulary.

e Compute the over-estimate
cwhy =3 Lov- DN W) 7). (2.25)
WGWst

A derivation showing that this estimate satisfies Equation 2.23 is given in Goel et
al. [12].

With the under-estimate (Equation 2.24) and the over-estimate (Equation 2.25), the
following single stack search algorithm can be used to find the desired hypothesis in
the recognition lattice.

1. Mark the lattice nodes by the lattice backward log-probability (Equa-
tion 2.18). At each node keep the length of the longest path to the end
of the lattice.

2. Maintain a stack W;; of partial and complete hypotheses. Each partial
stack entry contains a hypothesis W,,, L(W,) (Equation 2.17), T'(1W},)
(Equation 2.19), and C(W,) (Equation 2.24). Each complete stack
entry contains a hypothesis W', T(W'), C(W'), and C(W') (Equa-
tion 2.25). The stack ordering is defined first by increasing values of
C(+), and second by decreasing values of T'(-) in cases of identical
C(").
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3. Initialize the search by inserting the start node of the lattice, i.e., the
NULL hypothesis, into the stack.

4. If there are incomplete hypotheses in the stack, extend the top incom-
plete hypothesis by all lattice arcs that leave its end node. Compute
C(W,) for each of the newly created partial hypothesis 1W,,. Compute
C(W'"), and C(W') for each newly created complete hypothesis T7'.
Otherwise, if there are no incomplete stack hypotheses, select the hy-
pothesis with least C(W"). This is the desired candidate.

5. Update the cost estimates (Equations 2.24 and 2.25) of all other par-
tial and complete stack hypotheses after adding these newly created
hypotheses to the evidence space. Insert the newly created hypothe-
ses at their appropriate places (sorted first by C'(-) and second by T'(-)
in case of ties) in the stack. Pruning may be applied during the insertion
(see Section 2.2.3.5).

6. If there is a complete hypothesis at the top of the stack and if its over
estimate is smaller than the under-estimate of second stack hypothesis
(partial or complete), it is the desired candidate and the search ends.
Otherwise go to step 4.

2.2.3.4 Prefix Tree Search Under Levenshtein Loss Function

In our treatment so far, the time segmentation of each hypothesis is retained so that
hypotheses are distinct if they have identical word content but different time segmen-
tation. Since the Levenshtein distance does not depend on the time segmentation of
hypotheses, we can obtain further search efficiency by removing time information
from the lattices as follows. Let U be the operator that strips the time segmen-
tations from hypotheses. Given a partial hypothesis W,, from the stack W, let
®,, = U(WW,) be its word contents. Let T'(®,) = ZWGW“:U(W):% T (W) be the
induced total probability of ®, over the current stack. The cost function of Equa-
tion 2.24 can be rearranged using the operator U as

CWy) = Z min  L(W-Y,W, - X) T(W)
Wew,, X:Wp XeEW
Y:W-Yew

Z Z min L(®-b,®,a) T(W)

PeUWss) W:U(W)=0 a:Pp-a€U(W)
b:B-beU(W)

= 2 min - L(®-b,%,-a) Y, T(W)

DEU(W,;) a:Pp-a€U(W) W:U(W)=%

b:B-bEU(W)
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= > min  L(®-b,®, - a) T(®)
ScU(Wst) a:®p-acUW)
b:®-beU (W)
= C(®,) (2.26)

Therefore the cost of a partial hypothesis W, depends only on its word contents ®,.
This suggests that we can introduce a prefix tree as a compact representation of the
word sequences associated with all partial hypotheses in the stack. A node in the
prefix tree identifies a set of hypotheses and their end nodes in the lattice. Now the
search can be performed over the prefix tree. It is the same as the single stack search
except that

1. The stack contains prefix tree nodes and is ordered first by C(®,)
(Equation 2.26) and then by T'(®,,) in case of ties.

2. The lattice paths corresponding to the prefix tree node at the top of the
stack are extended by one word. These extensions yield a new set of
prefix tree nodes to be inserted in the stack.

The over-estimate in the prefix tree search is still computed according to Equa-
tion 2.25. Due to its dependence on the longest completion of lattice paths, different
paths at one prefix tree node would contribute differently to this over-estimate. Other
over-estimates that are dependent only on the prefix tree node could be derived; one
such estimate could be based on taking the maximum value among the longest com-
pletion lengths of all the lattice paths that end at one prefix tree node.

A significant advantage of using prefix trees for the Levenshtein distance is that they
facilitate storage and computation of

min  L(®-b,®,-a). (2.27)
a:®,-a€U(W)
b:@-bEU (W)

This quantity, named partial hypothesis comparison cost, is needed in Equation 2.26
above. Efficient computation of the partial hypothesis comparison cost is essential
for the feasibility and speed of the A* search. Due to the recursive nature of the
Levenshtein distance, the partial hypothesis comparison cost can be computed pro-
gressively as the search proceeds.

2.2.3.5 Pruning and Multistack Organization of the Prefix Tree Search

Although the derivations of under estimates and over estimates of costs (Equations 2.24
and 2.25) did not take stack pruning into account, pruning is essential for these algo-
rithms to be feasible [16, 20]. When entries are pruned from the stack, Equation 2.24
is still a valid under estimate but Equation 2.25 is no longer a valid over estimate. It
is however a valid over estimate for the sub-lattice of the original lattice that could
be constructed by completion of the partial hypotheses in the pruned stack. There-
fore, in the search algorithms above, we can at best hope to find the optimal solution
within this sub-lattice.
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The single stack search (Section 2.2.3.3) and the prefix tree search (Section 2.2.3.4)
have the disadvantage that the costs of partial hypotheses of different lengths are
compared. This is acceptable under the search formulation, but is not a good compar-
ison for use in pruning since it favors short hypotheses. Thus it may be sub-optimal
to prune candidates based on their cost in the single stack. In an attempt to avoid this
we use a multistack implementation which is a fairly simple extension of the prefix
tree search that maintains a separate stack for each hypothesis length. This multi-
stack organization has been found to have better pruning characteristics in practice.
It is this multistack prefix tree A* search that we report the results on.

2.2.3.6 Loss Functions Other than Levenshtein Distance

From the A* search formulation of Section 5.6.2 it is clear that the feasibility of
the search depends on the ability to compute the two cost functions (Equations 2.22
and 2.23) that provide lower and upper bounds on the expected loss. One such pair
of cost functions is provided for the Levenshtein loss function in Equations 2.24
and 2.25. It can be seen from the derivation of the under estimate cost of Equa-
tion 2.24 that it is directly generalizable to any arbitrary loss function, if the efficient
computation of the prefix comparison cost for that loss function is possible. The
computation of an over estimate cost needs to be addressed on a case by case basis.

2.3 Segmental MBR Procedures

We now discuss MBR recognition strategies that reduce utterance level recognition
into a sequence of simpler MBR recognition problems. The lattices or N-best lists
used as hypothesis and evidence spaces are segmented into sets of words and short
phrases which form individual recognition problems that are attacked separately. The
solutions of these smaller problems are then joined to produce a single MBR hypoth-
esis for the entire utterance.
This segmental MBR (SMBR) recognition strategy has several advantages relative
to utterance level MBR. The segmentation can be performed to identify high con-
fidence regions within the evidence space produced by the first-pass ASR system.
Within these regions the ASR system was able to produce reliable word hypotheses.
SMBR then focuses on the low confidence regions in which the first-pass system
failed to produce a hypothesis with confidence. The value of this is that search space
is expanded where the first-pass system did not perform well and contracted where
the initial hypothesis is adequate. We now present a general formulation of these
SMBR procedures after which several specific variants will be described.
We first describe the segmentation process. Let R, be an evidence segmentation rule
that uniquely segments each word string in W, into N substrings of zero or more
' i =1,..., N. These segment

words. Applying R. to VW, generates segment sets YV,
sets consist of substrings from the original evidence space. R:(W) denotes the i‘"
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segment of the word sequence W, i.e., R.(W) = {RL(W),- - -, RY (W) }.

In a similar way, let R;, be a hypothesis segmentation rule coupled with R.. Rj
uniquely divides each string in the hypothesis space Wj, into N segments, and
R (W') denotes the i*" segment of the hypothesis W'. The constraint on Ry, is
that it must have a conjunction rule Jj, for concatenating strings from segment sets
W,’L . The conjunction rule must be such that when W' € W, is segmented, applying
Jp, to the segments reproduces W'.

To summarize how the segmentation and conjunction process will be used in decod-
ing, the hypothesis segmentation rule will be used to define N hypothesis sets W} .
A single hypothesis W'¢ will be chosen from each hypothesis segment set based
on the corresponding evidence segment set WE. The conjunction rule will be then
used to produce a single utterance level hypothesis W' = J, (W' ---W'N) from
the individual segment hypotheses. It is worth noting that this process of segmen-
tion and conjunction may in fact enlarge the original hypothesis space by introducing
new hypotheses constructed from substrings taken from the original hypotheses. The
enlarged space is adopted in place of the original hypothesis space.

We now describe how the utterance level MBR problem can be reduced to individual
MBR recognition problems. This follows from the following assumption concerning
the sensitivity of the loss function with respect to the segmentation of the hypothesis
and evidence spaces. Assume that the utterance level loss can be found from the
losses over the segment sets as

N
(W, W'y =3 IH(RL(W), R}, (W")). (2.28)

i=1

where 1% is a loss function defined on the i*" segment set. In effect, we assume
that even though segmentation introduces constraints in the alignment between se-
quences, the overall loss function is not affected.

We can now state the following proposition which follows directly by the substitution
of Equation 2.28 into Equation 2.4.

Proposition. An utterance level MBR recognizer of Equation 2.4 can be implemented
as a concatenation of N MBR recognizers [13]

8(A) = Jn (0"(AIL1) (2.29)
§'(A) = argmin (W', W )P (W*|A), (2.30)
WEW] wiewi

and P¥(W|A) is the marginal probability over the i** evidence segment set

PiW) = > P(W|A). (2.31)
WEW.:RL(W)=Wi

Therefore, under the assumption of Equation 2.28, utterance level MBR recognition
becomes a sequence of smaller MBR recognition problems.
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We note that while the utterance level MBR recognizer is implemented as a sequence
of segmental MBR recognizers, the acoustic data is not segmented at all. All evi-
dence originally available is used to compute the marginal probabilities P ¢(W¢|A).
Also note that there is no assumption of linguistic independence between word strings
belonging to adjacent evidence segment sets; the language model spans segments and
could even be applied at the entire utterance level.

In practice it may be difficult to segment the evidence and hypothesis spaces so
that the loss function distributes according to Equation 2.28. However, given any
segmentation, we can identify an associated utterance level induced loss function,

defined as
N

(W, W) =Y U(RL(W), R, (). (2.32)
i=1
Clearly, the segmental MBR recognizers are equivalent to an utterance level MBR

recognizer under the loss function / ;. The overall performance under the desired loss
function [ should depend on how well [ ; approximates [.

2.3.1 Segmental Voting

A special case of the segmental MBR recognition arises under certain conditions.
Suppose each evidence segment set contains at most one word from each evidence
word string; each hypothesis segment set contains at most one word from each hy-
pothesis word string; and there is a 0/1 loss function (Equation 2.9) on segment sets.
Under these conditions the segmental MBR recognizer of Equation 2.30 becomes

§(A%) = argmax P'(W'1|A), (2.33)
W'iew;

where P(TW'#| A) is defined in a manner similar to that of Equation 2.11.

Equation 2.33 is none other than the maximum a-posteriori probability decision on
each hypothesis segment set: for each hypothesis word a marginal probability is
computed based on the evidence space. The word with highest marginal probability
is then selected. This is the procedure of segmental voting.

The utterance level induced loss (Equation 2.32) for segmental voting can be written
as

Iseg-vote (W, W') Z loj1(R W), R (W")). (2.34)

As is the case with segmental MBR recognition, segmental voting is effective if
lseg—vote 1S a good approximation to the loss that we are trying to minimize.

Segmental MBR recognition does not specify how to find the hypothesis and evi-
dence segment set segmentation procedures Ry and R.; it only specifies the con-
straints that these procedures must obey. The construction of segment sets therefore
remains a design problem to be addressed in an application specific manner. We will
now describe two versions of segmental MBR recognition used in state-of-the-art
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ASR systems. Both these procedures attempt to reduce the word error rate (WER)
and thus are based on the Levenshtein loss function [26].

2.3.2 ROVER

Recognizer output voting for error reduction (ROVER) is an N-best list segmental
voting procedure. It combines the hypotheses from multiple independent recognizers
under the Levenshtein loss. In its original formulation [5], each of these outputs
consists of a single word string and a word level confidence score associated with
each word in that string. Procedures for combining N-bests lists from each system
have since been developed [4, 11].

Let Ny, m = 1,..., K be N-best lists produced by K recognition systems in re-
sponse to acoustics A4, and let P,,, be the posterior distribution associated with \V,.
Let NV, denote the union of these N-best lists. A posterior distribution on word strings
in NV, is derived by first extending each P, to assign zero probability to word strings
in AV, that are not present in V;,, and then taking a convex combination

K
P(W|A) = Zam (WIA), WeN,, > am=1  (235)

The set NV, and P(WW|A) are the evidence space and the evidence distribution used
by ROVER. f

The word strings of A, are arranged in a word transition network (WTN) that rep-
resents an approximate simultaneous alignment of these hypotheses. It is generated
by picking top two hypotheses, aligning them to produce an initial WTN, and then
iteratively adding each new hypothesis by aligning it with the WTN constructed so
far. An example WTN produced by aligning:

{“OH WELL WE,” “O WELL WE'RE,” “WELL WE WE'RE"}

is given in Figure 2.2. A set of words that align with each other is called a corre-
spondence set.

The WTN trivially specifies an evidence segmentation rule R. for word strings of
N.. The hypothesis space of ROVER is the set of all the word strings that can
be produced by picking one word from each correspondence set and concatenating
them. Therefore, the hypothesis segmentation rule R and the conjunction rule .Jp
are also trivially specified by the WTN. Having segmented the evidence and hypothe-
sis spaces, a marginal probability is computed for each word in each correspondence
set according to Equation 2.31 and the word with the largest marginal probability
is chosen from each correspondence set. These words are concatenated to form the
final output of ROVER.

TROVER originally incorporated a word level confidence score instead of P (W |A) as in Equation 2.35;
this is discussed by Goel et al. [9].
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FIGURE 2.2
An example word transition network.

The utterance level induced loss (Equation 2.32) in ROVER is derived from Equa-
tion 2.34 where the sum is over the correspondence sets

lrover(W,W') 210/1 W), Ri (W")). (2.36)

This loss is similar to the Levenshtein distance between strings W and W' when their
alignment is specified by the WTN. Since the WTN construction process adds each
new word string to the WTN so as to minimize the alignment cost between that string
and the WTN, we could expect [ gov rr(W, W') to approximate the Levenshtein
distance between W and W'.

2.3.3 e-ROVER

The simultaneous alignment produced in ROVER may sometimes be suboptimal for
some evidence hypotheses pairs. The natural remedy is to allow multiple consecu-
tive words in each correspondence set. Considering the search for segment sets as a
clustering problem, there are two different approaches that could be taken. We could
take a ‘top-down’ approach that starts with a single correspondence set that contains
an entire N-best list and segments it into sets that contain shorter word strings. Alter-
natively, we could take a ‘bottom-up’ approach where we first construct a WTN that
contains no more than one consecutive word in each correspondence set. We could
then join consecutive sets to obtain sets with longer word strings. The procedure
of extended-ROVER (e-ROVER) starts with the ROVER WTN and takes the latter,
bottom-up, approach.

The process of joining two correspondence sets yields one expanded set that con-
tains all the paths from the original pair of correspondence sets. This is graphically
illustrated in Figure 2.3.

The utterance level loss function of e-ROVER is given as follows. Starting from
the initial WTN, let two consecutive correspondence sets, say sets m and m + 1,
be joined, and let the loss function on the expanded set be the Levenshtein distance.
The loss function on correspondence sets that did not expand remains the 0/1 loss.
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FIGURE 2.3
Joining two correspondence sets.
The utterance level loss is then
N . .
le-rovEr(W,W') = > loj1(RE(W), Ry, (W')) + L(W™, W ™).

i=1,i#m,i#Zm+1
(2.37)
Here, W™ and W'™ are word subsequences from the joined segment sets. It follows
from the definition of Levenshtein distance that

LW, W') <le—roveEr(W,W') < lrover(W,W").

This follows because the e-ROVER alignments will eventually achieve the Leven-
shtein alignment as the alignment constraints are reduced.

The joining procedure can be carried out many times to yield successively better
approximations to the Levenshtein distance. The WTN obtained after each joining
operation specifies a new segmentation of the evidence and hypothesis spaces. In
comparing e-ROVER to ROVER, it is important to note that only the segmentation
of the hypothesis and evidence spaces changes with joining operation, the actual
spaces remain the same as they were in ROVER.

There are two consequences of joining correspondence sets. First, after the joining
operation, the loss function on the expanded set is no longer the 0/1 loss but is instead
the Levenshtein distance. Hence the MBR hypothesis selection on this set needs to
follow Equation 2.30. Second, the size of the expanded set grows exponentially
with the number of joining operations, making Equation 2.30 progressively difficult
to implement. It is therefore important to determine the sets to be joined carefully
so as to yield maximum gain in Levenshtein distance approximation with minimum
combinations of the correspondence sets. A heuristic procedure for joining sets [9]
is based on first identifying correspondence sets in which the largest value of the
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marginal probability (Equation 2.31) is below a threshold. Each consecutive stretch
of such sets is joined to form one expanded set. Sets in which the largest value of the
marginal probability is above the threshold are kept ‘pinched’; they are not joined
with any other set. For details of this procedure readers are referred to Goel et al. [9].
As noted above, the hypothesis and the evidence spaces in e-ROVER are identical
to those in ROVER. However, the loss function in e-ROVER provides a better ap-
proximation to the word error rate than ROVER. Since they are both instantiations of
Equation 2.29, e-ROVER would be expected, in theory, to yield a lower word error
rate than ROVER.

2.4 Experimental Results

The minimum Bayes-risk procedures yield a theoretically lower expected error rate
than the MAP recognizer. However, their practical merit can only be gauged in real
classification tasks. In this section we present experiments that compare MBR and
segmental MBR procedures with MAP recognition and with each other.

We first address a practical problem associated with incorporation of the HMM and
Markov chain models into the minimum-risk search procedures described above.

2.4.1 Parameter Tuning within the MBR Classification Rule

The joint distribution P(T¥, A) to be used in the MBR recognizers is derived by
combining probabilities from acoustic and language models. It is often found useful
in practice to introduce some tuning parameters to help match these models better.
In the following we discuss a parameterization of P(W, A) that is suitable for use
in MBR recognizers. We then present strategies to optimize these parameters within
the MBR classification rule.
It is customary in ASR to use two tuning parameters in the computation of joint
probability

P, s(W, A) = eWIpAIW)P(W)? (2.38)

where |W| is the number of words in word string W. The parameter «, usually a
negative constant, causes a decrease of probability with increasing |W|. For this
reason it is called word insertion penalty. The other parameter /3 scales the language
model probability relative to the acoustic model probability; it is termed language
model scale factor.

We have found it useful to introduce an additional likelihood scale factor v [14]

Py 5, (W, A) = {*WIP(AW)P(W)P} /. (2.39)

The likelihood scale factor restricts the dynamic range of the probabilities. For exam-
ple, consider the 10-best list of Table 2.1. These are ten most likely word strings pro-
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TABLE 2.1

Example ten most likely hypotheses and the posterior probability of these hypotheses under
two different parameterizations (Equations 2.38 and 2.39) of the posterior distribution.

v =15.0,« = —10.0, and 8 = 12.0.

InP, s(W,A) P,pg(W|A) P,p~(W]A) Sentence
-22402.56 1.0 0.3547 I HAVE A RURAL AREA
-22420.05 2.5E-08 0.1077 I HAVE A REAL RURAL AREA
-22420.10 2.4E-08 0.1074 ALTHOUGH IN A RURAL AREA
-22422.69 1.8E-09 0.0903 ILIVE IN A RURAL AREA
-22425.15 1.5E-10 0.0767 ALTHOUGH IT WILL AREA
-22428.33 6.4E-12 0.0620 SO ITHAVE A RURAL AREA
-22428.35 6.3E-12 0.0619 HAVE A RURAL AREA
-22430.66 6.2E-13 0.0531 I’'M A RURAL AREA
-22431.63 2.4E-13 0.0498 I HAVE A LITTLE RURAL AREA
-22433.05 5.7E-14 0.0453 I HAVE A ROLE AREA

duced by our ASR system for an utterance “I LIVE IN A RURAL AREA”. The log-
likelihoods (In,, g P(W, A)) along with the posterior distributions computed with
and without the likelihood scale factor are shown in Table 2.1. The posterior dis-
tribution P, 3(W|A) is computed by exponentiating the log-likelihoods and then
normalizing them over the ten-best list.

From Table 2.1 it can be seen that P, 3(1W|A) is heavily weighted towards the most
likely candidate, owing to a large variation in log-likelihood values. This leads to a
degeneration of the evidence space. It is prevented by the introduction of the likeli-
hood scale factor which flattens the distribution and yields more reasonable posterior
probabilities Py 5 (W ]A). A value of v = 15.0 is used in our example of Table 2.1.

2.4.1.1 Optimization of Likelihood Parameters

Let 64 3,4 be the minimum-risk recognizer (Equation 2.4) incorporating the param-
eterized distribution P, 5 (W, A) of Equation 2.39. We optimize «, §, and v to
minimize the empirical risk [37] of §4,3,+,

D> U(W,64,5.4(4)), (2.40)
(W,A)eT

over a database 7 = {(W, A)} of labeled utterances. Since the utterance labels are
known, this is supervised optimization.

For some problems it may be desirable to tune classification rule parameters without
using a separate training set. We approach this unsupervised optimization problem
by minimizing the empirical risk (Equation 2.40) using the most likely evidence
string in place of the truth. This evidence string is removed from the evidence space;
otherwise the empirical risk would be minimized by placing a probability mass of 1.0
on this evidence string by the degenerate parameter value of vy — 0.0. Furthermore,
to reduce the bias of unsupervised training towards the most likely evidence string,
we remove all those hypotheses that are at zero loss from this evidence string as well
as all those evidence strings that are at zero loss from any of the hypotheses removed.
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In order to reduce the number of parameters to be trained, we kept the word insertion
penalty (o) and language model scale factor (3) fixed at their values obtained from
training with MAP classifier. In all our experiments reported in this thesis these
values were @« = —10.0 and # = 12.0. A grid search for optimal v was performed
in both supervised and unsupervised optimization.

An alternative to training -y is to use vy = [ [36]. We compare all three methods for
obtaining vy described here in the experiments to follow.

2.4.2 Utterance Level MBR Word and Keyword Recognition

We now evaluate utterance level N-best list rescoring (Section 2.2.2) and prefix tree
based A* search (Section 2.2.3.4) for tasks of transcription and keyword spotting.
Transcription is the task of identifying word content of spoken acoustics. Its error
rate is measured by the Levenshtein distance, L(W, W'), between the actually spo-
ken utterance and the recognizer’s output.

The goal of keyword spotting is to identify the presence, and sometimes the time
location, of a prespecified set of keywords. A loss function suitable for such a task
would pay attention only to the keywords; other spoken words should be ignored. We
chose to experiment with a loss function based on a variant of Levenshtein distance
that assigns a cost of one when there is an error on a keyword, and assigns no cost to
errors on other words. The definition used was

(W, W') = L(We, W) (2.41)

where L(-,-) is the Levenshtein distance, and W, is derived from TV by deleting all
its non-keywords. ASR performance measured under L(W ., W/) will be referred to
as keyword error rate (KER).

Experiments were conducted on the Switchboard [7] corpus that consists of spon-
taneous telephony conversations between individuals. The test set was a linguisti-
cally segmented subset of this corpus, used for the 1997 Johns Hopkins University
LVCSR Workshop [21]. This test set contained 2427 utterances from 38 conversa-
tion sides; the complete test set definition and other details can be found in the work-
shop proceedings. Word lattices were generated under a trigram language model us-
ing speaker and gender independent, HTK-based, 12-component Gaussian mixture
cross-word triphone system [40] with 6973 triphone states. For use in the N-best
list rescoring procedure of Equation 2.16, 1000 element N-best lists were generated
from the trigram lattices. These were used as the evidence space N, and from them
the top 25 elements were kept as the hypothesis space A';,. The MAP candidate in
these N-best lists (and hence in these lattices) served as the baseline with a word
error rate of 38.5% and a sentence error rate (SER) of 65.9%.

Words in the task vocabulary were marked as keywords if they occurred relatively
infrequently in a large corpus [6]. Examples of the two kinds of words are

Keywords (21,653) . abilities, bartenders, calculation, databases
Non-keywords (784)  : a, and, the, besides, collaboration, distribution
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The numbers in parentheses above denote the total number of distinct words of that
kind in the system vocabulary of size 22,437. Even though the non-keywords con-
stitute a small fraction of the vocabulary, they are quite abundant and account for
more than 70% of the word tokens. The full vocabulary with marked keywords can
be found at our web site [8].

2.4.2.1 Likelihood Scale Factor Tuning

The likelihood scale factor was tuned as described in Section 2.4.1. Supervised op-
timization used a held out data set of 2218 utterances from 1040 conversation sides
that was separate from the training or test sets. Unsupervised optimization was per-
formed on the test set itself. Each entire 1000 element N-best list was used as the
evidence space N,, and the top 25 elements were kept as the hypothesis space A,
for parameter tuning. For unsupervised optimization under KER, we removed the
MAP candidate from the N-best list. We also removed all the N-best entries that
had zero KER with respect to the MAP candidate. This was done for the reasons
described in Section 2.4.1. Parameter tuning was also compared with the alternative
approach of using the language model scale factor (Section 2.4.1); these comparisons
are presented in Table 2.2.

2.4.2.2 N-best List Rescoring and A* Search

The N-best list rescoring procedure of Section 2.2.2 was implemented with a 1000
element evidence space and a 25 element hypothesis space for both WER and KER.
Results of this rescoring under WER are listed in Section A of Table 2.2 and those
under KER are listed in Section B of Table 2.2. Looking under the WER column in
Section A and under the KER column in Section B, we note that N-best list rescoring
yields a small yet significant improvement over corresponding MAP baselines. Fur-
thermore, rescoring for WER is not affected by the likelihood scale factor selection
method, whereas for KER the unsupervised optimization method outperforms the
other two methods.

The multistack prefix tree based procedure described in Section 2.2.3.4 was imple-
mented for A* search. The extension to keyword spotting is straightforward since the
task loss function is based on the Levenshtein distance. Two forms of pruning were
used during the A* search. For each partial hypothesis, its MAP completion was
found. The partial hypothesis was discarded if this probability fell below a threshold
set with respect to the MAP lattice hypothesis. Partial hypotheses were also pruned
by their cost under estimates (Equation 2.24). Under these two pruning conditions
the prefix tree search took approximately twice as long as the N-best list rescoring
procedure.

Looking at the WER performance of WER optimized search and KER performance
of KER optimized search in Table 2.2, we note that the A* search yields significant
error rate reduction over the corresponding N-best list rescoring procedures. The
importance of unsupervised optimization method of likelihood scale parameter is
also more prominent in this case.

An overall increase in the WER for hypotheses optimized for KER, and the KER
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TABLE 2.2
Evaluation of parameter tuning and recognition procedures for minimization of
WER and KER.

Baseline (MAP): WER = 38.5, KER =43.2

Recognition ~ Parameter  Likelihood Recognition Strategy

& Tuning Tuning Scale N-best A*
Criterion Strategy Factor (y) WER KER WER KER
WER LM Scale 12.0 379 429 377 425
A WER Supervised 15.2 379 430 375 424
WER Unsupervised 15.2 379 430 375 424
KER LM Scale 12.0 38.7 425 N/A 419
B KER Supervised 18.0 387 424 N/A 41.6

KER Unsupervised 15.5 388 420 N/A 414

performance of hypotheses optimized for WER reinforces that, as desired, a task
specific minimum-risk classifier outperforms classifiers optimized for other tasks.

2.4.3 ROVER and e-ROVER for Multilingual ASR

In this section we evaluate the N-best list based segmental MBR procedures of
ROVER (Section 2.3.2) and e-ROVER (Section 2.3.3). We will apply these methods
to multilingual, language independent acoustic modeling [2]. The objective here is
to train a monolingual system on a small amount of transcribed speech and then to
improve its performance using acoustic model trained in other languages. One of the
claimed advantages of ROVER techniques is the ability to combine multiple ASR
systems to generate a single hypothesis. We will show that ROVER does indeed
improve over the performance of a monolingual system, and that e-ROVER can be
used for further improvements.

Three systems were combined: a triphone system trained on one hour of Czech
voice of America (CZ-VOA) database? (Sysl); a triphone system trained on 72 hrs.
of English and then adapted by one hour of Czech voice (Sys2); and Sysl output
rescored with Sys2 models (Sys3). The test set consisted of 748 held out utterances
from CZ-VOA broadcast.

ASR lattices were generated using the one hour Czech voice based monolingual sys-
tem. By rescoring these lattices a set of 250 hypotheses was generated for each sys-
tem. The MAP hypotheses (top candidate in the N-best lists) in these three systems
had error rates of 29.58%, 35.24%, and 29.22%, respectively. We note that the per-
formance of the English system (Sys2) was substantially worse when not constrained
by the first-pass lattices produced by the Czech monolingual system.

For each system, the word insertion penalty and the language model scale factor
(Section 2.4.1) were chosen to yield optimal performance by the MAP decision

¥ Available from the Linguistic Data Consortium, LDC2000S89 Voice of America (VOA) Czech Broad-
cast News Audio.
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FIGURE 2.4
Top panel shows the ratio of total number of e-ROVER correspondence sets to

that of ROVER correspondence sets, as a function of the pinching threshold.
Bottom panel shows the WER performance of e-ROVER for these thresholds.

rule. The likelihood scale factor was obtained by conducing an unsupervised op-
timization (Section 2.4.1) separately for each system. ROVER and e-ROVER were
implemented by combining these three sets of 250 hypotheses. The posterior dis-
tribution over the resulting 750-best list was derived by simply renormalizing the
log-likelihoods of the (scaled) individual hypotheses.

2.4.3.1 Correspondence Set Pinching

In e-ROVER the correspondence sets were joined using the heuristic procedure de-
scribed in Section 2.3.3. This procedure joins the correspondence sets based on
a ”’pinching threshold” that considers the largest posterior probability of any word
string in each correspondence set. A threshold of 0.0 results in no joining at all -
which is equivalent to ROVER, while any threshold above 1.0 merges all the corre-
spondence sets.

Our implementation of ROVER resulted in a 25.94% WER, which is a 3.28% ab-
solute improvement over the best MAP word error rate of the three systems being
combined. Figure 2.4 shows that additional gains can be obtained using e-ROVER.
The top panel shows the ratio of total number of e-ROVER correspondence sets to
total number of ROVER correspondence sets as a function of the pinching thresh-
old. This ratio is 1.0 for threshold value of 0.0, and decreases monotonically as the
threshold increases. It is not at its minimum for a threshold of 1.0 due to the pres-
ence of correspondence sets which contain only one word; these sets have a word
with marginal probability of 1.0 and remained pinched for a threshold value of 1.0.
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The bottom panel in Figure 2.4 shows the effect of pinching on WER. We note that
all thresholds result in better than ROVER word error rate. The threshold of 1.0
yields the best performance of 0.56% absolute improvement over ROVER and hence
a total of 3.84% absolute over the best baseline error rate. We see a degradation in
performance for thresholds larger than 1.0. One possible explanation is the need for
heavier pruning due to the greatly enlarged search space that results from expanding
all the segment sets. Another possibility is that the best strategy is to retain the word
segments that were recognized with absolute certainty by the first-pass system.

2.5 Summary

We have described automatic speech recognition algorithms that attempt to minimize
the average misrecognition cost under task specific loss functions. These recogniz-
ers, although generally more computationally complex than more widely used MAP
algorithms, can be efficiently implemented using an N-best list rescoring procedure
or as an A* search over recognition lattices. While the A* is generally more accu-
rate, its implementation requires that upper and lower bounds on the cost of partial
hypotheses be computed as the search proceeds. These must be derived for each
performance criterion of interest, and we have given expressions for the Levenshtein
and keyword error rates. In LVCSR experiments we have shown that MBR decoding
procedures can be used to tune ASR performance for task specific loss functions.

Segmental MBR is described as a special case of MBR recognition that results from
the segmentation of the recognition search space. The segmentation is done with
the assumption that the loss function induced is a good approximation to the origi-
nal, desired loss function. It is discussed how recognizer voting can be considered
in the SMBR framework, and in particular, the widely-used ROVER system com-
bination procedure is described in this way. That ROVER can be described as an
MBR procedure under a loss function related to the WER provides a plausible ex-
planation for the performance improvements that it has been found to provide. We
then described e-ROVER, which is a ROVER variant based on a loss function that
can be tuned to better approximate the Levenshtein distance. The value of these
technique are demonstrated by using ROVER and e-ROVER for multilingual system
combination. As has been shown in these and other experiments, recognizer voting
procedures can combine recognition hypotheses from diverse systems to generate a
single hypothesis that is better than the best hypothesis of any of the individual sys-
tems. These experiments were based on the segmentation of N-best lists produced
by each system. However similar procedures can be derived for lattice rescoring,
and the development of MBR lattice segmentation procedures is a topic of current
research.
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I

3.1 Introduction

Modern automatic speech recognition (ASR) technology [9, 10, 56, 105, 84, 57, 20,
125, 46] is based on a communication theoretic view of the generation, acquisition
and transmission, and perception of speech [6]. Figure 3.1 (adapted from Juang’s
keynote speech in NNSP’96 [68]) shows a conceptual model of a noisy channel
for speech generation and signal capturing. The goal of speech recognition is then
defined as recovering the word sequence, W, from the acoustic signal, X. This can
also be viewed as a decision problem, i.e., based on the information in X and the
other relevant aspects of the problem, we attempt to make the best decision (in some
sense) of the W that has been embedded in X. For the simplicity of discussion, we
can view each possible word sequence W as a class. Let us assume there are total M
unique classes. So, speech recognition consists in finding optimal (in some sense)
decision rules for classification of the observation X into one of M fixed classes.
Depending on different criteria, there exist many decision rules. Not all of them are
of equal value in practice. Because of the different sources of variability as shown
in Figure 3.1, the speech signal X is usually featured by uncertainty, variability,
lack of determinism, and stochasticity. This makes the statistical pattern recognition
approach [100, 44, 18, 71, 55, 19] a natural choice for formulating and solving the
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FIGURE 3.1

Communication Theoretic View of ASR: Noisy Channel for Speech Generation
and Signal Capturing (adapted from [68]).

ASR problem as described briefly in the following.
First, the statistical models for the channels in Figure 3.1 are simplified as follows:

e A word sequence W and the associated acoustic observation X are viewed as
a jointly distributed random pair (W, X). For notational simplicity, we will
use the same symbol to denote both the random variable and the value it may
assume.

e The joint distribution of (W, X) is modeled by a parametric family of PDF
(probability density function) p(W, X) = pa (X|W) - Pr(W); pa (X|W) is
known as the acoustic model with parameters A, and Pr (V) as the language
model with parameters I'.

e The parameters (A, I') of the above distributions are to be estimated from some
training data by using particular parameter estimation techniques.

With these simplifications, the most popular way to solve the ASR problem is to use
the well-known plug-in MAP (maximum a posteriori) decision rule [18, 106, 79],

A

W = argmax PW|X) = argmv%pr(X|W) -Pr (W), (3.1)

where A and T" are the estimated parameters obtained during training, and W is the
recognized sentence during testing. This decision rule, derived from the optimal
Bayes’ decision rule, is also widely used in many other pattern recognition applica-
tions.
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This chapter attempts to explain, from a statistical decision point of view, why the
above approach works so well in certain conditions, and more importantly why it
does not work in many other situations. To do this, Section 3.2 first explains the
decision theoretic formulation of the ASR problem and the optimal decision rule
that can be constructed if everything about the problem is known. Then Section 3.3
explains how to construct the adaptive decision rules when learning from a train-
ing sample set. The rationale of two popular design principles in constructing such
adaptive decision rules is also discussed. Section 3.4 discusses the classification of
possible distortions of hypothetical models and data, and the possible ways of achiev-
ing performance robustness. Section 3.5 reviews and discusses some of the recent
parameter adaptation techniques for improving adaptive decision rules. Section 3.6
explains the basic notation of the decision rule robustness and shows two examples
of how to construct robust decision rules, namely the minimax decision rule and the
Bayesian predictive classification rule. Section 3.7 summarizes the ideas discussed
in the chapter.

3.2 Optimal Bayes’ Decision Rule for ASR

In its simplest form, let us assume that our ASR problem is to classify a speech ob-
servation (in practice, usually a feature vector sequence extracted from the speech
signal) X into one of M classes, W € Qw, where Qyw = {Wy, W, -+, Wi} de-
notes the set of M classes. Depending on the problem of interest, a class W € Qyy
may be of any linguistic unit, e.g., a phoneme, a syllable, a word, a phrase, a sen-
tence, a semantic concept or attribute, etc. Let us assume that the speech observation
X belongs to a suitable space 2,. The problem of constructing a speech recognizer
is then equivalent to finding a decision rule d(+) in a set of possible decision rules D,
such thatd : 2, — Q, or simply

W =d(X), forX € Q,, W € Qw,and d(-) € D, (3.2)

with W being one of the M possible class labels in Q. In this case, the deci-
sion space, Qp = {d(X) : X € Q,}, of the decision rule d(-) is the same as
the Q. A decision rule d(-) € D implies a mapping from the sample space to
the class label space. This mapping is known as a nonrandomized decision rule
[24]. Define Q,(W;) = {X : X € Q,,d(X) = W;} to be a subset of 2, corre-
sponding to the region of X being mapped as class W; with the decision rule d(-),
then the construction of a decision rule amounts to finding a partition, Q . (d(-)) =
{Q, (W), Qe (Wa), ..., Q. (War)}, of the observation space 2, under the follow-
ing constraints:

M
U Qi) =, QW) () Qu(W)) =0, for i#j; i,j=1,2,---,M.
i=1
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There may exist an infinite set of decision rules for the same given classification prob-
lem. Not all of them are of equal value in practice though. To determine whether a
decision rule is “good” one has to agree on a reasonable set of criteria for assessing
the “goodness”. Let us show one possible formulation by using the classical statisti-
cal decision theory pioneered by Wald and developed by many others [121, 24].

Let us view W and an observation X as a jointly distributed random pair (W, X),
whose joint PDF is denoted by p(W, X). In the so-called sampling paradigm, we can
decompose p(W, X) into a product of the class prior probability P(1¥) and the class
conditional PDF p(X|W), i.e., p(W, X) = p(X|W)P(W). One way of formalizing
a goodness criterion is to use the knowledge of the possible consequences of the
decisions. Often this knowledge can be quantified by assigning a loss that would be
incurred for each possible decision. Let £(TV, d(X)) be the loss function associated
with making a decision, d(X), if the true class is W. One would like the loss function
to have the following property

0 < LW, W) < L((W,d(X) £ W). (3.3)

If we assume the frue distribution p(W, X) is known, then the conditional and marginal
distributions, namely, p(X|W), p(W|X), P(W), and p(X) can be calculated. Now
we can define the fotal risk, r(d(-)), for a decision rule d(-) as an expected value of
the loss function, i.e.,

r(d(+)) = Eqwx)[((W, d(X))]

_ / W, d(X))p(W, X)dX (3.4)
WeQw XeQ,

_ / pX) S €W, d(X) P(W[X)JdX (3.5)
XeR WeQw

- 3 ) [, HwApxmIx, 66

where E (v, x)[ - ] denotes mathematical expectation with respect to the distribution
of (W, X). The above total risk can be used as a measure of the quality of decision
rules. Usually the less the total risk, the better is the decision rule. In this frame-
work, the issue of constructing an optimal decision rule becomes the following risk
minimization problem:

d?giGnDr(d(-)) :d?%ienp /X . p(X)[WgQ:W (W,d(X))P(W|X)]dX. (3.7

This optimization can be solved by minimizing the expression in the square brackets
in the above equation. It is clear that the solution leads to the following optimal
decision rule:

d,(X) = arg é?le%w Wgw (W, d(X))P(W|X), (3.8)
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which is also known as the Bayes’ decision rule. The resulting minimum total risk,

r(do()) =/XEQ p(X)[Wgw LW, d,(X))P(W]X)]dX, (3.9)

is called the Bayes’ risk. This risk value is the best that can be achieved if the
distribution p(W, X) is known.

In speech recognition, a reasonable option is to assume that every misclassification
of X is equally serious, thereby resulting in the so-called 0-1 loss function,

0 if W = d(X) (correct decision)

(W, d(X)) = { 1if W # d(X) (wrong decision) (3.10)

for W € Qw, d(X) € Quw . Substituting (3.10) into (3.6), we obtain

ror(d(-) = Y PW/ p(X|W)dX (3.11)

W eQw X g0 (W)
=1- > / P(W)p(X|W)dX. (3.12)
WeQy 7 XEL(W)

Therefore, in the case of the 0-1 loss function, the total risk is the unconditional error
probability which is apparently a good measure of the quality of decision rules for
the ASR task. The optimal decision rule, do1 (+), under the minimum classification
error criterion with the 0-1 loss function is then solved as dyap(X) = W such that

W= argmax PW|X) = argmvgxp(X|W) -P(W) (3.13)

which is also known as the MAP decision rule.
In summary, in constructing these optimal decision rules, it was assumed that com-
plete prior information about the classes is known, i.e.:

1) the observation space {2, is given;
2) the loss function £(W, d(X)) is given; and
3) the true PDF p(W, X) or p(X|W) and P(WW) are known.

Under these assumptions, the optimality criterion is the minimization of the risk
functional r(d(-)), and the optimal decision rule is the Bayes’ decision rule.

3.3 Adaptive Decision Rules Constructed from Training Samples

In practice, we know neither the true parametric form of the joint distribution p(W, X)
nor its true parameters. We shall say that we have prior uncertainty [79] in this case.
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If we have some labeled independent training sample set, X = {(W % X?);i =
1,2,---,n}, obtained by a series of independent experiments such that (W ¢, X%) ~
p(W, X) for the ASR task at hand or in mind, we can reduce the prior uncertainty by
constructing a decision rule from X'. The decision rule d(-) = d(X; X’) based on the
training set X’ and used to classify a random observation X that is independent of X,
is called an adaptive decision rule [79]. There are several principles that can be used
for the construction of such rules.Two of them are briefly discussed in the following.

3.3.1 Plug-in Bayes’ Decision Rules with Maximum-likelihood Density
Estimate

3.3.1.1 What are Plug-in Bayes’ Decision Rules?

The most popular family of adaptive decision rules might be the so-called plug-in
decision rules. For this approach, let { P(W), p(X|WW)} be any statistical estimators
of true distributions { P(W), p(X|W)} based on the training sample X'. The plug-in
decision rule [32] is the adaptive decision rule d = cio (AX) derived from the Bayesian
decision rule (3.8) by substitution of the estimators { P(W), p(X|WW)} for unknown
true distributions { P(W), p(X|W)}:

d,(X) = arg )I(r)ue%w > oW, d(X))P(W]X), (3.14)
WeQw

where

PX[W)P(W)
S w DX|W)P(W)
By varying the loss function and by using the different kinds of estimators, a fairly
rich family of plug-in decision rules can be obtained. For example, adopting the 0-1

loss function will lead to the following plug-in decision rule, d map(X) = W, such
that

P(W|X) =

(3.15)

W= argmwz}xp(W|X) = argmax p(X|W) P(W) (3.16)

which is also known as the plug-in MAP decision rule.
It can be shown [32] that the plug-in decision rule d,(+) in Eq. (3.14) minimizes the
plug-in risk #(d(-)),

> POV [ AWA)BEIIX, G

WeQw

which is an estimate of the total risk using the density plug-in estimator { P(W),
p(X|W)}, e,

d,(") = argdglenpr(d( ) - (3.18)

The minimum plug-in risk is then #(d, (-)).
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3.3.1.2 Why Could Plug-in Bayes’ Decision Rules Work?

As noted in [32], the plug-in risk 7#(d,(-)) of the plug-in Bayes’ decision rule in Eq.

(3.14), is often less than its total risk r(d,(-)) and is even optimistically biased as an
estimator of the Bayes’ risk 7(d,(*)):

Property: If the estimators { P(W), p(X|W)} are pointwise unbiased, then
E[(do ()] < r(do(+)) < r(do() (3.19)

However, the usefulness of the plug-in Bayes’ decision rule in Eq. (3.14) can be
justified by the following theorem of Bayes’ risk consistency [32]:

Theorem: (Bayes’ risk consistency): If the estimators { P(W), p(X|W)} are strongly
consistent, i.e., converge to the true distributions almost surely as the training
sample size n increases (n — o0):

A~

PW) X5 P(W), p(X|W) &5 p(X|W), for W € Qy and X € Q,;

(3.20)
then the plug-in risk for the plug-in decision rule in Eq. (3.14) is a strongly
consistent estimator of the Bayes’ risk, i.e.,

f(dAo()) =% r(do(+)) - (3.21)

3.3.1.3 Implications on Parametric Models and Parameter Estimation

In practice, because of the constraints of the limited computational resources and
training data, we always have to assume some parametric form for p(W, X), e.g.,
via pa(X|W) and Pr(W). The parameter set (A, T") has to be estimated from the
given training set X’ by using certain parameter estimation techniques. The above
Bayes’ risk consistency theorem tells us that it is often possible to construct plug-in
procedures that are Bayes’ risk consistent in the sense that the sequence of plug-in
risks converges to the Bayes’ risk as the training sets increase in size. However, there
is an important assumption behind this argument, that is, the assumed distributions
A (X|W) and Pr (W) obey the parametric structure in question. In order to achieve
a good approximation to reality, some flexible parametric models should be adopted.
Currently, the most widely adopted and the most successful modeling approach to
ASR is to use a set of hidden Markov models (HMMs) as the acoustic models of sub-
word or whole-word units, and to use the statistical N-gram model or its variants as
language models for words and/or word classes. The readers are referred to good tu-
torials in [87, 104, 65] and [58] for an introduction to the above approaches and their
applications. By using the abovementioned plug-in MAP decision rule, it has been
repetitively shown by experiments in the past three decades that given a large amount
of representative training speech and text data, good statistical models of speech and
language can be constructed to achieve a high performance for a wide range of ASR
tasks. This has given the speech research community a certain level of confidence in
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believing that the Discrete HMUM (DHMM, [90]) and the Mixture Gaussian Contin-
uous Density HMUM (CDHMM, [63, 103, 64]), together with N-gram models [58],
provide a good approximate parametric form for p o (X|W) and Pr (W), respec-
tively. Although these models are apparently imperfect [102, 17, 36, 108], they are
mathematically well-defined and capable of simultaneously modeling both the spec-
tral and temporal variation in speech. They are also well thought of because they both
fit into the framework of finite state representations [9, 88] of knowledge sources so
that the speech recognition problem can be solved as a network search problem over
a complex network representation of speech and language [101]. Based on the be-
lief that these acoustic and language models are good approximates, the maximum
likelihood (ML) estimate for the HMM parameters [11, 79, 63, 64, 39, 54] and N-
gram model parameters [37, 61, 58] has been the most popular parameter estimation
method. The widespread use of the plug-in MAP decision rule with the ML estima-
tor can be justified by using the above Bayes’ risk consistency theorem due to the
following facts:

1) The ML estimators of {A,I'} are strongly consistent, unbiased, and efficient.

2) This can then be translated into the distribution consistency if the parametric
forms of the ps (X|W) and Pr(W) are indeed correct.

According to our knowledge, it was Nadas [97] who first provided such an insight
for the speech recognition community.

Of course, one can always argue that although the ML estimators Aand T may be
excellent estimators of A and T', there is no guarantee that Py (W) and p; (X|WW) are
good guesses for P(W) and p(X|WW) because of the incorrect model assumptions.
Nor is d, (+) necessarily a good approximation to d., (+). The performance of the plug-
in rules and other procedures should really be judged by the criterion of total risk, or
by other criteria tied more directly to the classification accuracy than to the behavior
of (A, T) as a point estimator for (A, T'). This has motivated many studies in the past
two decades aiming at a good alternative to ML training. One method is minimum
discrimination information (MDI) training [21] which adjusts the HMM parameters
to minimize the discrimination information, or directed divergence, between the as-
sumed HMM distribution and the best possible distribution derived from the training
data under certain constraints embedded in the training data. Unfortunately, no sig-
nificant experimental results have been reported to show how MDI works in a speech
recognition task. Another class of approaches is the so-called discriminative training
method. Some of them, such as maximum mutual information (MMI) training [7],
conditional maximum likelihood estimate (CMLE) [99], and H-criteria [38], aim in-
directly at reducing the error rate of the speech recognizer on the training set. Other
methods such as corrective training [8] and minimum empirical classification error
training [22, 92, 67, 69] try to reduce the recognition error rate on training sample
set in a more direct way. Among these approaches, the minimum empirical classifi-
cation error (known as MCE) formulation proposed in [67] is, in my opinion, more
theoretically sound, thus will be discussed briefly in the following.
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3.3.2 Maximum-Discriminant Decision Rules Minimizing the Empiri-
cal Classification Error

3.3.2.1 What are Maximum-Discriminant Decision Rules?

Suppose one can define a discriminant function ga(X; W) for each class W that
characterizes the similarity between an observation X and the class W, where A is
the set of classifier parameters to be estimated from the training data set X'. Naturally,
the following maximum-discriminant decision rule d(-),

~

W = argmax ga (X; W) (3.22)

can be used to classify an unknown observation X into one of the M classes in € .
The obvious criterion for estimating the classifier parameters A is to minimize the
empirical classification error on the training sample set X’ defined as follows:

number of correct classifications by d(-)

— . 3.23
total number of sample observations on X’ ( )

r(d()) =

Now let D denote an arbitrary, but completely specified, collection of discriminant-
based decision rules. A sample-based discriminant decision rule d(-) € D will be
called a minimum misclassification or best-count discriminant decision rule if it min-
imizes the sample error rate 7(d(-)) among all discriminant decision rules d(-) € D;

that is, a best-count discriminant decision rule d(-) € D satisfies

rd() = d{gienpf(d(-)) :

Similar to the case of the density estimator, it can be shown [33] that

E[r(d("))] < d{gienprm(d(-)) < ro1(d()) -

So, #(d(+)) is an optimistically biased estimator of the actual error rate of d(-) and
the least possible error rate.

3.3.2.2 Why Could Discriminant Approach Work?

The usefulness of the best-count discriminant approach can be justified by the fol-
lowing theorem, similar to the one in section 3.3.1.2, and also proved by Glick [33]:

Theorem: (Uniform Convergence) A discriminant decision rule will be called m-
convex if its partition regions are sets in the finite field generated by some m
measurable convex sets. As the sample size n — 00, the estimator 7(d(-))
converges to o1 (d(+)) uniformly over all discriminant decision rules d(-) in
any collection D* of m-convex discriminant decision rules; that is, the con-
vergence is almost surely (a.s.),

sup |7(d(-)) = ro(d(-))] == 0.
d(-)eD*
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This uniform convergence implies that the best-count discriminant d(-) € D* is
asymptotically optimal in the sense of

ro1(d(+)) = d(n)lirll) ro1(d(+)) with probability one; and
) eD*
F(d(+)) — d(II)li% ro1(d(+)) with probability one.
) eD*

If collection D* contains any optimal discriminant decision rule d*(-),

d*(-) = arg min 7o (d(")) ,

any d(-

then d(-) is asymptotically optimal in the unrestricted sense, viz., strongly consis-
tent in Bayes’ risk. As pointed out in [33], this result is narrower than its parallel
result for density estimates stated in the theorem in Section 3.3.1.2. It will be inter-
esting to investigate how far the above result can be generalized to a wider range of
discriminant functions.

3.3.2.3 Implications on the Choice of Discriminant Functions and the Practical
Training Algorithms

The above theoretical result gives one confidence that if a proper form for the dis-
criminant functions can be specified for the given pattern recognition problem, it is
often possible to construct maximum-discriminant decision rules by estimating the
classifier parameters under the criterion of minimum empirical classification error.
Such decision rules are Bayes’ risk consistent in the sense that the sequence of em-
pirical risks converges to the Bayes’ risk as the training sets increase in size. Of
course, how to define an optimal form for the discriminant functions is application
dependent and remains largely an open research problem. On the other hand, the
good news is that the smooth MCE objective function proposed in [67] can approxi-
mate the empirical error rate for the design sample set arbitrarily closely. It can thus
be used as the design criterion to be optimized by any gradient-based optimization
methods. In the past decade, this MCE formulation has been extensively studied,
refined, and successfully applied to solving many pattern recognition applications,
see for example [72, 15] and the references therein.

3.3.3 Discussion

So far we have considered the following two strategies that have been used to con-
struct a modern ASR system:

1) Using plug-in MAP as a decision rule for recognition decision, and ML as a
criterion for the estimation of decision parameters.

2) Using maximum discriminant as a decision rule for recognition decision and
minimum empirical classification error (MCE) as a criterion for the estimation
of decision parameters.
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The following conclusions may be drawn concerning these two strategies:

1) The asymptotic behavior of the first approach will depend on the appropri-
ateness (in the sense of estimator consistency) of the parametric forms of the
assumed distributions.

2) The asymptotic behavior of the second approach will depend on the choice of
the discriminant function.

Theoretically speaking, it is not so clear yet which strategy is better for a moder-
ately sized training set. However, in the past decade, it has been demonstrated by
many research groups that when sufficient amount of representative training data are
available, an ASR system constructed under the second principle can outperform its
counterpart constructed under the first principle for many ASR applications.

3.4 Violations of Modeling Assumptions in ASR
3.4.1 Types of Distortions

The principles of the construction of the abovementioned optimal decision rule and
adaptive decision rules are based on some assumptions which may be violated in
practice. From the computational modeling point of view, there are three main dis-
tortion types that produce violations of assumptions summarized as follows [79]:

1) distortions caused by small-sample effects;
2) distortions of models or discriminant functions for training samples; and

3) distortions of trained models or discriminant functions for observations to be
classified.

The distortions caused by small-sample effects are typical for all statistical plug-in
procedures. They arise from the noncoincidence of the statistical estimates { P (W),
P(X|W)} of probability characteristics and their true values { P (W), p(X|W)}. We
want to emphasize again that the plug-in decision rules described in previous section
are asymptotically optimal only when

1) the training samples X = {(W¢ X%);i = 1,2,---,n} are collected by a
series of independent experiments such that (W%, X?) ~ p(W, X), or more
intuitively speaking, A" should be representative enough with respect to the
true distribution of the testing data X; and

2) training sample size n — 00, i.e., there is sufficient amount of training data
available.

© 2003 by CRC Press LLC



In practice, the training sample set X' always has a finite size (i.e., n < 00), and
in many cases, is possibly also not representative enough. The random deviations
of statistical estimates {P(W) — P(W), p(X|W) — p(X|W)} can then produce
significant increases of risk. As for the small-sample effects for discriminant-based
approach, it is intuitively obvious that a small training error on a small set of (pos-
sibly not so representative) training samples does not necessarily guarantee a small
test error. So, the design and/or collection of the training samples become very crit-
ical. The key is to make the samples in X’ follow the intended distribution p(W, X)
as closely as possible. Otherwise, some more intelligent ways of using the available
training data must be developed.

As for the distortions of the models or discriminant functions for the training sam-
ples, they can be caused by the wrong assumptions and/or inflexible parametric forms
of the model or discriminant function; the misclassification of training samples; out-
liers in training samples, etc. They will cause both modeling error and estimation
error. To cope with these problems, better models or discriminant functions need to
be found and techniques need to be designed for robust learning from data.

The biggest problem for ASR might be caused by the third type of distortion. In
most real applications, there always exists some form of mismatch which causes a
distortion between the trained models or discriminant functions and the test data.
These mismatches, some of them identified in Figure 3.1, may arise from inter- and
intra-speaker variabilities; transducer, channel and other environmental variabilities;
and many other phonetic and linguistic effects caused by mismatch in training and
testing task definitions. How to achieve the performance robustness in this context
has become one of the most active research areas in ASR in the past decade.

3.4.2 Towards Adaptive and Robust ASR

From the above analysis and discussion, it is quite clear that in order to design an
automatic speech recognizer that works well for different tasks and speakers over un-
expected and possibly adverse conditions, all of the above three distortion types need
to be appropriately treated. One of the effective ways to improve ASR robustness is
to find invariant (or robust) features so as to minimize the observation variability
caused by the different types of interfering factors and the possible mismatch be-
tween training and testing conditions. Even though some features have been shown
less affected by a certain type of distortion, such as linear microphone or channel
effect, no feature has yet been discovered that is invariant across all adverse acoustic
conditions. Further research in front-end signal processing and feature extraction is
definitely needed to improve on the currently “standard” acoustic analysis for ASR
[43]. Once the feature extraction method is fixed, another traditional approach to
robust speech recognition is to develop better modeling and learning techniques that
have a good generalization capability. In addition, four major classes of statistical
techniques to improve ASR robustness can be defined:

1) adapting recognizer parameters to new operating conditions using adaptation
and/or testing data;
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2) modifying signal, feature, or recognizer parameters using only the utterance to
be recognized to reduce the mismatch between the training and testing condi-
tions;

3) using robust decision strategies; and

4) possible combinations of the above techniques.

Along these lines, many techniques have been developed and are reviewed from
different perspectives in, for example [66, 23, 1, 35, 70, 25, 112, 26, 85, 86, 51].
Readers are referred to these reviews for a rich picture of the field and the references
therein for the details of the different techniques. In the remaining part of the chapter,
I will briefly review two technologies, namely, recognizer parameter adaptation and
robust decision rules, that were developed in the past decade to cope with the above
problems. The selection of materials is guided by the consideration that discussions
can be made in a relatively more rigorous way from the viewpoint of previously
discussed decision theoretic formulations for the ASR problem.

3.5 Improving Adaptive Decision Rules via Decision Parameter
Adaptation

3.5.1 Decision Parameter Adaptation for Stationary Operating Condi-
tions

If the operating condition of a speech recognizer is stationary, then there must exist a
true distribution p(W, X). Suppose the training data X’ is not representative enough
so that the recognizer constructed using the design principles discussed previously
does not work so well for the testing data from p(W, X). If the application sce-
nario allows, a straightforward solution to improving the adaptive decision rules is
to collect additional training data X', = {(Wi,X%);i = 1,2,---,N,} (known as
adaptation data) in a specific testing condition such that (W}, X") ~ p(W, X), and
then to adapt the recognizer parameters accordingly to work better in the prescribed
scenario. Depending on which design principle was used to construct the speech
recognizer from the training sample X, there are naturally two goals of adaptation,
namely ML and MCE, for adapting recognizer parameters using X',. By doing so,
the previous discussions about the asymptotic properties of the two design princi-
ples remain true, thus the performance of the adapted recognizer can approach the
matched-condition performance with the increasing amount of adaptation data X .
However, in order to hold and/or improve ASR performance with a small amount of
adaptation data, special measures must be taken to deal with the problem of estimat-
ing a large number of parameters from sparse data.
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3.5.1.1 Adaptation for Plug-in Decision Rules

Consistent with the first design principle discussed in Section 3.3, many successful
adaptation techniques have been developed in the past decade to cope with the pos-
sible problem of mismatches between training and testing conditions. Because we
have already given an overview of these techniques in [86] recently, I just add two
more remarks here to supplement the detailed discussions in [86]:

Remark 1: To deal with the sparse data problem, two strategies have been success-
fully used. One is the approach of regularization and another is the approach
of imposing constraints to reduce the degrees of freedom for parameter es-
timation. The popular Bayesian point estimate such as the MAP estimate is
an example of the former, while the transformation-based approach is an ex-
ample of the latter. So, the MAP estimate is sometimes also referred to as
maximum penalized likelihood estimate. Of course, the above two strategies
can be simultaneously used to deal with the sparse data problem.

Remark 2: Unsupervised adaptation remains largely an unsolved research problem.
Transformation-based unsupervised adaptation works sometimes just because
the transformations are possibly shared by different speech units, thus the con-
sequence of the wrong supervision is not as severe as in other approaches
without using the mechanism of parameter tying or sharing.

3.5.1.2 Adaptation for Maximum-Discriminant Decision Rules

In contrast with the extensive researches under the first design principle, less efforts
have been devoted to develop techniques for decision parameter adaptation which
is consistent with the second design principle discussed in Section 3.3. A study on
MCE adaptation of CDHMM parameters was first carried out by authors of [89].
Several follow-up studies were also reported by other research groups [93, 115, 82].
A more recent one was reported in [83] and demonstrated that direct MCE adaptation
for MCE-trained HMM parameters works well when sufficient (w.r.¢. the number of
parameters being adapted) amount of adaptation data are available. However, when
only small amount of adaptation data are available, direct MCE adaptation of HMM
parameters does not work so well. The lack of an efficient adaptation algorithm for
MCE-trained seed models might be one of the main reasons why the MCE training
has not been widely used yet to construct an ASR system for applications in which
decision parameter adaptation is required.

In the past several years, there have been some efforts to develop discriminative
linear regression adaptation techniques under different criteria and notions such as
MCE [12], maximum scaled likelihood [120], maximal rank likelihood [29], MMI
(maximum mutual information) [118], and CML (conditional maximum likelihood)
[40]. Interestingly, although all of them are developed with the aim of an efficient
discriminative adaptation, they have only been applied to adapting the ML-trained
seed models. No results have been reported yet how they work for the adaptation
of the discriminatively trained seed models. In my opinion, this is a more desirable
scenario to apply discriminative adaptation, because the consistent criteria are used
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in both seed model training and the succeeding adaptation, and hopefully a better
performance can be achieved in this way. It is this fact that motivates us to perform
a study as reported in [123]. In [123], we have presented a formulation of minimum
classification error linear regression (MCELR) for adaptation of Gaussian mixture
CDHMM parameters. We demonstrate that the MCELR can be used to adapt the
MCE-trained HMM parameters under a consistent criterion. In a supervised speaker
adaptation application, we observe that such adapted models perform better than the
ones adapted using maximum likelihood linear regression (MLLR) from the ML-
trained seed models. Further studies are needed to explore MCELR’s behavior for
long-term adaptation using increasing amount of adaptation data.

In addition to using the above minimum empirical classification error criterion for
decision parameters adaptation, one can also adopt another criterion called minimum
expected classification error as defined in the following:

A) = .
R(A) W%;W /X X)W, X)X (3.24)

where /5 (W, d(X)) is a loss function characterized by the decision rule parameters
A. Apparently, the above objective function R(A) is an underdefined functional
because the true distribution p(W, X) is unknown. However, by using the stochastic
approximation method suggested in the 1950s by Robbins and Monroe [107], the
functional R(A) can be minimized with respect to the parameters A by using the
testing data {(W*, X*);¢ = 1,2, - -} drawn from p(W, X) as follows:

At+1 = At - atVZA(Wt,d(Xt)) . (325)

It can be proven that this method is consistent under very general conditions on the
gradient V£, (W, d(X?)) and the schedule of the learning rate ;. Historically,
this approach was independently proposed and developed for pattern recognition
application by Amari [5] and Tsypkin [116, 117] respectively. Again, a smooth loss
function £ (W, d(X)) was proposed in [67] to make the above procedure practically
useful. Apparently, the above general learning principle can be used for supervised
on-line adaptation of the decision parameters A. However, it converges in probability
which means that the algorithm converges only after a large amount of samples are
used. This makes the approach more suitable for long-term adaptation.

3.5.2 Decision Parameter Adaptation for Slowly Changing Operating
Conditions

Most of the existing adaptation algorithms treat the individual data block (W}, X?)
of the available adaptation data X', as equally important, thus are valid only in a sta-
tionary operating condition for estimating stationary parameters. However, in many
real speech recognition applications, the statistical characteristics of the observation
data undergo gradual changes due to many possible factors such as the changing
speaking behavior of a speaker, the changing operating environment, the changing
transmission channel, etc. The problem of parametric learning with such slowly
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changing operating conditions is to estimate time-varying decision rule parameters.
In such cases, different data segments often correspond to different parameter values.
In order to continuously track the variations of the model parameters corresponding
to the new data, some forgetting mechanisms are needed to reduce the effect of past
observations relative to the new input data. This makes the on-line learning algo-
rithm with forgetting capabilities a natural choice for making the recognition system
capable of continuously adjusting to a new operating condition without the require-
ment of storing a large set of previously used training data. The series of Bayesian
learning algorithms for CDHMM parameters developed in [48, 49, 53] are designed
for dealing with the slow change of the operating conditions from utterance to ut-
terance, while the algorithms developed in [80, 81, 16, 78, 2, 124] can be operated
in a frame-synchronous fashion so that they are presumably able to deal with the
within-utterance nonstationarity. If the forgetting mechanism is disabled, the above
algorithms can also be used to adapt decision rule parameters for a stationary oper-
ating condition. As a final remark, the above algorithms are developed to adapt the
parameters of the plug-in MAP decision rule. How to adapt the parameters of the
maximum-discriminant decision rule in a nonstationary operating condition remains
an interesting open problem.

3.5.3 Decision Parameter Adaptation for Switching Operating Condi-
tions

When an ASR system has to be operated under rapidly switching conditions, the
above adaptation algorithms can not be applied. If the nonstationary operating con-
dition can be approximated by a finite number of different stationary conditions, then
a simple solution could be imagined. An offline condition-clustering can be per-
formed first and an individual recognizer is then constructed for each cluster. Given
an unknown utterance to be recognized, the most similar condition-cluster can be
identified and the associated recognizer can be used to recognize the unknown ut-
terance. The traditional technique of speaker adaptation via speaker clustering and
selection is a good example of this strategy [90, 74]. However, if the current op-
erating condition is not similar to any single training condition yet shares certain
characteristics with some training conditions, then a strategy of adaptive model fu-
sion can be adopted as for example in [28, 122, 45, 27, 42, 75, 52]. All of these
works share the similarity in the general sense that they

o first prepare offline a set of models from training data, and then

o fuse adaptively, by using the information embedded in the utterance to be rec-
ognized, a set of new models which hopefully is more “appropriate” to the
testing utterance, and finally

e re-recognize the testing utterance again.

Although the above approaches have mainly been developed and studied for dealing
with the speaker variability, the same idea of offline variability decomposition and
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online adaptive model fusion can be further explored to deal with other aspects of
robust ASR.

3.5.4 Discussion

So far, I have briefly discussed several strategies for decision parameter adaptation in
three types of operating conditions. It is clear that the greatest challenge comes from
those applications which only involve a couple of utterances, but every utterance
involves a distinct yet complicated “distortion channel” from the intended message a
speaker want to convey to the received signal of a speech recognizer. After all of the
above adaptation techniques have been considered, another strategy namely robust
decision rule can always be tried out to see whether performance robustness can be
further improved. In the remaining part of the chapter, This strategy is explained in
detail.

3.6 Robust Decision Rules
3.6.1 Decision Rule Robustness

Intuitively speaking, a decision strategy (rule) is called robust if it is not very sensi-
tive to the previously discussed prior uncertainty (or distortions). More formally, let
d(-) = d(X; X) be an arbitrary decision rule constructed under some hypothetical
model My; where d(X) € Quy is the class to which the observation X € Q, will
be assigned, and A’ is a training sample set used for the construction of the decision
rule. Let M. denote an arbitrary admissible distorted data model for the distortion
types discussed in Section 3.4, where € > 0 is used to characterize the distortion
level. Let M7 denote the set of admissible distorted data models. The classifica-
tion performance of the decision rule d(-) in a situation where data are fitted to the
distorted model M, € M7 will be characterized by the risk functional:

re(d()) = E[((W,d(X))] ,

where E[-] denotes the expectation with respect to the probability distribution of
(W, X) corresponding to the distorted model M . € MZ. Let us call the functional

ry = ’I°+(d()) = MSIEIIj)\/[* Tf(d())

the guaranteed (upper) risk [79] for the decision rule d(-) in the presence of distor-
tions M. € M?. If we know the distribution of M . on M, we can further define
the following functional



where E[-] denotes the expectation with respect to the distribution of M . on M.
We call #(d(-)) the overall risk. Apparently, both 7 (d(-)) and #(d(-)) can be used as
optimality criteria in searching for robust (with respect to distortions M) decision
rules. A decision rule d* (X; X') with the minimal value of the guaranteed risk for all
admissible distortions:

d () = argrg(il)l r4(d(-)) (3.26)

is referred to as a minimax decision rule. A decision rule d(X; X') with the minimal
value of the overall risk for all admissible distortions:

d(-) = argrél(ir)lf(d(-)) (3.27)
is referred to as a predictive decision rule.
The construction of these robust decision rules will depend on how the admissible
distortions M. € M7 are defined, and also, for the case of the predictive decision
rule, the distribution of the distortion on M. In the following two subsections, I
show two examples of such robust decision rules, namely minimax decision rule and
Bayesian predictive decision rule, respectively. Both of them assume that

e the distributions p(X|W') and P (V) are known up to some specifiable param-
eters in the forms of pa (X|W) and Pr(W);

e the true parameters of these distributions, A and T, lie in a neighborhood of
the estimated (or hypothetical) ones; therefore,

o the prior uncertainty can be modeled by defining an uncertainty neighborhood
of the model parameters A, T", and/or possibly a distribution of model param-
eters p(A, T') on this uncertainty neighborhood.

With these assumptions, the specific minimax decision rule and predictive decision
rule can be constructed accordingly to satisfy some desired robustness properties.

3.6.2 Minimax Classification Rule

Let n.(Ag,T'o) denote the uncertainty neighborhood of the true model parameters
AT, ie., (A, T) € 5.(Ao,Tg), where Ag, [y are model parameters estimated from
the training data /X', and € can be viewed as a generic parameter to characterize the
degree of the distortion. Then, we have

ME = {paX|W), Pr(W) | (A,T) € ne(Ao, To)}

where M7 is the set of distorted models, and

re=rid0) = swp ST R) [ (WA (XWX
(AT)ene(AoTo) weqy, XEQ

To construct a minimax decision rule which minimizes the above guaranteed risk
r+(d(-)) is not a easy task. In practice, some more relaxed criteria have to be
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adopted. One possibility is to use the upper bound of 7 4 (d(-)), which we denote
r4+(d()),

res=ris) = [ sup  O(W,d(X))pa (X|W) Pr (W)dX |
WeQw XeQ, (AT)enc(Ao,To)

To simplify our discussion, we assume that we do not consider the uncertainty of
P(W) thereafter and use Pr, (W) as the language model, with Iy being the set of
language model parameters estimated from the training text data. By using the (0,1)-
loss function, we then have

Ty =1 (d()) = Z PFo(W)/ sup pa(X|W)dX . (3.28)
WeQw XEQ, (W) Aenc(Ao)

A decision rule which minimizes the above 74 (d(-)) is as follows:

di4+(X) = argmax[Pr, (W) max pp(X|W)]. (3.29)

w A€ne(Ao)
This is the so-called minimax decision rule which was first studied by Merhav and
Lee in [95]. It can be solved in two steps. First, we estimate the underlying parame-

ters using the ML approach within each neighborhood nE(A(()W)), ie.

Aw =arg max  pr(X|W), (3.30)
Aenc(AF™)

where A(()W) denotes pre-trained model parameters for word W. Then we apply

the plug-in MAP decision rule with Aw replacing the original A(()W). Therefore,
conceptually, the minimax decision rule described in Eq. (3.29) can be viewed as
a procedure which modifies the plug-in MAP decoder shown in Eq. (3.1) with an
extra step as in Eq. (3.30) to find a modified point estimate in the neighborhood
ne(Ao) = {nE(ASW))} of the original classifier parameters Ay = {ASW)}.

The above robust minimax classification rule makes no assumption about the form of
the distortion. However, its efficacy does depend on an appropriate specification of
the parameter uncertainty neighborhood n.(Ag) = {nf(AgW))}. In the past several
years, some other specific techniques have also been developed to implement the
above minimax decision rule in HMM-based ASR systems [96, 51, 62, 3]. They
are shown to be effective in dealing with noisy speech recognition and the mismatch
caused by different recording conditions.

There are however other possibilities to model the admissible distortions M ¥. For
example, if we use

ME = {pa(X|W) [ A = T5(Ao)} ,

where Ty(Ag) denotes a specific transformation of Ay with parameters 9. In this
way, the uncertainty of A can be characterized by the uncertainty of ¢. Then the
minimax decision rule with respect to the above M ¥ will be

di+(X) = argmuz}x[Ppo (W) mlga,xp(X|W, A =Ty(Ao))] -
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The so-called model-space stochastic matching method described in [109, 113] can
be theoretically justified in this way.

3.6.3 Bayesian Predictive Classification Rule

As I discussed before, minimax classification tries to handle the worst case mismatch
by assuming a uniform distribution in the uncertainty neighborhood for all possible
deviations from the nominal parameters, A . Instead of assigning another point es-
timate, A, as done in the minimax classification rule discussed above, one can also
average out the effect of the possible modeling and estimation errors by assuming a
general prior PDF for A to characterize the parameter variability while making clas-
sification decisions. In this way, a new robust decision strategy can be derived and is
often referred to as a Bayesian predictive classification (BPC) rule [98, 50, 51].

Let us consider the uncertainty of the model parameters (A, ') by treating them as if
they were random. Our prior knowledge about (A, T') is assumed to be summarized
in a known joint a priori density p(A, F|g05\0),<p§0)), with A € Qp and T € Qr;
where Q5 and Qp denote the admissible regions of A and I', and @E\O), 4,01(“0) are the
sets of parameters of the prior PDF (often referred to as hyperparameters) which
are assigned values by the investigator. Such prior information may, for example,
come from subject matter considerations and/or from previous experiences. For the
simplicity of the following discussion, let us further assume that

p(A, T, o) = p(Alpl") - p(Tlpl”) .

Given a training set X' as described at the beglnnlng of Section 3.3, the uncer-

tainty about A, T" can be reduced by evolving p(A, F|g0 A ,go(r )) Apparently, there

are many ways to evolve p(A, ") which depend on the purpose of the modeling in
mind, the knowledge/information sources used, and the possible constraints imposed
[48, 49, 53]. It is at this point that our proposal departs from the conventional treat-
ment in statistics. Conventionally, p(A, F|<p§\0), ap(ro)) is evolved by constructing the
following posterior PDF:

p(X]A,T) - p(A, Tl ,¢F°>>

p(A T ) = 3.31)
Ja, Jo. P(X|A,T) - p(A, F|<pA ,<pF )dAdF
= p(A|X) - p(T|X) ,
where
D(ALY) = — PN - pAL)
Jo, PXIA) - p(AJRR)dA
p(T]) = — 2D  p(Tlet”)

S PXIT) - p(Tlipt”)dl

This posterior PDF p(A, I'| X') includes all of the information inherited from the prior

knowledge p(A, 1“|<p5\0), <p1(10)) and learned from the training data X'. Conventionally,
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one derives a point estimate A,T" from p(A,T|X) (e.g., MAP estimate) and then
use the plug-in MAP decision rule for recognition. The conventional plug-in MAP
decision rule based on the ML estimate of the model parameters A, T can be treated
as a special case of the above MAP estimate with a non-informative prior.

However, in our proposal, we do not use p(A, T'|X’) mechanically. Instead, we adopt
a more flexible empirical Bayes approach in which a specific parametric PDF

(A, Tloa, ¢r) = p(Alpa) - p(Tler)

is used to represent our uncertainty about A, I" after observing X'. The intractability
of directly calculating p(A, T'|X') for the popular models in ASR such as HMMs is
not the only reason for the above proposal. A more important reason is that using
p(A,T|pa, ¢r), instead of p(A,T'|X), to represent the prior uncertainty (with re-
spect to recognizing X), provides a flexible way to incorporate and make use of other
knowledge sources which may be available (in addition to X" and p(A, T'|¢ 5\0), 4,01(9) )
and/or even to consider the modeling intention. For example, the set of hyperpa-
rameters, @a, ¢r, could be estimated from training data X', or specified using some
empirical reasoning, or their combination [50, 51, 60, 61]. Furthermore, if the train-
ing data X' is not representative enough, then such learned p(A,T") might not be
informative enough to help recognize X. In this case, before invoking the recogni-
tion process, we can first improve p(A, I') by using the information embedded in the
observation X itself. In any case, we use p(A, T'|p 4, ¢r) generically to represent our
prior uncertainty about A, T" just before making the decision on X. In this way, we
are essentially considering the following admissible distorted set of data model M :

ME = {pa(XIW), Po(W) | (A,T) ~ p(A, Tlon, or); A € O, T € Or},

where we can view the € as a parameter to characterize the broadness of the distri-
bution p(A,T|pa, ¢r), or equivalently, the degree of the distortion. Based on the
above M, the overall risk is 7(d(+)),

F(d(-) = E(WX () [E(W,d(X))]
- / | [ V. am0pOv. XiA D)p(A Tlps, or)dAdTaX
XeQ, /Qa JQr

[ amappximpmix.
XeQ

WeQw ®
where
BX[T) = /Q (X[, A)p(Alpa)dA | (3.32)
P(W) = /Q p(W|D)p(T|pr)dT (3.33)

are called predictive densities [4, 31, 106], because we can view p(A|p 4 ), p(T|pr) as
a function of training samples A’. Then, under the (0,1)-loss function, the predictive
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decision rule which minimizes the above 7(d(-)) is as follows:

d(X) = argmax P(W,X) = argmvgxﬁ(X|W) -P(W) . (3.34)

This decision rule J() will be referred to as the Bayesian predictive classification
(BPC) rule. Three key issues thus arise in BPC, namely,

1) the definition of the prior density p(A, |, ¢r) for modeling the uncertainty
of the model parameters A, T';

2) the specification of the hyperparameters, ¢ A, or; and
3) the evaluation of the predictive density.

In the past several years, some specific techniques have been developed to address
the above issues, and some encouraging results have been obtained. Readers are
referred to [50, 51, 60, 61]) for details.

In extending the above-formulated BPC approach, there are two opposite directions
which can be pursued. One direction is to use a structure model for modeling param-
eter uncertainty. For example, we can use

M: = {pA(X|W)7PF(W) | A= %A(Ao),r = %F(Fo)a (ﬁAaﬂF) ~ p(ﬁl\aﬁf‘)} )

where Ty, (Ao) and Ty..(Tg) denote specific transformations of A and 'y with pa-
rameters ¥4 and Yt respectively. In this way, the uncertainty of A,T" can be char-
acterized by the uncertainty of 9 5, ¥r. The BPC decision rule in (3.34) can then be
modified using the following predictive PDFs:

BX[) = / POXW, A = Ty, (Ao))p(9) A0 |

Q‘;A

POW) = / p(WIT = Ty (To))p(Or)dir

dr

The above issue of prior specification will then be translated into the specification of
p(Ya) and p(Ir). Readers are referred to [59] for a recent work along this line of
thought. Another possible direction to pursue is to go beyond the model parameter
uncertainty by considering the admissible distorted densities at the distribution level,

M = {p(XIW), P(W) | p(X|W) = (1 = €1)pao (X[W) + &1 (X[|W),
P(W) = (]. - EQ)PFO(W) + 62h2(W); 0 S €1,€2 S ].} .

Thus the distorted density p(X|W) (and P(W)) is a mixture of the hypothetical
distribution py, (X|W) (and Pr,(W)), and an arbitrary distribution h (X|W) (and
h2(W)) describing the possible distortions. This type of distortion model is the most
popular one in robust statistics [47, 41]. How to derive the relevant robust decision
rule under this distortion model remains an interesting problem for future research.
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3.6.4 Discussion

The crucial difference between the plug-in and predictive classifiers is that the former
acts as if the estimated model parameters were the true ones, whereas, the predictive
methods average over the uncertainty in parameters. However, if we use the posterior
PDF p(A,T'|X) in Eq.(3.31) derived from the training set X' directly to serve as the
prior PDF in predictive decision making, BPC will make little difference from the
conventional plug-in MAP rule in many applications. This is because whatever initial
prior PDF, p(A, I‘|<p5\0), 4,01(10)), is used, when a large amount of training data X" are
available, we will get a posterior PDF p(A,'|X’) with a sharp peak. This makes the
predictive PDFs in Eqs. (3.32) and (3.33) of little difference from p ; (X|W) and
P; (W) with the ML estimates A, T. In the limit, if the posterior probability mass of
(A, T) is concentrated at the ML estimate (A, T') obtained from X, it is easy to see
from Eqs. (3.34), (3.32), and (3.33) that the BPC decision rule coincides with the
plug-in MAP decision rule.

Historically, the predictive classification approach receives little attention in many
classical statistics textbooks despite the existence of many good works [4, 30, 31].
As pointed out by Ripley [106], this may be because it usually makes little difference
from plug-in approaches within the problems and the tightly-constrained parametric
families many statisticians use or consider. Nonetheless, it will become important
when we consider much larger families and formulate the problem appropriately as
shown before. To our knowledge, it was Nadas who first

e adopted a BPC formulation and pointed out its potential in speech recognition
applications [98]; and

o explicitly stated and proved the optimality of BPC in the sense of minimizing
overall risk (Ripley also discussed the predictive classification approach in this
way in his recent pattern recognition textbook [106]).

However, like other statisticians, Nadas was directly using the posterior PDF p(A, T'|X)
to serve as the prior PDF in predictive decision making and gave a simple example
in which a reproducing density exists. No experimental results were reported and
the paper closed by briefly discussing the difficulty of applying the theory to HMM-
based speech recognition.

Starting from Nadas’s formulation, Merhav and Ephraim [94] suggested a so-called
approximate Bayesian (AB) decision rule for speech recognition which was based
on the generalized likelihood ratios computed from the available training and testing
data. Such an AB rule operates as follows:

max [p(X|A, W) - p(X|A, W)]
maxy p(X|A, W)

W= argmax Pr, (W) . (3.35)

It is clear that if the training sequences X are considerably longer than the test se-
quence X which is the case in most speech recognition applications, the parameter
set A that maximizes the denominator of Eq. (3.35) is very close to the parameter
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set that maximizes the numerator; hence the factor p(X'|A, W) in both the numer-
ator and denominator is essentially canceled. This makes the AB decision rule of
little difference from the plug-in MAP decision rule using an ML estimate of A.
The AB decision rule is also computationally expensive because the maximization
of [p(X|A, W) - p(X|A, W)] over A must be performed for every test sequence X.
Furthermore, all of the training data must be stored. All of these factors make the
AB decision rule impractical for most speech recognition applications.

As discussed previously, the minimax classification rule can be viewed as a two-step
procedure and implemented in Eq. (3.29). First, each testing utterance is treated
as possibly belonging to any word sequence and a constrained ML estimate of the
related parameters is obtained. Then, a plug-in MAP rule is used for speech recog-
nition by using the updated parameters. This intuitive interpretation opens up the
possibilities to use other estimation approaches, e.g. the MAP approach, in the first
step. Such a modified minimax decision rule works as follows:

W = argmwa;x[p(XMM Ap, W) - Pr,(W)], (3.36)

where Anrap is the MAP estimate of A. For the convenience of reference, we call
this modified minimax decision rule as a Bayesian minimax rule to emphasize its
difference from the minimax approach in [95].

We have previously discussed the BPC approach as a new decision rule which aver-
ages out the sampling error in parameter estimation. A related but simpler approach
can also be used. For example, fora CDHMM-based ASR system, instead of directly
modifying the basic decision rule, one can also assume that the CDHMM parameters
are uncertain. Then one uses the Bayesian predictive density of each Gaussian mix-
ture component to serve as the compensated distribution of that component and plug
these compensated distributions into the plug-in MAP decision rule in Eq. (3.16).
The approach is thus called Bayesian predictive density based model compensation
method, or shortly BP-MC method, to differentiate it from the BPC rule defined in
Eq. (3.34). In [110], such an idea is explored in the context of Bayesian speaker
adaptation where a Gaussian prior PDF for mean vector is adopted. In [60], a sim-
ilar idea is applied to noisy speech recognition where a uniform prior PDF on a
pre-specified uncertainty neighborhood for mean vector is adopted. More recently,
similar ideas are applied to the transformation-based model compensation by using
the predictive PDF of the transformation parameters [114, 111, 14, 13].

3.7 Summary

In this chapter, we have revisited the decision theoretic foundation of the modern
ASR technology. We have explained several key concepts about the optimal deci-
sion rule, adaptive decision rule, and robust decision rule. We have shown how these
decision rules can be derived under different assumptions and optimality criteria. A
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clear understanding of these assumptions and criteria will guide us to appreciate why
the current ASR technology is so successful in certain applications and more impor-
tantly why it fails in many other situations. Consequently, we are able to discuss the
rationale of several ways of improving adaptive decision rules via decision parame-
ter adaptation. Most of the discussions in this chapter can also be applied to other
pattern recognition problems employing the same decision-theoretic formulation.
Before closing the chapter, we do want to point out one important unsatisfactory fact.
We are treating each W as a class which could mean different things as explained at
the beginning of Section 3.2. In the case of continuous speech recognition, W takes
the form of a sequence of other smaller linguistic units such as words in normal sense.
All of the decision rules described in this chapter aim at achieving the minimum
classification error of W instead of the word recognition error rate, which is usually
used as a measure of practical ASR performance. Apparently there is a mismatch
here too! Unfortunately, the method to derive a decision rule which achieves the
minimum word recognition error rate (possibly by using a loss-function beyond “0-
1) remains an interesting open problem. Readers are referred to some interesting
recent works that try to attack this problem [83, 77, 34, 119].

It is our hope that the in-depth discussions in this chapter may inspire further inno-
vations that will lead to better solutions for ASR and many other pattern recognition
applications.
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4.1 Introduction

Traditionally, the development of speech pattern recognition systems has been at-
tempted by using the pattern matching technology based on distance computation
incorporating dynamic programming (DP). In this approach, an input speech pat-
tern is represented as a sequence of acoustic feature vectors, compared with class
models, each represented in the same manner as the input pattern, and then decoded
to the model class closest to the input, in terms of DP-based distance. This simple
scheme was practical and effective for implementing recognizers in the then limited
computational environment, and indeed many noteworthy systems were developed
for connected word recognition as well as basic isolated word recognition (e.g., see
[22]).

In the 1980’s, there were two epochs in speech pattern recognition research. One
was a paradigm shift from pattern matching to a new, probabilistic classification de-
cision paradigm, which mainly relied on the use of hidden Markov models (HMMs).
The other was the challenge of employing a rapidly growing technological paradigm
called neural networks (NNs) (e.g., see [16, 24]). In these new paradigmatic stages,
speech patterns were basically represented in the same fashion as in the classic pat-
tern matching. However, in these new stages, classes to which an input should be
decoded were modeled by more elaborated structures such as HMMs and NNs.

The probabilistic decision framework is suitable for efficiently modeling the statis-
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tical variation of speech samples. It is also useful for unifying different types of in-
formation sources, such as acoustic speech models and linguistic speech models. In-
deed, the use of HMM has greatly contributed to advancing speech recognition tech-
nologies, and HMM is still a mainstream choice as a recognizer structure. The use
of HMM is probably just one of many factors contributing to recent advances. How-
ever, it should be also noted that most of the current recognizers successfully em-
ploy HMMs in commercial services that even encompass large-vocabulary, speaker-
independent, connected-word, and acoustically corrupted telephone-based recogni-
tion tasks.

NN is characterized by its high discriminative capability. Actually, since the advent
of the historic breakthrough of the multilayer perceptron (MLP) network, NN has
been extensively applied to speech recognition in various forms, such as thorough-
bred NN-based recognizers and hybrids of NN and HMM. Through vigorous stud-
ies, it was shown that the NN’s high classification capability mainly originated from
its discriminative training methods, such as using the minimization of the squared
error loss or using the minimization of the classification error count loss. Due to
this special feature for training, NN is now established as a modern class of design
methodology for achieving high-performance speech pattern recognizers.

As its name implies, an NN-based system usually consists of a network structure
and many simple operation units. NN thus essentially possesses a distributed and
parallel computation mechanism that is advantageous in speed and robustness of the
operation. Specifically, there are two types of robustness: 1) one that increases the
fault tolerance of operation, of which degradation is due to hardware troubles, and
2) one that increases the stability/reliability of a classification decision, which is a
long-standing mathematical research issue in decision theories such as the Bayes de-
cision theory. The latter is clearly an important algorithm-related issue that should
be vigorously studied in the research field of NN-based pattern recognition. Among
the many candidate solutions for improving decision reliability, there has been rig-
orous investigation of combining multiple decisions by decision fusion to obtain a
final reliable classification output.

Many textbooks and handbooks have already comprehensively tracked the devel-
opment history of NN-based speech pattern recognizers (e.g., see [16]). However,
these are not necessarily useful for studying actual advantages/disadvantages, which
are primarily based on the selection of training methods, of the NN-based speech
recognizers. In light of this, we introduce in this chapter NN-based speech recog-
nition attempts with a special focus on their training procedures. As cited above,
the procedures are basically categorized as discriminative training originating in the
classic linear discriminant analysis, which is still a mainstream recognizer design in
the most fundamental theoretical framework of pattern recognition, i.e., the Bayes
decision theory (e.g., see [4]). As a basis for comprehensively covering discrimina-
tive training issues, we use a recent general discriminative training formalism called
the generalized probabilistic descent (GPD) method [10, 11, 12, 14, 15, 17].

The chapter is organized as follows. After the present section, we provide in Section
4.2 the fundamentals of the Bayes decision theory. In this overview, we use a novel
GPD-based description. In Section 4.3, we discuss NN-based speech recognizers,
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with an emphasis on their training procedures. In Section 4.4, we discuss the ro-
bustness of NN-based recognition, paying attention to the issue of decision fusion.
Finally, we provide concluding remarks in Section 4.5.

4.2 Bayes Decision Theory
4.2.1 Preparations

For discussion purposes, we use an exemplar task setting of recognizing a speech pat-
tern U with a modular recognizer composed of a front-end feature extraction module
(feature extractor) and a back-end classification module (classifier). The number of
classes to which U may belong is M. The recognizer contains a set of trainable
parameters ¥ (= {®, A}), where ® is the set of trainable parameters of the feature
extractor, and A is for the same classifier.

Speech patterns are essentially dynamic, i.e., of a variable length and a nonlinearly
warping temporal structure. To maintain its dynamic nature, a speech pattern is usu-
ally represented as a sequence of acoustic feature vectors, each calculated by shifting
a short-time window over the observed pattern. For our task setting, we assume that
at the feature extractor U is converted to vector sequence X = {x1,Xa2, - , X7},
where x; is the F'-dimensional acoustic feature vector at time index ¢ over U and F'
is a fixed number. The task of the classifier is then to decode X to its corresponding
correct class C;, which is one of the M possible classes of C'y through Cy.

4.2.2 Decision Rule

Intuition suggests that a natural rule of a classification decision is to classify an input
into its most likely class. A discriminant function is introduced to measure this
likelihood.

For simplicity, let us assume that the feature extractor is determined independently
of the classifier’s design. Given the feature extraction operation, we formally define
this classification operation as follows:

C(x)=0C; iff i = argmax g;(X; A), 4.1)
j

where C'(x) is the classification operation, and g;(X'; A) is the discriminant function
of C; that measures the degree to which X belongs to C';. It turns out here that an
immediate goal of recognizer design is to train A so that the classifier can decode X
correctly. However, the recognizer is naturally expected to handle many input pat-
terns. The ultimate design goal thus becomes achieving the status of A that leads to
the most accurate classification over the entire set of available input speech patterns.
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4.2.3 Minimum Error-rate Classification

Rule (4.1) and the term of likelihood imply that we should use a probability function
as a discriminant function. Then, assuming that the probability for dynamic patterns
is defined properly, (4.1) becomes the following quite natural rule:

C(X)=0C; iff i = argmax p(C;|X), (4.2)
i

which requires X to be classified as the class having the largest a posteriori proba-
bility.

The decision using (4.2) leads to the optimal minimum error-rate classification, or,
in other words, the minimum classification error probability condition, which is an
optimal design goal in the statistics-based theory (e.g., see [4]).

4.2.4 Probability Function Estimation

If one can accurately estimate p(C;|X) with g;(X; A), one can in principle achieve
the optimal minimum error-rate classification. It should be noted, however, that the a
posteriori probability is only computed over an infinite set of samples, and therefore
such an achievement using (4.2) is nearly impossible in practical design problems.
Nevertheless, many attempts have been made to accurately estimate the probabilities
based on the sound and tractable mathematical bases of the maximum likelihood
estimation (MLE) method and the Bayesian estimation method.

In these methods, (4.2) is usually rewritten as

C(X)=C;  iffi = argmaxp(X|C;)p(Cy), (4.3)
J

where p(C;|X) is replaced by the class-conditional probability p(X|C';) and the a
priori probability p(C';). These probability functions are more suitable to the use of
the MLE and Bayesian methods.

Based on the accumulated research results, the approach using the probability func-
tion estimation has made important advances. However, in reality, it still suffers
from difficult problems and there are many ongoing research efforts. Fundamen-
tal open questions are summarized as follows. First, functional forms, such as a
Gaussian function, of the probability functions are rarely known, and therefore the
mismatch between a true functional form and its counterpart form selected for esti-
mation causes unavoidable estimation errors. Second, the approach assumes that a
large number of design samples are available for estimation, while it is often difficult
to collect a sufficient number of design samples. The estimation process is essentially
based on the matching between a selected-form probability function and the sample
distribution, and thus the approach inevitably relies on the above assumption. It then
becomes an intractable mystery how corrupted the probability function estimates are
over a limited number of design samples. The last question is how the corrupted
estimates affect the performance of (4.3). The optimality of (4.3) holds only in the
case of error-free estimation of the probabilities. Basically, the more accurate the
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probability estimates are, the more accurate the classification decision using (4.3) is.
However, the estimation improvement can occur only individually on the probability
functions, each of a different class, and no clear perspective has been available on
the interaction in classification accuracy between the probability estimation and the
classification decision. It should be noted here that the method using the probability
function estimates is an indirect approach to improving the performance of the entire
decision rule, and the indirectness is a fundamental cause of the last question.

4.2.5 Discriminative Training

A more direct approach than the MLE and Bayesian methods to a successful exe-
cution of the classification decision returns to (4.1). The approach originated in the
classic training method called linear discriminant analysis, and it is usually referred
to as discriminative training. It emulates the entire classification (discrimination) op-
eration of (4.1) and attempts to realize a set of discriminant functions (consequently
A) that achieve the desirable, in terms of a preset training objective (criterion), clas-
sification performance for training samples.

The key design issues that determine the performance of discriminative training in-
clude the following: 1) how to define the discriminant functions, 2) how to evaluate
the performance of decisions in the training stage, 3) how to adjust trainable system
parameters (e.g. A), and 4) how to cope with unknown samples that do not appear in
the training stage. It turns out that these points comprehensively cover the classifier
design procedure. These issues will be described in turn in later pages.

4.2.5.1 Functional Form Embodiment of the Entire Process

Emulation of the classification process inevitably requires that the process be repre-
sented in a tractable functional form, which enables one to deal with the design of its
corresponding classification system mathematically. Based on an observation of the
decision process in (4.1), one can see that the decision consists of the comparison
of the discriminant functions over all possible classes. A general way of emulating
the process is given in the following functional form, which is often referred to as a
misclassification measure:

1/u
A(XiA) = (X )+ | 3 o (X5 ) @.4)
) ) M . 1 P4 Vi ) ) .
57k
where p is a positive constant. One can notice here that given X of C'y, di( ) > 0
indicates a misclassification, and dy( ) < O indicates a correct classification. In

addition, controlling x4 enables the simulation of various decision rules. In particular,
when p approaches oo, (4.4) closely emulates rule (4.1).

4.2.5.2 Discriminant Functions

The selection of a functional form of the discriminant function is basically equivalent
to the selection of a measure (or measurement) used to represent the degree to which
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an input sample belongs to some class. In addition, the form relies on the type of
trainable system parameters, i.e. A, and it is generally selected based on the nature
of the patterns.

Typical examples of classical forms (for fixed-dimensional patterns) include the lin-
ear discriminant function and the distance. The measure used in the linear discrim-
inant function is a linearly-weighted sum of input vector components, where a set
of weights corresponds to trainable system parameters A. In the distance case, the
measure is a reasonably selected distance between an input and a reference vector,
such as Euclidean distance, where the reference vectors work as A.

For the case of classifying dynamic patterns, such as speech samples, system param-
eters should contain some means of representing the temporal structure. A traditional
selection employs reference vectors and uses a DP-based normalized distance mea-
sure between an input pattern and a reference vector sequence. On the other hand,
in most recent cases, trainable system parameters are the component probabilities
of HMM, such as state transition probability and observation (emission) probability.
The temporal structure is represented therein as the state transition structure.

In the cases using NN, a discriminant function is basically an output of NN’s output
node. The type of measure therein relies on the selection of node functions, such as
perceptron-like activation function, radial-basis activation function, and sigmoidal
output function.

4.2.5.3 Loss over an Individual Pattern

To evaluate decision performance in the design stage, individual loss is introduced
for every training pattern, which is a function of the misclassification measure and
reflects classification degradation. It should be noted that (individual) loss is some-
times referred to as (individual) risk or (individual) design objective. Obviously, the
smaller the loss is, the more desirable its corresponding decision is. A natural and
general functional form of loss is given for speech pattern X of C'y, as

1
1 + e—(adi(X;0)+8)

G (X, A) = U(di (X5 0)) = (o> 0), (4.5)

where [(-) is a scalar function that determines the characteristics of the loss function,
and « and (3 are constants. Furthermore, (4.5) is of the sigmoidal form, which is
known as a smoothed logistic function, and it is also a smoothed version of the
classification error count

_ [0 (C(X) =Cp),
0 (X, A) = { 1 (others). o

4.2.5.4 Loss over Multiple Patterns

To determine the performance of a designed classifier over multiple pattern samples,
the individual loss is naturally applied in the following empirical average loss form
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to a finite (but usually large) set of training pattern samples X' (= {X1,--- , Xn}):

N

Lo(A) = ~ 35 t(Xs DX, € Co), (47
k n

where N is the number of training samples in X', and n of X, explicitly means
that the sample X, is the n-th sample of X'. Assuming the individual loss to be
(4.5), this empirical average loss becomes a smoothed version of the total count of
classification errors measured over X'.

4.2.5.5 Adjustment of Trainable System Parameters

Using the empirical average loss, the design proceeds to an actual training procedure,
or, in other words, the adjustment of trainable system parameters. A goal of the
adjustment is obviously to achieve the status of classifier parameter, A in our case,
that results in the minimization of the empirical average loss.

Usually, the functional form of the empirical average loss is unknown, and it is thus
rarely possible to achieve the true (global) minimum status of the loss analytically.
Accordingly, in most cases, the adjustment is formulated as an asymptotical train-
ing method that basically guarantees finding at most local minima of the loss or the
global minimum of the loss only in the probabilistic sense. Typical examples of
formulated methods include those based on the steepest descent method, the proba-
bilistic descent method, simulated annealing, and genetic algorithms. Among these,
we introduce an adjustment method based on the probabilistic descent method [1],
which gives a general mathematical framework of adaptive (sequential, or sample-
by-sample) parameter adjustment.

A key concept of the probabilistic descent method is that given the loss surface (func-
tion), the repetition of small-step descent operations leads at least to a local minimum
point of the surface in the probabilistic sense; here, the entire shape of the surface
is unobservable. An adjustment rule based on this concept is summarized in the
following theorem.

[Probabilistic Descent Theorem]

Assume that a training sample X (t) (€ C},) is given at training time index ¢. If the
classifier parameter adjustment §A (X (t), Cy, A(t)) is specified by

OA(X (1), Cr,A(t)) = —e(t)UVLL(X (2); A(2)), (4.8)

and a sequence of positive real numbers in (4.8), €(t) (referred to as learning weights),
satisfies

D ety so00  and Y e(t)’ < oo, (4.9)
t=1 t=1

then the parameter adjustment according to

A(t+1) = A(t) + SA(X (1), Cr, A(t)) (4.10)
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converges with probability one (1) at least to A*, which results in a local minimum
of L(A), which is the expected loss defined as follows:

=y /Qp(X, C)le(X; ML(X € Ch)dX, @.11)
k

where A(t) represents the state of A at ¢, U is a positive-definite matrix, and € is the
entire sample space of the X patterns. It is assumed that dp(X, Cy) = p(X, Ci)dX,
and that 1(+) is an indicator function. O

The important points here are that: 1) the adjustment always attempts to remove the
classification error caused by a newly presented training sample, and 2) assuming
the individual loss to be (4.5), the adjustment can result in the (local) minimization
of the expected classification error count loss in the probabilistic sense. The theorem
does not guarantee the unconditional minimization of the expected loss, i.e., the
achievement of the minimum classification error probability condition. However, it
clearly turns out that the discriminative training described in the above paragraphs
more clearly resembles the Bayes decision rule (4.1) than the probability function
estimation approaches, such as the maximum likelihood method.

4.2.5.6 Training Optimality

The ultimate goal of classifier design is to find the classifier parameter set that
achieves the minimum classification error probability condition. However, as cited
above, patterns available for training are usually finite, and thus it is difficult to di-
rectly aim at the ultimate goal, which would inevitably require the complete com-
putation of the probability related to the sample distribution or its corresponding
observation of all possible pattern samples. Actually, training using a limited num-
ber of samples basically leads to at most a minimum classification error condition
over the finite pattern samples, and this describes little (in a mathematically rigorous
sense) about the classification performance over unknown future patterns. Therefore,
in order to bridge the ultimate goal, i.e., the minimum classification error probabil-
ity condition, and the practical design attempts, analyses of the training optimality
over infinite training samples are needed to some extent, even though they are only
theoretical.

For explanation purposes, let us assume that: 1) a probability measure p(X) is pro-
vided in a known functional form for pattern sample X, and 2) a parameter set de-
termining the functional form is A. Then, considering the discriminant function

9;(X;A) = p; (C; | X) (4.12)

and the misclassification measure of (4.4), we can rewrite the expected loss that is
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defined by using the smooth classification error count loss (4.5) as
= Z/ (X, Co)lh(X; M1(X € Cy)dX
PRAY
~ Z/ (X, Ci)1(X € Cy)
L JQ
x 1 (pA(Ck|X)7ém]apr(Cj|X)) dX. (4.13)

Obviously, the last expression is equivalent to the expected error caused by the clas-
sification decision using the estimates of the a posteriori probabilities. Note here
that the parametric form A is known, but it is not known whether the present sta-
tus of A results in the minimum error-rate classification. Here, the difference in the
near equality of (4.13) originates in the smoothness contained in the error count loss.
Consequently, by controlling the smoothness of functions such as the L, norm used
in (4.4) and the sigmoidal function used in (4.5), we can arbitrarily make L( A) closer
to the last equation in (4.13). It should be noted here that there is a link between the
practical design operation based on the discriminative training and the computation
of the expected loss, which is the ultimate theoretical goal of classifier design.

Next, let us recall that we use A, whose functional form is assumed to be known.
Based on this fact and also the relation between the minimum error-rate classification
and its corresponding a posteriori probabilities, the status of A that corresponds to
the minimum of L(A) in (4.13) (which is achieved by adjusting A)is clearly equal
to the A* that achieves the maximum a posteriori probability condition. In short, it
turns out that the minimum condition of L(A) can become arbitrarily close to the
ideal, minimum error-rate condition that is associated by the minimum classification
error probability

£= 2/ pi. (X, CR)1(X € Cp)dX, (4.14)

where )}, is a partial space of () that causes a classification error according to the
maximum a posteriori probability decision rule, i.e.,

Qk:{X€Q|pA*(0k|X);émjaxp[\*(CﬂX)}. (4.15)

The above analysis of the minimum error condition is important from the theoreti-
cal viewpoint of showing the rationality of the discriminative training formalism. It
provides a mathematically sound background to practical attempts at classifier de-
sign based on discriminative training. In reality, however, the parameter set A is
rarely known, and thus it is usually impossible to achieve the minimum classifica-
tion error-rate condition through discriminative training, or, in other words, the loss
minimization over finite training samples.
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4.2.5.7 Global Design Scope

We have assumed that a feature extraction module is determined separately from
the design of a classifier, but this assumption is only adopted to simplify discussion.
Actually, feature extractors are usually designed based on scientific expertise, and
such separate and empirical design is a standard approach to feature extractor design
(as a result, recognizer design). However, from the formalism introduced above, one
can easily conclude that the design scope of the discriminative training for a back-end
classifier can be extended to its corresponding front-end feature extractor. A key in
this extension is clearly to use the chain rule of calculus. Recall that this rule plays
a central role in the definitions of the misclassification measure and the individual
loss.

From the definition of our recognizer structure, a discriminant function for the entire
recognizer can be defined as

9;(U;¥) = g;(f(U; @); A), (4.16)

where f(-) is an output of the feature extraction module. Clearly, the adjustment that
is performed for the loss minimization at the level of g;(-; A) is easily propagated to
the level of f(U; @), leading to a global optimization of the entire system.

4.3 Speech Recognizers Based on Neural Networks
4.3.1 Preparations

In the previous section, we summarized the Bayes decision theory, in particular the
discriminative training that underlies the NN-based speech pattern recognition. From
those descriptions, one can see that there can be various kinds of embodiments and
implementations of the training. For example, by controlling p in (4.4), one can
achieve various implementations of the misclassification measure, and by controlling
« and f in (4.5), one can also achieve various shapes of the smoothed classification
error count loss. In addition, there are obviously many other possibilities of defining
individual loss in place of the sigmoidal form loss of (4.5). Actually, in the history of
NN-based speech pattern recognition, loss functions other than the smoothed error
count loss have been rather popular. The most typical selection from such popular
functions is the squared error loss, which is defined between a classifier output and its
counterpart target (teaching) signal. The second typical selection is the cross entropy
loss, defined by using the estimates of the class-conditional probabilities. To intro-
duce NN-based speech pattern recognizers, we thus need to refer to the definitions
of these popular loss functions.

As previously stated, a speech signal is dynamic. On the other hand, a basic structure
of NN, such as a standard multi-layer Perceptron network, is set for handling static
(fixed-dimensional) vector patterns. Indeed, one of the important aspects of NN-
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based speech recognition research has been to cope with the discrepancy between
the dynamic nature of speech signals and the NN’s traditional structure, which is
only suited for static patterns. In the early stage of research, shift-tolerant structures
were examined for classifying short segments of speech signals. Next, networks
having both a standard structure suited for static patterns and a shift-tolerant struc-
ture were used in a hybrid form with the standard speech pattern classifier structure
of HMM. In addition, network structure itself was further examined, resulting in
the development of the recurrent network, which possesses recurrent signal flows in
order to represent the temporal structure of speech.

Obviously, there are many possibilities in combining the loss functions and the NN
structures. Actually, many types of combinations have been reported, and it is diffi-
cult to introduce them comprehensively in the limited space of this chapter. There-
fore, we selectively focus on several historic cases of NN-based speech recognition
attempts. Introductions will be organized along the line of the loss and NN structure
selections.

4.3.2 Classification Error Minimization
4.3.2.1 Learning Vector Quantization

Learning vector quantization (LVQ) is one of the pioneer NN-based pattern classi-
fiers [18, 19]. Originally, it was developed in the framework of a self-organizing
feature map that simulated the physiological representation of memory. However, its
behavioral principle is simple and can be considered an adaptive training of reference
vectors, each of which basically represents a class model in a preset distance space.
Several versions of LVQ have been proposed. In the speech recognition field, the sec-
ond version of LVQ, i.e., LVQ2, has been the most extensively applied [18]. In addi-
tion, the differences among the various LVQ’s are insignificant from the viewpoint of
discriminative training formalism. Therefore, here we summarize the training prin-
ciple of LVQ2 and discuss it from the loss selection viewpoint of the discriminative
training.

A classifier to be trained with LVQ2 assumes an input to be a static vector and also
assumes each class to be modeled by multiple reference vectors, each being in the
same vector space as the input. In the classification stage, an unknown input vector
is classified as the class of the reference vector that has the smallest distance to that
input vector. This classification scheme means partitioning the vector space into re-
gions defined by individual reference vectors, or, in other words, vector quantization
of the original vector space. LVQ?2 training adjusts the reference vectors so that each
input vector has a reference vector of the right class as its closest reference vector.
More precisely, LVQ2 training is summarized as follows. For a given training input
vector x of (', three conditions must be met for training to occur: (1) the nearest
class must be incorrect, (2) the next-nearest class must be correct, and (3) the train-
ing vector must fall inside a small, symmetric window defined around the mid-plane
of the reference vectors r; (€ C; being an incorrect class) and r, (€ C} being the
correct class). If these conditions are met, the incorrect reference vector is moved
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further away from the input, while the correct reference vector is moved closer, ac-
cording to

rj(t+1) =r;(t) — a(t)(x(t) —r;(t)),
{rk (t+1) =rr(t) + alt)(x(t) — re(t)), 4.17)

where (t) means the status of its corresponding vector at time index ¢, and «(¢) is a
monotonically decreasing, small value function of the time index.

One may notice here that the adjustment rule of LVQ?2 is similar to the training
rule defined by the probabilistic descent theorem. Actually, it was demonstrated that
LVQ2 was a heuristic and modified version of GPD training using the smoothed clas-
sification error count loss, i.e., (4.5), while letting ;4 go to oo with some modification
in the definition of the misclassification measure, for a multiple reference distance
classifier [12]. See [12] and [17] for details. In short, LVQ2 is an NN-motivated
discriminative training method that aims at the minimization of the (smoothed) clas-
sification error count loss.

4.3.2.2 Shift-tolerant LVQ Classifier

In the simplest case, an LVQ-trained distance classifier is applied to a static feature
vector, which is calculated for every time window position over a dynamic input
speech pattern. For every feature vector, LVQ2 training is executed, and the classifi-
cation using the trained reference vectors is performed. However, individual feature
vectors are often insufficient for achieving correct speech pattern classification at a
meaningful speech unit level such as phoneme or word. To cope with this insuffi-
ciency, LVQ2 with a shift-tolerant architecture was first applied to phoneme pattern
classification [20].

Figure 4.1 illustrates the architecture of a shift-tolerant LVQ (STLVQ) system for
classifying three phoneme classes. It is assumed here that an input speech pattern is
a priori segmented and labeled with its corresponding correct phoneme class. In the
classifier, each class is assigned a number of reference vectors. The LVQ?2 training
procedure is applied to speech feature vector patterns that are stepped through in
time. For every feature vector position, the classification decision is evaluated by
using the phoneme label, and reference vectors are adjusted according to the LVQ2
training rule. In the classification stage for an unknown input, a slightly different
procedure than simply finding the closest vector to the input is employed: The shift-
tolerant architecture produces several closest reference vectors, one for each window
position. The procedure can be summarized as follows: (1) for each window position
and for each class, the classifier calculates the distance between the input vector and
the closest reference vector within one class, (2) from this distance measure, each
class is assigned an activation value that is high for small distances, low for large
distances, (3) after the window has been shifted over the entire input pattern, the
activations calculated at each window position are summed for each class, (4) the
class with the highest overall activation is chosen as the encoded class.

Experimental evaluations of the STLVQ classifier are reported in detail in [20].
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FIGURE 4.1
Architecture of shift-tolerant LVQ classifier [20].

4.3.2.3 LVQ/HMM Hybrid Classifier

The shift-tolerant architecture is useful for alleviating the limitation of the original
LVQ-trained pattern classifier, which is suited only for static vector patterns. How-
ever, the usual goal of speech pattern recognition is to encode a natural-length speech
input to its corresponding word or sentence (word sequence) class. Obviously, the
shift-tolerant architecture is insufficient for achieving this type of goal.

A straightforward solution is to combine LVQ and HMM. Traditionally, HMM has
been trained in the probability function estimation approach, where the classification
power is usually poorer than the discriminative training. Thus, a hybrid of LVQ and
HMM is a natural and promising choice: LVQ is an embodiment of discriminative
training.

There are two types of HMM: (1) discrete HMM having a codebook for dealing with
an input as an observation of the multinomial distribution, and (2) continuous HMM
dealing with an input as an observation of a continuous probability function such
as the Gaussian probability function. Because the codebook is equivalent to a pool
of reference vectors, the LVQ/HMM hybrid naturally uses the discrete HMM for its
implementation [9].

Figure 4.2 illustrates an LVQ/HMM hybrid speech pattern classifier. The system
consists of a codebook and a state transition Markov chain. The codebook contains
a number of pairs of codes (symbols) and code vectors. The code vectors are set
in the same vector space as an input feature vector, and they are used to encode the
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FIGURE 4.2
Block diagram of LVQ/HMM hybrid classifier.

input to the code having the closest code vector to the input. The Markov chain
module then treats the selected code as an observation of the discrete multinomial
probability model. LVQ algorithms are applied to the design of the code vectors,
while the code vectors are conventionally determined by using clustering methods,
such as the k-means method.

A standard design objective of conventional clustering methods is to minimize the
average distortion between the code vectors and training input vectors. This de-
sign does not necessarily increase the discriminative power of the codebook. If
code vectors contain discriminative information that is useful for the classification
of phoneme units or sub-phonemic units, the post-end HMM module can fundamen-
tally make more accurate classification decisions for the entire input utterance (word
or word sequence) pattern. In [9], LVQ/HMM was implemented by using LVQ2,
and its high discriminative power was successfully demonstrated.

4.3.24 HMM/LVQ Hybrid Classifier

Discriminative power should be incorporated in a stage that is as close as possible
to the final classification decision of a recognizer. Obviously, a phoneme classifier
should have high discriminative power for phoneme classification, a word classifier
should have high discriminative power for word classification, and a word sequence
classifier should have high discriminative power for word sequence classification. In
light of this, the LVQ/HMM classifier is insufficient for making the best use of the
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LVQ’s discriminative capability. This concern suggests a reversal of the hybrid idea,
i.e.,, HMM/LVQ [13].

Figure 4.3 illustrates an HMM/LVQ hybrid classifier. HMM is used here to normal-
ize the nonlinear temporal structure of speech inputs, and an LVQ-trained distance
classifier works as a system of classifying a duration-normalized input pattern. The
system includes a set of n-state HMMs (one HMM per speech unit to be classified,
e.g., word class) in addition to the LVQ classifier. Reference vectors of the LVQ
classifier are set in the vector space of the duration-normalized input patterns.

The training procedure of the system is divided into the following two subsequent
procedures: (1) temporal normalization, and (2) LVQ training of reference vectors.
The mechanism of temporal normalization is as follows: (1) HMMs are trained in a
regular manner (usually based on the MLE method) for their corresponding classes,
(2) each HMM makes state-based segmentation by using the Viterbi segmentation,
(3) the average vector is calculated over the feature vectors assigned to one state,
so that in the case of n-state HMM, an input (F'-dimensional) vector sequence is
mapped to an (F' X n)-dimensional vector (precisely, F' X n matrix), and (4) assume
that M class HMMSs are available. A time-normalized vector is assigned a class
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label of the HMM used for its generation. Then, M time-normalized vectors are
generated, each treated as a different class token. LVQ training, especially LVQ?2 in
[13], designs reference vectors so that the classifier can correctly classify all of the
generated tokens.

In the classification stage for an unknown input, the input is first converted to M
tokens, each labeled as a different class. Then, for every token, the nearest refer-
ence vector is selected, and the distance between the nearest vector and the token
is calculated. Because M tokens are generated here, M distance values are calcu-
lated. Finally, a classification decision is made for the input speech pattern by using
a weighted sum of the distance values.

The high discriminative power of this hybrid classifier was shown in a confusable
American E-rhyme phoneme recognition task [13].

4.3.3 Squared Error Minimization
4.3.3.1 Training Using the Squared Error Loss

For the exemplar M class task, the squared error loss is defined as
M
A) = 5Z{gj(x;/\) -1}, (4.18)
j=1

where {7;} is a teaching (target) signal that is usually set, for a training sample X

(€ Cp), to
_J1 G=k),
£ {0 (otherwise). 4.19)

The loss is then rewritten as

(X A) = —gu(X:A) + 2 {ge (X5 1))

1 1
. 2
t3+3 Z {g;(X;A)}
ink
> —gr(X5A) + Z {g;(X;0)} (4.20)
JJ#k

Here, one can find that the bottom line expression of (4.20) can be treated as a kind
of misclassification measure:

de(X:A) = —gi(X;A) + Z {g;(X; M)} (4.21)
JJ#k

It turns out that the reduction of the squared error loss results in the reduction of
this misclassification measure, and also that the minimization of the squared error
loss of (4.18) is equivalent to the minimization of a simple linear loss in which the
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Architecture of time-delay neural network [27].

misclassification measure (4.21) is embedded. Thus, the training using the loss (4.18)
is certainly discriminative but obviously different from the attempt to achieve the
minimum classification error condition by using the smoothed error count loss. See
[17] for detailed discussions.

4.3.3.2 Time-delay Neural Network

The time-delay neural network (TDNN) is one of the classic NN applications to
speech pattern recognition [27]. The time-delay architecture is incorporated to cope
with the speech signal dynamics by using multiple feature vectors, each being gen-
erated by shifting a time window over an input speech pattern. That is, this design
is a shift-tolerant architecture, and it was a model for the development of the shift-
tolerant LVQ classifier [20].

Figure 4.4 illustrates a typical example of the TDNN architecture. The TDNN clas-
sifier assumes an input speech pattern to be a sequence of feature vectors. It uses a
limited-length stream of the feature vectors as its input, and in order to feed forward
the information of a short, focused segment, it constraints network connections to
a smaller number of nodes than the number of frames in the whole limited stream
(for explanation purposes, let us call this set of limited connections a delay-group.).
The classifier then accumulates the information fed forward from the lower network
layers by shifting the delay-group over the input.

Training of the TDNN classifier is performed with the squared error loss. A training
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target is a vector, of which the component for the correct class is one (1) and of which
components for other classes are set to zero (0). Then, the loss is defined between the
target and an output of the classifier. Accordingly, the minimization of this squared
error loss works so that the classifier output resembles the training target. In the
classification stage for unknown patterns, the class having the largest network output
is selected as a classification result.

As shown in Figure 4.4, the TDNN classifier has multiple intermediate layers. This
multi-intermediate-layer structure is a special feature of multi-layer networks, such
as MLP, and it is clearly distinct from the structure of traditional classifiers, such
as a distance classifier only using reference vectors as class models, which can be
considered a single intermediate layer network (Figure 4.5). In addition, the reader
could recall the case of an LVQ classifier that has only reference vectors. A prin-
cipal function of the multiple intermediate layers is information abstraction. In the
TDNN classifier, it is expected that information essential for classification, which is
accordingly shift-tolerant, can be extracted through these hidden layers.

In [27], highly influential experimental results of using the TDNN classifier for
phoneme classification are reported.

4.3.3.3 Multi-state Time-delay Neural Network

To cope with the dynamic nature of longer speech units, the concept of TDNN was
directly extended to a mutli-state time-delay neural network (MSTDNN) [8]. This
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development contrasts with that of the hybrid systems using LVQ and HMM. It can
be said that MSTDNN incorporates the state transition structure, which was widely
used in graphical models such as HMM, in its system structure in place of simply
combining existing concepts such as TDNN and HMM.

An MSTDNN classifier consists of a number of local TDNN systems, each of which
forms a state and is designed for the classification of phonemes or sub-phonemic
units, and it outputs a classification result for the entire speech input, e.g., word
sequence classification result through the DP-based search of the best phoneme state
sequence.

Training of the classifier is done with the squared error loss, as for the original TDNN
classifiers. However, the loss here is defined at the level of the final class outputs of
the task, i.e., word or word sequence classes, in place of the short phoneme level,
and additionally the DP-based segmentation over the entire training input pattern is
embedded in the loss minimization. Clearly, the training of MSTDNN is suitable
for the classification of longer speech units. Indeed, as an alternative to the stan-
dard HMM-based classifier, the MSTDNN classifier has been used in various speech
pattern recognition tasks [7].

4.3.4 Cross Entropy Minimization
4.3.4.1 Training Using the Cross Entropy Loss

There is another interpretation of the target signal (4.19), which was introduced for
training by minimizing the squared error loss. That is, the j-th component of the
target signal can be considered the a posteriori probability of class j, which is rep-
resented as the multinomial distribution, where the probability of X belonging to a
correct class is one (1) and those of X belonging to other classes are zero (0). Then,
to make discriminant function for X resemble this a posteriori probability, the fol-
lowing cross entropy loss has been employed with the assumption of using a softmax
network output function:

N M
=D > min{gi(Xui A)}

n=1 j=1

) (Xns A)
—Z

1 Domet Cm(Xn,A)

M
- Z In {Cn(n) (Xn; A)} —In { Z Cm (Xn; A)}

(4.22)

where X, is assumed to belong to C'(), and () (Xn; A) is an input to the £ (n)-th
output node, which corresponds to C'y;(,) and g, (n) (Xy; A), of the classifier. It is as-

sumed that this node produces a softmax value, ¢ ;(,)(Xp; A)/{Zi\fz1 Cn (X A}
One may note here that the subtraction form in the bottom line of (4.22) can be

© 2003 by CRC Press LLC



considered to be a type of misclassification measure as follows:

M

m=1

(4.23) represents an operation of discriminant function comparison over the possible
classes, and therefore it can certainly be considered a discriminant function. Then,
the average loss E to be minimized becomes

N
E =" dumn)(Xn; A). (4.24)

n=1

Observation here tells one that this loss can also be treated as a case of applying
the linear individual loss function to the misclassification measure (4.23). Due to
the employment of the linear loss, there seems to be a discrepancy between the mini-
mization of the cross entropy loss and the achievement of the minimum classification
error probability condition.

4.3.4.2 Unidirectional Network Classifier

The cross entropy loss was used in an early study that pioneered the application of
recurrent neural networks to speech pattern recognition [23].

Natural signals such as speech signals obey the law of causality. Thus, in principle,
temporal information goes from the past to the future, and accordingly a unidirec-
tional (past-to-future, or, left-to-right) network structure is often used as a primary
selection for modeling such signals. A typical structure of a unidirectional network
is illustrated in Figure 4.6. In this figure, at time index ¢, input acoustic vector u is
presented to the network along with the state vector s, and these two vectors pro-
duce the output vector y; and the next state vector s(;;1). A design goal here is
to determine two weight matrices, W and V, so that y; can satisfy a preset design
objective.

In [23], the cross entropy loss was applied to a recurrent network used as a likeli-
hood estimator in conjunction with an HMM-based speech pattern classifier. The
network training for minimizing this loss was done with a standard training method
for recurrent networks, i.e., the back-propagation through time method that expands
a recurrent network in time or, in other words, considers a recurrent network for all
time indices as a single very large network with an input and output at each time
index and shared weights over all time indices.

4.3.4.3 Bidirectional Network Classifier

In principle, the temporal correlation based on causality is represented in the forward
unidirectional information flow. In addition to this correlation, speech signals usually
possess backward directional temporal correlation: The speech signal is an output of
a physiological articulation system that is controlled by a speech production plan,
which prepares future articulation and, accordingly, has backward influence on the
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FIGURE 4.6
Architecture of unidirectional network [23].

past acoustic state of the speech signal. To represent these two information flows, a
bidirectional network was introduced, and it was designed with the minimization of
the cross entropy loss [25].

A sample structure of a bidirectional network is illustrated in Figure 4.7. A key
idea in the structure is to split the state neurons into two parts: one part responsible
for the forward time direction (forward states) and the other part responsible for the
backward time direction (backward states). It should be noted here that there is no
interaction between the two differently directional networks and therefore each can
be designed in the same way as a unidirectional network, e.g., by using the back-
propagation through time method. In [25], the utility of the bidirectional network
was demonstrated in phoneme pattern classification.

4.4 Fusion of Multiple Classification Decisions
4.4.1 Principles

Using many decisions is generally more stable and often more useful, in terms of ro-
bustness to unknown pattern samples that do not appear in the training/design stage,
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Architecture of bi-directional network [25].

than using a single decision. In real-world pattern classification problems, true sam-
ple distributions are generally unobservable, and achievable classification decisions
are merely estimates of the true classification decisions, each relying on its corre-
sponding true class boundaries. Therefore, the proverb basically holds true even in
the scientific framework of pattern classification, and the concept of decision fu-
sion, i.e., making a final decision by combining multiple pre-decisions, has recently
attracted many researchers’ interests.

The simplest and most basic way of decision fusion is to use the average of multiple
pre-decisions. Intuition suggests that the decision made by averaging independent
pre-decisions is more stable (insensitive to the selection of training samples or ro-
bust to unknown testing samples) than the individual pre-decisions included therein.
Actually, based on the tractable nature of the square error loss, the decision fusion
methods using this loss function have been extensively explored in the literature (e.g.,
[26]), and it has been shown that in principle the decision fusion scheme reduces er-
rors in regression estimation. Assuming the target to estimate to be the multinomial
distribution function that represents the class index information of samples, the anal-
ysis results of the decision fusion mechanism for regression cases can be applied to
the cases of classification. However, it should be recalled that there is a discrepancy
between the training with the minimization of the squared error loss and the achieve-
ment of the minimum classification error probability condition. Thus it seems that
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FIGURE 4.8
Typical classifier design schemes of averaging-based decision fusion.

the simple application of the results of regression problems to classification problems
is insufficient, and that it is necessary to further analyze decision fusion formalisms
that can be more directly applied to the minimization of classification errors.

As one might imagine from the discussions in the above paragraph, the decision
fusion approach to speech pattern recognition has been tested in somewhat heuris-
tic styles. Most cases of the approach have empirically employed the averaging or
weighted averaging scheme of pre-decisions, simply expecting that the resulting de-
cisions would be more robust to unknown pattern samples. Figure 4.8 illustrates
three major types of embodiments of the averaging-based decision fusion for clas-
sification: (a) design of multiple sub-classifiers using different sets of training data,
(b) design of multiple sub-classifiers using a single training data set, and (c) design
of multiple sub-classifiers using different types of feature representation. In all three
cases, a final decision is made through averaging pre-decisions, each made with its
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corresponding sub-classifier. In other words, the final estimated class boundary is
determined by averaging the pre-boundaries, each produced by its corresponding
sub-classifier. The pattern sample sets for training are the ones extracted from the
mother sample set, which is usually unobservable. In (a), all of the training sample
sets use a common method of feature representation, that is, all of the patterns of
the training sample sets are represented in an identical feature space. Here, each
training sample set is extracted independently from the mother data set, and a sub-
classifier is designed by using only its corresponding training data set. In contrast,
in (b), multiple sub-classifiers are designed over a single training data set (of some
finite size), aiming to maintain the independency among the design procedures of
the different sub-classifiers. In (c), a different sub-classifier is designed by using a
different feature representation. Here, the different types of features are calculated
over a single training sample set (of some finite size). Because the effect of the av-
eraging scheme assumes that the sub-classifiers are designed independently, design
procedures, which are illustrated by arrows in the figure, should be basically as inde-
pendent as possible. In this light, case (a) seems to be the most effective for utilizing
the value of the decision fusion scheme. However, preparing multiple independent
training sample sets is often costly, and most cases of speech pattern recognition have
employed cases (b) and (c¢). In the remaining pages of this section, we shall introduce
several exemplar embodiments of the averaging-based decision fusion approach to
speech pattern recognition.

4.4.2 Examples of Embodiment
4.4.2.1 Multi-codebook Classifier Designed with GPD

One of the most straightforward embodiments of case (b) in Figure 4.8 was devel-
oped in [3]. In this report, the GDP training was applied to prototype- (reference
vector)- based distance classifiers, which are basically the same as an LVQ classifier.
In an experimental task of classifying 9-class American E-rhyme speech samples, it
was shown that the use of multiple codebooks, each designed separately with GPD,
could successfully increase the classification accuracy of the baseline single GPD-
trained codebook classifier; the accuracy of the baseline system, i.e., 73%, was in-
creased to 80%, which was among the highest scores on the E-rhyme data set. Here,
each of the multiple codebooks is of the same size as the codebook of the baseline
single codebook system.

In [3], another effect of the decision fusion was demonstrated. Figure 4.9 shows
classification accuracy scores as a function of the number of prototypes per class
and codebook. Here, the total number of prototypes per class was kept constant,
but the number assigned per codebook was changed. For example, with the total
of 24 prototypes per class, one could have 4 codebooks with 6 prototypes per class,
or 8 codebooks with 3 per class. The curve in the figure clearly shows that there
is a balance between the fine-grained boundary estimation of many prototypes per
codebook and the coarse-grained averaging with many codebooks of fewer proto-
types, suggesting the utility of averaging scheme under a practical condition where
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available system resources such as prototypes are limited.

4.4.2.2 Multi-class Classification Based on Support Vector Machine

Generally, classification in a high-dimensional vector space is easier than in a low-
dimensional vector space. By focusing on this general nature of classification, the
support vector machine (SVM) has been attracting much research interest recently.
As shown in the following paragraphs, SVM-based multi-class classification can be
considered a type of embodiment of case (b).

The purpose of SVM-based classification is to convert a given task of classifying
samples in some originally low-dimensional vector space to a task of classifying the
samples in a high-dimensional vector space through a nonlinear sample projection
performed by a neural network’s kernel function. The projected samples are then en-
coded as one of two classes by using a linear discriminant function having the largest
margin in a two-class boundary region. Thus, this approach is naturally expected to
possess two types of robust properties: one based on the large-margin classification
in a high-dimensional vector space and the other based on the fusion of two-class
classification decisions for a multi-class task setting. It would seem that the first
type of robustness originates as a means to circumvent outlier samples that tend to
be misclassified, and the second originates from the increased statistical stability in
setting class boundaries.

As its name implies, SVM is a method for classifying fixed-dimensional, static vector
patterns. Extension of this methodology to the classification of dynamic patterns is
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still an ongoing research topic, and therefore, applications of SVM to speech pattern
recognition are not yet that mature. In the following paragraph, we introduce one
recent application example of SVM classifiers in [2].

The task tested in [2] was classification of phoneme segments that were represented
as static feature vectors whose components were formant (acoustic resonance) fre-
quency values or average cepstral coefficients. SVM was applied to these static
vector patterns. Because the SVM formalism originally assumes the number of
classes to be two, there are two possible combinatorial formations of classification:
(1) the “one vs. one” formation and (2) the “one vs. all” formation. In the one
vs. one formation, an SVM-based sub-classifier was designed for every pair of two
different classes. An unknown test sample was preclassified by all of the designed
sub-classifiers and was then finally classified with a voting scheme over the sub-
classifiers. Here, the voting scheme is equivalent to averaging over pre-decisions.
In the one vs. all formation, an SVM-based sub-classifier was designed for every
pair of a target class and remaining classes. A test sample was preclassified by all
of the sub-classifiers and then finally encoded to the class having the largest distance
from the separating hyperplane. It should be noted that this second scheme does not
include the effect of the averaging. These two types of SVM-based classifiers were
compared to a conventional Gaussian mixture classifier, and the superiority of the
one vs. one formation using SVM was demonstrated.

The above one vs. one formation incorporated by the voting scheme is a typical
framework of decision fusion. However, it is not trivial to show the superiority of the
framework theoretically. An important ongoing research issue is how to apply the
SVM-based two-class classifier to multi-class speech pattern classification tasks.

4.4.2.3 Decision Fusion Using Different Classifiers

In the embodiments of the previous subsections, a single type of classifier struc-
ture was employed. For example, all of the sub-classifiers in Section 4.4.2.1 are
prototype-based distance classifiers, and all those in Section 4.4.2.2 are SVM-based
classifiers. A different type of classifier could represent a different type of class
boundary (accordingly, classification decisions). In light of this, another type of em-
bodiment of case (b) in Figure 4.8, i.e., one combining different types of classifiers
such as HMM and neural network, has been tested in an important sub-area of speech
pattern recognition, i.e., speaker recognition (e.g., [5]).

In [5], three types of classifiers were used: an HMM-based system, a DP-based
distance classifier, and a neural tree network system, which is a hierarchical clas-
sifier that uses a tree architecture to implement a sequential linear decision strat-
egy. Through comprehensive experimental evaluations, a basic tendency was demon-
strated: the larger the number of sub-classifiers is, the more accurate the final fused
classification decisions are. An overview of the decision fusion approach to speaker
recognition can be found in the literature (e.g., see [6]).
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Typical block diagrams of the MSTDNN-based audio-visual speech recognition
[71.

4.4.2.4 Decision Fusion Using Multi-modal Classifiers

The contribution mechanism of the decision fusion, case (c) of Figure 4.8, is basi-
cally different from that of the previous two cases, i.e., (a) and (b). In case (c), the
decision combination is performed in different feature spaces and thus its resulting
effect is not the same as the average computation in a single feature space. In this
multi-feature case, the sub-classifiers, each designed over a different feature set, are
expected to mutually compensate the weakness of their competing sub-classifiers,
while the sub-classifiers in cases (a) and (b) are expected to participate the averaging
operation in order to reduce the statistical variance of the individual pre-decisions.

Among the many possibilities of the decision fusion using different types of features,
the use of a visual face image as well as its corresponding acoustic speech signal has
been rapidly growing as an emerging research topic. Perfect recognition of speech
signals is essentially difficult, due to several reasons such as the incompleteness of
articulation and acoustic distortion over speech transmission channels. Even for hu-
mans, hearing over a telephone is usually more difficult than hearing in face-to-face
communication, probably due to the lack of face information. In the following, we
introduce two recent examples of audio-visual speech recognition that uses lip shape
information in addition to the standard observation of a speech signal [7, 21].
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In [7], MSTDNN classifiers were used to classify an input stream that consisted of an
acoustic speech signal and its corresponding visual lip shape image signal. Based on
the structural flexibility of MSTDNN, there are several possibilities of signal combi-
nation. Three types of combination, illustrated in Figure 4.10, were actually exam-
ined: (a) data fusion of combining audio-visual data on the viseme/phoneme layer,
(b) data fusion of combining audio-visual data on hidden layer, and (c) data fusion of
combining audio-visual data on the input layer. Among these, in principle, the struc-
ture of (a) is the best suited for independent design of the two sub-classifiers, each for
a different type of modal data. Independency here allows one to carefully train each
sub-classifier, reflecting the nature of each modal data in its corresponding design of
the sub-classifier. Comprehensive experimental evaluations clearly demonstrated the
effect of the data fusion over the multi-modal data stream, specially the approach of
using the type (a) network.

In [21], in place of the so-called neural networks, HMM’s were used as sub-classifiers,
one for the acoustic speech stream and one for the visual lip shape stream. It should
be recalled that HMM can be defined as a type of NN system. The block diagram
of the classifier used is illustrated in Figure 4.11. Design keys in this data fusion
scheme are the selections of design methods for the audio HMM, the visual HMM,
and the stream weight that is used for combining the outputs of the two different
modal HMM sub-classifiers. A conventional selection of the design methods for the
audio-visual HMM sub-classifiers is the MLE method, and an immediate reasonable
selection for the stream weight is the GPD method using the classification error loss.
Through experimental evaluations in a speaker-independent isolated word recogni-
tion task, the authors demonstrated that using GPD training for all three trainable
modules, i.e., the audio HMM sub-classifier, the visual HMM sub-classifier, and the
stream weight, achieved a significant error reduction, up to 80%, over the classifier
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in which two sub-classifiers were trained with the MLE method.

4.5 Concluding Remarks

We have reviewed the recent attempts of speech pattern recognition using neural net-
works. The high discriminative power of NN-based recognizers mainly originates
from the discriminative training that is a standard design approach to NN-based pat-
tern recognition. To give a systematic view of the discriminative training methods,
we used the GPD formalism as a discussion basis. The basic operations of this dis-
criminative training are: 1) to introduce a discriminant function that measures the
degree to which an input pattern belongs to some class, 2) to emulate the Bayes deci-
sion rule by the misclassification measure, 3) to introduce a loss function that enables
one to evaluate the recognition result of a given training sample, and 4) to optimize
the trainable system parameters of the recognizer at hand by using the preset loss
function. In the training procedure, the selection of the loss is crucial. Various selec-
tions have been examined so far, including the classification error loss, the squared
error loss, and the cross entropy loss. From the viewpoint of the GPD formalism, we
showed the directness of the classification error loss to the optimal, minimum error-
rate classification or, in other words, the minimum classification error probability
condition.

In the chapter, we also summarized the framework of the fusion of multiple classi-
fication decisions. As an approach to increasing the design robustness to unknown
samples, decision fusion, especially the averaging scheme over sub-classifier deci-
sions, has attracted the recent researchers’ interests. There are several possibilities
for the embodiments of the framework. We particularly focused on two cases: 1)
designing multiple sub-classifiers over a single training set with a single method of
feature representation, and 2) designing multiple sub-classifiers over a single train-
ing set with multiple methods of feature representation. The utility of the decision
fusion approach has been clearly demonstrated in many experimental studies, but its
theoretical analysis is still insufficient due to the lack of a mathematical framework
for analyzing the statistical characteristics of class boundary estimates.

Following the conventional taxonomy, we have to distinguish between HMM and
NN. However, we basically think that there are no significant differences in system
structure between these two types of systems. Actually, both are embodiments of
a wider concept of a graphical model. In this light, we also think that in classifier
design, one should not adhere to empirical selections of system structure, such as
a hybrid system that simply combines existing systems. This is why we have only
briefly discussed the issue of NN’s architecture selection. Needless to say, a proper
design of NN structure is important. It should probably reflect the nature of patterns
that need to be classified. In addition, training methods, such as discriminative train-
ing, should be further evolved so as to cover the determination of classifier structure
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as well as the adjustment of preset system parameters.

In Section 4.2.5.7, we introduced the global scope design method that uses the chain
rule of differential calculus. One may notice that the mechanism of the global train-
ing is equivalent in operation to the error back-propagation algorithm developed for
MLP networks, though the mechanism shown is more general. By using the global
design strategy, one can in principle design feature extractors that are better suited to
classification than those determined in empirical ways. A future research effort will
be to discover a feature extractor that models the salient nature of speech signals for
classification.

As summarized above, the selection of the loss function is important, and also the
classification error count loss possesses the special feature of directness to the min-
imum error-rate classification. Further analyses on this loss selection are clearly
desired for advancing pattern recognition methodology as well as NN-based speech
recognition technology.
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4.6 Appendix: Maximizing Mutual Information

There is another possible definition of the loss that is related to the cross entropy
loss (4.22). This has been used as a loss for the discriminative training of HMM
speech classifiers, but to the best of the authors’ knowledge, it has not been used for
the design of NN-based speech classifiers. For reference purposes, we introduce this
alternative choice.

The loss is referred to as mutual information loss, and it is defined as

pA(X|Ck)
Y1 pa(X|CH)P(Cy)

I(X;A) =1n (4.25)

where it is assumed that a training sample X belongs to C'j,. Training using this
measure aims at correct classification by maximizing the mutual information over
the possible classes, or in other words, increasing the separability of the classes.
Clearly, this training follows the discriminative training concept.

For discussion purposes, we consider the negative mutual information and reach the
following inequality through simple rewriting operations:

Sk PA(X]CH)P(C))
PA(X][Cy)
M
> —Inpa(X|Ck) +1nq Y P(C;)emPrXI%) 8 (4.26)
J.ik

~L(X;A) =In {P(Ck) +

© 2003 by CRC Press LLC



Here, assuming the logarithmic likelihood, Inpx (X |Cf), to be the discriminant
function, one can treat the bottom line expression of (4.26) as a kind of misclas-
sification measure:

M
di(X;A) = —ge(X;A) +1n g Y P(C)e XM & (4.27)
Jii#k

Then, the inequality,
—Ie(X;A) > di (X3 A) (4.28)

holds true. Clearly, maximizing the mutual information leads at least to minimizing
the misclassification measure (4.28). Consequently, training based on the maximiza-
tion of the mutual information is considered discriminative training that uses the
linear loss and the misclassification measure (4.27).

Like the case of the squared error loss, this training is certainly a type of discrimi-
native training. However, due to the discrepancy between the smoothed error count
loss and the linear loss used here, this training cannot guarantee that the minimum
classification error condition will be achieved.
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5.1 Introduction

Speech recognition is concerned with converting the speech waveform, an acoustic
signal, into a sequence of words. Today’s most practical approaches are based on a
statistical modelization of the speech signal. This chapter provides an overview of
the main topics addressed in large vocabulary speech recognition, that is: language
modeling, lexical representation, acoustic-phonetic modeling and decoding. For over
a decade large vocabulary, continuous speech recognition has been one of the focal
areas of research in speech recognition, serving as a test bed to evaluate models
and algorithms. This chapter focuses on the statistical methods used in state-of-the-
art speaker-independent, large vocabulary continuous speech recognition (LVCSR).
The reader will notice that although this chapter is dedicated to data driven statistical
modeling of speech, prior knowledge about speech, and language is also taken into
account, such as for example the assumption that words can be coded by a phonemic
representation. Some of the primary application areas for LVCSR technology are
dictation, spoken language dialog, and transcription systems for information retrieval
from spoken documents.
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5.2 Overview

From a statistical point of view, speech is assumed to be generated by a language

model which provides estimates of Pr(17) for all possible word strings W = (w1 ,wa,
...), and an acoustic model represented by a probability density function f (X |WW) en-

coding the message W in the signal X. The goal of speech recognition is generally

defined as finding the most likely word sequence given the observed acoustic signal,

i.e., of maximizing the probability of W given the speech signal X, or equivalently,

maximizing the product Pr(W) f (X |W).

LVCSR systems use acoustic units corresponding to phones or phones-in-context, *
where each word is described by one or more phone transcriptions. Assuming

that the speech signal X depends only on the underlying phone sequence H =

(h1, ha, ...), then f(X|W) can be rewritten as ), Pr(H|W)f(X|H) where the
summation is taken over the set pronunciations corresponding to the word sequence

W. In practice this set is reasonably small as the average number of pronuncia-

tion variants per word is less than two. The underlying speech generation model is

illustrated in Figure 5.1. The word sequence produced by the language model is suc-

cessively transformed by two transducers, the pronunciation model and the acoustic

model, to yield the speech signal.

This formulation of the LVCSR problem leads to the following four main consider-

ations:

e The language modeling problem, i.e., computing the a priori probability Pr(W).
It is usually estimated from relative n-gram frequencies in transcriptions of
speech data as well as related text corpora.

¢ The pronunciation modeling problem, i.e., the computation of Pr(H|W). This
relies on a pronunciation dictionary which may include estimates of the word
pronunciation probabilities.

e The acoustic modeling problem, i.e., determining the structure of the proba-
bility density function f(X|H) and estimating its statistical parameters from
speech samples. The most predominant approach uses continuous density hid-
den Markov models (HMM) to represent context-dependent phones.

e The search problem, i.e., determining the best word hypothesis for the speech
data given the models. This is a big challenge for LVCSR due to the large
vocabulary and language model size.

*In this chapter the term phone is used to refer to acoustic units without attempting to label them as
phonemic (referring to the elementary and distinctive sounds in the language) or phonetic (the observed
realization of the elementary sounds). Contextual phone units (phones-in-context) implicitly model what
can be considered allophones, i.e., contextual phonetic variants of the underlying phoneme.
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P(W) P(HIW) f(X|H)

Language W | Pronunciation| H Acoustic X
Model Model Model
word sequence phone sequence speech signal
FIGURE 5.1

LVCSR speech generation model: The word sequence 1/ produced by the lan-
guage model is successively transformed by the pronunciation model (P(H |WW))
and the acoustic model (f(X|H, W)), resulting in the speech signal X.

The principles on which most state-of-the-art LVCSR systems are based have been
known for many years now, and include the application of the communication theory
to speech recognition [7, 56, 57], the use of a spectral representation of the speech
signal [26, 27], the use of dynamic programming for decoding [130, 131], and the
use of context-dependent acoustic models [19, 76, 119]. Despite the fact that some
of these techniques were proposed well over 15 years ago, considerable progress has
been made in recent years in part due to the availability of large speech and text
corpora, and improved processing power which have allowed more complex models
and algorithms to be implemented.

The main components of a generic speech recognition system are shown in Figure 5.2
along with the requisite knowledge sources (speech and textual training materials and
the pronunciation lexicon) and the main training and decoding processes. The acous-
tic and language models resulting from the training procedure are used as knowledge
sources during decoding, after feature analysis has been carried out by the acoustic
front-end. The remainder of this chapter is devoted to discussing these main con-
stituents and knowledge sources. Some indicative performance levels are provided
for three representative LVCSR tasks, and issues concerning language portability are
discussed.

5.3 Language Modeling

Language models (LMs) capture regularities in spoken language and are used in
speech recognition to estimate the probability of word sequences. While grammat-
ical constraints described by hand-crafted context-free grammars have been used
for small to medium size vocabulary tasks, LVCSR is essentially always based on
data driven approaches. The most popular statistical method is the so called n-gram
model, which attempts to capture the syntactic and semantic constraints of the lan-
guage by estimating the frequencies of sequences of n words. The assumption is
made that the probability of a given word string W = (w1, ws, ..., wy) can be ap-
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Speech
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Transcription Extraction
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Decoding Languags
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Speech Y Acoustic X w’ Speech
Sample Front-end DEBEe s Transcription

FIGURE 5.2
System diagram of a generic speech recognizer based on statistical models, in-
cluding training and decoding processes and the main knowledge sources.

proximated by the following forward sequential decomposition

k
P(W) = H Pr(wi|wi_n+1, e, Wi—9, wi_l)

i=1

thereby reducing the word history to the preceding n — 1 words. It should be noted
that other decompositions of P(W) can also be appropriate, for example, a backward
decomposition will lead to a backward n-gram model.

A prerequisite for estimating n-gram language models is the availability of appro-
priately processed text corpora. As can be seen in Figure 5.2, language models are
usually estimated from manual transcriptions of speech corpora and from normal-
ized text corpora. To ensure accurate models, the texts need to be as representative
as possible of the expected audio input to be transcribed. Text preparation entails lo-
cating appropriate sources of text data and audio transcriptions, and processing them
in a homogeneous manner. Language models are generally optimized and compared
by measuring the perplexity of a set of left out data, referred to as LM development
data. This so-called test set perplexity of the language model M is defined as:

L
PX(T|M) = P(T|M)™7 = ([] Plwilwis,wi—1))"F

i=1
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for a given text T = (w1, ..., wr) and a trigram LM (i.e., n = 3). P(T|M) denotes
the language model estimate of the text probability. The perplexity depends on both
the language being modeled and the model, i.e., it gives a combined estimate of how
good the model is and how complex the language is [57]. If the left out data set is
representative of the model, the perplexity can be seen as a measure of the average
branching factor, i.e., the vocabulary size of a memoryless uniform language model
with same entropy as the language model under consideration.

5.3.1 Text Preparation

Although ideal language model training data would consist of large corpora of tran-
scribed audio data representative of the targeted task, in practice such data are diffi-
cult to obtain. Therefore a variety of other more or less closely related text materials
are usually used for language model training.

Given a large text corpus it may seem relatively straightforward to construct n-gram
language models. Most of the steps are pretty standard and make use of tools that
count word sequence occurrences [20]. The main considerations are the choice of the
vocabulary, the definition of words (treatment of compound words and acronyms),
and the choice of the LM back-off strategy (cf. Section 5.3.3). There is, however,
a significant amount of effort needed to process (or normalize) the texts before they
can be used. One motivation for the normalization is to reduce lexical variability so
as to increase the coverage for a fixed size task vocabulary. The processing decisions
are generally language-specific.

Numerical expressions and dates are typically expanded to approximate the spoken
form and to reduce the lexical variety ($150 — one hundred fifty dollars, 1991 —
nineteen ninety one or one thousand nine hundred and ninety one). Some example
transformations are shown in Figure 5.3 along with the rule probabilities. For exam-
ple, the word hundred followed by a number < nb > can be replaced by hundred and
50% of the time; and 15% of the sequence million dollars are replaced with just the
word million [38].

HUNDRED <nb> HUNDRED AND <nb> (0.50)
ONE EIGHTH AN EIGHTH (0.50)
CORPORATION CORP. (0.29)
INCORPORATED INC. (0.22)

ONE HUNDRED
MILLION DOLLARS
BILLION DOLLARS

A HUNDRED (0.19)
MILLION (0.15)
BILLION (0.15)

FEELLEL

FIGURE 5.3
Some example transformation rules applied during text normalization with as-
sociated probabilities.
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Further semi-automatic processing is necessary to correct frequent errors inherent in
the texts (such as obvious misspellings million, officials) or arising from processing
with the distributed text processing tools. Some normalizations can be considered
as “decompounding” rules in that they modify the word boundaries and the total
number of words. These concern the processing of ambiguous punctuation markers
(such as hyphen and apostrophe), the processing of digit strings, and treatment of
abbreviations and acronyms (ABCD — A. B. C. D.). In agglutinative languages
such as German, decompounding rules can be used to reduce the lexical variety.
For example, the year 1991 which is written in standard German as neunzehnhun-
derteinundneunzig, can be transformed into the word sequence neunzehn hundert ein
und neunzig. Depending upon the target application, the recognizer hypotheses may
need to be mapped to a more appropriate written form. Other normalizations (such
as sentence initial capitalization and case distinction) keep the total number of words
unchanged, but reduce graphemic variability. In general a compromise is made be-
tween producing an output close to the standard written form of the language and the
lexical coverage, with the final choice being largely application-driven.

5.3.2 Vocabulary Selection

Careful selection of the recognition vocabulary is important since on average, each
out-of-vocabulary word causes more than one error (usually between 1.5 and 2 er-
rors) [104]. The recognizer vocabulary is usually designed with the goal of max-
imizing lexical coverage for the expected input. A straightforward approach is to
choose the N most frequent words in the training data which means that the useful-
ness of the vocabulary is highly dependent upon the representatively of the training
data. To reduce this dependency it is common practice to select a word list suited
to the expected test conditions by minimizing the system’s out-of-vocabulary (OOV)
rate on the LM development data. Therefore judicious selection of the development
data is important. The best lexical coverage may be obtained by selecting the vocab-
ulary using only a subset of the training data (such as the most recent data or data
on a given topic) instead of using all the available data [16, 38]. An obvious way
to reduce the error rate due to OOVs is to increase the size of the lexicon. Using a
very large lexicon has been shown to improve performance, despite the potential of
increased confusibility of the lexical entries [38].

5.3.3 N-gram Estimation

Using the maximum likelihood (ML) criterion, the n-gram probabilities are esti-
mated from the frequencies of the word sequences of length n in the training corpus
(texts or speech transcriptions). For example, the ML estimate of the trigram proba-
bility is given by:

C(wi—2, wi—1,w;)
C(wi—2,w;—1)

P(wi|wi—a, wi—1) =

where C(-) denotes the number of times the n-gram appears in the training data.
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For large vocabulary sizes, many of the possible n-grams will not occur in even a
very large training corpus. Due to the sparseness of the data, maximum likelihood
estimates are clearly inadequate and need to be smoothed. Different approaches have
been investigated to smooth the estimates of the probabilities of rare n-grams [17,
65]. The most common approach is to use a back-off mechanism [61] which relies
on a lower order n-gram. If there is not enough data to obtain a robust estimate from
the n-gram counts, a fraction of the probability mass is taken from the observed n-
grams by discounting the ML estimates [45, 65, 140]. The probabilities of the rare
n-grams are then estimated from the (n— 1)-gram probabilities in a recursive manner
as shown here for a trigram model:

P(wilw; o, w; 1) = P(w;|w;_1)B(w;_2,w; 1),

where B(w;_2,w;_1) is a back-off coefficient needed to ensure that the probability
sum for a given context is equal to one. Computing the bigram estimate P (wilwi—1)
follows the same principle. Backing-off offers an additional advantage in that the
language model size can be arbitrarily reduced by increasing the cutoff frequencies
below which the n-grams are not included in the model. This property can be used
to reduce the amount of computational resources required during decoding. While 2-
gram and 3-gram LMs are the most widely used, small improvements can be obtained
with the use of longer span LMs such as 4-grams and 5-grams.

It is often the case that the LM training corpus is comprised of different sources of
texts of different sizes and in different formats. Model interpolation is an easy way
to combine training material from different sources. A language model is trained
for each source and the resulting models are interpolated. The interpolation weights
can be directly estimated on some development data with the EM algorithm. An
alternative approach is to simply merge the n-gram counts and train a single language
model on these counts. If some data sources are more representative than others for
the task, the n-gram counts can be empirically weighted to minimize the perplexity
on the development data set. While this can be effective, it has to be done by trial
and error and cannot easily be optimized. In addition, weighting the n-gram counts
can pose problems in properly estimating the back-off coefficients.

Word class or category-based language models can be used to reduce the depen-
dency on the training data. Given some training data and a mapping which assigns
each word to a unique category C(w), the training text can be tagged and the n-
gram probabilities Pr(w;|C(w;_pn+1), ...,C(w;_1)), which are often approximated
by Pr(w;|C(w;)) Pr(C(w;)|C(w;—pt1), ..., C(w;—1)), can be estimated from the rel-
ative frequencies in the same manner as a regular word n-gram. The class assign-
ment is often obtained by minimizing the perplexity of a bigram category model for
a given number of word categories [64, 87]. It is also common practice to interpolate
the category LM with the n-gram LM, in order to obtain a lower perplexity than that
of the regular n-gram model. The resulting trigram probability estimates are:

P*(wi|wi_2,wi_1) = aﬁ(wi|wi_2,wi_1) + (1 — a)]s(wi|C(wi_2),C(wi_1)).

Other statistical language models have been investigated by mapping the word his-
tory (wy, ..., w;—1) onto equivalence classes other than the classical (n — 1)-grams.
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However, these modeling techniques such as decision tree models, maximum en-
tropy models, or linguistically motivated models (probabilistic context-free and link
grammars), have been used with moderate success leading to small gains over the
much simpler n-gram model [115].

5.3.4 LM Adaptation

LVCSR systems use one or more language models, but these LMs are usually static,
even though the choice of which model to use can be dynamic, dependent for ex-
ample, on the dialog state. Language model adaptation is of interest for improving
the model accuracy and for keeping the models up-to-date. Various approaches have
been taken to adapt the language model based on the observed text so far, including
the use of a cache model [58, 511, a trigger model [113], or topic coherence model-
ing [120]. The cache model is based on the idea that words appearing in a document
will have an increased probability of appearing again in the same document. For
short documents the number of words appearing is limited, and as a consequence the
benefit is small. The trigger model attempts to overcome this increasing the proba-
bilities of words that often co-occur with the trigger word when the trigger word is
observed. In topic coherence modeling, selected keywords in the transcribed speech
are used to retrieve articles on similar topics with which sublanguage models are
constructed and used to rescore hypotheses. Despite the growing interest in adaptive
language models, thus far only minimal improvements have been obtained compared
to the use of very large, static n-gram models.

5.4 Pronunciation Modeling

The pronunciation dictionary is the link between the acoustic-level representation
and the lexical items output by the speech recognizer. The accuracy of the acoustic
models is partly dependent upon the consistency of the pronunciation dictionary.

Associated with each lexical entry are one or more pronunciations, described using
the chosen elementary units (usually phonemes or phones). This set of units is evi-
dently language dependent. For example, some commonly used phone set sizes are
45 for English, 50 for German and Italian, 35 for French and Mandarin (to which
tones may be added), and 25 for Spanish. In generating pronunciation baseforms,
most lexicons include standard full-form pronunciations and do not explicitly rep-
resent phonetic variants. This representation is chosen as most variants can be pre-
dicted by rules, and their use is optional. More importantly, there often is a contin-
uum between different phonetic realizations of a given phoneme and the decision as
to which occurred in any given utterance is subjective. By using a phone representa-
tion, no hard decision is imposed, and it is left to the acoustic models to represent the
observed variants in the training data. While pronunciation lexicons are usually (at
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Phone | Example | Phone | Example
Vowels Fricatives
i beet S sue
I bit z Z00
e bait f shoe
€ bEt 3 measure
® bat f fan
A but v van
a | bott 0 thin
0 boat Plosives
u boot b bet
U book d debt
3 bird g get
Diphthongs p | pet
a’ bite t tat
o/ boy k cat
av bout Affricates
Reduced Vowels i cheap
9 xbout &5 | jeep
1 dated Nasals
o) butter m met
Semivowels n net
1 led Y| thing
r|red Syllabics
w wed m bott om
y yet n button
h hat ] bottle

FIGURE 54
Set of 45 phone symbols for English with illustrative words, with the portion
corresponding to the phone sound underlined.

least partially) created manually, several approaches to automatically learn and gen-
erate word pronunciations have been investigated. Such approaches, while promis-
ing, have to date given only small performance improvements even when trained on
manual transcriptions [112].

Pronunciation variants can be observed for a variety of words. Alternative pronuncia-
tions are obviously needed for homographs (words spelled the same, but pronounced
differently) which reflect different parts of speech (verb or noun) such as excuse,
record, moderate. Some frequent affixes such as anti-, bi-, multi-, -ization can be
pronounced with a diphthong (/a?/) or a short vowel (/I/ or /o/). The upper part of
Figure 5.5 gives some example words with multiple pronunciations, and their associ-
ated probabilities. Using a set of allophone models (c.f. Section 5.5.2), the pronun-
ciation probabilities are estimated by first aligning the reference word transcription
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COUPON kupan (0.63) kyupan (0.37)
ORGANIZATION  organlze an (0.93) orgona’zeon (0.07)

HUNDRED hAnd34d (0.44) handrod (0.34)

han3d (0.18) hanrod (0.04)
MODERATE mada it (0.82) madaet (0.18)
TO to (0.66) tu (0.34)

I_DON’T_KNOW a’donno (0.57) a’dontno (0.05)
@’ dAno (0.28) a?dno (0.10)

DON’T_KNOW donno (0.73) dontno (0.18)
dAno (0.09)
DID_YOU dIdyu (0.65)
dIdzo (0.30) dIdyo (0.05)
GOING_TO goito (0.13) gotytu (0.09)

gAnd (0.70) gend (0.08)

FIGURE 5.5

Some example lexical entries and their pronunciations along with estimate
probabilities. For the compound words, the original concatenated pronunci-
ation is given in the 1st line and the reduced forms are given in the 2nd line.

with the audio signal (using a lexicon containing equally likely alternative pronun-
ciations), letting the Viterbi algorithm choose the best pronunciation for each word.
The probabilities are then estimated from the relative frequencies of each variant.
Words of foreign origin, particularly proper names, may have different pronuncia-
tions depending upon the speaker’s familiarity with the original language. It is also
common for multisyllablic words to be pronounced with different numbers of syl-
lables. For example, about 80% of the occurrences of interest and conference, and
20% of company are spoken with two syllables instead of three. If acoustic model
training is carried out without allowing for appropriate pronunciation variants, there
will necessarily be a misalignment of one or more phones, making the phone mod-
els less accurate. Experience has shown that careful lexical design improves speech
recognition system performance [70].

In speech from fast speakers or speakers with relaxed speaking styles it is common
to observe poorly articulated (or skipped) unstressed syllables, particularly in long
words with sequences of unstressed syllables. Although such long words are typi-
cally well recognized, often a nearby function word is deleted. To reduce these kinds
of errors, alternate pronunciations in the lexicon can allow schwa-deletion or syl-
labic consonants in unstressed syllables. Compound words have also been used as
a way to represent reduced forms for common word sequences such as don’t know,
did you, and going to. Some of the reduced forms are so frequent that they have a
commonly accepted written form (gonna, dunno). Some example compound words
are shown in the lower part of Figure 5.5 along with estimates of the pronunciation
probabilities for the different variants. These examples illustrate the interest in using
compound words in recognition lexicons. Fluent speech effects can alternatively be
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modeled using phonological rules [72, 101]. The principle behind the phonologi-
cal rules is to modify the allowable phone sequences to take into account expected
variations. These rules are optionally applied during training and recognition. Using
phonological rules during training results in better acoustic models, as they are less
“polluted” by wrong transcriptions. Their use during recognition reduces the number
of mismatches. The same mechanism has been used to handle liaisons, mute-e, and
final consonant cluster reduction for French.

As speech recognition research has moved from read speech to found audio data, the
phone set has been expanded to include non-speech events. These can correspond to
noises produced by the speaker (breath noise, coughing, sneezing, laughter, etc.) or
can correspond to external sources (music, motor, tapping, etc).

5.5 Acoustic Modeling

One of the main challenges of acoustic modeling is to handle the variability present
in the speech signal. Variability can arise from the linguistic context, or can be
associated with the non-linguistic context such as the speaker (e.g., physical charac-
teristics, speaking style, mood, etc.) and the acoustic environment (e.g., background
noise, music) and recording channel (e.g., direct microphone, telephone). Most state-
of-the-art LVCSR systems make use of hidden Markov models (HMMs) for acoustic
modeling [110, 145], which consists of modeling the probability density function
of a sequence of acoustic feature vectors. Other approaches include segment based
models [43, 102, 152] and neural networks [2, 52] to estimate the acoustic observa-
tion likelihoods. With exception of the acoustic likelihood computation, all systems
make use of the HMM framework to combine linguistic and acoustic information in
a single network representing all possible sentences.

5.5.1 Acoustic Front-end

The first step of the acoustic feature analysis is digitization, or conversion of the
continuous speech signal into discrete samples. The most commonly used sampling
rates are 16kHz and 10kHz for direct microphone input, and 8kHz for telephone
signals. The next step is feature extraction (also called front-end analysis), which
has the goal of representing the audio signal in a more compact manner by trying
to remove redundancy and reduce variability, while keeping the important linguistic
information [53]. An inherent assumption is that although the speech signal is con-
tinually changing, due to physical constraints on the rate at which the articulators can
move, the signal can be considered quasi-stationary for short periods (on the order
of 10 to 20ms).

The most popular set of features are cepstrum coefficients obtained with a Mel Fre-
quency Cepstral (MFC) analysis [21] or with a Perceptual Linear Prediction (PLP)
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analysis [51]. Cepstral parameters are less correlated than direct spectral compo-
nents, which simplifies estimation of the acoustic model parameters by reducing the
need for modeling the dependency between features. In both cases a Mel scale short
term power spectrum is estimated on a fixed window (usually in the range of 20 to
30ms). In order to avoid spurious high frequency components in the spectrum due to
discontinuities caused by windowing the signal, it iS common to use a tapered win-
dow such as a Hamming window. The window is then shifted, and the next feature
vector computed. The most commonly used offset is 10ms. This acoustic parameter-
ization converts the speech signal into a sequence of feature vectors X, each vector
representing a 10ms interval referred to as a frame or a feature vector:

X = (X17X27 "'7XT)'

The Mel scale approximates the frequency resolution of the human auditory system,
being linear in the low frequency range (below 1000 Hz) and logarithmic above 1000
Hz. The cepstral parameters are obtained by taking an inverse transform of the log of
the filterbank parameters. In the case of the MFC coefficients, a cosine transform is
applied to the log power spectrum, whereas a root-Linear Predictive Coding (LPC)
analysis is used to obtain the PLP cepstrum coefficients. Both set of features have
been used with success for LVCSR, but PLP analysis has been found to be slightly
more robust in presence of background noise [63, 143].

Cepstral mean removal (subtraction of the mean from all input frames, generally
sentence based) [29] is often used to reduce the dependency on the acoustic recording
conditions. Computing the cepstral mean requires that all of the signal is available
prior to processing, which is not the case for certain applications where processing
needs to be synchronous with recording. In this case, a modified form of cepstral
subtraction can be carried out where a running mean is computed from the N last
frames (N is often on the order of 100, corresponding to 1s of speech). It is also
common to normalize the feature variance, so that each resulting cepstral coefficient
has a unity variance.

In order to capture the dynamic nature of the speech signal, the feature vector is
usually augmented with “delta” parameters. The delta parameters are computed by
taking the first and second differences of the features in successive frames. As a
result a typical feature vector x; will include 12 cepstrum coefficients plus the nor-
malized log-energy, along with the first and second order derivatives, i.e., a total
of 39 components. Instead of using these fixed delta features, linear discriminant
transforms are sometimes used to better optimize the feature vector for the acoustic
models [47, 68].

Vocal tract length normalization (VTLN), a technique which performs a simple speaker
normalization at the front-end level [3], is also often used in LVCSR. The normaliza-
tion consists of performing a frequency warping to account for differences in vocal
track length, where the appropriate warping factor is chosen from a set of candidate
values by maximizing the test data likelihood based on a first decoding pass tran-
scription and some acoustic models [77]. VTLN must also be applied during the
training process to obtain models suited to decode the normalized test data. This

© 2003 by CRC Press LLC



apn a3

FIGURE 5.6

A simple 3-state left-to-right HMM topology commonly used for allophone mod-
eling in LVCSR. The model generates at least 3 speech frames per allophone, re-
sulting in a minimal phone segment duration of 30ms for frame rate of 100Hz.

normalization has been shown to give significant error rate reduction in particular on
telephone conversational speech [128].

5.5.2 Modeling Allophones

Modeling allophones with Hidden Markov models is popular because these models
work reasonably well, and their parameters can be efficiently estimated using well
established techniques [110]. Allophone models offer a wide spectrum of contex-
tual dependencies and back-off mechanisms to model rare contexts. The production
of speech feature vectors is modeled in two steps. First, a small Markov chain is
used to generate a sequence of states, and second, speech vectors are drawn using
a probability density function (PDF) associated to each state. The Markov chain is
described by the number of states and the transitions probabilities between states.
While different model topologies have been proposed, most make use of left-to-right
state sequences. The most commonly used configurations have 3 to 5 emitting states
per allophone model, where the number of states imposes a minimal duration for the
phone. Some configurations allow certain states to be skipped, thereby reducing the
required minimal duration. The probability of an observation (i.e., a speech vector)
is assumed to be dependent only on the current state.

Given an N-state HMM with parameter vector A\, the HMM stochastic process is
described by the following joint probability density function of the observed signal
X = (x1,...,x7) and the unobserved state sequence S = (sg, ..., ST),

T
f(Xa SP‘) = Tsg H Qs 154 f(xt|st)

t=1

where 7; is the initial probability of state 4, a;; is the transition probability from state
i to state j, and f(-|s) is the emitting PDF associated with each state s. Figure 5.6
shows the transition structure of a 3-state left-to-right HMM topology commonly
used for allophone modeling in LVCSR.

The most frequently used state output PDF for speaker-independent systems is a
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SISTER /slst3/
triphones: s(*,I) I(s,s) s(I,t) t(s,3) 3(t,*)
quinphones: s (*,Is) I(s,st) s(sI,t3) t(Is,3) 3 (st,*)

FIGURE 5.7

Examples of allophonic transcriptions in terms of intra-word triphones and
quinphones. Each contextual unit is defined by the central phone followed by its
phone context shown in parentheses (left-context, right-context). * is a wildcard
signifying any context.

mixture of Gaussians with 16 to 32 components,

K
f(xt|8) = Zwk-/v(xt|mskazsk)

k=1

where mgy,, Y4 and wy denote respectively the mean vector, the covariance matrix
and the mixture weight of the k-th Gaussian component of state s. To reduce the
number of parameters and the inherent estimation problem linked to full covariance
matrices, the covariance matrices are usually assumed to be diagonal. (Recently
it has been demonstrated that non-diagonal covariance matrices can be used while
keeping the estimation problem manageable [33, 98].)

Phone based models offer the advantage that recognition lexicons can be described
using the elementary units of the given language (c.f. 5.4), and thus can benefit from
many linguistic studies. It is of course possible to perform speech recognition with-
out using a phonemic lexicon, either by use of word models (as was the more com-
monly used approach 15 years ago) or a different mapping such as fenones (which
are small data-driven acoustic units) [8]. Compared to word models, subword units
reduce the number of parameters, enable cross word modeling and facilitate porting
to new vocabularies. Fenones offer the additional advantage of automatic training,
but lack the ability to include a priori linguistic knowledge.

A given HMM can represent a phone without consideration of its neighbors (context-
independent model) or a phone in a particular context (allophone model). Various
types of contexts have been investigated from a single phone context (right- or left-
context), left and right-context (triphone), position-dependent triphones (cross-word
and within word triphones), function word triphones, and quinphones [142]. The
context may or may not include the position of the phone within the word (word-
position dependent), and word-internal and cross-word contexts may be merged or
considered as separate models. Different approaches are used to select the contex-
tual units based on frequency of occurrence and clustering techniques. The optimal
set of modeled contexts is usually the result of a tradeoff between resolution and ro-
bustness, and is highly dependent on the available training data. This optimization is
generally done by minimizing the recognizer error rate on some development data.
Using contextual phone models can be seen as replacing the phone transcription as
specified in the pronunciation dictionary by a transcription in terms of allophones.
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Position: state-position, word-begin, word-end, monophone

General classes: vowel, consonant, continuant, sonorant, voiced-consonant,
voiceless, fricative, strident, stop, nasal, semivowel, aspirated, anterior, high,
coronal, slack, rounded, tense, retroflex, syllabic, fillers

Vowel classes: high-vowel, low-vowel, rounded-vowel, tense-vowel, reduced,
diphthong, front-vowel, back-vowel, long-vowel, short-vowel, retroflex-vowel,
diphthong-F2up, diphthong-F2down

Consonant classes: labial, dental, alveolar, palatal, velar, affricate
Individual phones: (see Figure 5.4)

FIGURE 5.8
Example questions used for decision tree clustering.

Figure 5.7 gives the triphone and quinphone transcriptions for the word SISTER us-
ing only word internal units, i.e., the allophonic transcription is independent of the
word context. When using cross-word triphones, the models used for the first and
last phone of each word (or the first and last two phones in the case of quinphones)
depend on the word context making the decoding problem significantly more com-
plex.

A powerful technique to keep the models trainable without sacrificing model reso-
lution is to take advantage of the state similarity among different models of a given
phone by tying the HMM state distributions. This basic idea is used in most cur-
rent systems although there are slight differences in the implementation and in the
naming of the resulting clustered states (senones [54], genones [24], PELs [11], tied-
states [149]). In practice both agglomerative clustering and divisive clustering have
been found to yield model sets with comparable performance. Divisive decision tree
clustering is particularly interesting when there are a very large number of states
to cluster since it is at the same time both faster and more robust than a bottom-
up greedy algorithm, and therefore much easier to tune. In addition, HMM state
tying based on decision tree clustering has the advantage of providing a means to
build models for unseen contexts, i.e., those contexts that do not occur in the train-
ing data [55, 148]. The set of questions typically concern the phone position, the
distinctive features (and identities) of the phone and the neighboring phones [95],
as shown in Figure 5.8. The most frequently used questions for a large American
English model set are given in Figure 5.9.

5.5.3 HMM Parameter Estimation

Acoustic model training consists of estimating the parameters of each HMM from
the available training data. For Gaussian mixture HMMs, this requires estimating the
means and covariance matrices, the mixture weights and the transition probabilities.
If A is the parameter vector of the HMMs to be trained on some data X, the maxi-
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Question Log likelihood gain | Question Log likelihood gain

vowel[+1] 6.3% phone-r[+1] 2.2%
sonorant[+1] 5.5% phone-H[+1] 2.1%
sonorant[-1] 3.8% strident[+1] 1.9%
front-vowel[+1] 3.6% phone-1 1.8%
semivowel[+1] 3.6% nasal[-1] 1.7%
voiced-consonant[+1] 3.1% vowel[-1] 1.6%
wordbody-pos[0] 2.5% high-vowel[+1] 1.5%
nasal[+1] 2.3% voiceless[-1] 1.5%
voiceless[+1] 2.2% phone-n[+1] 1.5%
wordbegin-pos[0] 2.2% phone-s[+1]1] 1.4%
FIGURE 5.9

The most frequently used decision tree questions for an American English
broadcast news transcription system [40]. The [+1] and [-1] indicate that the
question has been applied to the right or left context respectively, and [0] to the
phone itself.

mum likelihood (ML) estimate is

A = argmax f(X|A, W)
A

where W is the reference transcription of X . ML estimation of the model parameters
is usually done with the Expectation-Maximization (EM) algorithm [22] which is an
iterative procedure starting with an initial estimate of the model parameters. At each
iteration the HMM states are aligned to the training data utterances and the param-
eters are reestimated based on this alignment using the Baum-Welch reestimation
formulas [12, 60, 79]. This algorithm guarantees that the likelihood of the training
data increases at each iteration. In the alignment step a given speech frame can be
assigned to multiple states (with probabilities summing to one) using the forward-
backward algorithm or to a single state (with probability one) using the Viterbi algo-
rithm. This second approach yields a slightly lower likelihood but in practice there
is very little difference in accuracy especially when large amounts of data are avail-
able. It is important to note that the EM algorithm does not guaranty finding the true
ML parameter values, and even when the true ML estimates are obtained they may
not be the best ones for speech recognition. Therefore, some implementation details
such as a proper initialization procedure and the use of constraints on the parameter
values are quite important.

Since the goal of training is to find the best model to account for the observed data,
the performance of the recognizer is critically dependent upon the representatively
of the training data. Some methods to reduce this dependency are discussed below in
the subsection on HMM adaptation. Speaker-independence is obtained by estimat-
ing the parameters of the acoustic models on large speech corpora containing data
from a large speaker population. Since there are substantial differences in speech
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from male and female talkers, it is common practice to use separate models for male
and female speech in order to improve recognition performance. These differences
can be attributed to anatomical differences (on average females have a shorter vocal
tract length resulting in higher formant frequencies, as well as a higher fundamental
frequency) and social ones (female voice is often “breathier” caused by incomplete
closure of the vocal folds). The gender-dependent models are often obtained from
speaker-independent seed models using Maximum A Posteriori estimators [39] (cf.
the next section on HMM adaptation). The gender-dependent models can be further
adapted to each specific speaker. Gender-dependent modeling is just one example
of the family of adaptive training schemes which are particularly well-suited to het-
erogeneous training data (such as broadcast news recordings which include a wide
variety of acoustical conditions, speaker types and speaking styles). Adaptive train-
ing makes use of HMM adaptation techniques after partitioning the training data
according to acoustic conditions and speaker clusters.

Since an HMM is far from being the correct model of the observed data, and there is
only a limited amount of data available to estimate its parameters, it can be advan-
tageous to replace ML training with an alternative discriminative training scheme.
Techniques for large-scale discriminative training of the acoustic models using the
Maximum Mutual Information Estimation (MMIE) criterion in place of conventional
ML estimation have been studied. It has been demonstrated that MMIE-based sys-
tems can lead to sizable word error rate reductions on the transcription of conversa-
tional telephone speech [108]. For a given training sequence X with transcription
W (a training corpus is composed of many of such training sequences), the MMIE
criterion with fixed language model, consists of maximizing the posterior probability
of the word sequence, i.e.,

o XW)P()
A = argmax s X PV

where the summation in the denominator is taken over all possible word sequences.
For LVCSR the calculation of the denominator terms is computationally expensive,
so it is usually approximated by considering only the most likely word hypotheses
given in the form of a word lattice (cf. Section 5.6.2 and Figure 5.10). For more
details about discriminative training the reader is referred to [141].

5.5.4 HMM Adaptation

The performances of speech recognizers drop substantially when there is a mismatch
between training and testing conditions. Several techniques can be used to minimize
the effects of such a mismatch, so as to achieve a recognition accuracy as close as
possible to that obtainable under matched conditions. Acoustic model adaptation
can be used to compensate mismatches between the training and testing conditions,
such as those arising from differences in the acoustic environment, microphones,
and transmission channels, or to improve model accuracy based on the observed test
data for a particular speaker. When no prior knowledge of either the channel type,
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the background noise characteristics or the speaker is available, adaptation has to be
performed using only the test data in an unsupervised manner.

Four commonly used schemes to adapt the parameters of a speech HMM can be
distinguished: Bayesian adaptation [39]; adaptation based on linear transforma-
tions [78]; data clustering based adaptation [32, 69]; and model composition tech-
niques [31].

Bayesian estimation, also called MAP estimation, can be seen as a way to incorporate
prior knowledge into the training procedure by adding probabilistic constraints on the
model parameters. The difference between MAP training and standard ML training
lies in the assumption of an appropriate prior distribution of the parameters to be
estimated. If A is the parameter vector of the HMM to be trained on some data X
with a transcription W, and if g is the prior PDF of A, then the MAP estimate Ais
defined as the mode of the posterior PDF of A, i.e.,

9

A= arg{r\naxf(X|A, WHg(A).

The HMM parameters are still estimated with the EM algorithm but using the MAP
reestimation formulas [39]. This leads to the MAP adaptation technique where con-
straints on the HMM parameters are estimated based on the parameters of an existing
model. Speaker-independent acoustic models can serve as seed models for gender
or speaker adaptation using the gender/speaker specific data, i.e., g(A) in the above
equation is replaced by g(A] A) where A is the parameter vector of the seed models.
MAP adaptation can be used to adapt the models to any desired condition for which
sufficient labeled training data are available. MAP estimation has the same asymp-
totic properties as ML estimation but when independent priors are used for different
phone models the adaptation rate may be very slow, particularly for large models. It
is therefore advantageous to represent correlations between model parameters in the
form of joint prior distributions [121, 151].

Linear transforms are powerful tools for performing unsupervised speaker and en-
vironmental adaptation. The ML linear regression (MLLR) technique [25, 78] is
particularly well-suited to unsupervised adaptation. Since the number of transforma-
tion parameters is small, it is possible to adapt large models with small amounts of
data. It consists of finding the transformation R (usually an affine transformation of
the HMM Gaussian means, m; = Amy + b) which maximizes the likelihood of
the adaptation data X for a given hypothesized transcription W,ie.,

R= argmax f(X|R, A, W)
R

The transform parameters A and b are shared by the different phone units and are
therefore robust to recognition errors. To obtain the ML asymptotic properties it is
necessary to use multiple linear transforms and to adjust the number of linear trans-
formations to the amount of available adaptation data. This can be done efficiently
by arranging the mixture components into a tree and dynamically defining the regres-
sion classes. In addition to the Gaussian means, MLLR adaptation is often applied
to the variance parameters. This adaptation procedure can be applied to both the
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test data and training data. A natural extension of this approach, speaker adaptive
training (SAT) incorporates supervised MLLR in the training procedure and jointly
estimates the training speaker MLLR transforms and the HMM parameters [4]. The
resulting SAT models are better suited to MLLR speaker adaptation.

Given the small number of parameters for the MLLR transformation (on the order
of 500 parameters for a single regression class with a block diagonal matrix), this
adaptation technique is still suitable with as little as 20s of adaptation data (i.e., only
about 2000 frames). If less data is available, other adaptation techniques using a
smaller number of adaptation parameters are required. Data clustering based adap-
tation methods, such as the eigenvoices scheme [69] and the cluster adaptive train-
ing [32] are such techniques. They both use a weighted sum of canonical speaker
cluster models to estimate the Gaussian mean vectors. These adaptation schemes can
also be combined with standard MLLR and MAP adaptation.

Model composition is mostly used to compensate for additive noise by explicitly
modeling the background noise (usually with a single Gaussian) and combining this
model with the clean speech model [30]. For practical reasons, it is generally as-
sumed that the noise density is Gaussian and that the noise corrupted speech model
has the same structure and number of parameters as the clean speech model — typ-
ically a continuous density HMM with Gaussian mixture. Various techniques have
been proposed to estimate the noisy speech models, including the log-normal approx-
imation approach, a numerical integration approach, and a data driven approach [31].
Model composition has the advantage of directly modeling the noisy channel as op-
posed to applying blind adaptation techniques to the same problem.

5.6 Decoding

The LVCSR decoding problem is the design of an efficient search algorithm to deal
with the huge search space obtained by combining the acoustic and language mod-
els. Strictly speaking, the aim of the decoder is to determine the most likely word
sequence W*, given the language model, the pronunciation dictionary and the acous-
tic models, i.e.,

W* = argmax P(W|X) = argmax Y _ P(W)P(H|W)f(X, S|W)
w W us

where the summation is taken over all possible pronunciations and all possible HMM
state sequences corresponding to the word sequence W. In practice, however, it is
common to search for the most likely HMM state sequence. This maximum approx-
imation, also referred to as Viterbi search, leads to a simplified view of the decoding
problem:

W* ~ argmaxmax P(W)P(H|W)f(X, S|W).
w H,S
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This is an easier task, consisting of finding the best path through a trellis (the search
space) where each node represents an HMM state at a given time. It has been shown
that even though the Viterbi decoding gives only a crude approximation of the like-
lihood of the word sequence, the two word hypotheses are almost always very close.
Some simple extensions of the Viterbi search are able to compensate for most of
decoding approximations in particular to avoid penalizing words with many pronun-
ciations.

In many speech recognition systems the first step of decoding is identifying the
speech portions of the audio signal. This process is described in the next subsec-
tion, followed by more details on decoding strategies.

5.6.1 Speech/Non-speech Detection

Detecting portions of the audio signal containing speech is commonly referred to as
speech detection or endpoint detection. A variety of approaches to endpoint detection
have been proposed ranging from simple energy threshold based methods to methods
requiring the extraction of more complex parameters such as pitch. A general view
of the problem is one of data partitioning, which aims to divide a continuous audio
stream into homogeneous acoustic segments. Partitioning consists of identifying
speech and non-speech segments, and then clustering the speech segments, assigning
metadata labels to each segment. The labels typically specify the signal bandwidth
and gender, but can also specify the background characteristics and speaker identity.
When transcribing inhomogeneous audio streams, partitioning the data prior to word
recognition offers several advantages. First, in addition to the transcription of what
was said, other interesting information can be extracted from the audio signal, such
as the division into speaker turns and the speaker identities, and background acoustic
conditions. Second, by clustering segments from the same speaker, acoustic model
adaptation can be carried out on a per cluster basis, as opposed to on a single seg-
ment basis, thus providing more adaptation data. Third, prior segmentation can avoid
problems caused by linguistic discontinuity at speaker changes. Fourth, by using
acoustic models trained on particular acoustic conditions (such as wide-band or tele-
phone band), overall performance can be significantly improved. Finally, eliminating
non-speech segments and dividing the data into shorter segments (which can still be
several minutes long), substantially reduces the computation time and simplifies de-
coding.

Various approaches have been proposed to partition a continuous stream of audio
data. Most of these approaches rely on a two step procedure, where the audio stream
is first segmented in order to locate acoustic changes which are assumed to be asso-
ciated with changes in speaker, background or environmental condition, and channel
condition. The segmentation procedures can be classified as being based on phone
decoding [48, 81, 135], distance-based segmentations [67, 124], or on hypothesis
testing [18, 136]. The resulting segments are then clustered (usually using Gaus-
sian models), where each cluster is assumed to identify a speaker or more precisely,
a speaker in a given acoustic condition. An alternative language-independent ap-
proach relies on an audio stream mixture model [37]. Each component audio source,
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representing a speaker in a particular background and channel condition, is in turn
modeled by a mixture of Gaussians. The segment boundaries and labels are jointly
identified via an iterative maximum likelihood segmentation/clustering procedure
using Gaussian mixture models and agglomerative clustering.

5.6.2 Decoding Strategies

Since it is often prohibitive to exhaustively search for the best path, techniques have
been developed to reduce the computational load by limiting the search to a small
part of the search space. Even for research purposes, where real-time recognition is
not needed there is a limit on computing resources (memory and CPU time) above
which the development process becomes too costly. The most commonly used ap-
proach for small and medium vocabulary sizes is the one-pass frame-synchronous
Viterbi beam search [92] which relies on a dynamic programming algorithm. This
basic strategy has been extended to deal with large vocabularies by adding features
such as dynamic decoding [96], multi-pass search [91], and N-best rescoring [118].

Dynamic decoding can be combined with efficient pruning techniques in order to
obtain a single pass decoder that can provide the answer using all the available in-
formation (i.e., that in the models) in a single forward decoding pass over of the
speech signal. This kind of decoder such as the stack decoder [107] based on the A *
algorithm or the one-pass frame synchronous dynamic network decoder [96], is very
attractive for real-time applications.

Static decoders require much more memory than dynamic decoders when used with
long span language models (3-gram or higher order), and as a consequence they are
mostly used with smaller language models (usually 2-grams or constrained gram-
mars). It has been recently shown that by proper optimization of a finite-state au-
tomaton’ corresponding to a recognizer HMM network, substantial reduction of
the overall network size can be obtained, enabling static decoding with long span
LMs [90]. However, the size of the optimized network remains proportional to the
LM size.

Multi-pass decoding can be used to progressively add knowledge sources in the de-
coding process, thus allowing the complexity of the individual decoding passes to be
reduced and often resulting in a faster overall decoder [94]. For example, a first de-
coding pass can use a 2-gram language model and simple acoustic models, and later
passes will make use of 3-gram and 4-gram language models with more complex
acoustic models. This multiple pass paradigm requires a proper interface between
passes in order to avoid losing information and engendering search errors. Infor-
mation is usually transmitted via word lattices* or word graphs (see Figure 5.10),
although some systems use N-best hypotheses which are a list of the most likely

T An HMM-based speech recognizer can be seen as a transduction cascade which converts the observed
feature vectors to a word string, where to some approximation, each transduction (phone model, word
model or language model) can be represented as a finite-state automaton.

Lattices are graphs where nodes correspond to particular frames and where edges representing word
hypothesis have associated acoustic and language model scores.
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FIGURE 5.10

Example word lattice generated by a speech recognizer using a bigram language
model for a 2.1s utterance. Each graph edge corresponds to a word hypothesis
and a time interval (as specified by the time information on the nodes). In this
example the word transcription with the highest likelihood is *sil IT WAS A
GOOD PROGRAM sil” which happens to be what was said. (The acoustic and
language model likelihoods are not given on the figure.)

word sequences with their respective scores. At the price of some acceptable ap-
proximations, word lattices (and N-best lists) can be generated with little overhead
(about 10%) by modifying the bookkeeping of the partial hypotheses considered dur-
ing regular decoding [100].

It can sometimes be difficult to add certain knowledge sources into the decoding
process especially when they do not fit in the Markovian framework. This is the
case when trying to use segmental information or to use grammatical information
for long term agreement. Such information can be more easily integrated in a multi-
pass system by rescoring the recognizer hypotheses after applying the additional
knowledge sources. Evidently, the first pass used to generate the initial word lattice
must be accurate enough to not introduce lattice errors which are unrecoverable with
further processing.

In addition to multiple pass decoding, word lattices can be used to overcome the
Viterbi approximation discussed above. As a matter of fact, true MAP decoding is a
considerably easier task on a word lattice than on the original search space. Along
the same lines, it has been proposed to use word lattices to perform a word based
MAP decoding instead of word sequence MAP decoding, i.e., minimizing the word
error instead of the word sequence (or sentence) error rate [83].

5.6.3 Efficiency

As discussed above, there are many efficient solutions to the search problem, how-
ever finding the optimal solution is always a trade-off between the model accuracy
and efficient pruning. In general better models have more parameters, and therefore
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require more computation. However since the models are more accurate, it is often
possible to use a tighter pruning level (thus reducing the computational load) without
any loss in accuracy.

Limitations on the available computational resources can significantly affect the de-
sign of the acoustic and language models, as for each operating point, the right bal-
ance between model complexity and pruning level must be found. Aggressive prun-
ing is generally needed to achieve real-time operation for LVCSR tasks on currently
available platforms. This inevitably is a source of search errors, and as such, many
techniques have been proposed to reduce these search errors and to limit their effect
on the recognizer accuracy. One of the most popular decoding strategies for real-
time operation is the one-pass frame-synchronous dynamic network decoder which
relies on a phonetic tree organization of the decoding network using LM state con-
ditioned tree copies [5, 93, 96]. The success of such a single pass approach is highly
dependent on the use of efficient pruning strategies associated with a language model
lookahead [99, 117]. Multipass approaches can also be used successfully for close to
real-time operation by chunking the data and running the different passes in parallel
with a slight delay.

For speaker-independent LVCSR based on Gaussian mixture HMM, between 30 and
50% of the recognition time is spent in computing the HMM state likelihoods, with
the remaining time corresponding to the search procedure itself. This is due to the
large number of states needed to represent the context-dependent phone models, even
when state tying is used. This computation can be reduced either by implementing
a fast state likelihood computation which usually requires making some approxima-
tions, or by reducing the model size which has the additional advantage of reducing
the memory requirements. A widely used technique for speeding up the state like-
lihood computation is vector quantization of the feature vector space in order to
prepare a Gaussian short list for each HMM state and each region of the quantified
feature space [13]. With this technique the number of Gaussian likelihoods to be
computed during decoding for each input frame and each state can be reduced to a
fraction of the number of Gaussians corresponding to the active states with only a
small loss in accuracy.

Model and state tying are commonly used to improve the model accuracy but optimal
tying (from the accuracy point of view) can still result in a very large model with 5 k
to 30 k states when large amounts of training data are available. Parameter tying is
also powerful technique to reduce the number of parameters, and can be applied to
all the levels of the model structure (allophone model, state, and Gaussian) [127].
However, more flexibility is available for Gaussian PDF tying in that large model
reductions can be obtained without sacrificing too much in terms of system accuracy.
This is exemplified by the subspace distribution tying approach [84, 127], which
in its most elementary implementation can be seen as a quantization of the model
parameters.

The language model, usually a 3-gram or 4-gram back-off LM in state-of-the-art
systems, can have a very large number of parameters (over 10 million), and there-
fore may require prohibitive amounts of memory. One of the attractive properties
of n-gram models is the possibility of relying more on the back-off components by
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increasing the cutoffs on the n-gram counts, thus reducing significantly the LM size
(c.f. Section 5.3.3). More elaborate n-gram pruning techniques have also been pro-
posed [123, 126] to substantially reduce the LM size with negligible loss in accuracy.
An alternative approach to limit the memory requirements is to keep most of the LM
parameters on the disk, since most n-grams are never used, combined with a cache
of the scores for accessed LM states [111].

5.6.4 Confidence Measures

Confidence measures have been proposed as a way of detecting those hypothe-
sized words that are likely to be erroneous by estimating word and sentence cor-
rectness [15, 42, 125, 138, 137]. At the sentence level the goal is to get an estimate
of Pr(W|X) for the hypothesized word string W. One common approach consists
of using the posterior Pr(W| X, M) as an estimate. This assumes that the recognizer
models (acoustic model, language model, and lexicon designated by M) are correct
and that the decoder does not make any search errors. Further approximations may
use simpler acoustic and language models to speed up the computation, for example,
the word language model can be replaced by a phone language model [36]. For most
LVCSR tasks, the concern is essentially for a word level confidence measure, i.e., the
goal is to obtain an estimate of Pr(w;|X) the posterior probability of the i-th word
in the hypothesized word string, or alternatively Pr(w ;| X, M). An estimate of this
latter probability can be efficiently computed by applying the Forward-Backward al-
gorithm to a word graph generated by the speech recognizer [138]. However since
this posterior probability relies on incorrect models, it is also common to use addi-
tional features such as word and phone durations, speaking rate, and signal-to-noise
ratio to better approximate the word posterior probability Pr(w ;|X). All the predic-
tors can be combined and mapped to the confidence score by using either a logis-
tic regression [42], a generalized additive model [125], or a neural-network [137].
These models are trained on development data by maximizing a confidence score
metric such the normalized cross entropy. The proper set of features depends on the
particular application.

5.7 Indicative Performance Levels

This section provides some indicative measures of recognizer performance for a few
LVCSR tasks, but makes no attempt to be exhaustive. Essentially all of todays state-
of-the-art systems make use of the statistical modeling techniques presented in this
chapter. Speech recognition technology has advanced greatly over the last decade.
These advances can be clearly seen in the context of DARPA supported benchmark
evaluations. This framework, known in the community as the DARPA evaluation
paradigm, has provided the training materials (transcribed audio and textual cor-
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pora for training acoustic and language models), test data and a common evaluation
framework. In recent years the data have been provided by the Linguistics Data Con-
sortium (LDC) and the evaluations organized by the National Institute of Standards
and Technology (NIST) in collaboration with representatives from the participating
sites and other government agencies. It is widely acknowledged that the performance
of a speech recognizer is strongly dependent upon the task, which in turn is linked to
the type of user, speaking style, environmental conditions, etc.

The commonly used metric for speech recognizer performance, the “word error”
rate, is a measure of the average number of errors taking into account three error
types with respect to a reference transcription: substitutions (the reference word is
replaced by another word), insertions (a word is hypothesized that was not in the
reference), and deletions (a word in the reference transcription is missed). The word

error rate is defined as
#subs+#ins+#del

# reference words

and is generally computed by aligning the reference and hypothesized transcriptions
using a dynamic programming algorithm, where costs are associated with the differ-
ent error types. Given this definition the word error can be more than 100%.

While this chapter addresses speech transcription (i.e., going from the audio signal
to words), it should be kept in mind that additional information can be extracted
from the audio signal. Extraction of some of this so-called “metadata”, is discussed
in Chapters 8 (Schwartz and Makhoul) and 12 (Allen). The metadata can be of an
acoustic nature (speaker and gender information [73], audio type information [34,
122]) of a linguistic nature (case-sensitive texts, punctuation, named entities (names
of persons, places, organizations), topics, or other semantic tags). The same HMM-
based probabilistic framework has been used to assign tags [89, 134, 144]. Detailed
semantic tagging is often required for dialog tasks where it is common to use task-
dependent representations such as semantic frames, with predefined semantic slots
and values.

5.7.1 Dictation

Dictation is the most obvious automatic speech recognition task, and has a long
history of research and product development, resulting in low-cost, off-the-shelf sys-
tems for a variety of platforms and languages. While from the technological view-
point, dictation is usually thought of as a “simple” transformation from speech to
text, this view overlooks a variety of formatting and integration issues which are
important for usability. Perhaps the most notable characteristic of the dictation task
is that the speech data is produced with the explicit goal of being transcribed by a
machine. The speech data in a dictation session comes from a single speaker and is
recorded with a controlled signal acquisition setup. The linguistic content is usually
somewhat limited and the word stream is quite close to the written form.

Although benchmarks of commercial dictation systems are not publicly available,
dictation has served as a baseline performance measure in LVCSR, most notably
in the benchmark tests sponsored by the U.S. DARPA programs and coordinated by
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NIST. The close relationship between system development and evaluation (referred
to as “assessment driven technology development”) has led to large performance
improvements in spite of increasing task difficulty. For read speech, the state-of-the-
art in speaker-independent continuous speech recognition is exemplified by the last
benchmark tests (1995/1996) on North American Business News task [104, 105].
The acoustic training data was comprised of about 160 h of read newspaper texts
from several hundred speakers, and the language model training material was com-
prised of 400 M words of newspaper texts, from a variety of sources. On test data
recorded with a close-talking microphone with an SNR of about 30 dB, word error
rates around 7% were obtained using a 65 k word vocabulary. ¥ The same read speech
recorded with a table-top microphone in a computer room/office environment (noise
level 55 dBA, SNR about 15 dB), resulted in a word error of about 14% with noise
compensation. Without noise compensation the word error rates of systems trained
on only clean speech data were over 50%. The word error for read newspaper texts
recorded over long distance telephone lines was over 20%. Spontaneous dictation
of business and financial news was addressed by asking subjects with experience in
journalism to read about a subject and then dictate a text. The journalists were not
allowed to read from a draft, but were allowed to reject ill-formed sentences [66].
The word error on this data was about 14%. Another task addressed speech recogni-
tion of non-native talkers. With a set of 40 adaptation sentences, speaker adaptation
reduced the word error rate by a factor of two (from 21% to 11%). Although not an
official benchmark result, comparable word error reductions have been obtained for
native speakers on other tasks.

While the results given here are for American English, somewhat comparable re-
sults have been reported by various sites for other languages [71]. The LRE SQALE
(Speech recognizer Quality Assessment for Linguistic Engineering) project [146],
which aimed to assess language-dependent issues in multilingual recognizer evalua-
tion, demonstrated that the same recognition technology and evaluation methodology
used for American English could be successfully applied to a dictation task in British
English, French, and German.

5.7.2 Speech Recognition for Dialog Systems

The speech recognizer is often considered a critical component of spoken dialog
systems, which aim to enable vocal access to stored information. In order to provide
user-friendly interaction with a machine, it is necessary to be able to recognize natu-
rally spoken utterances from unknown speakers. In general each user interacts only
briefly with the machine, so there is very little data available for model adaptation.
Telephone services are a natural area for spoken dialog systems as the only means
of interaction with the machine are via voice and have thus been the focus of many
development efforts. Since all interaction with the caller is by speech, dialog design

§With the exception of the telephone recordings, the speakers were allowed to repeat their recording if
unsatisfied with it. [66, 104]

© 2003 by CRC Press LLC



and response generation are of particular importance in the context of natural, mixed-
initiative dialog. Growing in popularity are information kiosks [35] and multimedia
web interfaces, in which different modalities (tactile and audio) can be used for input
and output. The speech recognizers of dialog systems are typically faced with more
challenging acoustic conditions than for dictation tasks, being subject to channel dis-
tortions, varied handsets and noisy background conditions. The capability of the user
to interrupt the machine is often considered crucial for usability.

In contrast to dictation applications where it is relatively straight-forward to obtain
large written corpora for language modeling, for dialog systems it is usually nec-
essary to collect application-specific data, which can represent a significant portion
of the development effort [75]. Acquiring sufficient amounts of LM training data
is more challenging than obtaining acoustic data. With 10 k queries relatively ro-
bust acoustic models can be trained, but this number of queries will typically contain
fewer than 100 k words, which may be insufficient for word list development and for
training n-gram language models. Also the queries are unlikely to yield a complete
coverage of the task.

The most widely known efforts in evaluation of SLDSs are the DARPA ATIS task [50,
82, 109], the German national Verbmobil project [132], and the EC Language Engi-
neering projects [85, 86]. A wide range of word error rates have been reported for
the speech recognition components of spoken dialog systems, ranging from under
5% for simple travel information tasks using close-talking microphones to over 25%
for telephone-based information retrieval systems. It is quite difficult to compare
results across systems and tasks as different transcription conventions and text nor-
malizations are often used. It should be noted that reporting word error rates can be
somewhat misleading, since all differences between the exact orthographic form of
the query and the recognizer output are counted as errors, and some of recognition
errors (such as gender or plurals) are not important for understanding. A more appro-
priate measure could be the error rate on meaningful words or concepts used in later
processing stages. In the DARPA ATIS benchmark tests [103, 104] the understand-
ing error based on the spoken input was not much larger than the natural language
understanding error obtained using manual orthographic transcriptions. In the case
of multimodal systems, the effectiveness of speech must be assessed in coordination
with the other modalities.

5.7.3 Transcription for Audio Indexation

A more recent application area is the transcription of general audio data, such as ra-
dio and television broadcasts, T or meetings and teleconferences. Automatic speech
recognition is a key technology for audio and video indexing and any kind of audio
data mining. Several characteristics of this type of audio data can be noted. First, it
can be considered “found” data in that it is produced for other reasons. To be able

T The earliest work in this area that we are aware of is the NSF INFORMEDIA project [49] under the
Digital Libraries News-on-Demand action line. A special section of the Communications of the ACM
was recently devoted to this topic [88].
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to automatically structure the data for other uses is only a secondary benefit. Using
test data taken from a real task, as opposed to data recorded for evaluation purposes
represents a major step for the community. Secondly, the data consists of a con-
tinuous audio stream, where there are multiple speaker turns (maybe overlapping),
and there is no a priori segmentation into sentences. Thirdly, the signal capture and
background environment can be only more or less controlled.

Two principle types of problems are encountered in automatically transcribing audio
data streams: those relating to the varied acoustic properties of the signal, and those
related to the linguistic properties of the speech. Noise robustness is also needed in
order to achieve acceptable performance levels. In order to be robust with respect
to the varied acoustic conditions, the acoustic models are typically trained on large
corpora (several tens of hours to over a hundred hours) containing a variety of data
types. The linguistic models are similarly trained on large text corpora from various
sources with different linguistic properties, such as newspaper and newswire texts,
Internet data, commercial transcriptions, and detailed transcriptions of acoustic data.
Given the spontaneous nature of parts of the audio data, it is important to explicitly
model extralinguistic phenomena such as filler words and breath noise.

State-of-the-art transcription systems (trained on 100h of acoustic data and over 200
M words of commercial transcripts) achieve word error rates of around 20% on un-
restricted broadcast news data. Transcription performance varies quite a bit across
the data types. The average word error rate reported on prepared, announcer speech
is about 8% in the DARPA benchmark test data, but under 2% for some speakers.
Performance decreases substantially for spontaneous portions (average word error
15%), degraded acoustic conditions (average word error 16%), or speech from non-
native speakers (average word error over 25%). The transcription of broadcast data
has also been a recent focus of research efforts in several other languages, includ-
ing French, German, Italian, Japanese, Mandarin, and Spanish [14, 59, 62, 97, 106]
using the same technology. The reported error for these languages are somewhat
higher than for American English which can be at least partially attributed to the
smaller amounts of training data available in these languages, and in particular to the
difficulty of obtaining commercial transcripts for language model estimation.

Substantially higher word error rates, above 30-40% have been reported for the tran-
scription of telephone conversational speech [147] using the Switchboard [44] and
multilinugal Callhome (Spanish, Arabic, Mandarin, Japanese, German) corpora. The
Callhome data is particularly challenging to transcribe as the conversations are be-
tween two people that know each other, and speak in a familiar manner about subjects
of common interest.
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5.8 Portability and Language Dependencies

Statistically-based speech recognition technology has been successfully employed
for a variety of tasks and languages. The porting of a LVCSR system to a new
task or another language requires the availability of sufficient amounts of transcribed
training data and involves substantial effort to construct the acoustic and language
models, and to develop the recognition lexicon. Often, however, the necessary re-
sources are not available and generating them can be long and expensive.

Recent efforts have been directed at developing generic recognition models and the
use of unannotated data for training purposes, in an aim to reduce the reliance on
manually annotated training corpora and reducing development costs [1]. Methods
to improve generality of the models are under investigation, but the problem is far
from being solved.

Although English has been the predominant language for the computer world, there
has been a large growth in the amount of information available in electronic form in
many of the world’s languages. Building a recognizer for another language is not so
different than building a recognizer for a new task, particularly for close languages.
Language-dependent system components (such as the phone set, the need for pro-
nunciation alternatives, or phonological rules) evidently must be changed. Other
language dependent factors are related to the definition and acoustic confusibility of
the words in the language (such as homophone, monophone, and compound word
rates) and the word coverage of a given size recognition vocabulary. Taking into
account language specificities can evidently improve recognition performance. For
example, tonal languages such as Chinese may benefit from explicit modeling of
pitch, which in turn may require modifications to the feature analysis used.

There are two predominant approaches for bootstrapping acoustic models for another
language. The first is to use acoustic models from an existing recognizer and a
pronunciation dictionary to segment manually annotated training data for the target
language. If recognizers for several languages are available, the seed models can
be selected by taking the closest model in one of the available language-specific
sets. An alternative approach is to use a set of global acoustic models, that cover a
wide number of phonemes [116, 133]. This approach offers the advantage of being
able to use multilingual acoustic models to provide additional training data, which is
particularly interesting when only limited amounts of data (< 10 hours) for the target
language are available.

Minimizing the required training data (or determining how to optimally acquire such
data) remains an outstanding challenge. Standard HMM training requires an align-
ment between the audio signal and the phone models, which usually relies on an
orthographic transcription of the speech data and a good phonemic lexicon. The
orthographic transcription is usually considered as ground truth, that is the word se-
quence that should be hypothesized by the speech recognizer when confronted with
the same speech segment. One can imagine training acoustic models in a less super-
vised manner, in which related linguistic information about the audio sample can be
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used in place of the manual transcriptions required for alignment by incorporating
this information in a language model. This language model can be used with acous-
tic models developed for another task to automatically transcribe the task-specific
training data. Although in the beginning the error rate on new data is likely to be
rather high, this speech data can be used to retrain the models of the recognition
system. An iterative procedure can successively refine the models and the transcrip-
tion [62, 74, 150, 139]. This approach is particularly promising for the transcription
of readily available audio sources such as radio and television news broadcasts, that
can provide an essentially unlimited supply of acoustic training data.
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6.1 Introduction

Speech recognition systems are expected to play important roles in an advanced
multi-media society with user-friendly human-machine interfaces [1]. The field of
automatic speech recognition has witnessed a number of significant advances in the
past 5-10 years, spurred on by advances in signal processing, algorithms, computa-
tional architectures, and hardware. These advances include the widespread adoption
of a statistical pattern recognition paradigm, a data-driven approach which makes
use of a rich set of speech utterances from a large population of speakers, the use of
stochastic acoustic and language modeling, and the use of dynamic programming-
based search methods [2, 3, 4].

The state-of-the-art in automatic speech recognition can be addressed in several
ways. Figure 6.1 illustrates the progress of speech recognition and understanding
technology according to generic application areas, ranging from isolated word or
command recognition to natural conversation between human and machine. The
complexity of these generic application areas is characterized along two dimensions:
the size of the vocabulary and the speaking style. It should be obvious that the larger
the vocabulary, the more difficult the application task. Similarly, the degree of con-
straints in the speaking style has a very direct influence on the complexity of the
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Progress of spoken language technology along the dimensions of vocabulary size
and speaking styles.

application; a free conversation full of slurring and extraneous sounds such as “uh”,
“um”, and partial words is far more difficult than words spoken in a rigidly discrete
manner. Thus, the difficulty of an application grows from the lower left corner to the
upper right corner in the figure. The three bars in the figure demarcate the applica-
tions that can and cannot be supported by the technology for viable deployment in the
corresponding time frame. It should be noted that these three bars are not parallel;
which means that the progress of spontaneous speech recognition and understanding
is much slower than that of more rigidly spoken utterances.

Common features of state-of-the-art speech recognition systems exist in using cep-
stral parameters and their regression coefficients as speech features, triphone HMMs
as acoustic models, vocabularies of several thousand or several ten thousand entries,
and statistical language models such as bigrams and trigrams. Such methods have
been applied not only to English but also to French, German, Italian, and Japanese;
and, although there are several language-specific characteristics, similar recognition
results have been obtained. Recently, tasks using natural conversational speech have
been actively investigated. In spite of the remarkable recent progress, we are still far
behind our ultimate goal of understanding free spontaneous speech uttered by any
speaker in any environment.

Read speech and similar types of speech, e.g. that from reading newspapers or from
news broadcast, can be recognized with accuracy higher than 90% using the state-of-
the-art speech recognition technology. However, recognition accuracy drastically de-
creases for spontaneous speech. This decrease is due to the fact that the acoustic and
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linguistic models used have generally been built using written language or speech
from written language. Unfortunately spontaneous speech and speech from written
language are very different both acoustically and linguistically. Broadening the ap-
plication of speech recognition thus crucially depends on raising the recognition per-
formance for spontaneous speech. In order to increase the recognition performance
for spontaneous speech, it is crucial to build acoustic and language models for spon-
taneous speech. Methods applying statistical language modeling such as bigrams
and trigrams of words or morphemes to spontaneous speech corpus may not be ade-
quate. Our knowledge of the structure of spontaneous speech is currently inadequate
to achieve the necessary breakthroughs. Although spontaneous speech effects are
quite common in human communication and may be expected to increase in human
machine discourse as people become more comfortable conversing with machines,
modeling of speech disfluencies is only just beginning. Recognition of spontaneous
speech will require a paradigm shift from speech recognition to understanding where
underlying messages of the speaker are extracted, instead of transcribing all the spo-
ken words [5].

Much of our thinking about speech recognition has been focused on its use as an
interface in human-machine interactions mostly for information access and extrac-
tion. With increases in cellular phone use and dependence on networked information
resources, and as rapid access to information becomes an increasingly important eco-
nomic factor, telephone access to data and telephone transactions will no doubt rise
dramatically. There is a growing interest, however, in viewing speech not just as a
means to access information, but as, itself, a source of information. Important at-
tributes that would make speech more useful in this respect include: random access,
sorting (e.g., by speaker, by topic, by urgency), scanning, and editing. How could
our lives be changed by such tools? Enabling such a vision challenges our systems
still further in noise robustness and in spontaneous speech effects.

We can envision a great information revolution on par with the development of writ-
ing systems, if we can successfully meet the challenges of speech both as a medium
for information access and as itself a source of information. Speech is still the means
of communication used first and foremost by humans, and only a small percentage
of human communication is written. Automatic speech understanding can add many
of the advantages normally associated only with text (random access, sorting, and
access at different times and places) to the many benefits of speech. Making this
vision a reality will require significant advances.

6.2 Four Categories of Speech Recognition Tasks

Speech recognition tasks can be classified into four categories as shown in Table 6.1
according to two criteria: whether it is targeting utterances from human to human or
human to computer, and whether the utterances have a dialogue or monologue style.
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TABLE 6.1
Categorization of speech recognition tasks

Dialogue Monologue

(Category I) (Category II)
Switchboard Broadcasts news (Hub 4)

H toh > ’

tman to uman Call Home (Hub 5), lecture, presentation,
meeting task voice mail
(Category III) (Category 1V)
Human to machine ATIS, C(')mmun@cator, Dictation

information retrieval,
reservation

The table lists typical tasks for each category.

Most of the practical application systems widely used now are classified as Category
III, recognizing the utterances in human-computer dialogues such as in the airline
information services task. DARPA-sponsored projects including ATIS and Com-
municator are laying the foundations of these systems. Unlike other categories, the
systems in the Category III are usually designed and developed after clearly defining
the application/task. The machine that we have attempted to design so far is, almost
without exception, limited to the simple task of converting a speech signal into a
word sequence and then determining, from the word sequence, the meaning that is
“understandable”. Here, the set of understandable messages is finite in number, each
being associated with a particular action (e.g., route a call to a proper destination or
issue a buy order for a particular stock). In this limited sense of speech communica-
tion, the focus is detection and recognition rather than inference and generation.
Category I targets human-to-human dialogues and includes DARPA-sponsored Switch-
board and Call Home (Hub 5) tasks. Speech recognition research with the aim of
making minutes of meetings has recently started in this category.

One of the typical tasks belonging to the Category 1V, that targets the recognition of
monologues performed when people are talking to a computer, is dictation. Various
commercial software for such purposes has been developed.

Tasks belonging to the Category II, that target recognizing human-to-human mono-
logues, include transcription of broadcast news (Hub 4), lectures, presentations, and
voice mails. Speech recognition research in this category has recently become very
active.

Various research has made clear that the utterances spoken by people talking to com-
puters, such as those in the Categories III and IV, especially when the speaker is
conscious, are acoustically as well as linguistically very different from those spoken
to other people, such as those in Categories I and II. Even in utterances spoken to
people, the acoustic and linguistic characteristics of monologues, such as lectures,
presentations, and voice mails, are largely different from that of daily dialogues.
Since the utterances in the Category II are made with the expectation that the audi-
ence can correctly understand what is spoken in the one-way communication, they
are relatively easier to perform recognition on than the utterances in Category 1.
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If high recognition performance is achieved, a wide range of applications, such as
making lecture notes, records of presentations and closed captions, archiving these
records, their retrieval, and the retrieval of voice mails, will be realized.

Since the utterances in the Category IV are made with the expectation that his/her
utterances are exactly converted into texts with correct characters, their spontaneity
is much lower than that in the Category III. In the four categories, spontaneity is
considered to be the highest in Category I and the lowest in Category I'V.

Among these four categories, this chapter first briefly reviews Categories I, II, and
III, and then it focuses on Category II. A large-scale national project to investigate
the issues of spontaneous speech recognition is introduced.

6.3 Spontaneous Speech Recognition and Understanding - Re-
view
6.3.1 Category I (human-to-human dialogue)

Switchboard [6] is a DARPA-sponsored large multispeaker corpus of spontaneous
conversational telephone bandwidth speech and text for research on large vocabulary
speech recognition and speaker authentication. About 2500 conversations by 500
speakers from around the U.S. were collected automatically over T1 lines. In each
conversation, two speakers were asked to discuss one of 70 different topics such as
pets, crime, or air pollution. These conversations are of duration three to ten minutes,
five minutes in average, and spoken by paid volunteers of both sexes in every major
dialect of American English. This amounts to over 250 hours of speech and nearly
three million words of text. Recognition of utterances in the Switchboard corpus is
a very challenging task.

Oral communication is transient but many important decisions, social contracts, and
fact findings are first carried out orally, documented in written form, and later re-
trieved. Humans spend a lot of time transforming oral communications into written
documents. Research focusing on automatic meeting record creation and access has
been conducted [7]. The research aims at a realistic meeting scenario, the corre-
sponding speech recognition problems, the analysis of retrieval performance, the
generation of readable summaries and a practical user interface. Meeting recogni-
tion is a very challenging LVCSR task parallel to that of Hub 5 (Switchboard) and
Hub 4 (Broadcast News). The difficulty is due to three reasons. First, the conversa-
tional style - meetings consists of uninterrupted continuous recordings with multiple
speakers talking in a conversational style. Second, the lack of training data - meeting
data is highly specialized depending on the topic and participants, therefore large
databases cannot be provided on demand. As a consequence, the research has fo-
cused on the question of how to build LVCSR systems for new tasks and languages
using limited amounts of training data. Third, the degraded recording conditions:
to minimize interference a clip-on lapel microphone was chosen instead of a close-
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talking headset. This comes at the cost of significant channel cross-talk.

6.3.2 Category II (human-to-human monologue)

The DARPA-sponsored Hub 4 project has been a driving force behind research on

human-to-human monologue speech recognition since 1995 [8]. In this project, tele-

vision and radio news broadcasts are recorded and annotated. The materials con-

sist of what has been termed “found speech” - “found” in news broadcasts, in con-

trast with the specially recorded “read” speech investigated in the former DARPA

“North America Business (NAB) news” project. It proved to offer a rich assort-

ment of technical challenges to the community, including varied speaking styles,

foreign-accented English, the presence of background music and both full, as well as

reduced-bandwidth channel effects. The lowest word error rates in the 1998 bench-

mark test results for the low-noise baseline, FO, and spontaneous, F1, conditions were

7.8% and 14.4%, respectively. The database was later extended to include Mandarin

Chinese and Spanish.

In 1998, a new task (“spoke”) was added to Hub 4 to examine the effectiveness of
broadcast news recognition technology in generating information rich entities and

to begin to move the research focus from simple transcription toward spoken infor-

mation understanding. The task involved the recognition and identification of the

following types of information entities in the broadcast news stream: named enti-

ties (person, location, and organization), temporal expressions (date and time), and

numeric expressions (monetary and percentage).

In Japan, Japanese broadcast-news speech transcription systems have been researched
and developed by NHK broadcasting company R&D lab and by several universi-

ties [9, 10]. The language models were constructed using broadcast-news manuscripts
taken from NHK TV news broadcasts. Since Japanese sentences are written with-
out spaces between words and there is no clear definition of words, the broadcast-
news manuscripts were segmented into words (morphemes) using a morphological
analyzer to calculate word n-gram language models. Many Japanese words have
multiple readings and the correct one can only be decided according to the con-

text. Therefore, language models in which a word with multiple readings is split
into different language model entries according to those readings have been con-

structed. Since various characters, such as Chinese characters, multiple types of
Japanese characters, numbers, and alphabets, are used in Japanese text, it is hard to
type Japanese text in real time. Therefore, computer-based systems are indispens-
able for online Japanese closed captioning. NHK started the closed captioning using
a real-time speech recognizer followed by manual correction of recognition errors

in March 2000. Since recognition accuracy for spontaneous speech is not yet satis-
factory, closed captioning is provided only for the speech uttered by anchors in the
studio.

With the increasing number of different media sources for information dissemina-
tion, there is a rapidly growing need for fast automatic processing of audio data
stream. Automation of audio segmentation, transcription, and indexation is indis-
pensable. A spoken document indexing and retrieval system combining a state-of-
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The SCANMail architecture [12].

the-art speech recognizer with a text-based information retrieval (IR) system has
been investigated [11]. With query expansion using commercial transcripts, com-
parable mean precisions have been obtained on manual reference transcriptions and
automatic transcriptions with a word error rate of 21.5%.

Voicemail speech recognition presents a challenging problem, since it is character-
ized by a variety of speaking rates, accents, tasks, and acoustic conditions. Addi-
tionally, phenomena such as disfluencies, restarts, repetitions, and broken words are
common. In contrast to natural dialogue, voicemail speech is monologue, that is a
“one-way” communication: speakers do not receive any direct feedback when they
leave messages. The telephone channel also poses problems of low bandwidth and
signal to noise ratio, since there are no restrictions on the location or type of tele-
phone used to leave a voicemail message.

SCANMail [12] is a system that employs automatic speech recognition (ASR), IR,
information extraction (IE), and human computer interaction (HCI) technology to
permit users to browse and search their voicemail messages by content through a
graphical user interface (GUI). The SCANMail client also provides note-taking ca-
pabilities as well as browsing and querying features. An email server sends the orig-
inal message plus its transcription to mailing address specified in the user’s profile.
Figure 6.2 shows the architecture of the system. The language model for ASR is a
Katz-style backoff trigram trained on 700,000 words from the transcriptions of the
60 hour training set.

An important issue related to the development of integrated voice/data communi-
cations is that of speech summarization: given a spoken passage, produce a short
textual precis of its content. A system that transmits text summaries of a user’s in-
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coming voicemail messages, using the GSM short message service (SMS), reducing
the need for users to listen to all of their messages, has been investigated [13]. Voice
mail summarization differs from text summarization or abstracting, since it does not
assume perfect transcriptions and is concerned with summarizing brief spoken mes-
sages (average duration about 40s) into terse (140 character) SMS summaries. The
system uses a data-driven approach to summarizing spoken audio transcripts uti-
lizing lexical and prosodic features. The approach has been evaluated on the IBM
Voicemail corpus, demonstrating that it is possible and desirable to avoid complete
commitment to a single best classifier or feature set.

A Japanese national project on spontaneous speech corpus and processing technol-
ogy was initiated in 1999. This project aims to build a large-scale monologue sponta-
neous speech corpus and create spontaneous speech recognition and summarization
technology. Details will be explained in Section 6.4.

6.3.3 Category III (human-to-machine dialogue)

There is a growing interest in mobile communication systems that allow users to use
their voices to do more than speaking to other people; examples include accessing
information services and interaction with booking services.

Providing voice interaction capability as a part of multimedia user experience is be-
lieved to add naturalness and efficiency to human-computer interactions. Numerous
commercial spoken dialog systems are currently being deployed, primarily for ac-
cess to information over the telephone. There are, however, major open research
issues that challenge the deployment of completely natural and unconstrained voice
interactions even for limited task domains. These primarily arise because the state-
of-the-art in automatic speech recognition and understanding is far from perfect.
One of the simple speech understanding tasks that has been attempted is DARPA’s
Air Travel Information System (ATIS). In this task, the user talks to the machine
to obtain flight information using natural speech such as “I would like to leave San
Francisco for New York on December first, please list the available flights”; “How
much does the flight cost from Denver to Dallas?”

The DARPA Communicator project is a multi-year multi-site project launched in
1999 [14]. The aim of the project is to construct a computer system that plays the
role of a travel agent speaking by telephone with a customer. Ideally, this system
will perform just as a human would: conversing with the user to determine the out-
line of the desired itinerary, querying airline databases to establish flight availability,
reporting suitable flights to the user, answering questions to resolve uncertainties or
misunderstandings, and finally booking the trip.

The DARPA Communicator dialog architecture is hub centric as shown in Figure
6.3 [15]. The hub is a programmable traffic router that is responsible for invoking
the different servers in the system and routing messages between them. The hub
architecture does not define the functionality but instead provides standard APIs.
Therefore the servers depicted in the figure represent a particular instantiation of
the Communicator architecture. The servers operate through callback functions that
are invoked by the hub. The hub itself is event driven: upon receiving a new frame
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AT&T Communicator architecture [15].

message, it finds and invokes the appropriate callback functions and passes the frame
to the destination servers.

The AT&T Communicator system is focusing on issues related to the design of
mixed-initiative systems. The idea of mixed-initiative systems is to combine the
flexibility of a user-initiative system with the constrained problem-solving nature of
a system-initiative system. For example, a reasonable response to the query “Show
me the flights” could be “Please tell me where you would like to fly.” Given the
state-of-the-art in ASR technology, mixed-initiative system design needs to trade-off
between the degree of initiative allowed and the ASR performance.

For the call routing type of application, the problem is essentially that of pattern
recognition. The observation is the query sentence, which contains a sequence of
words. The classes for recognition are the actions (e.g., routing the call to a proper
department). There can be several layers of approaches to this problem, depending
on the depth of the linguistic inference that the system is designed to pursue. The
simplest approach is to assume that in most query sentences, the intended action is
going to be expressed in specific terms, spoken isolation or possibly embedded in
a natural utterance. With the assumption that actions are likely to be expressed in
keywords, the system can just employ keyword-spotting techniques to perform the
task. This kind of system is simple to implement.
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Another more complex approach that has been attempted takes into account all the
words in the utterance, but without paying particular attention to the sequential order
of the words. The method of information network [16] or latent semantic analy-
sis [17] has been proposed with reasonable success. These methods use a correlation
matrix or network between the actions and the occurrence of words to facilitate the
decision process. Compared to keyword-spotting, these methods do not separate a
priori words that are keywords and those that are not. They implicitly associate a
(continuously valued) significance level between the appearance of a word and the
intended action.

6.4 Japanese National Project on Spontaneous Speech Corpus
and Processing Technology

6.4.1 Project Overview

For building language models for spontaneous speech, large spontaneous speech cor-
pora are indispensable. In this context, a Science and Technology Agency Priority
Program entitled “Spontaneous Speech: Corpus and Processing Technology” started
in Japan in 1999 [18]. The project will be conducted over a five-year period under
the following three major themes as shown in Figure 6.4.

1. Building a large-scale spontaneous speech corpus, Corpus of Standard Japanese
(CSJ), consisting of roughly 7M words with the total speech length of 700
hours. Mainly recorded will be monologues such as lectures, presentations
and news commentaries. The recordings will be manually given orthographic
and phonetic transcription. One-tenth of the utterances, hereafter referred to as
the core, will be tagged manually and used for training a morphological analy-
sis and part-of-speech (POS) tagging program for automatically analyzing all
of the 700-hour utterances. The core will also be tagged with para-linguistic
information including intonation.

2. Acoustic and linguistic modeling for spontaneous speech understanding using
linguistic as well as para-linguistic information in speech.

3. Investigating spontaneous speech summarization technology.

The technology created in this project is expected to be applicable to wide areas
such as indexing of speech data (broadcast news, etc.) for information extraction and
retrieval, transcription of lectures, preparing minutes of meetings, closed captioning,
and aids for the handicapped.
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FIGURE 6.4
Overview of the Japanese national project on spontaneous speech corpus and
processing technology.

6.4.2 Corpus

CSJ is the corpus of spontaneous monologue of standard Japanese [19]. More pre-
cisely, CSJ contains speech uttered to multiple listeners in a more or less formal
social setting. The two main sources of spontaneous monologue for CSJ are live
recording of various academic conferences/meetings, referred to as Academic Pre-
sentation (AP) hereafter, such as the Acoustical Society of Japan (ASJ) meetings,
and studio recording of informal free public speech made by paid voluntary subjects,
Simulated Public Speech (SPS). The SPS includes a wide variety of topics including
the subjects’ experiences in their daily lives. The AP speech, which is expected to
have logical and concise discourse structure, is the target of the spontaneous speech
recognition and summarization system that is developed in the project.

SPS is added to AP for several reasons; the most important is the skewed distribution
of the age and sex of AP speakers. Most AP speakers are male graduate students
in their twenties or early thirties. This is especially true with engineering-oriented
societies. SPS speakers were recruited so that they showed a balanced distribution
both in sex and age, ranging from early twenties to sixties. Another reason of adding
SPS is the lexical bias of the AP vocabulary. The vocabulary of AP is deeply biased
by the existence of field-specific technical terms. Finally, SPS is expected to be more
spontaneous than AP; this is crucial for the linguistic study of spontaneous speech.

Figure 6.5 shows the design of the CSJ in terms of its data size. The total size of
CSJ is seven million words. This amount is supposed to be the minimum requisite
for the construction of a workable language model for speech recognition. Digitized
speech (16kHz, 16bit linear), detailed transcription, and POS annotation are to be
provided for the total body of CSJ. POS tagging of the corpus beyond the core will
be automated.
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6.5 Automatic Transcription of Spontaneous Presentation
6.5.1 Recognition Task

Using the CSJ corpus, preliminary recognition experiments are being conducted at
Tokyo Institute of Technology as well as at several other universities participating in
the project. In this experiment, presentation speech uttered by 10 male speakers was
used as a test set of speech recognition [22]. Table 6.2 shows an outline of the test
set.

6.5.2 Language and Acoustic Modeling

Sounds are digitized and segmented into utterances using silence periods longer than
500ms. Feature vectors have 25 elements consisting of 12 MFCC, their delta, and
the delta log energy. Cepstral mean subtraction (CMS) is applied to each utterance.
The following two corpora are used for training the language and acoustic models.

CSJ: A part of the corpus completed by the end of December 2000, consisting of
approximately 1.5M words of transcriptions, is used. The training set consists
of 610 presentations; 274 AP and 336 SPS presentations.

Web corpus: Transcribed presentations consisting of approximately 76k sentences
with 2M words have been collected from the World Wide Web. Spontaneous
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TABLE 6.2
Recognition test set of presentations

ID Conference name Length[min]
A22 | Acoust. Soc. Jap. 28
A23 | Acoust. Soc. Jap. 30
A97 | Acoust. Soc. Jap. 12
P25 | Phonetics Soc. Jap. 27
JO1 | Soc. Jap. Linguistics 57
KOS5 | National Lang. Res. Inst. 42
NO7 | Assoc. Natural Lang. Proc. 15
S05 | Assoc. Socioling. Sciences 23
YO1 | Spont. Speech Corpus Meeting 14
YOS5 | Spont. Speech Corpus Meeting 15

speech usually includes various filled pauses but they are not included in this
presentation corpus. An effort is thus made to add filled pauses to the presen-
tation corpus based on the statistical characteristics of the filled pauses. The
topics of the presentations cover wide domains including social issues and
memoirs.

The following two language models, denoted as SpnL. and WebL, have been con-
structed. Each model consists of bigrams and reverse trigrams with backing-off.
Their vocabulary sizes are 30k words.

SpnL: Made using the 610 presentations in the CSJ. The speakers have no overlap
with those of the test set. Since there are no punctuation marks in the tran-
scription, commas are inserted when a silence period of 200ms or longer is
encountered.

WebL: Made using the text of our Web corpus.

The following two tied-state triphone HMMs have been made, both having 2k states
and 16 Gaussian mixtures in each state.

SpnA: Using 338 presentations in the CSJ uttered by male speakers (approximately
59 hours). The speakers have no overlap with those in the test set.

RdA: Using approximately 40 hours of read speech uttered by many speakers.

6.5.3 Recognition Results

Figure 6.6 presents the test-set perplexity of trigrams and the out-of-vocabulary
(OOV) rate for each presentation, comparing the two language models. The per-
plexity and OOV of SpnL made from the CSJ are clearly better than that of the
web-based model, WebL. WebL shows high perplexity and OOV rate, since it was
edited as a text and their topics are much more diversified than those of the test set.

© 2003 by CRC Press LLC



800

700+
600+

500 %
%
%

400 b3 2 ®

Perplexity

300 L
2001 0040 0o

100+

FIGURE 6.6
Test-set perplexity and OOV rate for the two language models.

Figure 6.7 shows recognition results for the combinations of the two language mod-
els, SpnL. and WebL, and the two acoustic models, SpnA and RdA. Fillers are
counted as words and included in calculating the accuracy. It is clearly shown that
SpnL achieves much better results than WebL, and SpnA gives much better results
than RdA. These results indicate that it is crucial to make language models from a
spontaneous speech corpus to adequately recognize spontaneous speech. It is also
suggested that acoustic models made from CSJ have better coverage of triphones
and better matching of acoustic characteristics corresponding to the speaking style
and also have better matching of recording conditions with the test set. The mean
accuracy for the combination of SpnL and SpnA is 65.3%.

As shown in Figure 6.7, the word accuracy largely varies from speaker to speaker.
There exist many factors that affect the accuracy of spontaneous speech recogni-
tion. They include individual voice characteristics, speaking manners, and noise like
coughs. Although all utterances were recorded using the same close-talking micro-
phones, acoustic conditions still varied according to the recording environment.

A batch-type unsupervised adaptation method has been incorporated to cope with
the speech variation due to speakers and recording environment. The MLLR method
using a binary regression class tree to transform Gaussian mean vectors is employed
[20]. The regression class tree is made using a centroid-splitting algorithm. The
actual classes used for transformation are determined on run time according to the
amount of data assigned to each class [21].

The adaptation is performed based on recognition results, and no confidence measure
is applied. The following steps are performed:
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Word accuracy for each combination of models.

1. Making a regression class tree having 64 leaf nodes for the SpnA phone model.

2. Recognizing the test-set utterances using the SpnA as a speaker independent
model.

3. Applying the MLLR adaptation based on the recognition result for each utter-
ance to make a speaker adaptive model.

4. Re-recognizing the test-set utterances using the speaker adaptive model.
5. Tterating the adaptation process using the resulting transcription.

Figure 6.8 presents the effect of the adaptation when SpnL is used as the language
model. “SI” indicates the baseline condition using the speaker independent phone
model SpnA. “SAn” indicates the result after n iterations of the MLLR adaptation.
The single step of MLLR improves word accuracy by an absolute 2 to 6%, and
the second adaptation step further improves accuracy by 0.7% on average. The im-
provement almost saturates at the third iteration, and the mean word accuracy after
the third iteration is 70.5%. By applying two or three steps of MLLR adaptation, the
error rate is reduced by 15% relative to the speaker independent case.

6.5.4 Analysis on Individual Differences

Individual differences in spontaneous presentation speech recognition performances
have been analyzed using 10 minutes from each presentation given by 51 male speak-
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Results of unsupervised adaptation.

ers, for a total of 510 minutes. The speakers have no overlap with those in the train-
ing set. The mean word accuracy for the 51 speakers is 64.1% and 68.6% for the SI
(speaker-independent) and SA (speaker-adaptive) conditions respectively. The stan-
dard deviation is 7.4% for the SI and 7.5% for the SA condition. As shown by the
standard deviation, recognition accuracy largely varies from speaker to speaker. Cor-
relation and regression analyses have been applied to the word recognition accuracy
and various speaker attributes.

6.5.4.1 Speaker Attributes

Seven kinds of speaker attributes have been considered in the analysis. They are
word accuracy (Acc), averaged acoustic frame likelihood (AL), speaking rate (SR),
word perplexity (PP), out of vocabulary rate (OR), filled pause rate (FR), and repair
rate (RR). The speaking rate defined as the number of phonemes per second and the
averaged acoustic frame likelihood are calculated using the result of forced alignment
of the reference tri-phone labels after removing pause periods. The word perplexity
is calculated using trigrams, in which prediction of out of vocabulary words is not
included. The filled pause rate and the repair rate are the number of filled pauses, and
repairs divided by the number of words, respectively. Tag information included in
the CSJ transcription is used to determine whether a word is a filled pause/repair or
not. In the CSJ, repairs are defined only for word fragments, and a rephrased whole
word is not marked as a repair. The calculations of word accuracy, out of vocabulary
rate and word perplexity are based on the reference text after excluding repairs.
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TABLE 6.3

Correlation coefficient matrix; the lower triangular matrix shows the correlation co-
efficients and the upper triangular matrix shows the p-value, that is, the significance
level. Bold face indicates a significant value with the significance level of 5%.

Acc(SI) | Acc(SA) | AL(SI) | AL(SA) SR PP OR FR RR
Acc(SD) —| 4.7% -102% | 04% | 0.0% | 0.6% | 3.4%
Acc(SA) - -1 22%101% | 19% | 00% | 05% | 2.5%
AL(SD) 0.28 - —10.0% |558% | 12. 0% | 6.8% |53.9%
AL(SA) - 0.32 - 0.0% | 56.3% | 83% | 6.7% |33.4%
SR -042| -047 | -0.54 | -0.62 92.0% | 1.7% | 0.0% |20.2%
PP -0.40 | -0.33| -0.08 | -0.08 |-0.01 0.0 % |20.0% |69.4%
OR -0.54 | -0.51| -0.22 | -0.25| 0.33 0.52 0.3% [66.5%
FR 0.38 038 | 0.26 0.26 |-0.50 | -0.18 -0.41 33.8%
RR -030| -0.31| -0.09 | -0.14| 0.18 0.06 | -0.06 | 0.14

6.5.4.2 Correlation Analysis

Table 6.3 shows the correlation matrix of speaker attributes. In the table, the lower
triangular matrix shows the correlation coefficients and the upper triangular matrix
shows the observed significance levels (p-values). The correlation coefficients writ-
ten in bold face indicate significant values at 5% significance level (p-values < 0.05).

1. Correlation between acoustic likelihood and speaking rate

The correlation coefficients between acoustic likelihood and speaking rate are
-0.54 and -0.62 for the SI and SA acoustic model, respectively. There is a
tendency that the higher the speaking rate is, the lower the acoustic likelihood
becomes. The Akaike Information Criterion (AIC) [23] indicates that the first
order regression model is better than the second order model for regressing the
acoustic likelihood on the speaking rate. This indicates that there is a linear
relationship between the speaking rate and the acoustic likelihood averaged
over presentations. A stronger articulation effect in faster speakers is probably
a cause of the decrease of likelihood. The unsupervised adaptation increases
the acoustic likelihood but preserves the relationship between the speaking rate
and the acoustic likelihood with a slight increase in the correlation coefficient.

. Correlation between word perplexity and several linguistic attributes

There exists significant correlation between the word perplexity and the out of
vocabulary rate with a correlation coefficient of 0.52. There is a tendency that
presentations having a higher out of vocabulary rate show a higher perplexity.
The correlation coefficient of the filled pause frequency, and the perplexity is
-0.18 indicating that they are rather uncorrelated. The repair frequency and
the perplexity have a correlation coefficient of 0.06. Since the perplexity was
calculated after removing repairs, this result shows that the linguistic difficulty
excluding repairs has almost no correlation with the repair rate.
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3. Correlation between word accuracy and several attributes

The correlation coefficient between the word accuracy (SI) and the speaking
rate is -0.42. Figure 6.9 shows the relationship between the word accuracy
and the speaking rate. The relationship seems monotonic and even very slow
speaking rate does not decrease the accuracy, which is similar to the result for
the acoustic likelihood. The AIC also indicates that the first order model is
superior to the second order model for regressing the word accuracy on the
speaking rate.

The correlation between the word accuracy (SI) and the acoustic likelihood
is 0.28. In order to analyze the real correlation, partial correlation is calcu-
lated. The resultant correlation coefficient adjusted for the speaking rate is
-0.07, which means that the correlation is not statistically significant. In other
words, the correlation between the word accuracy and the acoustic likelihood
is spurious. On the other hand, partial correlation coefficient between the word
accuracy and the speaking rate adjusted for the acoustic likelihood is -0.33,
which is significant at a 5% significance level, and partial correlation coeffi-
cient between the acoustic likelihood and the speaking rate adjusted for the
word accuracy is -0.48, which is significant at a 1% significance level. Similar
results are obtained for the SA conditions.

The correlation coefficient between the word accuracy and the repair frequency
is -0.30. There is a weak positive correlation of 0.38 between the word accu-
racy and the filled pause frequency, but this is also a spurious correlation, since
partial correlation coefficient adjusted for the speaking rate is 0.22.

The correlation coefficient between the word accuracy and the out of vocab-
ulary rate is -0.54. There is a negative correlation of -0.40 between the word
accuracy (SI) and the perplexity, but this is also spurious; the partial correlation
between the word accuracy and the perplexity adjusted for the out of vocabu-
lary rate is -0.16. Figure 6.10 shows the summary of correlation between all
the analyzed attributes.

6.5.4.3 Regression Analysis

The following equations (6.1) and (6.2) show linear regression models of the word
accuracy with the six presentation attributes when SI and SA acoustic models are
respectively used for speech recognition.

ACCSI = 0.12AL51 - OSSSRSI — 0.020PP

—220R+0.32FR —-3.0RR+ 95 6.1
ACCSA = 0.024AL5A - 1.3SR51 —0.014PP
—2.10R+0.32FR —3.2RR + 99 6.2)

In the equation (6.1), regression coefficient for the repair rate is -3.0, and the coeffi-
cient for the out of vocabulary rate is -2.2. This means that 1% increase of the repair
rate or the out of vocabulary rate respectively corresponds to 3.0% or 2.2% decrease
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Speaking rate vs. word accuracy.

of the word accuracy. This is probably because a single recognition error caused by
a repair or an out of vocabulary word triggers secondary errors due to the linguistic
constraints. The determination coefficients of the multiple linear regressions (6.1)
and (6.2) are 0.48 and 0.47, respectively, both of which are significant at 1% level.
This means that about half of the variance of the word accuracy can be explained by
the model.

Table 6.4 shows normalized representation of the regression analysis with the equa-
tions (6.1) and (6.2), in which the variables are normalized in terms of the mean
and variance before the analysis in order to show the effects of explaining variables
on the word accuracy. The table shows the normalized regression coefficient, the
p-value and the 95% confidence interval. The normalized regression coefficients of
the speaking rate, the out of vocabulary rate and the repair rate are relatively large
especially when SA acoustic model is used. The acoustic likelihood has relatively
a small coefficient in both the SI and SA regression models. This means that, al-
though the acoustic likelihood has significant correlation with the word accuracy, it
is spurious as indicated in the previous subsection.

6.5.4.4 Selection of Major Attributes

As a supplementary experiment, a backward elimination procedure has been em-
ployed to identify relatively important predictors of the word accuracy. A backward
elimination process begins with all of the six predictors in the model, and the model
is refitted to the data after removing a variable with the largest p-value. The refit-
ting process is iterated removing the least significant variable in the model until all
remaining variables have p-values smaller than 0.10. The important predictors iden-
tified are the speaking rate, the out of vocabulary rate, and the repair rate, which
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TABLE 6.4

Results of standardized regression analysis for word accuracy, showing standardized regres-
sion coefficient (Coeff), p-value and 95% confidence interval (95% CI).

Coeff(SI) P 95% CI Coeff(SA) P 95% CI

ALGSD | 004 | 76.7% | (:0.22,030) | AL(SA) | 0.0 | 96.1% | (-0.28, 0.29)
SR(SD) | -0.16 | 32.8% | (-0.47,0.16) | SR(SD) | -0.23 | 19.0% | (-0.57,0.12)

PP -0.17 20.1% | (-0.44, 0.10) PP -0.11 40.4% | (-0.39,0.16)
OR -0.34 2.2% | (-0.63,-0.05) OR -0.32 32% | (-0.62,-0.03)
FR 0.16 24.9% | (-0.11, 0.43) FR 0.16 26.0% | (-0.12,0.44)
RR -0.30 1.4% | (-0.53,-0.06) RR -0.31 1.3% | (-0.54,-0.07)

correspond to the attributes showing relatively large coefficients in Table 6.4. The
determination coefficients of the regression models on these three attributes are 0.44
for both speaker independent and adaptive cases. This value is almost the same as
that of the models on all attributes. It can be concluded that the main factors of indi-
vidual differences of the word accuracy are the speaking rate, the out of vocabulary
rate, and the repair rate.

6.5.5 Discussion

Preliminary recognition experiments have been performed using ten speakers’ pre-
sentation utterances of approximately 4.5 hours. Language models based on a spon-
taneous speech corpus and Web corpus were compared in terms of test-set perplex-
ity, OOV rate, and word (morpheme) accuracy. Two acoustic models made by using
spontaneous speech and read speech were also compared. Both comparisons showed
that acoustic and language modeling based on an actual spontaneous speech corpus
is far more effective than conventional modeling based on read speech. It was con-
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firmed that the recognition accuracy had a wide speaker-to-speaker variability. When
linguistic and acoustic models made form spontaneous speech were used, an average
word recognition accuracy of 65.3% was achieved. This performance improved to
70.5% with the help of unsupervised MLLR adaptation for the acoustic model.

Individual differences in the spontaneous presentation speech recognition perfor-
mances have been investigated using presentations by 51 speakers. A restricted set
of the speaker attributes comprising the speaking rate, the out of vocabulary rate,
and the repair rate was found to be the most significant to yield individual differ-
ences in the word accuracy. The averaged acoustic likelihood of reference phoneme
sequences and the test set perplexity were found to be relatively minor factors of in-
dividual differences in the word accuracy. Unsupervised MLLR speaker adaptation
does not change the structure of the individual differences. Approximately half of
the variance in the word accuracy was explained by a regression model using those
three major attributes. Future research includes the investigation of efficient methods
for reducing the effects of the major attributes on the recognition accuracy. To cope
with the speaking rate problem, a method using separate acoustic models for each
speaking rate [24] and another method which takes into account the speaking rate in
the tree-based HMM state clustering have been proposed [25].

Since the recognition accuracy for spontaneous speech is still rather low, it is imper-
ative to continue the collection of a large corpus of spontaneous speech and use it
for building language and acoustic models. Future research issues include: a) how to
transcribe and annotate spontaneous speech; b) how to apply morphological analysis
to the transcribed spontaneous speech; ¢) how to build precise and yet general filled
pause models; d) how to incorporate repairs, hesitations, repetitions, partial words,
and disfluencies; e) how to adapt the language models to each task; f) how to adapt
to speaking styles and topics of presentations; and g) how to build acoustic models
that fit spontaneous speech.

Segmentation of spontaneous utterances into sentences is one of the important is-
sues. The Viterbi decoding algorithm usually used in speech recognition determines
a recognition hypothesis only after detecting the end of the input utterance. In ad-
dition, the multiple-pass search algorithm widely used in LVCSR always needs to
interrupt the input at some reasonable positions. However, in spontaneous speech,
utterances are not separated sentence by sentence. Instead, long pauses are some-
times inserted in a sentence. On the other hand, multiple sentences are sometimes
uttered continuously without inserting clear pauses. Therefore, it is necessary to
successively determine recognition results before detecting sentence boundaries [10]
or inherit a word history for linguistic likelihood calculation to the next sentence hy-
pothesis [26]. In the supporting systems for making presentation records, it is crucial
to obtain the N-best hypotheses efficiently, since multiple hypotheses are necessary
for error correction in the post processing. For this reason, a new decoder which can
process speech continuously without relying on sentence boundary information has
been proposed [27].
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6.6 Automatic Speech Summarization and Evaluation
6.6.1 Summarization of Each Sentence Utterance

Currently various new applications of LVCSR systems, such as automatic closed
captioning [9, 10], making minutes of meetings and conferences [18, 28], and sum-
marizing and indexing of speech documents for information retrieval [29, 30], are
actively being investigated. Transcribed speech usually includes not only redun-
dant information such as disfluencies, filled pauses, repetitions, repairs and word
fragments, but also irrelevant information caused by recognition errors. Therefore,
especially for spontaneous speech, practical applications using speech recognizer re-
quire a process of speech summarization which removes redundant and irrelevant
information and extracts relatively important information corresponding to users’
requirements. Speech summarization producing understandable and compact sen-
tences from original utterances can be considered as a kind of speech understanding.
A method for automatically summarizing speech based on word extraction has been
investigated at TIT [30, 31]. The method can be applied to the summarization of each
sentence/utterance and also to a set of multiple sentences. This subsection explains
the case of sentence-by-sentence summarization and its extension to the multiple ut-
terance case is explained in the next subsection. The basic idea of this method is
to extract a set of words maximizing a summarization score from an automatically
transcribed sentence according to a target compression ratio and recreate a sentence.
This method aims to effectively reduce the number of words by removing redun-
dant and irrelevant information without losing relatively important information. The
summarization score indicating the appropriateness of a summarized sentence con-
sists of a word significance score I as well as a confidence score C for each word
of the original sentence, a linguistic score L for the word string in the summarized
sentence, and a word concatenation score 7'.. The word concatenation score indi-
cates a word concatenation probability determined by a dependency structure in the
original sentence given by a stochastic dependency context free grammar (SDCFG).
The total score is maximized using a dynamic programming (DP) technique.

Given a transcription result consisting of N words, W = w1, ws, -+ ,wn, the sum-
marization is performed by extracting a set of M (M < N) words, V = v1,vs,- -,
var, which maximizes the summarization score given by (6.3).

M
S(V) = Z {L(vm| - vm—1) + A1 I (V) + AcC (Vi) + ATy (Vim—1,Vm) } (6.3)
m=1
where Aj, A, and Ap are weighting factors for balancing among L, I, C, and T',..

6.6.1.1 Word Significance Score

The word significance score I(v,,) indicates the relative significance of each word
in the original sentence. The amount of information based on the frequency of each
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The beautiful cherry blossoms bloom in spring

FIGURE 6.11
An example of dependency structure.

word is used as the word significance score for each topic word. We choose nouns
and verbs as topic words. A flat score is given to words other than topic words. To
reduce the repetition of words in the summarized sentence, a flat score is also given
to each reappearing noun and verb.

6.6.1.2 Linguistic Score

The linguistic score L(vy, | - - - vy, —1 ) measured by a bigram probability P (v, |[Vm—1)
indicates the appropriateness of word strings in a summarized sentence.

6.6.1.3 Word Confidence Score

The confidence score C'(v,,) is incorporated to weigh acoustically as well as lin-
guistically reliable recognition results. Specifically, a posterior probability of each
transcribed word, that is the ratio of a word hypothesis probability to that of all other
hypotheses, is calculated using a word graph obtained by a decoder and used as a
confidence measure.

6.6.1.4 Word Concatenation Score

Suppose “the beautiful cherry blossoms bloom in spring” is summarized as “the
beautiful spring”. The latter phrase is a grammatically correct but semantically in-
correct summarization. Since the above linguistic score is not powerful enough to
avoid such a problem, the word concatenation score T'. (U, —1, Upy ) is incorporated to
give a penalty for a concatenation between words with no dependency in the original
sentence.

The word concatenation in a summarized sentence is restricted by the dependency
structure in the original sentence as exemplified in Figure 6.11. The word at the
beginning of an arrow is named “modifier” and the word at the end of the arrow
is named “head,” respectively. The English dependency grammar consists of both
“right-headed” dependency indicated by right arrows and “left-headed” dependency
indicated by left arrows as shown in Figure 6.11. The dependencies can be written
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FIGURE 6.12
A phrase structure tree based on a dependency structure.

as phrase structure grammar, DCFG (dependency context free grammar):

a — pa  (right-headed)
a — aff (left-headed)

a — w

where a, 8 are nonterminal symbols, and w is a terminal symbol (word).

Since the dependencies between words are usually ambiguous, whether dependen-
cies exist or not between words is given by probabilities that one word is modified by
others based on the SDCFG. The word dependency probability is a posterior proba-
bility estimated by the Inside-Outside probabilities obtained using a manually parsed
corpus.

Figure 6.12 illustrates an example of a phrase structure tree based on a dependency
structure for a sentence consisting of L words, w1, ..., wr. The probability that w,,
and w; has a dependency structure is calculated as a product of the probabilities of
the following sequence when a sentence is derived from the initial symbol S; 1) the
rule of a — Ba is applied, 2) w; - . . wy, is derived from 3, 3) w,y, is derived from /3,
4) W41 - .. wj is derived from ¢, and 5) w; is derived from . The probability of
applying the rule of @« — a3 is also added.

In general, as shown in Figure 6.12, a modifier derived from S can be directly con-
nected with a head derived from « in a summarized sentence. In addition the modi-
fier can be also connected with each word which modifies the head. The word con-
catenation probability between w,, and w,, is defined as a sum of the dependency
probabilities between w,,, and w,,, and between w,,, and each of w41 ...w;. Us-
ing the dependency probabilities d(w.,, w, i, k, j), the word concatenation score is
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calculated by

m n—1 L j

Ty (Wi, wn) =log > > >N " d(wm, wy,i,k, ). (6.4)

i=1 k=m j=nl=n

In the SDCFG, only the number of non-terminal symbols is determined and all com-
binations of rules are applied recursively. The non-terminal symbol has no specific
function such as a noun phrase. Even if transcription results by a speech recognizer
are ill-formed, the dependency structure can be robustly estimated by the SDCFG.
In the case of Japanese utterance summarization, the word concatenation score is
more compact than English, since Japanese sentences have only “right-headed” de-
pendencies. In addition, the word dependency structure in each phrase is determin-
istic and can be represented by the regular grammar.

6.6.2 Summarization of Multiple Utterances

The automatic speech summarization technique for each sentence has been extended
to summarize a set of multiple utterances (sentences) [32]. A set of words maxi-
mizing the summarization score is extracted from multiple utterances under some
restrictions applied at the sentence boundaries. These restrictions realize the sum-
marization of multiple utterances by handling them as a single long utterance. This
results in preserving more words inside information rich utterances and shortening or
even completely deleting less informative ones. This summarization technique can
be interpreted as a combination of the summarization method extracting important
sentences investigated in the field of natural language processing and the sentence-
by-sentence summarization method.

Given a transcription result consisting of J utterances, S1,---,Sy with (S; =
wj1, Wy, -+, wjn;) the summarization is performed by extracting a set of M (M <
> y Nj) words, V' = wy,vs, -+, vy, Which maximizes the summarization score
given by equation (6.3).

The amount of calculation for selecting the best combination among all possible
combinations of words in the multiple utterances increases as the number of words
in the original utterances increases. In order to alleviate this problem, a new method
has been proposed, in which each utterance is summarized according to all possible
summarization ratios, and then the best combination of summarized sentences for
each utterance is determined according to a target compression ratio using a two-
level DP technique.

6.6.3 Evaluation
6.6.3.1 Word Network of Manual Summarization Results for Evaluation

To automatically evaluate summarized sentences, correctly transcribed speech is
manually summarized by human subjects and used as correct targets. The man-
ual summarization results are merged into a word network which approximately ex-

© 2003 by CRC Press LLC



presses all possible correct summarization including subjective variations. A “sum-
marization accuracy” of automatic summarization is calculated using the word net-
work. A word string that is the most similar to the automatic summarization result
extracted from the word network is considered as a correct target for the automatic
summarization. The accuracy, comparing the summarized sentence with the target
word string, is used as a measure of the linguistic correctness and maintenance of
original meanings of the utterance.

6.6.3.2 Evaluation Data

First, Japanese TV broadcast news utterances recorded in 1996 were used to evaluate
the proposed method. Fifty utterances with word recognition accuracy above 90%,
which was the average rate over the 50 utterances, were selected and used for the
evaluation. In addition, five news articles consisting of five sentences each were
summarized using the summarization technique for multiple utterances.

Next, English TV broadcast news utterances (CNN news) recorded in 1996 provided
by NIST as a test set of topic detection and tracking (TDT) were tagged by the Brill-
tagger and used to evaluate the proposed method. Five news articles consisting of 25
utterances in average were transcribed by the JANUS [28] speech recognition sys-
tem. The multiple utterance summarization was performed for each of the five news
articles. Fifty utterances arbitrarily chosen from the five news articles were used for
the sentence by sentence summarization. Mean word recognition accuracies of the
utterances used for the multiple utterance summarization and those for sentence by
sentence summarization were 81% and 80% respectively.

6.6.3.3 Training Data for Summarization Models

Japanese broadcast-news manuscripts recorded from August 1992 to May 1996,
comprising of approximately 500k sentences with 22M words, were used both in
building a language model for speech recognition and calculating the word signif-
icance measure for summarization. A bigram language model for summarization
was built using texts from the Mainichi newspaper published from 1996 to 1998,
comprising of 5.1M sentences with 87M words. The newspaper text is usually more
compact and simpler than broadcast news text and therefore more appropriate for
building language models for summarization. Preliminary experiments confirmed
that the automatically summarized sentences using word bigram based on newspaper
text were much better than those based on broadcast news manuscripts [30]. SDCFG
for word concatenation score was built using text from the manually parsed corpus
of the Mainichi newspaper published from 1996 to 1998, comprising approximately
4M sentences with 68M words. The number of non-terminal symbols was 100.

In the English speech case, a word significance model, a bigram language model and
SDCFG were constructed using roughly 35M words from over 10k sentences of the
Wall Street Journal corpus and the Brown corpus in Penn Treebank.
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FIGURE 6.13
Each utterance summarizations at 70 % summarization ratio.

6.6.3.4 Evaluation Results

Manual transcription (TRS) and automatic transcription (REC) were both summa-
rized. In the summarization of REC, the following score conditions were compared;

e Significance score: I

Significance and linguistic scores: I_L

Significance, linguistic, and confidence scores: I L .C'

Significance, linguistic, and concatenation scores: I _L T

All scores: I_L_C_T

In the summarization of TRS, since there is no recognition error, the conditions in-
cluding the confidence score were not tried.

To set the upper limit of the automatic summarization, manual summarization by hu-
man subjects for manual transcription (TRS _SUB) was performed. The results were
evaluated using all other manual summarization results as correct summarization.
In addition, as the upper bound of automatic speech summarization for transcrip-
tion including speech recognition errors, manual summarization of automatically
transcribed utterances was also evaluated (REC _SUB). To ensure that the proposed
method is sound, randomly generated summarization sentences were made (RDM)
according to the summarization ratio and compared with those obtained by the pro-
posed method.

Figure 6.13 shows results of utterance summarization at 70% summarization ratio for
Japanese and English speech, respectively. Figure 6.14 shows those of summarizing
articles having multiple sentences at 30% summarization ratio. These results show
that the proposed automatic speech summarization technique is significantly more
effective than RDM. The better results obtained by incorporating each score indicate
that all of the scores are effective to improve the summarization accuracy. Detailed
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Article summarizations at 30 % summarization ratio.

investigation reveals that the method using the word concatenation score reduces
meaning alteration.

6.6.4 Discussion

Each utterance and a whole news article consisting of multiple utterances of Japanese
and English broadcast news speech have been summarized by the automatic speech
summarization method based on the word significance, linguistic, word confidence,
and word concatenation scores. A word set maximizing the total score is extracted by
using a dynamic programming technique and connected to build a summarized sen-
tence. A method for measuring the summarization accuracy based on a word network
constructed using manual summarization results has also been proposed. Experi-
mental results show that the proposed method can effectively extract relatively im-
portant information and remove redundant and irrelevant information from Japanese
as well as English news speech. In contrast with the confidence score which has
been incorporated into the summarization score to exclude word recognition errors,
the linguistic score is effective to reduce out-of-context word extraction both from
recognition errors and human disfluencies. In summarizing Japanese news speech,
the confidence measure could improve the summarizing performance by excluding
in-context word errors. In the English case, the confidence measure can not only
exclude word errors but also help extracting clearly pronounced important words.
Consequently, the use of the confidence measure yields a larger increase in the sum-
marization accuracy for English than Japanese.

The summarization method is now being applied to the recognition output of pre-
sentations recorded in the Japanese national project. Future research includes task-
dependent evaluation from the viewpoint of how much the original meaning is main-
tained in the summarization results based on the performance of IR.

Speech summarization will be applicable to a range of applications, such as making
abstracts of presentations, preparing minutes of meetings and voicemails, close cap-

© 2003 by CRC Press LLC



tioning of broadcast news, and presenting information in news-on-demand systems.

6.7 Spontaneous Speech Recognition and Understanding Research
Issues

6.7.1 Language Models and Corpora

One of the most important present issues for spontaneous speech recognition is how
to create language models (rules). When recognizing spontaneous speech, it is nec-
essary to deal with variations that are not encountered when recognizing speech that
is read from texts. These variations include extraneous words, out-of-vocabulary
words, ungrammatical sentences, disfluency, partial words, repairs, hesitations, and
repetitions. Stochastic language modeling, such as bigrams and trigrams, has been a
very powerful tool, so it would be very effective to extend its utility by incorporat-
ing semantic knowledge. It would also be useful to integrate unification grammars
and context-free grammars for efficient word prediction. It is crucial to develop ro-
bust and flexible decoding algorithms that match the characteristics of spontaneous
speech.

A paradigm shift from the present transcription-based approach to a detection-based
approach will be important to solve the spontaneous-speech specific problems [5].
How to extract contextual information, predict users’ responses, and focus on key
words are very important issues. Style shifting is also an important problem in spon-
taneous speech recognition. In typical laboratory experiments, speakers are reading
lists of sentences rather than trying to accomplish a real task. Users actually trying to
accomplish a task, however, use a different linguistic style. Adaptation of linguistic
models, according to tasks and topics, is also a very important issue, since collecting
a large linguistic database for every new task is difficult and costly.

The appetites of today’s statistical speech processing techniques for training material
are well described by the aphorism: “There’s no data like more data.” Large struc-
tured collections of speech and text are essential to progress in speech recognition
research. Unlike the traditional approach, in which knowledge of the speech behav-
ior is “discovered” and “documented” by human experts, statistical methods provide
an automatic procedure to “learn” the regularities in the speech data directly. The
need of a large set of good training data is, thus, more critical than ever. Establishing
a good speech database for the machine to uncover the characteristics of the signal
is not trivial. There are basically two broad issues to be carefully considered: one
being the content and its annotation, and the other the collecting mechanism.

For natural dialog applications such as the ATIS program, a wizard setup is often
used to collect the data. A wizard in this case is a human mimicking the machine in
interacting with the user. Through the interaction, natural queries in sentential forms
are collected. A committee is called upon to resolve cases that may be ambiguous
in certain aspects. While a wizard setup can produce a useful set of data, it lacks

© 2003 by CRC Press LLC



diversity, particularly in situations where the real machine may fail. A human wizard
cannot intentionally simulate all types of machine error and thus the recorded data
may fail to provide complete information of real human-machine interaction.

The recorded data needs to be verified, labeled, and annotated by people whose
knowledge will be introduced into the design of the system through its learning pro-
cess (i.e. via supervised training of the system after the data has been labeled). La-
beling and annotation for spontaneous speech can easily become unmanageable. For
example, how do we annotate speech repairs and partial words, how do the phonetic
transcribers reach a consensus in acoustic-phonetic labels when there is ambiguity,
and how do we represent a semantic notion? Errors in labeling and annotation will
result in system performance degradation. How to ensure the quality of the annotated
results is thus of a major concern. Research in automating or creating tools to assist
the verification procedure is by itself an interesting subject.

Another area of research that has gained interest is a modeling methodology and the
associated data collection scheme that can reduce the task dependency. To maximize
the performance, one should always strive for data that truly reflects the operating
condition. It thus calls for a database collection plan that is consistent with the task.
This data collection effort would soon become unmanageable if the system designer
has to redo data collection for each and every application that is being developed. It
is therefore desirable to design a task-independent data set and a modeling method
that delivers a reasonable performance upon first use and can quickly allow in-field
trials for further revision as soon as task-dependent data become available. Research
result in this area can offer the benefit of a reduced application development cost.

6.7.2 Message-driven Speech Recognition and Understanding

State-of-the-art automatic speech recognition systems employ the criterion of maxi-
mizing P(W|X), where W = wy, - - - ,wy, is a word sequence, and X = z1,--- ,zp
is an acoustic observation sequence. This criterion is reasonable for dictating read
speech. However, the ultimate goal of automatic speech recognition is to extract
the underlying messages of the speaker from the speech signals. Hence we need to
model the process of speech generation and recognition as shown in Figure 6.15 [33],
where M is the message (content) that a speaker intended to convey. The message M
is realized as a word sequence W through a linguistic channel, specified by a prob-
ability measure P(W |M). The linguistic channel is probabilistic as there are many
ways to express the same message, some more likely than others. The word sequence
W then gets realized, through the acoustic channel, as a sequence of acoustic signals
X. The acoustic channel P(X |W) introduces variability due to various reasons, in-
cluding speakers and acoustic environments. No one speaker can repeat exactly the
same waveform even uttering the same word, and no two speakers are alike in terms
of the configuration of their articulatory apparatus. The sequence of sounds radi-
ated from the mouth of the speaker propagates in acoustic waves through the room.
The acoustic wave convolved with the room acoustic response and mixed with the
acoustic ambient reaches the microphone and is finally converted into an electric
signal. The electric signal propagates through a transmission route (cables, wires, or
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FIGURE 6.15
A communication-theoretic view of speech generation and recognition.

the telephone network) and becomes X when it is received by the recognition and
understanding system. Characteristics of all these processes vary substantially.
According to this model, the speech recognition and understanding process is to
reverse the generation process to recover M, which can be represented as the maxi-
mization of the following a posteriori probability [33]:

max P(M|X) = mﬁx; P(M|W)P(W|X). (6.5)

Using Bayes’ rule, Eq. (1) can be expressed as

max P(M|X) = max ; P(X|W)1;((Z|)M)P(M) . (6.6)

For simplicity, we can approximate the equation as

mA%xP(M|X) = max P(X|W)P(W|M)P(M) (6.7)

MW P(X)

P(X|W) is calculated using hidden Markov models in the same way as in usual
recognition processes. This new formulation of speech recognition was applied to
the Japanese broadcast news transcription, and it was found that word error rates
were slightly reduced by this method.

There is also a possibility to give feedback from the “understanding module” to the
speech recognition module such that decoding hypotheses can be properly adjusted
and, hopefully, converge to the most correct word sequence as well as the most cor-
rect understanding of the utterance.
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6.7.3 Statistical Approaches and Speech Science

There is no doubt that most recent progress in speech recognition comes from statisti-
cal approaches, such as HMMs and stochastic language modeling. These approaches
were made possible by the recent remarkable progress in computing power. Statis-
tical approaches are usually more reliable and, in many cases, more powerful than
knowledge-based approaches, provided that we can obtain a large enough corpus.
However, there is always some limit to the size of the corpus and we always en-
counter some mismatch between the training corpus and the testing data, especially
for spontaneous speech. Therefore, even the statistical approaches must be based on
reasonable models which can only be created by observing actual phenomena with
our knowledge of speech science.

To solve various problems, it is necessary to promote sure and steady research and
development by grasping the essence of speech phenomena, instead of developing
methods by simply looking at the problems superficially. Speech technology is re-
lated to many scientific and engineering fields, including physiology and psychology
of speech production and perception, acoustics (physics), signal processing, commu-
nication and information theory, computer science, pattern recognition and linguis-
tics; it has an inter-disciplinary nature. It can also be said that speech research exists
at the boundary between natural science and engineering.

Knowledge and technology from a wide range of areas, including the use of artic-
ulatory and perceptual constraints, will be necessary to develop speech technology.
For example, when several phonemes or syllables are continuously spoken, as in
the case of usual sentence speech, the tongue, jaw, lips, etc. move asynchronously
in parallel, and yet with coupled relationships. Current speech analysis techniques,
however, represent speech as a simple time series of spectra. It will become nec-
essary to analyze speech by decomposing it into several hidden factors based on
speech production mechanisms. This approach seems to be essential for solving the
coarticulation problem, one of the most important problems in speech recognition.
The human hearing system is far more robust than machine systems - more robust not
only against the direct influence of additive noise but also against speech variations
(that is, the indirect influence of noise), even if the noise is very inconsistent. Speech
recognizers are therefore expected to become more robust when the front end utilizes
models of human hearing. This can be done by imitating the physiological organs or
by reproducing psychoacoustic characteristics. Although it is not always necessary
or efficient for speech recognition systems to directly imitate human speech produc-
tion and perception mechanisms, it will become more important in the near future
to build mathematical models based on these mechanisms in order to improve the
performance of spontaneous speech recognition [34].

6.7.4 Research on the Human Brain

Up to the present, the fields of speech perception and automatic speech recognition
have been widely separate. However, in order to build spontaneous speech under-
standing systems, it is crucial to analyze the function within the human brain. The
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function must then be realized using engineering models. For these purposes, human
speech perception research needs to shift from targeting short fragments such as
phonemes and syllables to larger units such as words, phrases, sentences, and para-
graphs. Research should investigate how meanings conveyed by speech are under-
stood. It is indispensable to build a large corpus of spontaneous speech and conduct
corpus-based research on both the mechanisms of human speech perception and the
engineering speech understanding systems with close connection and cooperation.
Ultimately, in order to make speech recognition systems really useful and comfort-
able for users, they should match or exceed human capabilities. That is, they should
be faster, more accurate, more intelligent, more knowledgeable, less expensive, and
easier to communicate with than human staff. For this purpose, the ultimate systems
must be able to handle conceptual information. Figure 6.16 shows a diagram of hu-
man speech generation and perception process. Although observation and modeling
of the movement of vocal systems along with the physiological modeling of auditory
peripheral systems have recently made great progress, the mechanism of speech in-
formation processing in our human brain has hardly been investigated. Psychological
experiments on human memory clearly show that speech plays a far more important
and essential role than vision in the human memory and thinking processes. Whereas
models of separating acoustic sources have been researched in “auditory scene anal-
ysis,” the mechanisms of how meanings of speech are understood and how speech is
generated have not yet been made clear.

It will be necessary to clarify the processes by which human beings understand and
produce spontaneous speech, in order to obtain hints for constructing language mod-
els for spontaneous speech, which is very different from written language. It is nec-
essary to be able to analyze and utilize contextual information to handle anaphora
and ellipsis frequently used in human dialogues. It is time to start active research
on clarifying the mechanism of speech information processing in the human brain so
that epoch-making technological progress can be made based on the human model.

6.7.5 Dynamic Spectral Features

Psychological and physiological research into human speech perception mechanisms
shows that the human hearing organs are highly sensitive to changes in sounds, i.e.,
to transitional (dynamic) sounds, and that the transitional features of the speech spec-
trum and the speech wave play crucial roles in phoneme perception [35]. The length
of the time windows in which sound transitions are perceived have a hierarchical
structure and range from the order of several milliseconds to several seconds. The hi-
erarchical layers correspond to various speech features, such as phonemes, syllables
and prosodic features. It has also been reported that the human hearing mechanism
perceives a target value estimated from the transitional information extracted using
dynamic spectral features.

The representation of the dynamic characteristics of speech waves and spectra has
been studied, and several useful methods have been proposed [36, 37]. However,
the performance of these methods is not yet satisfactory and most of the successful
speech analysis methods developed thus far assume a stationary signal at least for
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Speech-generation and speech-perception processes.

each basic short period. It is still very difficult to relate time functions of pitch and
energy to perceptual prosodic information. If good methods for representing the
dynamics of speech associated with various time lengths are discovered, they should
have a substantial impact on the course of spontaneous speech research.

6.8 Conclusion

Although high recognition accuracy can be obtained for speech in the form of read-
ing a written text or similar by using state-of-the art speech recognition technology,
the accuracy is quite poor for freely spoken spontaneous speech. This chapter dis-
cussed the most important research problems to be solved in order to achieve ultimate
spontaneous speech recognition systems, and tried to forecast where progress will be
made in the near future. The problems include language and acoustic modeling of
spontaneous speech, spontaneous speech corpus building, message-driven speech
recognition and understanding, and speech summarization. A paradigm shift from
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speech recognition to understanding, where the underlying messages of the speaker,
i.e., meaning/content that the speaker intended to convey, are extracted, instead of
simply transcribing all the spoken words, will be indispensable.

To meet this need, a five-year national project for raising the technological level of
speech recognition and understanding commenced in Japan in 1999. The project
focuses on building a large-scale spontaneous speech corpus together with acous-
tic and linguistic modeling for spontaneous speech recognition and summarization.
Experimental results show that acoustic and language modeling based on the ac-
tual spontaneous speech corpus is far more effective than modeling based on read
speech. It is also shown that the proposed automatic speech summarization method
effectively extracts relatively important information and removes redundant and ir-
relevant information.

It will become important to use articulatory and perceptual constraints to solve var-
ious fundamental problems in spontaneous speech modeling. It will also become
crucial to analyze the function within the human brain, that is, how human-beings
are understanding speech, and the function must then be realized using engineering
models. Research should investigate how meanings conveyed by speech are under-
stood.
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Among various user authentication techniques, speaker authentication concerns with
authenticating a person’s identity via voice. There are two approaches to speaker
authentication: speaker verification (SV) and verbal information verification (VIV).
The SV approach attempts to verify a speaker’s identity based on his/her voice char-
acteristics while the VIV approach verifies a speaker’s identity through verification
of the content of his/her utterance(s). In this chapter, we first introduce the related
pattern recognition and verification techniques, and then present an SV system, a
VIV system, and a combined system with both SV and VIV for convenience and
performance improvement. These systems are ready for real-world applications.

7.1 Introduction

To ensure the security of and proper access to private information, important transac-
tions, and the computer and communication networks, passwords or personal iden-
tification numbers (PIN) have been used extensively in our daily life. To further
enhance the level of security as well as convenience, biometric features such as
signature, fingerprint, hand shape, eye iris, and voice have also been considered.
Among all biometric features, a person’s voice is the most convenient one for per-
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Speaker authentication approaches.

sonal identification purposes because it is easy to produce, capture, or transmit over
the ubiquitous telephone network. It also can be supported with existing services
without requiring special devices. Speaker authentication as an application of pat-
tern recognition is the process of authenticating a user via his/her spoken input. How
to automate speedily the authentication procedure and achieve a high accuracy poses
a serious technical challenge to speech researchers.

As shown in Fig. 7.1, the approach to speaker authentication can be categorized into
two groups: one uses a speaker’s voice characteristics, which leads to speaker recog-
nition and the other focuses on the verbal content of the spoken utterance, which
leads to verbal information verification. These two techniques can also be combined
to provide an enhanced system as indicated by the dashed line.

7.1.1 Speaker Recognition and Verification

Speaker recognition can be formulated in two operating modes, speaker verification
and speaker identification. Speaker verification (SV) is the process of verifying an
unknown speaker whether s/he is the person as claimed, i.e. a yes-no hypothesis test-
ing problem. Speaker identification (SID) is the process of associating an unknown
speaker with a member in a pre-registered, known population, i.e. a multiple-choice
classification problem. In this chapter, we will focus on the task of speaker verifica-
tion.

Speaker recognition as one of the voice authentication techniques has been studied
for several decades [2, 3, 40, 6, 22]. A typical SV system is shown in Fig. 7.2,
which has two operating scenarios: enrollment and test sessions. A speaker needs
to enroll first before s/he can use the system. In the enrollment session, the user’s
identity, such as an account number, together with a pass-phrase, such as a digit
string or a key phrase like “open sesame” shown in the figure, is assigned to the
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A speaker verification system.

speaker. The system then prompts the speaker to say the pass-phrase several times
to allow training or constructing of a speaker-dependent (SD) model that registers
the speaker’s speech characteristics. The digit string can be the same as the account
number and the key phrase can be selected by the user so it is easy to remember. An
enrolled speaker can use the verification system in a future test. (Similar procedure
applies in the case of speaker identification. These schemes are sometimes referred
to as direct method as they use the talker’s speech characteristics to infer or verify
the talker’s identity directly.) In a test session, the user first claims his/her identity by
entering or speaking the identity information. The system then prompts the speaker
to say the pass-phrase. The pass-phrase utterance is compared against the stored SD
model. The speaker is accepted if the verification score exceeds a preset threshold,;
otherwise, the speaker is rejected. Note that the pass-phrase may or may not be kept
in secret.

When the pass-phrases are the same in training and testing, the system is called a
fixed pass-phrase system. Frequently, a short phrase or a connected-digit sequence,
such as a telephone or account number, is chosen as the fixed pass-phrase. Using a
digit string for a pass-phrase has a distinctive difference from other non-digit choices.
The high performance of current connected digit speech recognition systems and em-
bedded error correcting possibilities of digit strings make it feasible that the identity
claim can be made via spoken, rather than key-in input [41, 42]. If such an option
is installed, the spoken digit string is first recognized by an automatic speech rec-
ognizer (ASR) and the standard verification procedure then follows using the same
digit string. Obviously, successful verification of a speaker relies upon a correct
recognition of the input digit string.

A security concern may be raised about using fixed pass-phrases since a spoken pass-
phrase can be tape-recorded by impostors and used in later trials to get access to the
system. A text-prompted SV system has been proposed to circumvent such a prob-
lem. A text-prompted system uses a set of speaker-dependent word or subword mod-
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els, possibly for a small vocabulary such as the digits. These models are employed
as the building blocks for constructing the models for the prompted utterance, which
may or may not be part of the training material. When the user tries to access the
system, the system prompts the user to utter a randomly picked sequence of words in
the vocabulary. The word sequence is aligned with the pre-trained word models and
a verification decision is made based upon the evaluated likelihood score. Compared
to a fixed-phrase system, such a text-prompted system normally needs longer enroll-
ment time in order to collect enough data to train the SD word or subword models.
The performance of a text-prompted system is, in general, not as high as that of a
fixed-phrase system. This is due to the fact that the phrase model constructed from
concatenating elementary word or subword models is usually not as accurate as that
directly trained from the phrase utterance in a fixed-phrase system. Details on a
text-prompted system and its performance can be found (e.g. [26]).

The above systems are called text-dependent, or text-constrained SV systems be-
cause the input utterance is constrained, either by a fixed phrase or by a fixed vo-
cabulary. A verification system can also be text-independent. In a text-independent
SV system, a speaker’s model is trained on the general speech characteristics of the
person’s voice [39, 13]. Once such a model is trained, the speaker can be verified
regardless of the underlying text of the spoken input. Such a system has wide ap-
plications in monitoring applications for verifying a speaker on a continuous basis.
In order to characterize a speaker’s general voice pattern without a text constraint,
we normally need a large amount of phonetically or acoustically rich training data
in the enrollment procedure. Also, without the text or lexical constraint, longer test
utterances are usually needed to maintain a satisfactory SV performance. Without
a large training set and long test utterances, the performance of a text-independent
system is usually inferior to that of a text-dependent system.

In evaluating an SV system, if it is both trained and tested by the same set of speakers,
it is called a closed test; otherwise, an open test. In a closed test, data from all the
potential impostors (i.e., all except the true speaker) in the population can be used to
train a set of high performance, discriminative speaker models. However, as most SV
applications are of an open-test nature, to train the discriminative model against all
possible impostors is not possible. As an alternative, a set of speakers whose speech
characteristics are close to the speaker can be used to train the SD discriminative
model, or speaker independent models can be used to model impostors.

7.1.2 Verbal Information Verification

When applying the current speaker recognition technology to real-world applica-
tions, several problems are encountered. One of such problems is the need of an
enrollment session to collect data for training the speaker-dependent (SD) model.
Enrollment is an inconvenience to the user as well as the system developer who of-
ten has to supervise and ensure the quality of the collected data. The quality of the
collected training data has a critical effect on the performance of an SV system. A
speaker may make a mistake when repeating the training utterances/pass-phrases for
several times. Furthermore, as we have discussed in [25], since the enrollment and
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An example of verbal information verification by asking sequential questions.
(Similar sequential tests can also be applied in speaker verification and other
biometric or multi-modality verification.)

testing voice may come from different telephone handsets and networks, acoustic
mismatch between the training and testing environments may occur. The SD models
trained on the data collected in an enrollment session may not perform well when the
test session is in a different environment or via a different transmission channel. The
mismatch significantly affects the SV performance. This is a significant drawback
of the direct method, in which the robustness in comparative evaluation is difficult to
ensure. Alternatively, in light of the progress in modeling for speech recognition, the
concept and algorithm of VIV was proposed [24] to take advantage of the different
characteristic focus on the speech signal, namely, that of the speaker vs. that of the
speech.

The VIV method is the process of verifying spoken utterances against the informa-
tion stored in a given personal data profile. A VIV system may use a dialogue pro-
cedure to verify a user by asking questions. An example of a VIV system is shown
in Fig. 7.3. It is similar to a typical tele-banking procedure: after an account number
is provided, the operator verifies the user by asking some personal information, such
as mother’s maiden name, birth date, address, home telephone number, etc. The user
must provide answers to the questions correctly in order to gain access to his/her ac-
count and services. In this manner, a talker’s identity is embedded in the knowledge
s/he has towards some particular questions and thus one often considers VIV an in-
direct method. To automate the whole procedure, the questions can be prompted by
a text-to-speech system (TTS) or by pre-recorded messages.

The difference between speaker recognition (the direct method) and verbal informa-
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tion verification (the indirect method) can be further addressed in the following three
aspects. First, in a speaker recognition system, either for speaker identification or
for speaker verification, we need to train speaker-dependent (SD) models, while in
VIV we usually use statistical models with associated acoustic-phonetic identities.
Second, a speaker recognition system needs to enroll a new user and to train the
SD model while a VIV system does not require voice enrollment. Instead, a user’s
personal data profile is created when the user’s account is set up. Finally, in speaker
recognition, the system has the ability to reject an imposter even when the input ut-
terance contains a legitimate pass-phrase, if the utterance indeed fails to match the
pre-trained SD model. In VIV, it is solely the user’s responsibility to protect his or
her personal information because no speaker-specific voice characteristics are used
in the verification process. In real applications, there are several ways to circumvent
the situation in which an impostor uses a speaker’s personal information obtained
from eavesdropping a particular session. A VIV system can ask for information that
may not be a constant from one session to another, e.g. the amount or date of the last
deposit, or a subset of the registered personal information, i.e. a number of randomly
selected information fields in the personal data profile. Furthermore, as we are going
to present in Section 7.5, a VIV system can be migrated to an SV system as indicated
by the dash line in Fig. 7.1. In particular, VIV can be used to facilitate automatic
enrollment for SV.

7.2 Pattern Recognition in Speaker Authentication

In this section, we review pattern recognition techniques in speaker authentication.
Starting with the Bayesian decision theory, we introduce the statistical modeling ap-
proach for stationary and non-stationary processes, algorithms for speech segmenta-
tion, and hypothesis testing.

7.2.1 Bayesian Decision Theory

In an M-class recognition problem, we are 1) given an observation (or a feature
vector) o in a d-dimensional Euclidean space R.?, and a set of classes designated as
{C1,Cs, ...,Cp}, and 2) asked to make a decision, to classify o into, say, class C;,
where one class can be one speaker or one acoustic unit. We denote this as an action
«;. By Bayes formula, the probability of being class C; given o is the posterior (or
a posteriori) probability:

_ p(o|Ci)P(C))
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where p(o|C}) is the conditional probability, P(C;) is prior probability, and

M
= Zp(ol(?ﬂP(Cj) (7.2)

can be viewed as a scale factor that guarantees that the posterior probabilities sum to
one.
Let £(a;|C;) be the loss function describing the loss incurred for taking action «;
when the true class is C;. The expected loss (or risk) associated with taking action
;1S

M

R(a;lo) = ZE a;|C;)P(Cjlo). (7.3)

This leads to the Bayes decision rule: To minimize the overall risk, compute the
above risk for j = 1, ..., M and then select the action «; such that R(a;|o) is mini-
mum.

For speaker authentication, we are interested in the zero-one loss function:

0 i=j =1, M
L(ai]Cy) = {1 P27 " (7.4)

It assigns no loss to a correct decision and a unit loss to an error, equivalent to
counting the errors. The risk to this specific loss function is

R(ajlo) = ZE (a;|C;)P(Cjlo) (7.5)
= ZP (Cjlo) =1 — P(Cilo). (7.6)
J#i

Thus, to minimize the risk or error rate, we take action o, that maximizes the poste-
rior probability P(C;|o):

Take action ay,, where k = arg max P(C;|o). (7.7)
_z_

Since the expected value of this loss function is equivalent to error rate, this is also
called minimume-error-rate classification [9]. Recalling the Bayes formula in Eq.
(7.1), when the density p(o|C;) has been estimated for all classes and the prior prob-
abilities are known, we can rewrite the above decision rule as:

Take action «i,, where k = arg 12§)§\IP(0|C¢)P(Ci)- (7.3)

So far, we only consider the case of a single observation (or feature vector) o. In
speaker authentication, we always encounter or employ a sequence of observations
O = {o;}L,, where T is the total number of observations. After speech segmen-
tation (which will be discussed later), we assume that during a short time period
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these sequential observations are produced by the same speaker and they belong to
the same acoustic class or unit, say C;. Furthermore, if we assume that the observa-
tions are independent and identically distributed (i.i.d.), the joint posterior probabil-
ity, P(C;|O) is merely the product of the component probabilities:

P(C;|0) = HP Ciloy). (7.9)

From Eq. (7.8), the decision rule for the compound decision problem is

T
ap = arglrgr%)](\/ltl:[lp(oﬂci)P(Ci). (7.10)

In practice, the decision is usually based on the log likelihood score:

T
ap = arglrgr;?](v[t_zllogp(ot|0i)P(Ci). (7.11)

7.2.2 Stochastic Models for Stationary Process

As discussed above, the decision on authentication is made by computing the likeli-
hood based on the probability density functions (pdfs) of the feature vector. Param-
eters that define these pdfs have to be estimated a priori.

There are many model structures general enough to characterize a speech pdf . Here
we focus on the Gaussian mixture model (GMM), which is defined as:

p(0:|C;) = p(o|A)) ch (045 113, 2i), (7.12)

where A; is the GMM for class Cj, ¢; is a mixture weight which must satisfy the

constraint Zle c¢; = 1, I is the total number of mixture components, and A/ (+) is a
Gaussian density function:

N(os; i, Ri) = Wexp {_%(Ot - Mi)Tzfl(Ot - Mi)} , o (7.13)
where u; and ¥; are the d-dimensional mean vector and covariance matrix of the 7’th
component.

Given a sequence of feature vectors, the GMM parameters can be estimated itera-
tively using a hill-climbing algorithm such as the Baum-Welch [5] or the expectation-
maximization (EM) algorithm [8]. As has been proved, the algorithm ensures mono-
tonic increase in the log-likelihood during the iterative procedure until a fixed-point
solution is reached [58, 14]. In most applications, model parameter estimation can
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be accomplished in a few iterations. At each step of the iteration, the parameter
estimation formulas for mixture ¢ are:

T
L1 )
= ;:1 p(ilog, A) (7.14)

- i plilos, Mo
>y plilor, )

5, = Ziz plilor V(oe = fu)(or = )| .16
S plilor, )

(7.15)

where
p(oi|A)c;

iy p(oi|\e;

One application of the above model is context-independent speaker identification,
where we assume that each speaker’s speech characteristics manifest only acous-
tically and is represented by one (model) class. When a spoken utterance is long
enough, it is reasonable to assume that the acoustic characteristic is independent of
its content. For a group of M speakers, in the enrollment phase, we train M GMM’’s,
A1, A2, ..., Aur, using the reestimation algorithm respectively. In the test phase, given
an observation sequence O, the objective is to find in the prescribed speaker popula-
tion the speaker model that achieves the maximum posterior probability. From Eq.
(7.11), assume the prior is the same for all speakers, the decision rule is

p(ilog, A) = (7.17)

T
Take action aj,, where k = arg max Z log p(0¢|A;)- (7.18)
- t=1

where oy, is the action of deciding that the observation O is from speaker k.

The vector quantization (VQ) method [46] is another approach to speaker identifica-
tion. It uses a speaker-dependent codebook to characterize of a speaker’s voice. The
codebook is generated by a clustering procedure based upon a predefined objective
distortion measure, which computes the dissimilarity between any two given vectors
[46]. The codebook can also be considered an implicit representation of a mixture
distribution used to describe the statistical properties of the source, i.e., the particu-
lar talker. In the test session, input vectors from the unknown talker are compared
with the nearest codebook entry and the corresponding distortions are accumulated
to form the basis for a classification decision.

7.2.3 Stochastic Models for Non-Stationary Process

In the above section, stationarity of speech is assumed and the methods for talker
identification described therein does not make use of the temporal information of
speech. In many applications, the temporal information is necessary and important
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FIGURE 74
Left-to-right hidden Markov model.

in making a decision. A more powerful model — hidden Markov model (HMM)
is then applied to characterize both the temporal structure and the corresponding
statistical variations along the parameter trajectory of an utterance.

In speech and speaker recognition, an HMM is trained to represent the acoustic pat-
tern of a subword, a word, or a whole pass-phrase. There are many variants of
HMMs. The simplest kind is an /V-state, left-to-right model without a state-skip as
shown in Figure 7.4. This is widely used in speaker authentication. The figure shows
a Markov chain with a sequence of states, representing the evolution of speech sig-
nals. Within each state, a Gaussian mixture model (GMM) is used to characterize
the observed speech feature vector as a multivariate distribution.

An HMM, ), can be completely characterized by three sets of parameters, the state
transition probabilities, A, the observation densities, B, and the initial state proba-
bilities, II; as shown in the following notation:

/\:{A,B,H}:{ai,j,bi,m}, i,j :].,...,N, (719)

where N is the total number of states. Given an observation sequence O = {o;}7_,,
the model parameters, { A, B, II}, of A can be trained by an iterative method to opti-
mize a prescribed performance criterion, e.g., maximum likelihood. In practice, the
segmental K-mean algorithm [36] has been widely used. Following model initializa-
tion, the observation sequence is segmented into states based on the current model
A. Then, within each state, a new GMM is trained by the above EM algorithm to
maximize the likelihood. The new HMM A is then used to re-segment the observa-
tion sequence and re-estimation of model parameters ensues. The iterative procedure
usually converges in a few iterations.

Other than the maximum likelihood criterion, the model can also be trained by op-
timizing a discriminative function. For example, the Minimum Classification Error
(MCE) criterion [16] was proposed along with a corresponding generalized proba-
bilistic descent (GPD) training algorithm [7, 15] to minimize an objective function
that approximates the error rate closely. Other criteria like Maximum Mutual In-
formation (MMI) [4, 33] have also been attempted. Instead of modeling the distri-
bution of the data set of the target class, the criteria also incorporate data of other
classes. A discriminative model is thus constructed to implicitly model the under-
lying distribution of the target class but with explicit emphasis on minimizing the
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classification error or maximizing the mutual information between the target class
and others. The discriminative training algorithms have been applied successfully
to speech recognition. The MCE/GPD algorithm has also been applied to speaker
recognition [29, 18, 43, 45]. Generally speaking, the models trained by discrimina-
tive objective functions yield better recognition and verification performance, but the
long training time makes it less attractive to real applications.

7.2.4 Speech Segmentation

Given an HMM, ), and a sequence of observations, O = {ot}le, the optimal state
segmentation can be determined by evaluating the maximum joint state-observation
probability, maxs P(O, s|A), conventionally called maximum likelihood decoding.
One popular algorithm that accomplish this objective efficiently is the Viterbi algo-
rithm [49, 10]. When fast decoding and forced alignment is desired, a new reduced
space search algorithm [20] can be employed.

7.2.5 Statistical Verification

Statistical verification as applied to speaker verification and utterance verification can
be considered as a two-class classification problem: whether a spoken utterance is
from the true speaker (the target source) or from an impostor (the alternative source).
Given an observation o, a decision «; is taken based on the following conditional
risks derived from Eq. (7.1):
R(Oél |O) = ,C(Cll |01)P(01 |O) + ,C(Cll |02)P(02|0) (720)
R(as]o) = L(az|C1)P(Cio) + L(a2|C2) P(Calo). (7.21)

The action 1 corresponds to the decision of positive verification if
R(au]o) < R(as]o). (7.22)
Bring (7.20) and (7.21) into (7.22) and rearranging the terms, we take action « 1 if:

P(Cl|0) S E(CM1|C2) — [,(012|02)
P(Cz|0) ,C(Oé2|01) — L(Oé1|01)

=T (7.23)

where 71 > 1is a prescribed threshold. Furthermore, by applying the Bayes formula,

we have ( |C ) P(C )
plo|C1 2
p(olCy) ~ VB (Cy)

=T (7.24)

For a sequence of observation O = {o;}_, which are assumed to be independent
and identically distributed (i.i.d.), we have the likelihood-ratio test:

I, plelC1) — P(OICL)

O =17 poulcs) ~ P(OICS)

> T (7.25)
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The same result can also be derived from the Neymann-Pearson decision formula-
tion, thus the name Neymann-Pearson test [31, 32, 50]. It can be shown that the
likelihood-ratio test minimizes the verification error for one class while maintaining
the verification error for the other class constant [11, 32].

In practice, we compute a log-likelihood ratio for verification:

R(O) = log P(O|Cy) — log P(O|C). (7.26)

A decision is made according to the rule:

{Acceptance: R(O)>T (7.27)

Rejection:  R(O) < T,

where 7 is a threshold value, which can be determined theoretically or experimen-
tally.

There are two types of error in a test: false rejection, i.e., rejecting the hypothesis
when it is actually true, and false acceptance, i.e., accepting it when it is actually
false. The equal error rate (EER) is defined as the error rate when the operating point
is so chosen as to achieve equal error probabilities for the two types of error. EER
has been widely used as a verification performance indicator.

In utterance verification, we assume that the expected word or subword sequence
is known and the task is to verify whether the input spoken utterance matches it.
Similarly, in SV, the text of the pass-phrase is known. The task is to verify whether
the input spoken utterance matches the given sequence, using the model trained by
the speaker’s voice.

7.3 Speaker Verification System

Among different speaker verification systems introduced in Section 7.1.1, we focus
here on the fixed-phrase system [34, 25] and evaluate the system in an open-set
test. This is due to three reasons. First, a short, user-selected phrase is easy to
remember. Second, a fixed-phrase system usually has a better performance than a
text-prompted system [26]. Last, an open-set evaluation is more appropriate for real
applications. For example, a large-scale tele-banking system usually involves a large
user population. The population also changes on a daily basis. It is impossible and
unrealistic to consider SV as a close-set problem.

As shown in Fig. 7.2, a fixed-phrase system has two phases, enrollment and test. For
feature extraction, the speech signal is sampled at 8 kHz and pre-emphasized using a
first-order filter with a coefficient of 0.97. The samples are blocked into overlapping
frames of 30 ms in duration and updated at 10 ms intervals. Each frame is windowed
with a Hamming window followed by a 10-th order LPC analysis. The LPC coeffi-
cients are then converted to cepstral coefficients, where only the first 12 coefficients
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FIGURE 7.5
A fixed-phrase speaker verification system.

are retained for computing the feature vector. The feature vector consisted of 24
features including the 12 cepstral coefficients and 12 delta cepstral coefficients [34].
During enrollment, LPC cepstral feature vectors corresponding to the non-silence
portion of the enrollment pass-phrases are used to train a SD left-to-right HMM to
represent the voice pattern. It is called a whole-word or whole phrase model [34]. In
addition to model training, the text of the pass-phrase collected from the enrollment
session is transcribed into a sequence of phonemes, {S}X_,, where Sy is the kth
phoneme, and K is the total number of phonemes in the pass-phrase. The models
and the transcription are saved in the database.

A detailed block diagram of a test session is shown in Fig. 7.5. After a speaker claims
his or her identity, the system expects the user to speak the same phrase as in the
enrollment session. The voice waveform is first converted to the prescribed feature
representation. In the forced alignment block, a sequence of speaker-independent
phoneme models is constructed according to the phonemic transcription of the pass-
phrase. The model sequence is then used to segment and align the feature vector
sequence through use of the Viterbi algorithm. In the cepstral mean subtraction
block, silence frames are removed, and a mean vector is computed based on the
remaining speech frames. The mean is then subtracted from all speech frames [12].
This is an important step for channel compensation. It makes the system more robust
to changes in the operating environment as well as in the transmission channel. We
note that the forced alignment block is also used for accurate endpoint detection. For
a system with limited computing power, a separate endpoint detection algorithm can
be implemented for fast response [27, 28].

In the block of target score computation of Fig. 7.5, speech feature vectors are de-
coded into states by the Viterbi algorithm, using the trained whole-phrase model. A
log-likelihood score for the target model, i.e. the target score, is calculated as

L(0,A)) = Nif log P(O|A,), (7.28)

where O is the feature vector sequence, Ny is the total number of vectors in the
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sequence, A; is the target model, and P(O|A;) is the likelihood score resulted from
Viterbi decoding.

In the block of background (non-target) score computation, a set of speaker indepen-
dent HMMs in the order of the transcribed phoneme sequence, A, = {1, ..., Ax }, is
applied to align the input utterance with the expected transcription using the Viterbi
decoding algorithm. The segmented utterance is O = {O1,...,Ox}, where O; is
the set of feature vectors corresponding to the 7’th phoneme, S;, in the phoneme
sequence. The background or non-target likelihood score is then computed by

K
1
L(O, Ay) = N > log P(O4|\y), (7.29)
=1

where A, = {\;} X, is the set of SI phoneme models in the order of the transcribed
phoneme sequence, P(O;| Ay, ) is the corresponding phoneme likelihood score, and
K is the total number of phonemes.

The target and background scores [42] are then used in the likelihood-ratio test:

R(O;A¢, Ap) = L(O, M) — L(O, Ay), (7.30)

where L(O, A;) and L(O, Ap) are defined in Eqgs. (7.28) and (7.29) respectively.
The system has been tested on a database consisting of fixed-phrase utterances. The
database was recorded over a long-distance telephone network. It consists of 100
speakers, 51 male and 49 female. The fixed phrase, common to all speakers, is “I
pledge allegiance to the flag” with an average utterance length of 2 seconds. Five ut-
terances from each speaker recorded in one enrollment session (one telephone call)
are used to construct an SD target HMM. For testing, we used 50 utterances recorded
from a true speaker in different sessions (from different telephone channels and hand-
sets at different time with different background noise), and 200 utterances recorded
from 51 or 49 impostors of the same gender in different sessions [34, 25].

The SD target models for the phrases are left-to-right HMMSs. The number of states
depends on the total number of phonemes in the phrases. There are 4 Gaussian
mixture components associated with each state [34]. The background models are
concatenated SI phone HMMs trained on a telephone speech database from differ-
ent speakers and text [42]. There are 43 HMMs, corresponding to 43 phonemes
respectively, and each model has three states with 32 Gaussian components per state.
Again, due to unreliable variance estimates from a limited amount of speaker-specific
training data, a global variance estimate was used as the common variance to all
Gaussian components in the target models [34].

In order to further improve the SD HMM, a model adaptation procedure is employed.
The second, fourth, sixth, and eighth test utterances from the true speaker, which
were recorded at different times, are used to update the means and mixture weights
of the SD HMM for verifying successive test utterances. For the above database,
the average individual equal-error rate over 100 speakers is 2.6% without adaptation
and 1.8% with adaptation, respectively [25], as shown in Table 7.1. In general, the
longer the pass-phrase, the higher the accuracy. The response time depends on the
hardware/software configuration. For most cases, a real time response is expected.
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TABLE 7.1
Experimental Results in Average Equal-Error Rates
Without Adaptation | With Adaptation

Fixed Pass-Phrase 2.61% 1.80%
Speaker Verification

(Tested on 100 speakers using one common pass-phrase.)

We note that the same pass-phrase is used for all speakers in our evaluation, and
the above results are the lower bound of the performance. The actual system per-
formance would be better when users choose their own and most likely different
pass-phrase. Also, to ensure the open test nature, none of the impostor’s data was
used for discriminatively training the SD target model.

7.4 Verbal Information Verification

In this section, we introduce a pattern recognition technique for verbal information
verification (VIV) and present some experimental results [24].

Generally speaking, there are two ways to verify a single spoken utterance for VIV:
by automatic speech recognition (ASR) or by utterance verification (UV). With ASR,
the spoken input is transcribed into a sequence of words. The transcribed words
are then compared to the information pre-stored in the claimed speaker’s personal
profile. With UV, the spoken input is verified against an expected sequence of words
or subwords, which is taken from a personal data profile of the claimed individual.
Based on our experience [23] and the analysis, the utterance verification approach
can give us much better performance than the ASR approach. Therefore, we focus
on the utterance verification approach in this study.

When a question is answered in the form of a naturally spoken utterance, the key
information in the profile may be embedded in a sentence, e.g. “My mother’s maiden
name is ...” In the sentence, the name is the key information, which can be extracted
with a keyword spotting technique [51]. Here, we assume that the key information
has been extracted or the answered utterance contains only the key information.

To verify one single utterance, we employ the technique of utterance verification,
which was developed for keyword sporting and non-keyword rejection (e.g. [37, 38,
17, 30, 47, 48, 44]). A block diagram of the utterance verification for VIV is shown
in Fig. 7.6. The three key modules are: utterance segmentation by forced decoding,
subword testing, and utterance level confidence measure calculation. They will be
described in detail in the following subsections.
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Utterance verification in verbal information verification (VIV).

7.4.1 Utterance Segmentation

When a user opens an account, key information that constitutes his or her profile
is registered in a database. Each piece of the key information is represented by a
sequence of words, S, which in turn is equivalently characterized by a concatenation
of a sequence of phonemes or subwords, {S n}fj:l, where S,, is the n-th subword,
and N is the total number of subwords in the key word sequence.
Since the VIV system only prompts one single question at a time, the system knows
the expected (correct) key information to the prompted question and the correspond-
ing subword sequence S. We then apply the subword models A1, ..., Ay in the same
order of the subword sequence S to decode the answer utterance using the Viterbi
algorithm introduced previously. This can be represented as:

P(O[s) = max P(O1S1)P(O72 11S2) ... P(OFY _ . 4|SN),  (1.31)

1, 2,...,
where
0 ={04,0,,..,0N} = {O T1+1"' OTN L1t (7.32)

is a set of segmented feature vectors associated with subwords, 7', 75, .. TN are the
end-frame numbers of each subword segments, respectively, and O ,, = O L4118
the segmented sequence of observations corresponding to subword S , from frame
number T}, 1 + 1 to frame number T',,, where T > 1 and T; > T; 1.

7.4.2 Subword Hypothesis Testing

Given a decoded subword, S,,, in an observed speech segment O ,,, we need a deci-
sion rule by which we assign the subword to either one of the two classes: hypotheses
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Hy or H, where H( means that the observed speech O, consists of the actual sound
of subword S,,, and H; is the alternative hypothesis. The most powerful test is the
likelihood-ratio test as we have introduced:

_ P(On|H0) P(Onp‘n)
0. \n)’

where A\, and ), are the target HMM and corresponding anti-HMMs for subword
unit S,, respectively. The target model, A, is trained using the data of subword S ,;
the corresponding anti-model, \,, is trained using the data of a set of subwords S
which is highly confusable with subword S,, [47], i.e. S,, C {S;},i # n. The log
likelihood ratio (LLR) for subword S, is

rOn) = B0,1m) ~ Bl

(7.33)

R(0,,) = log P(0,|),) —log P(Op|Ay). (7.34)

For normalization, an average frame LLR, R, is defined as
1 _
R, = 7 [log P(On|An) — log P(O,|\n)] (7.35)

where T}, is the length of the speech segment. For each subword, a decision can be
made by

c Ry 2> Tns

{ Acceptance: R, > 7, (7.36)

Rejection: R, < Tp,

where either a subword-dependent threshold value 7, or a common threshold 7 can
be determined numerically or experimentally.

7.4.3 Confidence Measure Calculation

For an utterance level decision, we have to define a function to combine the results
of subword tests. A confidence measure M for a key utterance O can be represented
as

M(O) = F(Ry, Rs, .., Ry), (7.37)

where F is the function to combine the LLRs of all subwords in the key utterance.
Several confidence measures have been proposed for utterance verification [17, 30].
We denote two of them as M7 and M, in the following.

1 N
My = ;lan, (7.38)

where N is the total number of non-silence subwords in the utterance, and L is the
total number of frames of the non-silent portion of the utterance, i.e. L = Zle ln.
Furthermore,

1 N
My = ~ nz;l R,. (7.39)
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Here, M; is an average score over all frames and all subwords. Each of the sub-
word score R,, is weighted by its duration. M3 is an average LLR of all subwords
and independent of individual durations. We note that silence models are used dur-
ing forced alignment for utterance segmentation but only non-silence subwords are
involved in computing the confidence measures.

For VIV, we defined a different confidence measure, M, for two reasons. First, as re-
ported in [17] and from our experiments, the above confidence measures have a large
dynamic range. A preferable statistic should have a stable, limited numerical range,
such that a common threshold can be determined for all subwords to simplify the
operation. Second, decision thresholds should be determined to meet specifications
in different applications. It is desirable to be able to relate the design specifications
with the computed confidence measure.

A useful design specification is the percentage of acceptable subwords in a key utter-
ance. We then need to make a decision at both the subword and the utterance level.
At the subword level, a likelihood-ratio test can be conducted to reach a decision to
accept or reject each subword. At the utterance level, a simple utterance score can
be computed to represent the percentage of acceptable subwords.

To make a decision at the subword level, we need to determine the threshold for
each of the subword tests. If we have the training data for each subword model and
the corresponding anti-subword model, this is not a problem. However, in many
cases, the data may not be available. Therefore, we need to define a test that can
conveniently determine the thresholds without using the training data. For subword
S, which is characterized by a model, A, we define

_log P(O,|\n) —log P(O,|),)
B log P(O,|An)

Ch (7.40)

where log P(Op|\n) # 0. Cp, > 0 means the target score is larger than the anti-
score and vice versa. Furthermore, we define a normalized confidence measure for
an utterance with N subwords as

1 N
M == f(Cn), (7.41)
n=1

where
1,if C, > 6;

0, otherwise, (7.42)

f(Cn) = {
M is in a fixed range of 0 < M < 1. Due to the normalization in Eq. (7.40), 6 is
a subword-independent threshold which can be determined separately. A subword is
accepted and counted as part of the utterance confidence measure only if its C',, score
is greater than or equal to the threshold value 6. Thus, M can be interpreted as the
percentage of acceptable subwords in an utterance; e.g. M = 0.8 implies that 80%
of the subwords in the utterance are acceptable. Therefore, an utterance threshold
can be determined or adjusted based on the specifications of system performance
and robustness.
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7.4.4 Sequential Utterance Verification

For VIV, the system would go through more than one question-answer turns before
a final decision is made. Thus, the above single utterance test strategy needs to be
extended to a sequence of subtests, similar to the step-down procedure in statistics
[1]. In such a sequential test, each of the subtests is independently constructed as a
single-utterance verification test. We can make a soft or delayed decision for test &
as follows:

Acceptance: M (1) > Tu(i);
Delay (go to the next test): 77 (7) < M (i) < T (i); (7.43)
Rejection: To(i) > M(3),

where M (7) is a confidence score, Ty (i) and 77, (¢) are the high and low thresholds

for test 4, respectively.
Let H, be the target hypothesis in which all the answered utterances match the key
information in the profile. We have

J
Ho = () Holi), (7.44)

i=1

where J is the total number of subtests, and H (i) is a component target hypothesis
in the i-th subtest corresponding to the i-th utterance. The alternative hypothesis is

J
M= J Hi(), (7.45)

i=1

where H (i) is a component alternative hypothesis corresponding to the i-th subtest.
On the ¢-th subtest, a simplified version of the soft decision can be made as:

{ Delay (go to the next test): M (i) > T (i); (7.46)

Rejection: M((i) < T (4),

where M (7) is a confidence score, and 7T () is a single thresholds for test .

As we have introduced, when performing a hypothesis test, one may commit one of
two types of errors: rejecting the hypothesis when it is true - false rejection (FR),
or accepting it when it is false - false acceptance (FA). We denote the FR and FA
error rates as €, and €, respectively. An equal-error rate (EER), ¢, is defined when
the two error rates are made equal by choosing a particular operating point for the
system, i.e. £, = ¢, = €. For a sequential test, we extend the definitions of error
rates as follows.

Definition 1: False rejection error on J utterances (J > 1) is the error when the
system rejects a correct response in any one of .J hypothesis subtests.

Definition 2: False acceptance error on .J utterances (J > 1) is the error when the
system accepts an incorrect set of responses after all of .J hypothesis subtests.
Definition 3: Equal-error rate on J utterances is the rate at which the false rejection
error rate and the false acceptance error rate on .J utterances are equal.
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We denote the above FR and FA error rates on .J utterances as E,.(J) and E,(.J),
respectively. Let 2; = Ry (i) U R0 (i) be the region of confidence scores of the i-th
subtest, where R (%) is the region of confidence scores which satisfy M (i) > T'(i)
from which we accept Hy (i), and R (¢) is the region of scores which satisfy M (i) <
T (i) from which we accept H (7).
The FR and FA errors for subtest 4 can be represented as the following conditional
probabilities

£,(i) = P(M(i) € Ra(i) | Ho(i) ), (7.47)

and
€a(i) = P(M(i) € Ro(i) | H1(3) ), (7.48)

respectively. Furthermore, the FR error on .J utterances can be evaluated as

J
P{{M() € Ri(i)} | Ho ),

::]u

(1—e.(i (7.49)

i=1

and the FA error on J utterances is

J
= H a(i). (7.50)
i=1

Egs. (7.49) and (7.50) indicate an important property of the sequential test defined
above: the more the subtests, the less the FA error and the larger the FR error. There-
fore, it is important that the threshold at every subtest is carefully chosen so as to
achieve an FR error, €., that is close to zero or a small number corresponding to the
design specification, but add more subtests in the same way as needed until the re-
quired system FA error rate, E/, is met, or the maximum number of allowed subtests
is reached.

It is reasonable to arrange the subtests in the order of descending importance and/or
decreasing subtest error rates. In other words, the system first prompts users with the
most important question or with the subtest that we know has the lowest FR error
er(1). Therefore, if a speaker is falsely rejected, the session can be restarted right
away with little inconvenience to the user.

Eq. (7.49) also indicates the reason that the ASR approach would not perform very
well in a sequential test. Although an ASR can achieve low FR error, ¢ (%), on each
of the individual subtests, the overall FR error on .J utterances E,.(.J), J > 1, can still
be very high due to the fact that the verification process in an ASR-based approach
uses word comparison and does not permit a soft decision or delayed decision. In
the proposed utterance verification approach, the FR on each individual subtest is
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made close to zero by adjusting the threshold value while controlling the overall FA
error by adding more subtests until reaching the design specification. We use the
following examples to show the above concept.

Example 1: A bank operator usually asks two kinds of personal questions when
verifying a customer. When automatic VIV is applied to the procedure, the aver-
age individual error rates on these two subtests are €,.(1) = 0.1%, €,(1) = 5%;
and ,(2) = 0.2%, €,(2) = 6%, respectively. Then, from Eq. (7.49) and (7.50),
we know that the system FR and FA errors on a sequential test are F,.(2) = 0.3%
and E,(2) = 0.3%. If the bank wants to further reduce the FA error, one addi-
tional subtest can be added to the sequential test. Suppose the additional subtest has
er(3) = 0.3% and £,(3) = 7%. The overall system error rates will be E.(3) = 0.6%
and F,(3) = 0.021%.

Example 2: A security system requires E.(J) < 0.03% and E,(J) < 0.2%. It
is known that each subtest can have ¢,, < 0.01%, and €, < 12% by adjusting the
thresholds. In this case, we need to determine the number of subtests, .J, to meet the
design specifications. From Eq. (7.50), we have

J— log E, | _ [log0.002
| logea log0.12

Then, the actual system FA rate on three subtests is £, (3) = 0.17% < 0.2%; the FR
rate on three tests is E,(3) = 0.03%. Therefore, three subtests can meet the required
performance on both FR and FA.

7.4.5 VIV Experimental Results

In the following experiments, the VIV system verifies speakers by three sequential
subtests, i.e. J = 3. The experimental database includes 100 speakers. Each speaker
provided three utterances as the answers to the following three questions:

“In which year were you born?”

“In which city and state did you grow up?” and

“May I have your telephone number, please?”

The database we used is a biased one. Twenty six percent (26%) of the speakers
have birth year in the 1950s and 24% are in the 1960s. There is only one digit that
differentiates those birth years. In city and state names, 39% are “New Jersey”, and
5% of the speakers used exactly the same answer, “Murray Hill, New Jersey”. Thirty
eight percent (38%) of the telephone numbers start from “908 582 ..., which means
that at least 60% of the digits in their answer for the telephone number are identical.
Also, some of the speakers have foreign accent, and some cities and states are in
foreign countries. Existing ASR systems cannot provide an acceptable performance.
In this experiment, a speaker is considered a true speaker when the speaker’s utter-
ances are verified against his or her data profile. The same speaker is used as an
impostor when the utterances are verified against other speakers’ profiles. Thus, for
each true speaker, we have three utterances from the speaker and 99 x 3 utterances
from other 99 speakers as impostors.
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The feature vector consisted of 39 features including 12 LPC cepstral coefficients, 12
delta cepstral coefficients, 12 delta-delta cepstral coefficients, energy, delta energy,
and delta-delta energy [35]. In evaluating the subword verification scores a set of
1117 right context-dependent HMMs were used as the target phone models [19], and
a set of 41 context-independent anti-phone HMMs as anti-models [47].

For a VIV system with multiple subtests, one can use either one single threshold ap-
plied globally to all the subtests, i.e. 7 = 7T (i), or multiple thresholds, each applied
to individual questions respectively, i.e. T (i) # T (j), i # j. The thresholds can be
either context dependent or context independent. They can also be either speaker de-
pendent or speaker independent. A VIV system can start from a speaker-independent
threshold, then switch to speaker- and context-dependent thresholds after the system
has been used for several times by a user. To ensure no false rejection, the upper
bound of the threshold for subtest ¢ of a speaker can be selected as

T() < min{M(@G,7)}, j=1,..,1, (7.51)

where M (i, j) is the confidence score for utterance ¢ on the jth trial, and I is the
total number of trials that the speaker has performed in the same context of utterance
1. The thresholds can also be updated based on the recent scores to accommodate the
changes in speaker’s voice and environment.

In this experiment, we used three thresholds associated with the three questions for
each speaker. Following the design strategy proposed in Section 7.4.4, the thresholds
were determined by estimating 7'(7) as in Eq. (7.51) to guarantee 0% false rejection
rate.

TABLE 7.2
Summary of the Experimental Results on Verbal Information Verification
Approaches False False Accuracy
Rejection | Acceptance
Sequential Utterance 0% 0% 100%
Verification

(Tested on 100 speakers with 3 questions while speaker-dependent thresholds were
applied.)

A summary of VIV for speaker authentication is shown in Table 7.2. When SD
thresholds are set for each key information field, we achieved 0% individual equal-
error rate on average. The robustness of the system was also evaluated. Interested
readers are referred to [24] for details.
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Speaker-dependent
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FIGURE 7.7

An integrated voice authentication system combining verbal information verifi-
cation and speaker verification.

7.5 Speaker Authentication by Combining SV and VIV

In the above sections, we have introduced SV and VIV as two independent authen-
tication techniques. In this section, we combine them together to construct a new
speaker authentication system, which is more convenient to users and provides bet-
ter authentication performances. Actually, these two techniques can be combined in
various ways for different applications [24, 21].

As introduced above, a conventional SV system as shown in Fig 7.2 involves two
kinds of sessions: enrollment and testing. In the enrollment session, the system
asks the user to utter their pass-phrase several times to allow training of speaker-
dependent models. In real applications, we found that users often make mistakes
during enrollment. This kind of error is very difficult to correct once a speaker-
dependent model is constructed, unless manual examination and verification of data
takes place before model training. Obviously, VIV is a natural and powerful tech-
nique for this purpose. One of the solutions is shown in Fig. 7.7. During the first
few accesses or uses of the system, authentication is conducted by a VIV proce-
dure. The uttered pass-phrase must pass VIV tests; otherwise, the user is prompted
to repeat. Verified utterances of the pass-phrase are then saved, and used to train a
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speaker-dependent HMM for SV. At this point, the authentication system can then
be switched from VIV to SV.

There are several advantages by using the combined system. First, the system is
convenient to users since it does not need a formal enrollment session and a user
can start to use the system right after his/her account is set up. Second, the acoustic
mismatch problem is to a certain degree mitigated since the training data may come
from different sessions, potentially via different handsets and channels. Third, the
quality of the training data are ensured since the training phrases are verified by VIV
before being used to train the speaker-dependent HMMs for the pass-phrase. Finally,
once the system switches to SV, it would be difficult for an impostor to access the
account even if the imposter knows the true speaker’s pass-phrase.

We conducted an experiment to verify the performance of the combined system. The
feature and database are the same as the speaker verification system introduced in
the previous section. The experimental database consists of fixed phrase utterances
recorded over the long distance telephone network by 100 speakers, 51 male and
49 female. The fixed phrase, common to all speakers, is “I pledge allegiance to the
flag” with an average length of 2 seconds. We assume the fixed phrase is one of
the verified utterances in VIV. Five utterances of the pass-phrase recorded from five
separate VIV sessions were used to train the SD HMM, thus the training data are
collected from different acoustic environments and telephone channels at different
time. We assume all the collected utterances have been verified by VIV to ensure the
quality of the training data.

For testing, we used 40 utterances recorded from a true speaker in different sessions,
and 192 utterances recorded from 50 impostors of the same gender in different ses-
sions. The model structure is the same as the previous SV system. For model adapta-
tion, the second, fourth, sixth, and eighth test utterances from the tested true speaker
were used to update the associated HMM:s for verifying subsequent test utterances
incrementally [34].

In Section 7.4.5, we have reported the experimental results of VIV in a test of 100
speakers. The system achieved 0% error rates with three rounds of question-answer
test in a sequential utterance verification procedure. Therefore, we assume that all the
training utterances collected by VIV are correct. In other words, while improvement
by reducing acoustic mismatch will become obvious in the result, we did not design
an experiment to show the potential improvement in verification performance from
an increased sanity check on the training data.

The SV experimental results without and with adaptation are listed in Table 7.3 and
Table 7.4 for the 100 speakers, respectively. The numbers are expressed in terms
of the average percentage of individual equal-error rate (EER). The first data column
lists the EERs using individual thresholds, and the second data column lists the EERs
using common (pooled) thresholds for all tested speakers.

The baseline system is the conventional SV system in which a single enrollment
session is used. In the combined system, VIV is used for the automatic enrollment
for SV. After the VIV system is used for five times that allows collection of training
utterances from five different sessions, it switches to the SV procedure. The test
utterances for both the baseline and the proposed system are the same.
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Without adaptation, the baseline system has an EER of 3.03% and 4.96% for indi-
vidual and pooled thresholds, respectively, while the proposed system has an EER of
1.59% and 2.89%, respectively. With adaptation as defined in the last subsection, the
baseline system achieves an EER of 2.15% and 3.12%, while the proposed system
achieves an EER of 1.20% and 1.83%, respectively. The proposed system without
adaptation has an even lower EER than the baseline system with adaptation. This is
because the SD models in the proposed system were trained using the data from dif-
ferent sessions while the baseline system just performed an incremental adaptation
without reconstructing the models after collecting more data.

TABLE 7.3

Experimental Results without Adaptation in Average Equal-Error Rates
Algorithms Individual Thresholds | Pooled Thresholds
SV (Baseline) 3.03 % 4.96 %
VIV+SV(proposed) 1.59 % 2.89 %

TABLE 7.4

Experimental Results with Adaptation in Average Equal-Error Rates
Algorithms Individual Thresholds | Pooled Thresholds
SV (Baseline) 2.15 % 312 %
VIV+SV(proposed) 1.20 % 1.83 %

The experimental results indicate several advantages of the proposed system. First,
since VIV can provide the training data from different sessions representing differ-
ent channel environments, the system can perform significantly better than one with
single-session training. Second, although it is possible to adapt the models originally
trained with the single-session data to new test environments, the combined system
appears to perform better still. This is due to the fact that a new model constructed
with multi-session training data is more accurate than that with incremental adapta-
tion using the multi-session data. Lastly, in real-world applications, all the utterances
used in training and adaptation can be verified by VIV before training or adaptation.
Although this advantage cannot be observed in this database evaluation, it is criti-
cal in real-world applications since even a true speaker may make a mistake while
uttering a pass-phrase. The mistake will never be corrected once involved in model
training or adaptation. VIV can protect the system from wrong training data.

In this section, we only proposed one configuration of a combined authentication
system. For different applications, different configurations of integration can be de-
signed to meet the specification. Finally, we note that it is the user’s responsibility to
protect his or her personal information from impostors until the SD model is trained
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and the system is migrated to an SV system. After migration, an impostor would
have difficulties in accessing the account even if the pass-phrase is known.

7.6 Summary

In this chapter, we presented pattern recognition methods in speaker authentication.
The theoretical foundation of the authentication techniques is the Bayesian decision
theory and hypothesis testing. Depending on applications, hypothesis testing can
be conducted at phrase, word, phoneme, or subword level. One extension to the
Bayesian theory to authentication is the sequential verification procedure. Given a
number of test utterances (subtests), the test procedure can be designed to achieve
minimal overall error rate. The sequential verification procedure can also be applied
to speaker verification to reduce the error rate.

Among the authentication techniques, speaker verification (SV) is the process of ver-
ifying speakers by their voice characteristics. Currently, the fixed-phrase SV system
is more attractive to real applications due to its good performance. A fixed-phrase
system allows users to select their personal pass-phrase; therefore, it is easy to re-
member and convenient to use. When an account number, such as a connected digit
string, is used as a pass-phrase, the uttered account number can be recognized by
an automatic speech recognition system, and then verified by a speaker verification
system. Thus, one utterance can be used for both information retrieval and authenti-
cation.

Verbal information verification (SV) is to verify a speaker by the verbal content in
the utterance instead of voice characteristics. We have shown that VIV can achieve
very good accuracy by applying a sequential verification technique. However, since
VIV is to verify the verbal content instead of the voice characteristics, it is the users’
responsibility to protect their personal information from impostors.

To improve the user convenience and system performance, we further combined ver-
bal information verification and speaker verification to construct a progressive inte-
grated speaker authentication system. In the system, VIV is used to verify a user
during the first few accesses. Simultaneously, the system collects verified training
data for constructing speaker-dependent models. Later, the system migrates to an
SV system for authentication. The combined system is convenient to users since
they can start to use the system without going through a formal enrollment session
and waiting for model training. Furthermore, since the training data may be collected
from different channels in different VIV sessions, the acoustic mismatch problem is
mitigated, potentially leading to a better system performance in test sessions. The
SD HMMs can be updated to cover different acoustic environments while the system
is in use to further improve the system performance. VIV can also be used to ensure
training data for SV. For different applications, various authentication systems can
be designed based on the theory and techniques presented in this chapter. A good
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speaker authentication system for real applications could come from a proper inte-
gration of speaker verification, verbal information verification, speech recognition,
and text-to-speech systems.
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This chapter describes hidden Markov model (HMM) methods for various problems
in language processing. HMMs provide a powerful and flexible formalism for mod-
eling sequences of words. They allow us to estimate the posterior probability that a
document would be relevant to a user, given the user’s query or to compute the proba-
bility that a document discusses a particular set of topics. They allow us to determine
automatically which words are related to which topics, even though each document
is annotated with multiple topics. They even allow us to decompose an unannotated
corpus of documents into its component set of topic basis functions. While some of
the HMMs used are extremely simple, they afford a paradigm for model parameter
estimation and offer the possibility of using more powerful models in the future. In
information extraction, we can use HMMs to estimate the probability that a sequence
of words in a particular context is a name of a particular type or that two entities in
a text are related in a particular way. We describe simple HMMs used for these and
other language processing tasks.

8.1 Introduction

HMMs have been used for the last decade as the preferred method for speech recog-
nition. This is because they provide a simple and flexible mechanism for model-
ing sequences of variable length. The observation sequence in speech is a high-
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dimensional vector that is hard to visualize. Although we know the conditional in-
dependence assumptions that define the HMM are not really true for speech, the
overwhelming advantages of using a rigorous probabilistic formalism still result in
high accuracy. Over the years, researchers have found various ways of modeling the
dependence to some degree.

In contrast to speech recognition, problems in text processing, at first glance, seem
deceptively simple. We can see the words, and we quickly develop many theories as
to how words convey meaning and fit together to construct more complex meanings.
It is often possible to build primitive systems with a small number of ad hoc rules.
Therefore, there is often greater resistance to using probabilistic methods for text
problems where rule-based methods seem more intuitive.

In this chapter, we show that the same advantages that hold for speech also apply to
other language problems. We discuss two different classes of language processing
problems. In the first class, we perform an operation on a whole document. A
document is any sizable unit of text, such as a story, a message, etc. This includes, for
example, information retrieval (retrieving documents in response to some query) and
topic classification (assigning one or more categories from a fixed set to a document).
The second class of problems is commonly called Information Extraction. Here we
attempt to understand the meaning of some of the text in some way. This includes, for
example, extracting parts of speech, detecting and categorizing names, or detecting
relations among entities described in the text. The former problem is traditionally
performed using one of several similarity measures that have been developed over
the years. The latter is traditionally performed using a set of hand constructed rules.
We contrast the use of HMMs with two other common approaches used for language
processing: rules, and ad hoc similarity measures.

8.2 Use of Probabilities

This short section discusses the advantages and disadvantages of using probabilities
as the basic scoring mechanism for solving language processing problems. Bayes
decision theory tells us that if we have to make a decision or choice among several
possibilities, and if we want to minimize the probability of error we must compute
the probability that each possibility is true given the data and then choose the one
with the highest (posterior) probability. So why is there a question? Because the
devil is in the details. It is rare that we can actually compute the correct probability
of each alternative. Instead, we must make a model with parameters that are possi-
ble to estimate using the available data and that are also practical to compute with
reasonable resources. In choosing a model that is practical, we often make several
simplifying assumptions that ultimately prevent us from computing the true posterior
probability. If these assumptions are sufficiently bad, then the resulting errors in the
probabilities we obtain can more than offset the benefit for using probabilities in the
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first place.

Probabilistic methods almost always come with a model for the problem. If we
have a good model for the problem, then we also may get other advantages, such as
methods that learn from examples, rather than methods that need to be programmed
explicitly. But a short program (or set of rules) can sometimes do better than a bad
probabilistic model. So the first answer to the question of whether we should use
probabilistic models is, It depends on how careful we are in using probabilities.”
We have found that if one is careful, it is usually possible to obtain high performance
(comparable to or exceeding the state-of-the-art) using these methods. Furthermore,
with the solid mathematical basis for what is being done, we can often analyze what
is wrong with our models (usually the assumptions) and improve on them if desired.

8.2.1 Hidden Markov Models

If we accept that we should use probabilistic models, why do we use hidden Markov
models (HMMs) for so many different problems? It may seem to some like the
only tool we have is the proverbial hammer, so everything looks to us like a nail.
While this might be true to some extent, HMMs are appropriate for modeling noisy
sequences. All language problems (speech, text, writing) consist of sequences. The
sequences are obviously noisy, or else it would be simple to write programs to solve
all our language problems.

The most serious problems that we face with HMMs is the conditional independence
assumption. The transition from one state to the next depends only on the state, and
not on how we get there, how long we have been there, or what symbols were previ-
ously emitted while we were in that state. Similarly, the symbol to be emitted from
a state depends only on being at that state, and nothing about the history, includ-
ing previous states or previously emitted symbols. This independence assumption is
patently false for most language problems. In speech we know that there is a high
correlation among successive spectra. In text, we know that each word depends to
a very large extent on the preceding words, both immediately preceding and further
back.

So why do these models work so well? First, most of the dependence that we ignore
can be thought of as redundant positive correlation. That is, if we treat each obser-
vation as new and independent, the probability that we compute for it may be lower
than it should be, had we taken into account the previous observations. But this error
may be thought of as relatively uniform across most choices. And the benefits for
using HMMs are large. They afford us with a well-established set of methods and
mathematics for manipulating problems in the way we need to.

Probabilistic models in general, and HMMs in particular, have several advantages.
First, as stated above, they provide us with a well-defined mathematical approach
to solving pattern recognition problems in language. Second, they often provide us
with simple methods for developing models on new domains or languages, requiring
only a set of data with annotated answers. Finally, many language problems that
do not use probabilistic models use a sum of scores. For example, the conventional
metric for comparing documents for Information Retrieval sums up a score for each
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word in the document that matches a query word. In order for this sum to be an
appropriate measure of relevance, these scores must be log probabilities.

In the remaining sections we discuss several problems in text processing: name spot-
ting, topic classification, information retrieval, event tracking and unsupervised topic
discovery. The first problem is different from the others in that it detects and catego-
rizes particular intervals of text as names. The other applications make decisions at
the level of a whole document.

In each of these applications, we would like to operate on the output of an auto-
matic speech recognition system. This can present special problems, since the speech
recognition output has errors. In addition, the output of a speech recognizer typically
does not have any sentence boundaries, case information, or punctuation. Neverthe-
less, we have found that these techniques work quite well on the output of a speech
recognizer. For name spotting, the total error rate is typically the sum of the errors
of the speech recognition system and the name spotting error on normal text. For
the other problems that operate at the level of a whole document, there is typical no
measurable degradation due to speech recognition, despite the fact that 20% of the
words may be wrong and the punctuation, case, and sentence boundaries are lost.

8.3 Name Spotting

The objective of name spotting is to extract important terms from the speech and
collect them in a database. For example, in news, it is useful to locate names of
persons, places, and organizations. Most of the previous work in this area has con-
sidered only text sources of written language and has concentrated on the design of
rule-driven algorithms to locate the names. Extraction from automatic transcriptions
of spoken language is more difficult than written text due to the absence of capital-
ization, punctuation, and sentence boundaries, as well as the presence of recognition
errors. These have significant degrading effects on the performance of rule-driven
systems. To overcome these problems, we have developed an HMM-based name ex-
traction system called IdentiFinder [1]. The technique requires only that we provide
training text with the type and location of the named entities marked. The system
has the additional advantage that it is easily ported to other languages, requiring only
a set of annotated training data from a new language.

The name spotting problem can be redefined as having to identify the type of all the
words in a document. We must find all examples of names of people, places, and
organizations. The remaining text must be correctly classified as not belonging to
any of these types. The model that we use reflects this task. The model consists
of one state for each of the three named entities plus one state (general language)
for all other words in the text, with transitions from each state to every other state.
Associated with each of the states is a bigram statistical model on all words in the
vocabulary. A different bigram model is estimated for each of the states. By thinking
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of this as a generative model that generates all the words in the text, most of the time
we are in the GL state emitting general language words. We then transition to one
of the named-entity states if we want to generate a name; we stay inside the state
generating the words for that name. Then, we either transition to another named-
entity state or, more likely, back to the GL state. The decision to emit each word or
to transition to another state depends on the previous word and the previous state. In
this way the model uses context to help detect and classify names. For example, the
word "Mr.” in the GL state is likely to be followed by a transition to the PERSON
state. After the person’s name is generated, a transition to the GL state is likely and
general words like “’said” or departed” may follow. These context-dependent effects
are included in our model.

The parameters of the model are estimated automatically from annotated training
data, where the three sets of named entities are marked in the text. Then, given a test
sample, the model is used to estimate the probability of each word belonging to one
of the three named entities or to none. We then use the Viterbi algorithm [2] to find
the most likely sequence of states to account for the text. The result is the answer for
the sequence of named entities.

Since our system has been trained on only one million words of annotated data from
broadcast news, many of the words in an independent test set will be unknown to the
name spotting system, even though they might be known to the speech recognizer.
(Words that are not known to the speech recognizer will be recognized incorrectly as
one of the existing words and will, of course, cause performance degradation, as we
shall see below.) It is important to deal with the unknown word problem since some
of those words will be among the desired named entities, and we would like the sys-
tem to spot them even though they were not seen before by the training component.
During training, we divide the training data in half. In each half we replace every
string that does not appear in the other half with the string "UNKNOWN’. We then
are able to estimate all the probabilities involving unknown words. The probabilities
for known words are estimated from all of the data. During the testing phase, we
replace any string that is unknown to the name spotting system by the label *UN-
KNOWN;,” and we are then able to find the best matching sequence of states. We
have found that, by making proper use of context, more than half of the names that
were not known to the name spotting system are labeled correctly by the system.
One advantage of our approach to information extraction is the ease with which we
can learn the statistics for different styles of text. For example, let us say we want
the system to work on text without case information (i.e., the text is displayed as
either all lower case or all upper case). It is a simple matter to remove the case
information from our annotated text and then reestimate the models. If we want to
use IdentiFinder on the output of a speech recognizer, we expect that the text will
not only be caseless, but will also have no punctuation. In addition, there will be no
abbreviations, and numeric values will be spelled out (e.g., TWENTY FOUR rather
than 24). Again, we can easily simulate this effect on our annotated text in order to
learn a model of text output from a speech recognizer. Of course, given annotated
data from a new language, it is a simple matter to train the same system to recognize
named entities in that language.
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We have performed several experiments to measure the performance of IdentiFinder
in finding names. In addition, we have measured the degradation when case and
punctuation information is lost, or when faced with errors from automatic speech
recognition. In measuring the accuracy of the system, both the type of named entity
and the span of the corresponding words in the text are taken into consideration. We
measure the slot error rate where the type and span of a name is each counted as a
separate slot by dividing the total number of errors in named entities (substitutions,
deletions, and insertions) by the total number of true named entities in the reference
answers [3].

In a test from the DARPA Broadcast News corpus [4], where the number of types of
named entities was seven (rather than the three used here), IdentiFinder obtained a
slot error rate of 11.4% for text with mixed case and punctuation. When all case and
punctuation were removed, the slot error rate increased to only 16.5%.

In recent DARPA evaluations on name spotting with speech input, again with seven
classes of names, the slot error rate for the output of the Byblos speech recognizer
was 26.7% with a speech recognition word error rate of 14.7% [5]. When all recog-
nition errors were corrected, without adding any case or punctuation information,
the slot error rate decreased to 14.1%. In general, we have found that the named-
entity slot error rate increases linearly with the word error rate in approximately a
one-to-one fashion.

8.4 Topic Classification

Much work has been done in topic classification where the models for the differ-
ent topics are estimated independently, even if multiple topics are assigned to each
document. One notable exception is the work of Yang and Chute [6] who, as part
of their model, take into consideration the fact that multiple simultaneous topics are
usually associated with each document. Our approach to topic classification is sim-
ilar in spirit to that of Yang and Chute, except that we use a Bayesian framework
[7] instead of a distance-based approach. Our topic classification component, called
OnTopic™™ , is a probabilistic HMM whose parameters are estimated from train-
ing samples of documents with given topic labels, where the topic labels number in
the thousands. The model allows each word in the document to contribute different
amounts to each of the topics assigned to the document. The output from OnTopic
is a rank-ordered list of all possible topics and corresponding scores for any given
document.
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FIGURE 8.1

A hidden Markov model for topics. Each state can emit words for one topic.
State T0 emits words corresponding to general language.

8.4.1 The Model

We choose the set of topics Set that corresponds to a given document D such that
the posterior probability P(Set | D) is maximized:

P(D | Set)

P(Set | D) = P(Set) PD)

(8.1)

For the purpose of ranking the sets of topics, P(D) can be ignored. The prior prob-
ability is really the joint probability of a document having all the labels in the set,
which can be approximated using topic co-occurrence probabilities:

1

P(Set) ~ { 11 11 P(Tk,Tm)} (];) (8.2)

{keSet} {meSet, m>k}

where IV is the number of topics in Set and the exponent serves to place on similar
footing topic sets of different sizes. P(T',T,,) is estimated by taking the product
of the maximum likelihood estimates of P(T | T,,) and P(T,,). The former is
estimated as the fraction of those documents with 7', as a topic which also have T},
as a topic, and the latter is estimated as the fraction of documents with 7', as a topic.

What remains to be computed is P(D | Set), the conditional probability of the
words in the document, given that the document is labeled with all the topics in Set.
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We model this probability with an HMM consisting of a state for each of the topics
in the set, plus one additional topic state, general language (GL), as shown in Fig.
8.4.1. The model generates” the words in the document one by one, first choosing a
topic distribution from which to draw the next word, according to P(T'; | Set), then
choosing a word according to P(W, | T}), then choosing another topic distribution
to draw from, etc. The formula for P(D | Set) is, therefore,

P(D| Set)y ~ [ Y. P(T; | Set)P(W, | T)) (8.3)
t jeSet

where t varies over the set of words in the document. The elements of the above
equation are estimated from training data as described below.

8.4.2 Estimating HMM Parameters

We use a biased form of the Expectation-Maximization (EM) algorithm [8] to find
good estimates for the transition probabilities and the emission probabilities P(T'; |
Set) in the HMM in Fig. 8.4.1. The transition probabilities are defined by:

E( # times any word is emitted in state T'; | model k)

P11 (T; | Set) = 8.4
b1 (T | Set) E(# times any word is emitted in any state | model k) (8:4)
which can be estimated as
>.p Ywep U.W, T}, D)
Pry1 (T | Set) = bias(Ty) S (8.5)
" > X Lwep @hi(W, Ti, D)
where
Y. UD)
bias(Tj) = ol (8.6)
> UD)
D
is the bias term, /(D) is the number of words in the document D, and
Py (T; | Set)P, (W | T}
43 (W, Ty, D) = e(W | D)I(D has Tj) et T L SR (W | T5) 8.7)

EiESet Py(T; | Set) P, (W | T;)

qr,; (W, T}, D) is the fraction of the counts for W in D that are accounted for by T ;,
given the current set of parameters in the generative model; ¢(W | D) is the number
of times that word W appears in the document; and I(z) is an indicator function
returning 1 if its predicate is true and O otherwise. The bias term is needed to bias
the observations towards the GL state; otherwise, the EM algorithm would result
in a zero transition probability to the GL state [6]. The effect of the bias is that the
transition and emission probabilities for topic will be set such that this topic accounts
for a fraction of the words in the corpus roughly equal to bias(T';). The emission
probabilities are then estimated from:

> p ki (W, T}, D)
>p ZWGD qr,;(W,Tj, D)

BPop (W | Tj) = (8.8)
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8.4.3 Classification

To perform classification for a given document, we need to find the set of topics that
maximizes (8.1). But the total number of all possible sets is ( 2211 k!), which is a
very large number if the number of possible topics M is in the thousands. Since scor-
ing such a large number of possibilities is prohibitive computationally, we employ a
two-pass approach. In the first pass, we select a small set of topics that are likely to
be in the best set. In the second pass, we score all sets of these candidates using (8.1).
We select candidate topics in the first pass by scoring each topic independently, as if
it were a complete set on its own, using a slight modification of (8.1):

log P(T; | D) ~ alog P(T;) + Z¢ <log [P(Tj | Set)B%}> (8.9)

where ¢(z) is 0 if 2 < 0 and x otherwise, and serves to filter out the effect of words
in documents that constitute negative evidence for a topic. The parameter a has been
introduced to balance the prior against the generative model and is optimized from
training data. The parameter [ is there to flatten (if less than one) or sharpen (if
greater than one) the transition probability distribution, in order to compensate for
the independence assumption over words in the document.

8.4.4 Experiments

We applied the two-pass procedure of the OnTopic classifier described above to a
corpus of broadcast news stories, transcribed and annotated by Primary Source Me-
dia. For each story, the annotators gave a number of topic labels that they thought
representing the topics in the story. The number of topics for each story was any-
where between 1 and 13, with an average of 4.5 topics per story. The corpus was
divided into one year, or 42,502 stories, for training, and one month, or 989 stories,
for test. The training set contained a total of 4627 unique topic labels.

Measuring the performance of our system against what the human annotators wrote
down as the topic labels is not straightforward, because our system gives an ordered
list of all topics, each with a score, while the annotators have a small, unordered list
of topics for each story. We measure the performance as a function of the number
N of top-ranking topics provided by the system. For each value of N, we compare
the top-N topics produced by the system against the set of topics generated by the
annotators. The accuracy was 76% for the first choice and decreased to about 50%
for the fifth choice.

We have indications that the criteria we have adopted for measuring the performance
of our system may be less forgiving than necessary. Topic annotation is not an easy
task for people when the number of topics is large; people tend to under-generate
labels for documents because it is difficult to remember so many topics. Upon in-
formal examination of stories for which the top-scoring topic was not included in
the list given by the annotators, we found that well over 90% of the time, the topic
given by the computer was quite reasonable for the story. In these cases, the human
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annotators had simply not been exhaustive in their enumeration of the possible topics
for the story.

8.5 Information Retrieval

Information retrieval is the task of finding documents that are relevant to a query,
where that query might contain a small number of words typed by a person, or might
even consist of several documents indicated as interesting. To perform this task, we
developed an information retrieval (IR) system, called Golden Retriever [9]. Golden
Retriever is a novel probabilistic HMM-based IR system that computes the prob-
ability that a document is relevant, given a query, and ranks all documents in the
collection based on this measure. Our approach to IR mirrors our topic classification
work; we allow a corpus of examples to drive our selection of models and our estima-
tion procedures. The corpus consists of a set of documents, a set of natural language
queries (tens of words), and a number of relevance judgments that state whether each
document is relevant to the query or not. Human annotators make the relevance judg-
ments on some significant sampling of the corpus of documents for each query. We
build a statistical model capable of ranking training documents effectively by their
labeled relevance to given training queries.

8.5.1 A Bayesian Model for IR

Given a query, it seems sensible to rank the documents in a corpus by their probabil-

ity of being relevant [10]. In other words, we want to use as our document ranking

function the posterior probability P(D € R | @), the probability that the document

D is relevant, given query Q. We again use Bayes’ rule to decompose the posterior

probability:

P(D e R)P(Q| D € R)
P(Q)

P(D € R) is the prior probability of a document being relevant to any query. While
this might not sound meaningful, it can be a very powerful source of information.
For example, documents from particular sources are more likely to be useful. Newer
documents may be more relevant than old ones, long documents more relevant than
short ones, and so on. In addition, there are likely to be particular documents that
everyone wants. These preferences can be universal, or a function of the group the
user is in, or even particular to the individual user. P(Q)) is simply the prior prob-
ability of the query being posed in the first place. As this quantity does not alter
the document ranking, we can safely ignore it. What is left is the conditional prob-
ability of the query being posed, under the hypothesis that the document is relevant,
P(Q | D € R). We model this remaining quantity with a discrete HMM that is
dependent on the document. This will be a generative model where we think of the

P(DER|Q) = (8.10)
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document HMM as generating the query. The parameters of the HMM should be
estimated in such a way as to make it more likely that a document will generate a
query to which it is relevant than a query to which it is not relevant.

A simple formulation of the requisite HMM has just two states labeled D and GL,
with state D representing the option of generating query words by drawing words
directly from the document and state GL representing choosing words from general
language, i.e., without regard to the document. Most queries contain words that are
present in relevant documents, but all queries contain many general words that are
not really part of the specification of relevant documents.

8.5.2 Training the IR HMM

The parameters of the HMM are the transition probability « (the probability that the
query word will be chosen from the GL state), and the emission probabilities for each
of the words in each state. In principle, we would like to estimate these parameters
from examples using the EM algorithm. In practice, however, we find that we do
not have enough training examples to find good estimates for the emission probabil-
ities. So we set the emission probabilities for the D and GL states to be the unigram
distributions of the words in the document and the whole corpus, respectively. Fur-
ther, we set the transition probabilities to be the same « for all documents, and we
estimate a using the EM algorithm. We found that the value of « depends on the
type of query. If the query is a short phrase typed by a human, then a typical value
for a is 0.3, meaning that 70% of the words in the query would be expected to be
found in any relevant document. But if the query were a long description, then the
typical value of e was 0.7, meaning that only 30% of the words would be expected
to appear in relevant documents. Finally, if the query were an entire document, even
higher values of a would be appropriate.

8.5.3 Performance

We have tested this simple two-state HMM on the TREC-7 (Text Retrieval Confer-
ence) corpus which consists of 528,155 documents [9]. We preprocess the corpus
lightly in order to split documents up into words and to allow morphologically sim-
ilar words to match. The stream of characters in each document gets tokenized into
words. Then we conflate terms by applying Porter’s stemming algorithm [11]. Next,
we discard anything found in a list of 400 ”stop” words. Finally, numeric and non-
word items are reduced to single tokens CNUMBER’, "TDOLLAR’, etc.).

The test comprised 50 queries with an average of 57.6 words per query. Each query
was preprocessed in the same manner described above for the documents. Then,
for each query we compute (8.10) for each of the documents. The result is that the
top-scoring document for each query was found to be relevant 78% of the time.

The simple model described above has been extended by adding more states with
different query term-generating mechanisms (e.g., synonyms, bigrams, topics, unsu-
pervised relevance feedback), and by the inclusion of document priors, resulting in
higher performance [12].
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8.6 Event Tracking

Another application of topic classification is called event tracking. In this case, we
are given a small number of documents that describe an event and we are asked to
find all of the other documents that describe the same event. The Topic Detection
and Tracking Project sponsored by the government posed just such a problem. In
this problem, we are given four documents that are purported to be about a particular
event. Our task is to find the remaining documents about the same event. But there
are some complications in the task. First, we must make a binary decision for each
document as soon as we look at it. We cannot look at the whole corpus in order to
rank the documents. But we are also given a part of the corpus and told that most of
these documents do not discuss the same event. Thus, we must devise a mechanism
for determining a threshold on the score in order to know whether or not to accept the
document. A second part of the problem is that the nature of the documents is likely
to change over time as the discussion of the original event evolves. For example, the
initial stories might be about the commission of some crime. The later stories might
be about the trial of the person(s) accused of that crime.

One can think of this problem in two ways. First, we can think of the example
documents as defining a topic. We can estimate a topic model (i.e., word distribution)
from these example documents. Then, our task is to find those documents in the
corpus that have a high probability of discussing that same topic. Alternatively, we
can think of the example documents as a (very long) query. And we would then
be looking for documents that are relevant to us, given that the query was as given.
Note that these two formulations result in entirely different models and processes.
In the first case, we compute a topic model from the example documents, and then,
using Bayes’ rule, we compute the probability of the words in each document, given
that the document is about this topic. In the second case, we compute a distribution
from each document and then compute the probability of the given *query’ given this
document is relevant.

The topic classification mechanism has some advantages. For example, as we go
through stories, we find several stories that have a very high likelihood of being
about the same event. We can, if sufficiently confident, add these documents into the
model as if they were training examples for the event. Then, we retrain our model
for the topic and proceed from there. The information retrieval model cannot do this
as easily. That is because we are imagining that all of the training documents were
"generated’ by each relevant document. But at the point where the number of training
documents becomes very much larger than each later document, we cannot really
expect the single document to contain most of the words in the training documents.
The problem of deciding whether a document is relevant to the four example doc-
uments (as opposed to just ranking the documents in the corpus) is a difficult one.
This is because the scores for event model and document will vary as a function
of unimportant factors. For example, for the topic classification model, the number
word scores for a test document is a function of the length of the document. While

© 2003 by CRC Press LLC



we can compute the average score per word, the score still depends on the particular
words that appear in the document. On the other hand, the Information Retrieval
score will be relatively unbiased for the different documents, but the score will vary
as a function of the length of the query (the four example documents, in this case),
and the particular words used in those documents.

To solve this problem, we added another level of classifier. Given a model for a
topic, we can compute the score for a large number of documents in our corpus. We
remove those documents that we either know to be on the same event or receive a
very high score (they may be about the same event). Then, we make a distribution
of those scores. We can then set a threshold based on that distribution. For example,
we typically set a threshold at six standard deviations above the mean score value.
(The distribution of scores is not really Gaussian. We just use this mechanism as a
convenient one.) The result is that some fixed fraction of off-topic stories would be
incorrectly classified as being on the event. That is, we fix the probability of false
acceptance of a story that is not about the desired event. This results in extremely
consistent behavior of the classifier across different events and different documents.
The resulting probability of missing a document that is on the event is whatever
comes from the nature of the problem. But the number of false alarms is completely
predictable.

8.7 Unsupervised Topic Detection

In order to use topic classification, we presume that we have a large set of docu-
ments annotated with topics. But, for a large number of topics we need an even
larger corpus. The cost of annotating a large corpus with topics can be quite large.
Furthermore, the topics continue to change over time, requiring constant annotation.
Finally, we must do this for every domain and every language.

However, it is possible to annotate a corpus automatically with topics similar to those
that would be created by human annotators. To do so, we use the nature of topics, and
we also use the tools that we created for the supervised topic classification problem.
First, we can abstract the definition of topics to be a collection of sets of words. The
words within each set are statistically related. We assume documents are written by
drawing from these sets of words, somewhat at random. Second, we need to have
understandable names for each of these topics, otherwise it is not clear what a person
would use them for.

We have devised a method for deriving a large set of named topics from a corpus of
documents. The method works in any language or domain. We have evaluated the
topics and found that they are comparable in their behavior to the topics assigned by
human annotators and, for some applications, even result in superior performance to
human-created topic sets.

Before we start, we derive various phrases from the corpus, since phrases often carry
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more obvious meaning than single words. We use two techniques to find phrases in
the corpus. The first one is simply to find strings of words that are “’sticky”. That is,
the words tend to appear together much more often than otherwise expected. There
are several techniques that could be used for this. For example, one can use the
mutual information between words. We have used a minimum description length
technique that finds those strings, which, if adopted, most reduce the number of
bits needed to encode the entire corpus. The second technique for finding phrases
uses the named-entity extraction technique described in the previous section. This
assumes that some text in the language has been annotated with examples of names
of different types. (Here, names can be generalized to include any types of interesting
phrases.) For example, for news, we found those phrases that were names of people,
locations, or organizations. These phrases are used simply to define additional terms.
The original words are kept, but additional strings are added for the phrases. Next,
the algorithm chooses candidate topic names. These are chosen simply as words or
phrases that seem to have high information content. Specifically, for each term (word
or phrase) in the document, we compute its inverse document frequency as

Tdf (w) = log(N/df (w))

where N is the total number of documents in the corpus, and df(w) is the number of
documents in the corpus that contain the word w at least once. Then, within each
document, we compute the number of times each word occurs, multiplied by the
IDF of that term. The result is an ad hoc measure of how likely that term is to be an
important concept for the document.

We choose the highest five such terms for each document, subject to the condition
that each of these terms occurs some minimum number of times in the entire corpus.
(We have used 4 as a threshold.) This then means that this term is a plausible name of
a topic, and we also have a set of documents that seem to contain the term. These are
taken to be to be initial topics and topic assignments. If we change these thresholds
then the number of topics produced by the system will vary.

But our goal is to find full topics, where topics are probability distributions of large
sets of words, and to assign these topics to all the documents that discuss them - not
just those that contain the name of the topic. So we use the same OnTopic training
algorithm described in above. That is, we take the initial topic assignments to be
correct. We estimate new models for the topics. This has the effect of adding the
other content words from the documents to the topic models defined. Then, we use
these topic models to classify all of the documents. The result is that the topics are
now assigned to many more documents, many of which do not contain the names of
the topics.

We have used this algorithm on the same corpus from Primary Source Media de-
scribed above. In this case, we created about 18,000 topics automatically. The topics
created were judged by presenting the chosen topics for several documents to sub-
jects, who decided whether each one was appropriate. We found that on over 90%
of the documents, the first choice document seemed relevant to the document. Fur-
thermore, on the fifth choice topic, the relevance was still over 80%. This result was
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quite high in that it was comparable to, or even higher than that of the topic models
trained from human annotation.

The great advantage of unsupervised topic discovery is that it can easily be applied
to any new domain or language. It can also find very large numbers of topics. In
fact, we have applied it to Arabic news stories and found that the performance was
comparable to that on English stories. This made it possible to perform topic classi-
fication on the Arabic news stories, since it would have been far too expensive for us
to annotate tens of thousands of news stories with topics manually.

8.8 Summary

We have described several different text processing techniques that can be performed
using HMMs. In most cases, the resulting algorithms were as good as or better than
the existing techniques for performing that function. Furthermore, the techniques
could be used trivially in any language or domain. Finally, we have seen that the
techniques can often be extended to result in higher accuracy or to perform related
functions relatively easily, because of their underlying simplicity.
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9.1 Introduction

The Bayesian approach pervasive in today’s speech recognition systems entails the
construction of a prior model of the language, as pertains to the domain of interest.
The role of this prior, in essence, is to quantify which word sequences are acceptable
in a given language for a given task, and which are not. It must therefore encapsulate
as much as possible of the syntactic, semantic, and pragmatic characteristics of the
domain [35, 50]. In the past two decades, it has become increasingly common to
do so through statistical n-gram language modeling (LM), where each word is pre-
dicted conditioned on the current context, on a left to right basis [16, 53]. Although
widespread, this solution is not without drawbacks: prominent among the challenges
faced by n-gram modeling is the inherent locality of its scope, due to the limited
amount of context available for predicting each word.

9.1.1 Scope Locality

Central to this issue is the choice of n, which has implications in terms of predictive
power and parameter reliability. Large values of n are desirable for the former, but
low values of n are necessary for the latter (see, for example, [39, 46, 47]). This in
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turn imposes an artificially local horizon to the model, impeding its ability to capture
large-span relationships in the language.
To illustrate, consider, in each of the two equivalent phrases:

stocks fell sharply as a result of the announcement 9.1
stocks, as a result of the announcement, sharply fell 9.2)

the problem of predicting the word “fell” from the word “stocks.” In (9.1), this can be
done with the help of a bigram LM (n = 2), which is straightforward with the kind
of resources currently available [51]. In (9.2), however, the value n = 9 would be
necessary, a rather unrealistic proposition at the present time. Largely because of this
inability to reliably capture large-span behavior, n-gram performance has essentially
reached a plateau [53].

This observation has sparked interest in a variety of countermeasures, involving for
instance information aggregation or span extension [5]. Information aggregation in-
creases the reliability of a word prediction by taking advantage of exemplars of other
words that behave “like” this word in the particular context considered. The trade-
off, typically, is higher robustness at the expense of a loss in resolution. This chapter
is more closely aligned with span extension, which extends and/or complements the
n-gram paradigm with information extracted from large-span units (i.e., comprising
a large number of words). The trade-off here is in the choice of units considered for
the analysis of long distance dependencies. These units tend to be either syntactic or
semantic in nature.

9.1.2 Syntactically-Driven Span Extension

Assuming a suitable parser is available for the domain considered, syntactic infor-
mation can be used to incorporate large-span constraints into the recognition. How
these constraints are incorporated varies from estimating n-gram probabilities from
grammar-generated data [62] to computing a linear interpolation of the two models
[37]. Most recently, syntactic information has been used specifically to determine
equivalence classes on the n-gram history, resulting in so-called dependency [14, 49]
or structured [15, 36, 58] LMs. In that framework, each unit is the headword of the
phrase spanned by the associated parse sub-tree. The standard n-gram LM is then
modified to operate given the last (n — 1) headwords as opposed to the last (n — 1)
words. As a result, the structure of the model is no longer pre-determined: which
words serve as predictors depends on the dependency graph, which is a hidden vari-
able [53]. In the example above, the top two headwords in the dependency graph
would be “stocks” and “fell” in both cases, thereby solving the problem.

The main caveat in such modeling is the reliance on the parser, and particularly the
implicit assumption that the correct parse will in fact be assigned a high probability
[61]. The basic framework was recently extended to operate efficiently in a left-to-
right manner [15, 36], through careful optimization of both chart parsing [59] and
search modules. Also noteworthy is a somewhat complementary line of research
[60], which exploits the syntactic structure contained in the sentences prior to the
one featuring the word being predicted.
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9.1.3 Semantically-Driven Span Extension

High level semantic information can also be used to incorporate large-span con-
straints into the recognition. Since by nature such information is diffused across the
entire text being created, this requires the definition of a document as a semantically
homogeneous set of sentences. Then each document can be characterized by draw-
ing from a (possibly large) set of topics, usually pre-defined from a hand-labelled
hierarchy, which covers the relevant semantic domain [34, 55, 56]. The main uncer-
tainty in this approach is the granularity required in the topic clustering procedure
[26]. To illustrate, in (9.1) and (9.2), even perfect knowledge of the general topic
(most likely, “stock market trends”) does not help much.

An alternative solution is to use long distance dependencies between word pairs
which show significant correlation in the training corpus. In the above example,
suppose that the training data reveals a significant correlation between “stocks” and
“fell.” Then the presence of “stocks” in the document could automatically trigger
“fell,” causing its probability estimate to change. Because word proximity is now
irrelevant, the two phrases would lead to the same result. In this approach, the pair
(stocks, fell) is said to form a word trigger pair [45]. In practice, word pairs with
high mutual information are searched for inside a window of fixed duration. Unfor-
tunately, trigger pair selection is a complex issue: different pairs display markedly
different behavior, which limits the potential of low frequency word triggers [52].
Still, self-triggers have been shown to be particularly powerful and robust [45], which
underscores the desirability of exploiting correlations between the current word and
features of the document history.

Recent work has sought to extend the word trigger concept by using a more com-
prehensive framework to handle the trigger pair selection [2, 3, 4, 7, 19, 29, 31].
This is based on a paradigm originally formulated in the context of information re-
trieval, called latent semantic analysis (LSA) [11, 22, 25, 27, 32, 43, 44, 57]. In this
paradigm, co-occurrence analysis still takes place across the span of an entire docu-
ment, but every combination of words from the vocabulary is viewed as a potential
trigger combination. This leads to the systematic integration of long-term semantic
dependencies into the analysis, as long as there is a way to identify article boundaries
in the available training data. This is the case, for example, with the ARPA North
American Business (NAB) News corpus [40]. The LSA paradigm can be used for
word and document clustering [7, 29, 31], as well as for language modeling [2, 19].
In all cases, it was found to be suitable to capture some of the global semantic con-
straints present in the language. In fact, hybrid n-gram+LSA LMs, constructed by
embedding LSA into the standard n-gram formulation, were shown to result in a
substantial reduction in average word error rate [3, 4].

9.1.4 Organization

The focus of this chapter is on semantically-driven span extension only, and more
specifically on how to exploit the LSA paradigm to improve statistical LM. The
main objectives are: (i) to review the data-driven extraction of latent semantic infor-
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mation, (ii) to assess potential usage in spoken language processing, (iii) to describe
integration with conventional n-gram LM, (iv) to examine the behavior of the re-
sulting hybrid models in speech recognition experiments, and (v) to discuss factors
which influence performance.

The chapter is organized as follows. In the next two sections, we give an overview of
LSA feature extraction and the resulting LSA feature space. Section 9.4 explores the
applicability of this framework for general semantic classification. In Section 9.5, we
shift the focus to LSA-based statistical LM for large vocabulary recognition. Sec-
tion 9.6 describes the various smoothing possibilities available to make LSA-based
LMs more robust. In Section 9.7, we illustrate some of the benefits associated with
hybrid n-gram+LSA modeling on a subset of the Wall Street Journal (WSJ) task.
Finally, Section 9.8 discusses the inherent trade-offs associated with the approach,
as evidenced by the influence of the data selected to train the LSA component of the
model.

9.2 Latent Semantic Analysis

Let V, |V| = M, be some underlying vocabulary and 7 a training text corpus,
comprising N articles (documents) relevant to some domain of interest (like business
news, for example, in the case of the NAB corpus [40]). The LSA paradigm defines
a mapping between the discrete sets V, 7 and a continuous vector space S, whereby
each word w; in V is represented by a vector #; in S, and each document d; in 7T is
represented by a vector ¥; in S.

9.2.1 Feature Extraction

The starting point is the construction of a matrix (W) of co-occurrences between
words and documents. In marked contrast with n-gram modeling, word order is ig-
nored, which is of course in line with the semantic nature of the approach [44]. This
makes it an instance of the so-called “bag-of-words” paradigm, which disregards
collocational information in word strings: the context for each word essentially be-
comes the entire document in which it appears. Thus, the matrix W is accumulated
from the available training data by simply keeping track of which word is found in
what document.
This tends to involve some appropriate function of the word count in each document
[7]. Various implementations have been investigated by the information retrieval
community (see, for example, [24]). Evidence points to the desirability of normaliz-
ing for document length and word entropy. Thus, a suitable expression for the (i, )
cell of W is:

wij = (1—e;) L, 9.3)

n;j

© 2003 by CRC Press LLC



where ¢; ; is the number of times w; occurs in d;, n; is the total number of words
present in d;, and ¢; is the normalized entropy of w; in the corpus 7. The global
weighting implied by 1 — ¢, reflects the fact that two words appearing with the same
count in d; do not necessarily convey the same amount of information about the
document; this is subordinated to the distribution of the words in the collection 7.
If we denoteby t;, = > jCij the total number of times w; occurs in T, the expression
for g, is easily seen to be:

N

1 Ci,j Ci. i
i=— —1 Jog =L 9.4
¢ IOgN Z ti 8 ti ( )

j=1

By definition, 0 < g; < 1, with equality if and only if ¢; ; = #; and ¢; ; = t;/N,
respectively. A value of ; close to 1 indicates a word distributed across many doc-
uments throughout the corpus, while a value of €; close to 0 means that the word is
present only in a few specific documents. The global weight 1 — ¢ is therefore a
measure of the indexing power of the word w ;.

9.2.2 Singular Value Decomposition

The (M x N) word-document matrix W defines two vector representations for the
words and the documents. Each word w; can be uniquely associated with a row
vector of dimension NNV, and each document d; can be uniquely associated with a
column vector of dimension M. Unfortunately, this is unpractical for three related
reasons. First, the dimensions M and N can be extremely large; second, the vectors
w; and d; are typically very sparse; and third, the two spaces are distinct from one
another.

To address these issues, one solution is to perform the (order-R) singular value de-
composition (SVD) of W as [30]:

WaWw=UsSVvVT, 9.5)

where U is the (M x R) left singular matrix with row vectors u; (1 < ¢ < M), S'is
the (R x R) diagonal matrix of singular values s; > s2 > -+ > sgp > 0, V is the
(N x R) right singular matrix with row vectors v; (1 < j < N), R < min(M, N)
is the order of the decomposition, and 7 denotes matrix transposition. As is well
known, W is the best rank-R approximation to the word-document matrix W, for
any unitarily invariant norm (cf., e.g., [20]). Furthermore, both left and right singular
matrices U and V' are column-orthonormal, i.e., U TU = VTV = Ig (the identity
matrix of order R). Thus, the column vectors of U and V' each define an orthornormal
basis for the space of dimension I spanned by the u;’s and v;’s.

Upon projecting the row vectors of T (i.e., words) onto the orthornormal basis
formed by the column vectors of V, the row vector u ;S characterizes the position
of word w; in the underlying R-dimensional space, for 1 < ¢ < M. Similarly,
upon projecting the column vectors of W (i.e., documents) onto the orthonormal
basis formed by the column vectors of U, the row vector v ;S characterizes the po-
sition of document d; in the same space, for 1 < j < N. We refer to each of the
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M scaled vectors u; = u;S as a word vector, uniquely associated with word w; in
the vocabulary, and each of the IV scaled vectors 7; = ij as a document vector,
uniquely associated with document d; in the corpus. Thus, (9.5) defines a transfor-
mation between high-dimensional discrete entities (V' and 7") and a low-dimensional
continuous vector space S, the R-dimensional (LSA) space spanned by the u ;’s and
v;’s.

The dimension R is bounded from above by the (unknown) rank of the matrix W,
and from below by the amount of distortion tolerable in the decomposition. It is
desirable to select R so that W captures the major structural associations in W and
ignores higher order effects. In addition, classical methods for determining the SVD
of dense matrices (see, for example, [12]) are not optimal for large sparse matrices
such as W. Instead, it is more appropriate to solve a sparse symmetric eigenvalue
problem, which can then be used to indirectly compute the sparse singular value
decomposition. Several suitable iterative algorithms have been proposed by Berry,
based on either the subspace iteration or the Lanczos recursion method [10]. Con-
vergence is typically achieved after 100 or so iterations.

9.2.3 General Behavior

By construction, the “closeness” of vectors in the LSA space S is determined by the
overall pattern of the language used in 7, as opposed to specific constructs. Hence,
two words whose representations are “close” (in some suitable metric) tend to appear
in the same kind of documents, whether or not they actually occur within identical
word contexts in those documents. Conversely, two documents whose representa-
tions are “close” tend to convey the same semantic meaning, whether or not they
contain the same word constructs. We can therefore expect words and documents
that are semantically linked to also be “close” in the LSA space S.

Of course, the optimality of this framework can be debated, since the underlying
L-> norm may not be the best choice when it comes to linguistic phenomena. For
example, the Kullback-Leibler divergence provides a more elegant (probabilistic)
interpretation of (9.5) [32], albeit at the expense of requiring a conditional indepen-
dence assumption on the words and the documents [33]. This caveat notwithstand-
ing, the correspondence between closeness in LSA space and semantic relatedness is
well documented. In applications such as information retrieval, filtering, induction,
and visualization, the LSA framework has repeatedly proven remarkably effective in
capturing semantic information [11, 22, 25, 27, 33, 43, 44, 57].

Such behavior was recently illustrated in [48], in the context of an (artificial) in-
formation retrieval task with 20 distinct topics and a vocabulary of 2000 words. A
probabilistic corpus model generated 1000 documents, each 50 to 100 words long.
The probability distribution for each topic was such that 0.95 of its probability den-
sity was equally distributed among topic words, and the remaining 0.05 was equally
distributed among all the 2000 words in the vocabulary. A suitable distance was then
measured between all pairs of documents, both in the original space and in the LSA
space obtained as above, with R = 20. This leads to the expected distance distribu-
tions depicted in Figure 9.1, where a pair of documents is considered “intra-topic” if
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Improved Topic Separability in LSA Space.

the two documents were generated from the same topic and “inter-topic” otherwise.
It can be seen that in the LSA space the average distance between inter-topic pairs
stays about the same, while the average distance between intra-topic pairs is dramat-
ically reduced. In addition, the intra-topic standard deviation also becomes substan-
tially smaller. As a result, separability between intra- and inter-topic pairs is much
better in the LSA space than in the original space. Interestingly, this holds despite
a sharp increase in the inter-topic standard deviation, which bodes well for the gen-
eral applicability of the method. Analogous observations can be made regarding the
distance between words and/or between words and documents.

9.3 LSA Feature Space

In the continuous vector space S obtained above, each word w; € V is represented
by the associated word vector of dimension R, %; = u;S, and each document d; €
T is represented by the associated document vector of dimension R, v; = v;S.
This opens up the opportunity to apply familiar clustering techniques in S, as long
as a distance measure consistent with the SVD formalism is defined on the vector
space. Since the matrix W embodies, by construction, all structural associations
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between words and documents, it follows that, for a given training corpus, W W T
characterizes all co-occurrences between words, and W T W characterizes all co-
occurrences between documents.

9.3.1 Word Clustering

Expanding W W T using the SVD expression (9.5), we obtain (henceforth ignoring
the distinction between W and W):

wwT=vUs?UT. (9.6)

Since S is diagonal, a natural metric to consider for the “closeness” between words
is therefore the cosine of the angle between ;S and u;S:

uiS2ujT

= T o .7
[JiS|| ]Sl

K(wi, wj) = COS(ﬂi, ﬂj)
forany 1 <1i,j < M. A value of K (w;, w;) = 1 means the two words always occur
in the same semantic context, while a value of K (w;, w;) < 1 means the two words
are used in increasingly different semantic contexts. While (9.7) does not define a
bona fide distance measure in the space S, it easy leads to one. For example, over
the interval [0, 7], the measure:

D(w;, w;) = cos K (w;,w;), (9.8)

readily satisfies the properties of a distance on S. At this point, it is straightforward
to proceed with the clustering of the word vectors 4 ;, using any of a variety of al-
gorithms (see, for instance, [1]). The outcome is a set of clusters C', 1 < k < K,
which can be thought of as revealing a particular layer of semantic knowledge in the
space S.

9.3.2 Word Cluster Example

To illustrate, we recall here the result of a word clustering experiment originally
reported in [2]. A corpus of N = 21,000 documents was randomly selected from
the WSJ portion of the NAB corpus. LSA training was then performed with an
underlying vocabulary of M = 23,000 words, and the word vectors in the resulting
LSA space were clustered into 500 disjoint clusters using a combination of K-means
and bottom-up clustering (cf. [4]). Two representative examples of the clusters so
obtained are shown in Figure 9.2.

In a marked difference with conventional class n-gram techniques (cf. [46]), these
clusters comprise words with different part of speech. This is a direct consequence
of the semantic nature of the derivation. Also, some obvious words seem to be miss-
ing from the clusters: for example, the singular noun “drawing” from cluster 1 and
the present tense verb “rule” from cluster 2. This is an instance of polysemy: “draw-
ing” and “rule” are more likely to appear in the training text with their alternative
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Cluster 1

Andy, antique, antiques, art, artist, artist’s, artists, artworks, auctioneers,
Christie’s, collector, drawings, gallery, Gogh, fetched, hysteria, masterpiece,
museums, painter, painting, paintings, Picasso, Pollock, reproduction,
Sotheby’s, van, Vincent, Warhol

Cluster 2

appeal, appeals, attorney, attorney’s, counts, court, court’s, courts, condemned,
convictions, criminal, decision, defend, defendant, dismisses, dismissed,
hearing, here, indicted, indictment, indictments, judge, judicial, judiciary, jury,
juries, lawsuit, leniency, overturned, plaintiffs, prosecute, prosecution,
prosecutions, prosecutors, ruled, ruling, sentenced, sentencing, suing, suit,
suits, witness

FIGURE 9.2
Word Cluster Example (After [2]).

meanings (as in “drawing a conclusion” and “breaking a rule,” respectively), thus
resulting in different cluster assignments. Finally, some words seem to contribute
only marginally to the clusters: for example, “hysteria” from cluster 1 and “here”
from cluster 2. These are the unavoidable outliers at the periphery of the clusters.

9.3.3 Document Clustering

Proceeding in a similar fashion at the document level, we obtain:
wTw=vs?vT, (9.9)
which, for 1 < 4,5 < N, leads to the same functional form as (9.7):

viS2va

K(di,dj) = cos(@i,ﬁj) = WHUJ‘SH

(9.10)

We conclude that the distance (9.8) is equally valid for both word and document
clustering.* The resulting set of clusters Dy, 1 < £ < L, can be viewed as revealing
another layer of semantic knowledge in the space S.

*In fact, the measure (9.8) is precisely the one used in the study reported in Figure 9.1. Thus, the distances
on the x-axis of Figure 9.1 are D(d;, d; ) expressed in radians.
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Document Cluster Example.

9.3.4 Document Cluster Example

An early document clustering experiment using the above measure was documented
in [31]. This work was conducted on the British National Corpus (BNC), a heteroge-
neous corpus which contains a variety of hand-labelled topics. The LSA framework
was used to partition BNC into distinct clusters, and the sub-domains so obtained
were compared with the hand-labelled topics provided with the corpus. This com-
parison was conducted in an objective manner by evaluating (on a common test set)
two different mixture trigram LMs: one built from the LSA sub-domains, and the
other from the hand-labelled topics. As the perplexities obtained were very simi-
lar [31], it showed that the automatic partitioning performed using LSA was indeed
semantically coherent.

Some evidence of this behavior is provided in Figure 9.3, which plots the distribu-
tions of four of the hand-labelled BNC topics against the ten document sub-domains
automatically derived using LSA. Although it is clear that the data-driven sub-domains
do not exactly match the hand-labeling, LSA document clustering in this example
still seems reasonable. In particular, as one would expect, the distribution for the
natural science topic is relatively close to the distribution for the applied science
topic (cf. the two solid lines), but quite different from the two other topic distribu-
tions (in dashed lines). From that standpoint, the data-driven LSA clusters appear to
adequately cover the semantic space.
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9.4 Semantic Classification

To summarize, the latent semantic framework has a number of interesting proper-
ties, including: (i) a single vector representation for both words and documents in
the same continuous vector space, (ii) an underlying topological structure reflect-
ing semantic similarity, (iii) a well-motivated, natural metric to measure the distance
between words and between documents in that space, and (iv) a relatively low dimen-
sionality which makes clustering meaningful and practical. These properties can be
exploited in several areas of spoken language processing. In this section, we address
the most immediate domain of application, which follows directly from the previous
clustering discussion: (data-driven) semantic classification [8, 9, 13, 17, 28].

9.4.1 Framework Extension

Semantic classification determines, for a given document, which one of several pre-
defined topics the document is most closely aligned with. In contrast with the clus-
tering setup discussed above, such document will not (normally) have been seen in
the training corpus. Hence, we first need to extend the LSA framework accordingly.
As it turns out, under relatively mild assumptions, finding a representation for a new
document in the space S is straightforward.
Let us denote the new document by Jp, where the tilde symbol reflects the fact that
p > N. It is obtained by constructing a feature vector containing, for each word in
the underlying vocabulary, the weighted counts (9.3) with 5 = p. This vector dp, as
a column vector of dimension M, can be thought of as an additional column of the
matrix . Thus, provided the matrices U and S do not change, the SVD expansion
(9.5) implies:

d, =USu], 9.11)

where the R-dimensional vector ¢ pT acts as an additional column of the matrix V' 7.
This in turn leads to the definition:

Uy =0,S=d'U. (9.12)

The vector v,, indeed seen to be functionally similar to a document vector, corre-
sponds to the representation of the new document in the space S.

To convey the fact that it was not part of the SVD extraction, v, is referred to as a
pseudo document vector. Recall that the (truncated) SVD provides, by definition, a
parsimonious description of the linear space spanned by W. If the new document
contains language patterns which are inconsistent with those extracted from W, the
SVD expansion (9.5) will no longer apply. Similarly, if the addition of Jp causes the
major structural associations in W to shift in some substantial manner, the parsimo-
nious description will become inadequate. Then U and S will no longer be valid, in
which case it would be necessary to re-compute (9.5) to find a proper representation
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for cip.lf If, on the other hand, the new document generally conforms to the rest of
the corpus 7, then ¥, in (9.12) will be a reasonable representation for it.

Once the representation (9.12) is obtained, the “closeness” between the new docu-
ment cip and any document cluster D, can then be expressed as D(cip, D), calculated
from (9.10) in the previous section.

9.4.2 Semantic Inference

This can be readily exploited in such command-and-control tasks as desktop user
interface control [8] or automated call routing [13]. Suppose that each document
cluster Dy can be uniquely associated with a particular action in the task. Then the
centroid of each cluster can be viewed as the semantic anchor of this action in the
LSA space. An unknown word sequence (treated as a new “document”) can thus
be mapped onto an action by evaluating the distance (9.8) between that “document”
and each semantic anchor. We refer to this approach as semantic inference [8, 9]. In
contrast with usual inference engines (cf. [21]), semantic inference thus defined does
not rely on formal behavioral principles extracted from a knowledge base. Instead,
the domain knowledge is automatically encapsulated in the LSA space in a data-
driven fashion.

To illustrate, consider an application with N = 4 actions (documents), each asso-
ciated with a unique command: (i) “what is the time,” (ii) “what is the day,” (iii)
“what time is the meeting,” and (iv) “cancel the meeting.” This simple example, with
a vocabulary of only M = 7 words, is designed such that “whar” and “is” always co-
occur, “the” appears in all four commands, only (ii) and (iv) contain a unique word,
and (i) is a proper subset of (iii). Constructing the (7 x 4) word-document matrix
as above, and performing the SVD, we obtain the 2-dimensional space S shown in
Figure 9.4, where is depicted the representation of each word and each command in
the application.

The two words which each uniquely identify a command—*day” for (ii) and “can-
cel” for (iv)—each have a high coordinate on a different axis. Conversely, the word
“the,” which conveys no information about the identity of a command, is located at
the origin. On the other hand, the semantic anchors for (ii) and (iv) fall “close”
to the words which predict them best—*“day” and “cancel”, respectively. Simi-
larly, the semantic anchors for (i) and (iii) fall in the vicinity of their meaningful
components— ‘what—is” and “time” for (i) and “time” and “meeting” for (iii)—with
the word “time,” which occurs in both, indeed appearing “close” to both. Now sup-
pose that a user says something outside of the training setup, such as “when is the
meeting” rather than “what time is the meeting.” This new word string (or variant) is
represented in the space S by the hollow triangle in Figure 9.4, which is closest to

TFor example, suppose training was carried out for a banking application involving the word “bank” taken
in a financial context. Now suppose dj, is germane to a fishing application, where “bank” is referred to in
the context of a Eiver or a lake. Clearly, Ehe closeness of “bank” to, e.g., “money” and “account,” would
be irrelevant to dp,. Conversely, adding dj, to W would likely cause such structural associations to shift
substantially, and perhaps even disappear altogether.
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An Example of Semantic Inference for Command and Control (R = 2).

the representation of command (iii). Thus, the new variant appears most semantically
related to (iii), and the correct action can be automatically inferred.

This can be thought of as a way to perform “bottom-up” natural language under-
standing. By replacing the traditional rule-based mapping between utterance and
action by such data-driven classification, semantic inference makes it possible to re-
lax some of the typical command-and-control interaction constraints. For example,
it obviates the need to specify rigid language constructs through a domain-specific
(and thus typically hand-crafted) finite state grammar. This is turn allows the end
user more flexibility in expressing the desired command/query, which tends to re-
duce the associated cognitive load and thereby enhance user satisfaction [13].

9.4.3 Caveats

As an instance of the “bag-of-words” paradigm, LSA pays no attention to the order
of words in sentences, which makes it ideally suited to capture large-span semantic
relationships. By the same token, however, it is inherently unable to capitalize on the
local (syntactic, pragmatic) constraints present in the language. For tasks such as call
routing, which only needs to identify the broad topic of a message, this limitation is
probably inconsequential. For general command and control tasks, however, it may
be more deleterious.

Imagine two commands that differ only in the presence of the word “not” in a crucial
place. The respective vector representations could conceivably be relatively close
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in the LSA space, and yet have vastly different intended consequences. Worse yet,
some commands may differ only through word order. Consider, for instance, the two
MacOS 9 commands:

change popup to window
; (9.13)

change window to popup

which are obviously impossible to disambiguate, since they are mapped onto the

exact same point in LSA space.

As it turns out, it is possible to handle such cases through an extension of the ba-
sic LSA framework using word agglomeration. The idea is to move from words
and documents to word n-tuples and n-tuple documents, where each word n-tuple
is the agglomeration of n successive words, and each (n-tuple) document is now ex-
pressed in terms of all the word n-tuples it contains. Despite the resulting increase
in computational complexity, this extension is practical in the context of semantic
classification because of the relatively modest dimensions involved (as compared to
large vocabulary recognition). Further details would be beyond the scope of this
manuscript, but the reader is referred to [9] for a complete description.

9.5 N-gram+LSA Language Modeling

Another major area of application of the LSA framework is in statistical LM, where
it can readily serve as a paradigm for semantically-driven span extension. Because
of the limitation just discussed, however, it is best applied in conjunction with the
standard n-gram approach. This section describes how this can be done.

9.5.1 LSA Component

Let w, denote the word about to be predicted, and H ;,_; the admissible LSA history
(context) for this particular word. This notation translates a causality restriction of
the context to Jq_l, the current document so far (i.e., up to word w4—1). Thus, in
general terms, the LSA LM probability is given by:

Pr(wy|H, 1,8) = Pr(wy|dy, 1), (9.14)

where the conditioning on S reflects the fact that the probability depends on the
particular vector space arising from the SVD representation. In this expression,
Pr (wy|d,_1) is computed directly from the representations of w, and d,_; in the
space S, i.e., it is inferred from the “closeness” between the associated word vector
and (pseudo) document vector in S. We therefore have to specify both the appropri-
ate pseudo document representation and the relevant probability measure.
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9.5.1.1 Pseudo Document Representation

To come up with a pseudo document representation, we leverage the results of Sec-
tion 9.4.1, with some slight modifications due to the time-varying nature of the span
considered. From (9.12), d,—; leads to the representation:

Vg1 =018 =d_,U. (9.15)

As mentioned before, this pseudo vector representation is adequate under some con-
sistency conditions on the general patterns present in the domain. The difference
with Section 9.4.1 is that, as g increases, the content of the new document grows and
the pseudo document vector moves around accordingly in the LSA space. Assuming
the new document is semantically homogeneous, eventually we can expect the result-
ing trajectory to settle down in the vicinity of the document cluster corresponding to
the closest semantic content.
Of course, here it is possible to take advantage of redundancies in time. Assume,
without loss of generality, that word w; is observed at time q. Then, dq 1 and d
differ only in one coordinate, corresponding to the index . Assume further that the
training corpus 7 is large enough, so that the normalized entropy €; (1 < i < M)
does not change appreciably with the addition of each pseudo document. This makes
it possible, from (9.3), to express Jq as:
. nq—ldq71+1—5,
a Ng

0...1...017, (9.16)

by =038 =— [(ng = DTg-1 + (1 —ei)ui]. (9.17)

As a result, the pseudo document vector associated with the large-span context can
be efficiently updated directly in the LSA space.

9.5.1.2 LSA Probability

To specify a suitable “closeness” measure, we now follow a reasoning similar to that
of Section 9.3. Since, by construction, the matrix W embodies structural associations
between words and documents, and, by definition, W = USV T a natural metric
to consider for the “closeness” between word w; and document d; is the cosine
of the angle between u;S'/? and v;S'/2. Applying the same reasoning to pseudo
documents, we arrive at:

K( d' ) ( 51/2 ~ 51/2) Uq S’Dllqil (9 18)
Yoo o) = O bt = T, ST 15,1 52 '
for any ¢ indexing a word in the text data. A value of K (w,, d,—1) = 1 means

that d,_ is a strong semantic predictor of w,, while a value of K (w,, ci 1) <1
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means that the history carries increasingly less information about the current word.
Interestingly, (9.18) is functionally equivalent to (9.7) and (9.10), but involves scaling
by S 1/2 instead of S. As before, the mapping (9.8) can be used to transform (9.18)
into a real distance measure.

To enable the computation of Pr (w, |Jq,1), it remains to go from that distance mea-
sure to an actual probability measure. One possible solution is for the distance
measure to induce a family of exponential distributions with pertinent marginality
constraints. In practice, it may not be necessary to incur this degree of complex-
ity. Considering that Jq_l is only a partial document anyway, exactly what kind of
distribution is induced is probably less consequential than ensuring that the pseudo
document is properly scoped (cf. Section 9.5.3 below). Basically, all that is needed
is a “reasonable” probability distribution to act as a proxy for the true (unknown)
measure.

We therefore opt to use the empirical multivariate distribution constructed by allocat-
ing the total probability mass in proportion to the distances observed during training.
In essence, this reduces the complexity to a simple histogram normalization, at the
expense of introducing a potential “quantization-like” error. Of course, such error
can be minimized through a variety of histogram smoothing techniques. Also note
that the dynamic range of the distribution typically needs to be controlled by a pa-
rameter that is optimized empirically, e.g., by an exponent on the distance term, as
discussed in [19].

Intuitively, Pr (w,|d,—1) reflects the “relevance” of word w, to the admissible his-
tory, as observed through Jq,l. As such, it will be highest for words whose meaning
aligns most closely with the semantic fabric of ciq,l (i.e., relevant “content” words),
and lowest for words which do not convey any particular information about this
fabric (e.g., “function” words like “the”). This behavior is exactly the opposite of
that observed with the conventional n-gram formalism, which tends to assign higher
probabilities to (frequent) function words than to (rarer) content words. Hence, the
attractive synergy potential between the two paradigms.

9.5.2 Integration with N-grams

Exploiting this potential requires leveraging the benefits of both in a constructive
manner. This kind of integration can occur in a number of ways, such as simple in-
terpolation [19, 35], or within the maximum entropy framework [23, 42, 58]. Alter-
natively, under relatively mild assumptions, it is also possible to derive an integrated
formulation directly from the expression for the overall LM probability. We start
with the definition:

Pr (wg|H" ") = Pr (wy|H™, B, ) (9.19)

g—1 q—1

where H,_; denotes, as before, some suitable admissible history for word w, and
the superscripts (™, (0 and (**9 refer to the n-gram component (W gy—1wWg—2 - ..
Wg—n+1, With n > 1), the LSA component (d,—1), and the integration thereof, re-
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spectively. This expression can be rewritten as:

l n
Pr (wy, H." 1|H ")

Z Pr(w;, H én)l)

w; EV

Pr (w,|H"1Y) = (9.20)

where the summation in the denominator extends over all words in V. Expanding
and re-arranging, the numerator of (9.20) is seen to be:

l
Pr (wy, HYy [H™)) =
n l n
Pr(wg|H™)) - Pr(H [w,, H™,) =
Pr (wg|wq— 1Wg—2 - Wy—nt1)

Pr( q— 1|wqwq 1Wg—2 - wq_n_H). (921)

Now we make the assumption that the probability of the document history given the
current word is not affected by the immediate context preceding it. This reflects the
fact that, for a given word, different syntactic constructs (immediate context) can be
used to carry the same meaning (document history). This is obviously reasonable
for content words. How much it matters for function words is less clear [38], but
we conjecture that if the document history is long enough, the semantic anchoring is
sufficiently strong for the assumption to hold. As a result, the integrated probability
becomes:

l
Pr (w, | H"1") =
Pr(wg|lwg—1wg—2 ... wg— n+1)Pr( a— 1|wq)

Z Pr(wi|wg—1wg—2 ... wy— n+1)Pr( g—1|w;)
w; €V

9.22)

If Pr( g—1|wg) is viewed as a prior probability on the current document history,
then (9.22) simply translates the classical Bayesian estimation of the n-gram (local)
probability using a prior distribution obtained from (global) LSA. The end result, in
effect, is a modified n-gram LM incorporating large-span semantic information.

The dependence of (9.22) on the LSA probability calculated earlier can be expressed
explicitly by using Bayes’ rule to get Pr (d,_1 |w,) in terms of Pr (wg|d,_1). Since
the quantity Pr (dq_ ) vanishes from both numerator and denominator, we are left
with:

n+l
Pr (wy|H," ") =
Pr (wy|d,—
Pr(wq|wg—1wg—s ... Wg—nt1) %
P "|J X (9.23)

r(w; -1

Z Pr (w;|wg—1wg—2 ... Wg—n1) ﬁ
w; EV ¢
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where Pr (w,) is simply the standard unigram probability. Note that this expression
is meaningful for any n > 1.}

9.5.3 Context Scope Selection

In practice, expressions like (9.22)—(9.23) are often slightly modified so that a rel-
ative weight can be placed on each contribution (here, the n-gram and LSA prob-
abilities). Usually, this is done via empirically determined weighting coefficients.
In the present case, such weighting is motivated by the fact that in (9.22) the “prior”
probability Pr (d,_ 1 |w,) could change substantially as the current document unfolds.
Thus, rather than using arbitrary weights, an alternative approach is to dynamically
tailor the document history Jq,l so that the n-gram and LSA contributions remain
empirically balanced.

This approach, referred to as context scope selection, is more closely aligned with the
LSA framework, because of the underlying change in behavior between training and
recognition. During training, the scope is fixed to be the current document. During
recognition, however, the concept of “current document” is ill-defined, because (i)
its length grows with each new word, and (ii) it is not necessarily clear at which
point completion occurs. As a result, a decision has to be made regarding what
to consider “current,” versus what to consider part of an earlier (presumably less
relevant) document.

A straightforward solution is to limit the size of the history considered, so as to
avoid relying on old, possibly obsolete fragments to construct the current context.
Alternatively, to avoid making a hard decision on the size of the caching window, it
is possible to assume an exponential decay in the relevance of the context [3]. In this
solution, exponential forgetting is used to progressively discount older utterances.
Assuming 0 < A < 1, this approach corresponds to modifying (9.17) as follows:

5(1 = niq P‘ (ng — 1) 5(1—1 + (1—¢) Uz] ) (9.24)
where the parameter A is chosen according to the expected heterogeneity of the ses-
sion.

In terms of computational effort, the (on-line) cost incurred during recognition com-
prises: (i) the construction of the pseudo document representation in S, as generally
done via (9.24); (ii) the computation of the LSA probability Pr (w , |Jq_1) in (9.14);
and (iii) the integration proper, in (9.23). It can be shown (cf. [3, 4]) that the total
cost of these operations, per word and pseudo document, is O(R ?). This is obviously
more expensive than the usual table look-up required in conventional n-gram LM.
Yet, for typical values of R, the resulting overhead is, arguably, quite modest. This
allows hybrid n-gram+LSA LM to be brought to bear in early stages of the search

[3].

fMoreover, the assumption that n > 1 is without loss of generality. When n = 1, the right hand side of
(9.23) degenerates to the LSA probability alone, since the n-gram history becomes null. But the integrated
history also degenerates to the LSA history alone, effectively reducing (9.19) to (9.14).
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9.6 Smoothing

Since the derivation of (9.23) does not depend on a particular form of the LSA prob-
ability, it is possible to take advantage of the additional layer(s) of knowledge uncov-
ered earlier through word (in Section 9.3.1) and document (in Section 9.3.3) cluster-
ing. Basically, we can expect words and/or documents related to the current docu-
ment to contribute with more synergy, and unrelated words and/or documents to be
better discounted. Clustering therefore provides a convenient smoothing mechanism
in the LSA space [2, 3].

9.6.1 Word Smoothing

Using the set of word clusters C, 1 < k < K, produced in Section 9.3.1 leads to
word-based smoothing. In this case, we expand (9.14) as follows:

K
Pr (wqldy—1) = Pr(wg|Ci) Pr(Crld,_1) (9.25)
k=1

which carries over to (9.23) in a straightforward manner. In (9.25), the probability
Pr(Cy|d, 1) is qualitatively similar to (9.14) and can therefore be obtained with the
help of (9.18), by simply replacing the representation of the word w , by that of the
centroid of word cluster C'j,. In contrast, the probability Pr(w,|C}) depends on the
“closeness” of w,, relative to this (word) centroid. To derive it, we therefore have to
rely on the empirical multivariate distribution induced not by the distance obtained
from (9.18), but by that obtained from the measure (9.7) mentioned in Section 9.3.1.
Note that a distinct distribution can be inferred on each of the clusters C'y, thus
allowing us to compute all quantities Pr (w;|Cy) for1 <i< M and1 < k < K.
The behavior of the model (9.25) depends on the number of word clusters defined in
the space S. Two special cases arise at the extremes of the cluster range. If there are
as many classes as words in the vocabulary (K = M), then with the convention that
P(w;|C}) = 6;5, (9.25) simply reduces to (9.14). No smoothing is introduced, so the
predictive power of the model stays the same as before. Conversely, if all the words
are in a single class (K = 1), the model becomes maximally smooth: the influence
of specific semantic events disappears, leaving only a residual vocabulary effect to
take into account. The effect on predictive power is, accordingly, limited. Between
these two extremes, as smoothness gradually increases, it is reasonable to postulate
that predictive power goes through a peak.

The intuition behind this conjecture is as follows. Generally speaking, as the num-
ber of word classes C}, increases, the contribution of Pr(w,|C}) tends to increase,
because the clusters become more and more semantically meaningful. By the same
token, however, the contribution of Pr(C'x|d,_1) for a given d,_; tends to decrease,
because the clusters eventually become too specific and fail to reflect the overall se-
mantic fabric of Jq,l. Thus, there must exist a cluster set size where the degree
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of smoothing (and therefore the associated predictive power) is optimal for the task
considered. This has indeed been verified experimentally, cf. [2].

9.6.2 Document Smoothing

Exploiting instead the set of document clusters D,, 1 < ¢ < L, produced in Sec-
tion 9.3.3 leads to document-based smoothing. The expansion is similar:

L
Pr (wq|d,—1) = Pr(wy|D¢) Pr(Dyld,_1) , (9.26)
(=1

with (document) clusters D, now replacing the (word) clusters C. This time, it is
the probability Pr(w,|D,) which is qualitatively similar to (9.14), and can therefore
be obtained with the help of (9.18). As for the probability Pr(D ¢|d, ), it depends on
the “closeness” of Jq_l relative to the centroid of document cluster D ,. Thus, it can
be obtained through the empirical multivariate distribution induced by the distance
derived from (9.10) in Section 9.3.3.

Again, the behavior of the model (9.26) depends on the number of document clusters
defined in the space S. Compared to (9.25), however, (9.26) is more difficult to
interpret at the extremes of the cluster range (i.e., L = land L = N). If L = N,
for example, (9.26) does not reduce to (9.14), because Jq_l has not been seen in
the training data, and therefore cannot be identified with any of the existing clusters.
Similarly, the fact that all the documents are in a single cluster (L = 1) does not
imply the degree of degenerateness observed previously, because the cluster itself is
strongly indicative of the general discourse domain (which was not generally true of
the “vocabulary cluster” above). Hence, depending on the size and structure of the
corpus, the model may well be important to capture general discourse effects.

To see that, we apply L = 1 in (9.26), to obtain in (9.23):

Pr (wy|H,"1") =

Pr(wy|D1)

Pr (wg)

Pr (wz |D1) ’
Pr(wi)

Pr(wy|wg_1wy—2 ... Wg_p+1)

9.27)

Z Pr(w;|wg—1wy—2 .. . Wg_p+1)
w; EV

since the quantity Pr (D4 |Jq_1) vanishes from both numerator and denominator. In
this expression D1 refers to the single document cluster encompassing all documents
in the LSA space. In case the corpus is fairly homogeneous, D1 will be a more reli-
able representation of the underlying fabric of the domain than dq,l, and therefore
act as a robust proxy for the context observed. Interestingly, (9.27) amounts to esti-
mating a “correction” factor for each word, which depends only on the overall topic
of the collection. This is similar to what is done in the cache approach to LM adap-
tation (see, for example, [18, 41]), except that, here, all words are treated as though
they were already in the cache.
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More generally, as the number of document classes D increases, the contribution
of Pr(w4|D;) tends to increase, to the extent that a more homogeneous topic boosts
the effects of any related content words. On the other hand, the contribution of
Pr(DAJq_l) tends to decrease, because the clusters represent more and more spe-
cific topics, which increases the chance that the pseudo document d,_; becomes an
outlier. Thus, again there exists a cluster set size where the degree of smoothing is
optimal for the task considered (cf. [2]).

9.6.3 Joint Smoothing

Finally, an expression analogous to (9.25) and (9.26) can also be derived to take
advantage of both word and document clusters. This leads to a mixture probability
specified by:

K L
Pr(wgldy—1) = > Y Pr(wy|Ck, D¢) Pr(Ck, Deldy—1), (9.28)
k=1 (=1

which, for tractability, can be approximated as:

K L

Pr(wgld,—1) = > > Pr(w,|Cy) Pr(Ck|De) Pr(Dyldy—1). (9.29)
k=1 (=1

In this expression, the clusters C'y, and D, are as previously, as are the quantities
Pr (w,|Cy) and Pr(Dy|d, 1). As for the probability Pr(C|Dy), it is qualitatively
similar to (9.14), and can therefore be obtained accordingly.

To summarize, any of the expressions (9.14), (9.25), (9.26), or (9.29) can be used to
compute (9.23). This results in four families of hybrid n-gram+LSA LMs. Associ-
ated with these different families are various trade-offs to become apparent below.

9.7 Experiments

The purpose of this section is to illustrate the behavior of hybrid n-gram+LSA mod-
eling on a large vocabulary recognition task.? The general domain considered was
business news, as reflected in the WSJ portion of the NAB corpus. This was conve-
nient for comparison purposes since conventional n-gram LMs are readily available,
trained on exactly the same data [40].

§The reader is referred to [4] for additional results in this application, and to [9] for experiments involving
semantic inference.
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9.7.1 Experimental Conditions

The text corpus 7 used in this training was composed of about N = 87,000 docu-
ments spanning the years 1987 to 1989, comprising approximately 42 million words.
The vocabulary V was constructed by taking the 20,000 most frequent words of the
NAB corpus, augmented by some words from an earlier release of the WSJ cor-
pus, for a total of M = 23,000 words. The test set consisted of a 1992 test cor-
pus of 496 sentences uttered by 12 native speakers of English. In all experiments,
acoustic training was performed using 7,200 sentences of data uttered by 84 speakers
(WSJO SI-84). On the above test data, our baseline speaker-independent, continuous
speech recognition system (described in detail in [3]) produced reference error rates
of 16.7% and 11.8% across the 12 speakers considered, using the standard (WSJO)
bigram and trigram LMs, respectively.

After feature extraction using (9.3), we performed the singular value decomposition
of the matrix of co-occurrences between words and documents using the single vec-
tor Lanczos method [10]. Over the course of this decomposition, we experimented
with different numbers of singular values retained, and found that R = 125 seemed
to achieve an adequate balance between reconstruction error—minimizing s g1, the
largest singular value not retained—and noise suppression—minimizing the ratio
between order-R and order-(R + 1) traces ), s;. This led to a vector space S of
dimension 125.

Following Section 9.5, we then used this LSA space to construct the (unsmoothed)
LSA model (9.14). We also constructed the various clustered LSA models presented
in Section 9.6, to implement word smoothing based on (9.25), document smoothing
based on (9.26), and joint smoothing based on (9.29). We experimented with differ-
ent values for the number of word and/or document clusters (cf. [2]), and ended up
using K = 100 word clusters and L = 1 document cluster. Finally, using (9.23), we
combined each of these models with either the standard WSJO bigram or the stan-
dard WSJO trigram. The resulting hybrid n-gram+LSA LMs, dubbed bi-LSA and
tri-LSA models, respectively, were then used in lieu of the standard WSJO bigram
and trigram models.

9.7.2 Experimental Results

A summary of the results is provided in Table 9.1, in terms of both absolute word
error rate (WER) numbers and WER reduction observed (in angle brackets). Without
smoothing, the bi-LSA LM leads to a 14% WER reduction compared to the standard
bigram. The corresponding tri-LSA LM leads to a somewhat smaller (9%) relative
improvement compared to the standard trigram. With smoothing, the improvement
brought about by the LSA component is more marked: up to 23% in the smoothed
bi-LSA case, and up to 16% in the smoothed tri-LSA case. Such results show that
the hybrid n-gram+LSA approach is a promising avenue for incorporating large-span
semantic information into n-gram modeling.

The qualitative behavior of the two n-gram+LSA LMs appears to be quite similar.
Quantitatively, the average reduction achieved by tri-LSA is about 30% less than that

© 2003 by CRC Press LLC



TABLE 9.1
Word Error Rate (WER) Results Using Hybrid Bi-LSA and Tri-LSA Models.

Word Error Rate Bigram Trigram
<WER Reduction> n =2 n=3
Conventional n-Gram 16.7 % 11.8 %
Hybrid, No Smoothing 14.4 % <14 %> | 10.7 % < 9 %>
Hybrid, Document Smoothing | 13.4 % <20 %> | 10.4 % <12 %>
Hybrid, Word Smoothing 12.9 % <23 %> | 9.9 % <16 %>
Hybrid, Joint Smoothing 13.0 % <22 %> | 9.9 % <16 %>

achieved by bi-LSA. This is most likely related to the greater predictive power of the
trigram compared to the bigram, which makes the LSA contribution of the hybrid
LM comparatively smaller. This is consistent with the fact that the latent semantic
information delivered by the LSA component would (eventually) be subsumed by
an n-gram with a large enough n. Interestingly, in both cases the average WER
reduction is far from constant across individual sessions, reflecting the varying role
played by global semantic constraints from one set of spoken utterances to another.

9.7.3 Context Scope Selection

It is important to emphasize that the recognition task chosen above represents a se-
vere test of the LSA component of the hybrid LM. By design, the test corpus is
constructed with no more than three or four consecutive sentences extracted from a
single article. Overall, it comprises 140 distinct document fragments, which means
that each speaker speaks, on the average, about 12 different “mini-documents.” As
a result, the context effectively changes every 60 words or so, which makes it some-
what challenging to build a very accurate pseudo document representation. This is
a situation where it is critical for the LSA component to appropriately forget the
context as it unfolds, to avoid relying on an obsolete representation. To obtain the
results of Table 9.1, we used the exponential forgetting setup of (9.24) with a value
A=0.97519

In order to assess the influence of this selection, we also performed recognition with
different values of the parameter A ranging from A = 1 to A = 0.95, in decrements
of 0.01. Recall from Section 9.5 that the value A\ = 1 corresponds to an unbounded
context (as would be appropriate for a very homogeneous session), while decreasing
values of A correspond to increasingly more restrictive contexts (as required for a
more heterogeneous session). Hence, the gap between A and 1 tracks the expected
heterogeneity of the session.

Table 9.2 presents the corresponding recognition results, in the case of the best bi-
LSA framework (i.e., with word smoothing). It can be seen that, with no forgetting,

TTo fix ideas, this means that the word which occurred 60 words ago is discounted through a weight of
about 0.2.
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TABLE 9.2
Influence of Context Scope Selection on Word Error Rate.

Word Error Rate Bi-LSA with

<WER Reduction> || Word Smoothing
A=1.0 14.5 % <13 %>
A =10.99 13.6 % <18 %>
A =0.98 13.2 % <21 %>
A =0.975 12.9 % <23 %>
A =0.97 13.0 % <22 %>
A =10.96 13.1 % <22 %>
A=0.95 13.5 % <19 %>

the overall performance is substantially less than the comparable one observed in
Table 9.1 (13% compared to 23% WER reduction). This is consistent with the char-
acteristics of the task, and underscores the role of discounting as a suitable counter-
balance to frequent context changes. Performance rapidly improves as A decreases
from A = 1to A = 0.97, presumably because the pseudo document representation
gets less and less contaminated with obsolete data. If forgetting becomes too aggres-
sive, however, the performance starts degrading, as the effective context no longer
has an equivalent length which is sufficient for the task at hand. Here, this happens
for A < 0.97.

9.8 Inherent Trade-Offs

In the previous section, both LSA and n-gram components of the hybrid LM were
trained on exactly the same data. This is not a requirement, however, which raises the
question of how critical the selection of the LSA training data is to the performance
of the recognizer. This is particularly interesting since LSA is known to be weaker
on heterogeneous corpora (see, for example, [31]).

9.8.1 Cross-Domain Training

To ascertain the matter, we went back to an LSA component involving the original,
unsmoothed model (9.14). We kept the same underlying vocabulary V, left the bi-
gram component unchanged, and repeated the LSA training on non-WSJ data from
the same general period. Three corpora of increasing size were considered, all cor-
responding to Associated Press (AP) data: (i) 71, composed of N; = 84,000 docu-
ments from 1989, comprising approximately 44 million words; (ii) 7=, composed of
N = 155,000 documents from 1988 and 1989, comprising approximately 80 mil-
lion words; and (iii) 73, composed of N3 = 224,000 documents from 1988-1990,
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TABLE 9.3
Model Sensitivity to LSA Training Data.

Word Error Rate Bi-LSA with

<WER Reduction> | No Smoothing
T1i: N1 = 84,000 16.3 % <2 %>
Ta: No = 155,000 | 16.1 % <3 %>
T3: N3 =224,000 | 16.0% <4 %>

comprising approximately 117 million words. In each case LSA training proceeded
as described in Section 9.2. The results are reported in Table 9.3.

Two things are immediately apparent. First, the performance improvement in all
cases is much smaller than the 14% reduction observed in Table 9.1. on the aver-
age, the hybrid model trained on AP data is about four times less effective than that
trained on WSJ data. This suggests a relatively high LSA sensitivity to the domain
considered. To put this observation in perspective, recall that: (i) by definition, a
domain is characterized by content words; and (ii) LSA inherently relies on content
words, since, in contrast with n-grams, it cannot take advantage of the structural as-
pects of the sentence. It therefore makes sense to expect a higher sensitivity for the
LSA component than for the usual n-gram.

Second, the overall performance does not improve appreciably with more training
data, a fact already observed in [2] using a perplexity measure. Larger training set
sizes notwithstanding, LSA still detects a substantial mismatch between AP and WSJ
data from the same general period. This supports the conjecture that LSA is sensitive
not just to the general training domain, but also to the particular style of composition,
as might be reflected, for example, in the choice of content words and/or word co-
occurrences. On the positive side, this bodes well for rapid adaptation to cross-
domain data, provided a suitable adaptation framework can be derived.

9.8.2 Discussion

The fact that the hybrid n-gram+LSA approach is sensitive to composition style
underscores the relatively narrow semantic specificity of the LSA paradigm. While
n-grams also suffer from any mismatch between training and recognition, LSA leads
to a potentially more severe exposure because the space S reflects even less of the
pragmatic characteristics for the task considered. Perhaps what is required is to
explicitly include an “authorship style” component into the LSA framework. Il In any
event, one has to be cognizant of this intrinsic limitation, and mitigate it through
careful attention to the expected domain of use.

IlTn [48], for example, it has been suggested to define an M X M stochastic matrix (a matrix with non-
negative entries and row sums equal to 1) to account for the way style modifies the frequency of words.
This solution, however, makes the assumption—not always valid—that this influence is independent of
the underlying subject matter.
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Another caveat is the fact that LSA is inherently more adept at handling content
words than function words. As is well-known, a substantial proportion of speech
recognition errors come from function words, because of their tendency to be shorter,
not well articulated, and acoustically confusable. In general, LSA’s contribution
to fixing such problems will be limited. This suggests that, even within a well-
specified domain, syntactically-driven span extension techniques may be a necessary
complement to the hybrid approach.

On that subject, note from Section 9.5 that the integrated history (9.19) could easily
be modified to reflect a headword-based n-gram as opposed to a conventional n-gram
history, without invalidating the derivation of (9.23). Thus, there is no theoretical
barrier to the integration of latent semantic information with structured LMs such
as described in [15, 36]. Similarly, there is no reason why the LSA paradigm could
not be used in conjunction with the integrative approaches of the kind proposed in
[54, 58], or even within the cache adaptive framework [18, 41].

9.9 Conclusion

Statistical n-grams are by nature limited to the capture of linguistic phenomena span-
ning at most n words. This chapter has focused on a semantically-driven span exten-
sion framework based on the LSA paradigm, in which hidden semantic redundancies
are tracked across semantically homogeneous documents. This approach leads to a
(continuous) vector representation of each (discrete) word and document in a space
of relatively modest dimension, in which suitable metrics can be defined for word-
document, word-word, and document-document comparisons. As well-known clus-
tering algorithms can then be applied efficiently, this makes it possible to uncover, in
a data-driven fashion, multiple parallel layers of semantic knowledge with variable
granularity.

An important property of this vector representation is that it reflects the major se-
mantic associations in the training corpus, as determined by the overall pattern of the
language, as opposed to specific word sequences or grammatical constructs. LMs
constructed from the LSA framework are therefore well suited to complement con-
ventional n-grams. Harnessing this synergy is a matter of deriving an integrative
formulation to combine the two paradigms. By taking advantage of the various kinds
of smoothing available, several families of hybrid n-gram+LSA models can be ob-
tained. The resulting LMs substantially outperform the associated standard n-grams
on a subset of the NAB News corpus.

Such results notwithstanding, hybrid n-gram+LSA modeling also faces some intrin-
sic limitations. For example, LSA shows marked sensitivity to both the training do-
main and the style of composition. While cross-domain adaptation may ultimately
alleviate this problem, an appropriate LSA adaptation framework will have to be
derived for this purpose (for some recent progress on that front, see [6]). More gen-
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erally, semantically-driven span extensions like the one proposed here run the risk
of lackluster improvement when it comes to function word recognition. This under-
scores the need for an all-encompassing strategy involving syntactically motivated
approaches as well.
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10.1 Introduction

The next generation of voice-based user interface technology enables easy-to-use
automation of new and existing communication services, achieving a more natural
human-machine interaction. By natural, we mean that the machine understands what
people actually say, in contrast to what a system designer expects them to say. This
approach is in contrast with menu-driven or strongly-prompted systems, where many
users are unable or unwilling to navigate such highly structured interactions. AT&T’s
‘How May I Help You?’ (HMIHY®™) technology shifts the burden from human to
machine, wherein the system adapts to peoples’ language, as contrasted with forcing
users to learn the machine’s jargon. The goal of such systems is to extract mean-
ing from user’s natural spoken language. It is important to quantify this notion, so
that we can measure the ‘semantic information content’ of a spoken utterance and
furthermore measure our success in extracting that information. Such a theory is cru-
cial to being able to engineer systems that understand and act upon spoken language.
The communication paradigm here involves inducing the machine to perform some
action or undergo some internal transformation. A communication is deemed suc-
cessful if the machine responds appropriately to the user’s input. This is in contrast
to the traditional goal of a communication system, which was described by Shannon
[11] as follows.

“The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another
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point. Frequently the messages have meaning, ... These semantic as-
pects of communication are irrelevant to the engineering problem.”

In this work, the semantic aspects of communication are primary. Information the-
ory can still be exploited, however, to provide a measure of semantic information
called salience, detailed in [5] and whose utility is described later in this article. Un-
derstanding unconstrained speech is a difficult problem, both from the perspective
of speech recognition and natural language understanding. Both technologies are
far from perfect, especially for conversational-style speech over a telephone. The
intuition underlying our approach is that for a given task, some linguistic events
are crucial to recognize and understand, others not so. This intuition is quantified
via salience, and we have developed algorithms [12, 3] that automatically learn the
salient words, phrases and grammar fragments for a task. It can be shown empirically
that these salient fragments are recognized far more reliably than average, which al-
lows our HMIHY technology to work effectively. A tongue-in-cheek comment is
that ‘whoever’ designed natural language did a ‘good job’, and made the salient
events easier to recognize. A description of early laboratory experiments based on
these ideas is provided in the tutorial paper [5]. In this article, we focus on two tasks
involving live customer traffic in AT&T’s network. In the operator services domain,
the task involves placing telephone calls, specifying billing methods for those calls
(e.g. collect, calling card, etc.), and requesting information about making those calls
(e.g. rate, area codes, etc).

The second application is to a customer care task. In this domain, users ask questions
about items on their bill, their calling-plans, account balances, etc. The customer care
domain is intuitively more complex, details of which will be quantified later in this
article. The primary focus of spoken language understanding (SLU) in these domains
has been call-type classification, i.e. determining which service type a customer is
requesting [6]. Classification is followed by routing the call to an appropriate des-
tination, either an automated module (when available) or a human agent with some
specialized skill set. We have also reported on methods for extracting named enti-
ties such as phone and credit-card numbers embedded in natural spoken language
[8], and for translation into Spanish and Japanese [4]. Human/machine interactions
rarely consist of a single turn. Dialog is necessary to confirm the machine’s under-
standing when its confidence is low, to clarify ambiguities in a customer’s request,
and to gather additional information necessary to complete the task. For example, if
someone asks to make a collect call from a train station, the ASR confidence would
be low because of the noisy background, so the machine should confirm its recog-
nition and understanding via “Do you want to make a collect call?” If a user asks
“Charge this call please”, there is an ambiguity which needs to be clarified, for
example via “How do you want to charge this call, to a credit card or to a third num-
ber?” An example of completion occurs when someone wants their account balance
in customer care, whence the machine needs to know “What is your home phone
number?”.

Traditionally, for menu-systems and strongly-prompted dialogs, the human/machine
interaction is defined by a ‘call-flow’, essentially a long ‘if-then-else’ specification.
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That approach does not scale well for complex natural spoken dialogs, yielding soft-
ware that is difficult to design, maintain, and support. Our approach to dialog man-
agement is based on a framework called the Construct Algebra [2]. This theory
provides the building blocks for the dialog process, comprising the relations and
operations of that algebra. The result is a collection of reusable dialog motivators,
generic rules that determine what action the dialog manager takes in its next interac-
tion with a user, and which are portable over a range of tasks. For example, there are
reusable dialog motivators for confirmation, clarification, and missing information
[2].

In any domain, there is task knowledge that must be encoded and provided to the
Dialog Manager and SLU modules. In HMIHY, this task knowledge is based on
an object-oriented inheritance hierarchy [1]. This inheritance hierarchy defines the
relationships amongst the call-types and named entities. For example, a customer’s
query about an unrecognized charge on their bill ‘is @’ kind of query about a charge
on their bill. That unrecognized number query ‘has a’ dollar amount, item number,
dialed number, etc. In computer science, it is well known how to represent these ‘is
a’ and ‘has a’ relations via an object-oriented inheritance hierarchy in programming
languages such as C++ or Java. The dialog manager exploits this task knowledge
and the dialog motivators to govern what action to perform at each turn in the dialog.

This chapter proceeds as follows. First, we will motivate and describe the call-
classification problem for automated voice services. We then describe the operator
services and customer care tasks in more detail, giving examples of what people say
and of what they want. Various dimensions of the linguistic and semantic complex-
ity of these tasks will be described and quantified, including the inheritance hierar-
chy.We then move on to discuss language modeling for both speech recognition and
spoken language understanding, including the ideas underlying automated acquisi-
tion and exploitation of salient words, phrases, and grammar fragments. The role of
dialog to guide the human/machine interaction will be reviewed, including the con-
cept of a dialog trajectory analysis. Finally, we will conclude and provide pointers
to related research.

10.2 Call-Classification

In traditional telephony automation, a user is offered a list of menu options from
which to select. In some cases, the desired service can be provided by simple au-
tomation, e.g. providing an account balance, or billing a call to a credit card. In
other cases, the requested service can only be provided by a human agent with some
specialized skill set. In either case, the menu system provides the user the oppor-
tunity to navigate to the appropriate destination where he or she can obtain service
or have their problem resolved. These menus have been implemented using either
touch-tone ( ‘press one if you want x, press two if you want y’ ...) or via voice labels
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(‘please say collect, calling card’, ...). There is also the familiar hybrid (‘press or
say one if you want x’, ...). Each of these have their place and purpose, and have
proved useful when the list of options is short and well-understood by customers.
When the list becomes long, however, then system designers resort to hierarchical
menus, which many users are unable or unwilling to navigate. In the case of succinct
menu-options that are less specific, it is often difficult for a user to decide which
of the proffered categories matches what they want. There is always the trade-off
in such menus of explaining each option in great detail (whence the user becomes
bored and stops listening), or of being succinct in the description (whence the user
cannot figure out which option to select). It is a familiar scenario for users to become
frustrated and either press zero to ‘bail out’ of such systems, or to ‘play possum’ and
do nothing, in the hope of being connected to a human agent.

In contrast, consider how a human receptionist would handle this same routing task.
He or she would ask ‘How may I help you?’, and then the user would describe, in
their own words, what is their request or problem. The receptionist’s job is to know
enough about the domain to transfer the caller to somebody (or something) that can
provide the requested service.

Thus, we set the goal of going ‘back to the future’ and engineering a system with
this same natural functionality. A user is greeted, and makes a request as if talking to
a person. The system’s job is to recognize and understand what the user wants, suf-
ficiently to route their call to an automated module or human agent that can provide
the requested service.

For example, when we collected a database of what customers say to operators, we
observed that although the variation in vocabulary and language is large, most of the
time they ask for one of 15 service types [6]. For example,

“I want to reverse the charges on this call.”

“Can you tell me what time it is in Tokyo?”

“I'was trying to call my sister and dialed a wrong number.”

“I’ve been trying to dial this number all day and can’t get through.”

The first request is for a COLLECT call, the second for TIME information, and the
third for a BILLING CREDIT. Automation for these three call-types is straightfor-
ward. The final query is more complex, and currently requires a person to address
the problem. In any call-classification task, there is always a ‘tail of the distribution’
which does not fit into any of the predefined categories. We call this ‘none of the
above’ class OTHER, and such calls are directed to a human agent.

The types of questions asked in customer care are quite different [7], where people
are asking about their bills, calling-plans, etc. For example,

“How much money do I owe you?”

“I don’t recognize this phone call to Tallahassee on October 4.”
“What'’s this charge for one dollar and fifty cents?”

“I have a question about my bill.”
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FIGURE 10.1
Call classification and routing in HMIHY.

The first query is for an ACCOUNT BALANCE and the second for an UNREC-
OGNIZED NUMBER, automation for both of which is straightforward and exists
today. The third is somewhat vague, asking about a CHARGE ON BILL, as is the
fourth, which is merely a BILLING QUERY. For these last two examples, the dialog
manager must ask a clarifying question before the call can be classified and routed.
Figure 10.1 illustrates the call-flow for call-routing in customer care, where the user
responds to the open-ended prompts ‘How may I help you?’ and is then classified
and routed to an appropriate automated module or human agent that can provide the
requested service.

As observed earlier, the set of semantic labels in such tasks is not a simple unstruc-
tured list. In the examples from operator services, COLLECT and CREDIT CARD
are a kind of BILLING method, and any call has a FORWARD NUMBER (the num-
ber being called). Similarly, requests for RATE, TIME, or AREA CODE are all
a kind of request for INFORMATION. These ‘is a’ and ‘has a’ relationships are
encoded in an object oriented inheritance hierarchy, partially illustrated in Figure
10.2 for the operator services domain. The terminal nodes in the hierarchy provide
sufficient specificity for the machine to ‘take action’, while the non-terminal nodes
require clarifying queries from the dialog manager.

In comparing the operator services and customer care domains, our intuition tells us
that the latter is ‘more complex’. Let’s explore how to quantify this intuition. A first
observation is that customer utterances are significantly longer in the customer care
domain. When responding to ‘How may I help you?’, the average number of words
in the first domain is 19, while it is 39 words in the second. A histogram of utterance
length is shown for both domains [7] in Figure 10.3. Observe that the ‘shape’ of the
two distributions are similar - skewed unimodal with a long tail.

A second dimension of linguistic complexity is vocabulary. For a random sample of
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Inheritance hierarchy of task knowledge in operator services.

8K utterances, the accumulated vocabularies in the two domains are 3.6K and 5.2K
respectively. The OOV (out of vocabulary) rate of observed new words in both cases
is approximately one new word every third utterance. We observed that these OOV
words are less than half proper nouns, emphasizing the high variation in customers’
language for these domains. A final and traditional measure of linguistic complexity
is perplexity [9], which can be loosely interpreted as the ‘average branching factor’
of the language. These are 16 and 39 respectively, again illustrating the greater
complexity of the customer care domain.

One can also measure the semantic complexity of the ‘classification task’. The
entropy of this call-type distribution can be computed as 3.3 bits per semantic la-
bel. This provides insight into why the ‘classification’ problem is tractable from
conversational-style speech over the telephone, while ASR remains difficult. A per-
plexity of 39 is equivalent to an entropy of ~ 5 bits per word, or ~ 200 bits in a
40 word utterance that we are attempting to decode via ASR. From the classification
perspective, however, we are only seeking to reliably decode 3.3 bits per utterance.
Although this is not a rigorous argument, it indicates why call-classification is possi-
ble, with high accuracy, while ASR is far more difficult. For example, word accuracy
for these tasks is ~71%; accuracy on salient phrases is much higher at ~85%, and
classification accuracy well exceeds 90%.

Evaluating Call Classification. Call classification can be viewed as a multi-class
classification task with rejection. There are three traditional measures for such tasks
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Histogram of utterance lengths.

[6]. First is the probability of false rejection, which measures how often a request
for some service is rejected or classified as OTHER. A second is the probability of
correct classification, which measures how often a classification as some call-type
is correct. The third is the true rejection rate, which measures the probability that a
request which should be classified as OTHER is indeed rejected and thus routed to a
human. Dialog provides the opportunity to ask confirming and clarifying questions,
thus providing improved call-classification over the case of a single utterance. While
far from perfect, performance exceeding 90% has been reported in our published
papers, which is far superior to customers’ ability to self-select and navigate hierar-
chical menus. Thus, HMIHY provides both an improved user experience plus more
accurate routing and thus increased automation.

Remark: There is vast literature in text categorization, for the purpose of informa-
tion and document retrieval. There is also a literature on topic classification from
speech, for similar purposes. Call-classification as described in this and related work
has several distinguishing attributes. First, it involves speech rather than text, with
the inherent difficulties of speech recognition and the disfluencies of conversational-
style language. Second, the input is from cooperative users who are trying to commu-
nicate their need and make themselves understood. Third, the system has the oppor-
tunity to ask confirming or clarifying questions of that cooperative user. Fourth, there
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is often collateral customer profile information available, which can be exploited in
understanding a request. For example, a customer who says “I want to know how
to pay my bill” would be routed differently if they have been delinquent in payment
versus a routine request.

10.3 Language Modeling for Recognition and Understanding

For recognizing unconstrained spoken language, the state-of-the-art involves training
a stochastic language model which predicts the probability of a sequence of words.
For example, given a sentence S = vqvs ...v,, We want to estimate the probabil-
ity of the word v; given the history of preceding words, i.e. P(v;|v1vs...v;—1).
It is not tractable to estimate these probabilities for all possible histories due to
data sparseness. So, the most familiar method is the n-gram model, which esti-
mates the probability of a word given only the preceding n-1 words (where typically
n=3, denoted a trigram language model). As n increases, the memory and compu-
tation requirements of the language model increase, as does data sparseness. An
alternative is to selectively introduce longer-range ‘history’ in the form of variable
length units [9]. For ASR language modeling, these units are selected on the ba-
sis of entropy minimization, leading to ‘superwords’ such as ‘I want to make a’ ,
‘collect call’ and ‘card call’ in the operator services domain. In that case, a bi-
gram language model on these variable length units would lead to estimates such
as P(‘collect call’ | ‘I want to make a’), effectively providing a 7-gram model, but
only selectively. In [9], it was shown how to embed these acquired phrases into a
stochastic finite state automaton to provide language models for ASR. It was shown
that these models had a similar accuracy to high-order n-gram models, but with the
computation and memory requirements of low-order models.

After recognizing the words spoken by a user, the next step is to ‘understand’ what
they said. Our early experiments focused on methods based on a ‘bag of words’
model [5]. We discovered, however, that ignoring the temporal order of the words
in an utterance was not optimal. Language does indeed have structure which can be
exploited to enable more reliable understanding.

The first stage was to investigate and develop algorithms to automatically acquire
salient phrases for a task, i.e., while ‘wrong’ is a salient word in the operator services
task (associated to needing a billing credit), ‘wrong number’ is even more salient,
and ‘dialed a wrong number’ more salient still [6]. Salient phrases are preferable
to words because they have sharper semantics, and because longer events are more
reliably recognized in speech.

The second stage commenced with observing that many of these salient phrases were
similar, such as ‘dialed a wrong number’ and ‘dialed the wrong number’, leading to
the development of clustering algorithms exploiting a combination of string-edit dis-
tances and semantic distortions [12]. These clusters of salient phrases are compactly
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FIGURE 10.4
A salient grammar fragment.

represented as finite state machines, and denoted salient grammar fragments. Clus-
ters of phrases are preferable because of parsimony, enabling pooling of statistics
across multiple low frequency phrases. These grammar fragments are also advanta-
geous because they are robust to ASR errors ‘within the fragment’.

In Figure 10.4, a salient grammar fragment from the customer care task is shown,
which is strongly associated with queries about an UNRECOGNIZED NUMBER
on a bill.

These methods were extended to include hierarchical clustering by also exploiting
syntactic distortions [3]. Finally, we observe that embedding salient phrases in the
ASR language model has been shown to improve classification performance, while
having negligible effect on word accuracy.

To classify an utterance, these salient grammar fragments are matched against the
ASR output, then a decision rule applied to combine the lattice of detections and
their associations. This is illustrated below, showing the transcription of a customer
utterance, then the ASR output with detected salient fragments highlighted. There
are three detected fragments: one associated with the call-type of CELLULAR , the
other two associated with CALLING PLAN. Based on strength of associations plus
coverage, the output of the SLU is thus the latter.

o User: okay I got AT&T Wireless phones and when I got them he told me that
I would be switched to 7 cents a minute for all my AT&T long distance calling
because I was on 10 10 cents One Rate plan

o ASR: yeah I'm not AT&T WIRELESS PHONE and when I got and she told
me that I would be switched to 7 CENTS A MINUTES FOR ALL my AT&T
long distance on that I was on 10 10 cents ONE RATE PLAN

e SLU: Calling_Plans
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Natural spoken dialog in HMIHY.

10.4 Dialog

An interaction with HMIHY often comprises more than one turn, with dialog neces-
sary to confirm low-confidence interpretations, to clarify ambiguities, and to request
missing information to complete a transaction. Figure 10.5 illustrates the architecture
of the HMIHY dialog system, including an ASR component which requires acous-
tic and language models, an SLU component which requires the salient grammar
fragments, and the dialog manager which acts upon the SLU-output plus the task
knowledge in the inheritance hierarchy.

The ASR language model must vary over the dialog states, since what users say of
course changes with respect to context. We refer the reader to [10] for a detailed
analysis of such variations in spoken language over the course of a dialog.

We provide two dialog examples, the first illustrating two invocations of the ‘missing
information” motivator to obtain the billing method and card number, the second
illustrating the ‘clarification’ motivator.
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Machine: AT&T. How may I help you?

User: I need a credit, I got the wrong number.

Machine: What was the number that you dialed?

User: I dialed four one five two eight ......

Machine: Was the call billed to the phone that you’re calling from now?
User: No, to a credit card.

Machine: What was the card number?

User: four five six seven ........

Machine: I’ve given you credit for that call. Thank you for using AT&T.

Machine: AT&T. How may I help you?

User: I have a question about my June bill.

Machine: Okay, what is your question?

User: There’s a call to Tallahassee, but I don’t know anyone there.
Machine: I can help you with that.

Are you calling from your home phone?

User: I'm calling from my house.

Machine: Please hold on while I transfer your call.

10.5 Conclusions

In summary, we have described AT&T’s HMIHY technology which embodies the
next generation of voice-enabled services. These advances in speech, language, and
dialog technology shift the burden from user to machine, where the machine adapts to
customers’ spoken language, in contrast to forcing people to learn the machine’s jar-
gon. In developing such a ‘“first of its kind” system, many research issues have arisen.
The interested reader can access our web site www.research.att.com/~algor/hmihy,
which contains a link to an on-line collection of many of our research papers.
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Abstract. This chapter gives an overview of the statistical approach to machine
translation, in particular the translation of spoken dialogues in the framework of the
VERBMOBIL project. Starting with the Bayes decision rule as in speech recogni-
tion, we show how the required probability distributions can be structured into three
parts: the language model, the alignment model, and the lexicon model. We describe
the components of the system and report results on the VERBMOBIL task. The ex-
perience obtained in the VERBMOBIL project, in particular in the final evaluation,
showed that the statistical approach resulted in significantly lower error rates than
three competing translation approaches: the sentence error rate was 29% in compar-
ison with 52% to 62% for the other translation approaches. Finally, we discuss the
integrated approach to speech translation as opposed to the serial approach as it is
widely used nowadays.

11.1 Introduction

The automatic translation of language is generally referred to as machine translation.
Typically, this term is used for written language or text input, where the implicit
assumption is that the input is uncorrupted, i.e. without errors. This task is very
much different from spoken speech input, where the system must cope with speech
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recognition errors and also the ungrammatical structure of spoken language.

The translation of spontaneous speech poses additional difficulties for the task of
automatic translation. Typically, these difficulties are caused by errors of the recog-
nition process, which is carried out before the translation process. As a result, the
sentence to be translated is not necessarily well-formed from a syntactic point-of-
view. Even without recognition errors, speech translation has to cope with a lack of
conventional syntactic structures because the structures of spontaneous speech differ
from that of written language.

The statistical approach shows the potential to tackle these problems for the follow-
ing reasons. First, the statistical approach is able to avoid hard decisions at any level
of the translation process. Second, for any source sentence, a translated sentence in
the target language is guaranteed to be generated. In most cases, this will be hope-
fully a syntactically perfect sentence in the target language; but even if this is not the
case, in most cases, the translated sentence will convey the meaning of the spoken
sentence.

The organization of this chapter is as follows:

e Section 2: Statistical Decision Theory and Linguistics.
We will present the Bayes decision rule and the resulting architecture for the
translation of written language.

e Section 3: Alignment and Lexicon Models.
A key component in the statistical approach is the so-called alignment concept,
which is similar to hidden Markov models used in speech recognition and
which will be considered in more detail.

e Section 4: Alignment Templates: From Single Word to Word Groups.
To introduce more context into the translation process, we will consider the
method of alignment templates that allows us to translate word groups or
phrases as a whole.

e Section 5: Experimental Results.
Although the methods presented apply both to written and spoken language,
we will limit ourselves here to spoken language and report on the final experi-
mental evaluation that were carried out in the VERBMOBIL project.

e Section 6: Speech Translation: The Integrated Approach.
As an alternative to the serial coupling of recognition and translation that is
used in our and other systems as well, we will consider the integrated ap-
proach to recognition and translation and the corresponding form of the Bayes
decision rule [26].

Whereas statistical modelling is widely used in speech recognition and it is impos-
sible to enumerate all systems, there seem to be only a small number of research
groups that have applied statistical modelling to the translation of written or spoken
language [1, 7, 21, 50]. The presentation here is based on work carried out in the
framework of the EUTRANS project [19] and the VERBMOBIL project [49].
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11.2 Statistical Decision Theory and Linguistics
11.2.1 The Statistical Approach

The use of statistics in computational linguistics has been extremely controversial for
more than three decades. The controversy is very well summarized by the statement
of Chomsky in 1969 [15]:

13

it must be recognized that the notion ‘probability of a sentence’ is an
entirely useless one, under any known interpretation of this term”.

This statement was considered to be true by the majority of experts from artificial
intelligence and computational linguistics, and the concept of statistics was banned
from computational linguistics for many years.

What is overlooked in this statement is the fact that, in an automatic system for
speech recognition or text translation, we are faced with the problem of making
decisions. It is exactly here where statistical decision theory comes in. In speech
recognition, the success of the statistical approach is based on the equation:

Speech Recognition = Acoustic—Linguistic Modelling

+ Statistical Decision Theory

Similarly, for machine translation, the statistical approach is expressed by the equa-
tion:

Machine Translation = Linguistic Modelling

+ Statistical Decision Theory

For the ‘low-level’ description of speech and image signals, it is widely accepted that
the statistical framework allows an efficient coupling between the observations and
the models, which is often described by the buzz word ‘subsymbolic processing’.
But there is another advantage in using probability distributions in that they offer an
explicit formalism for expressing and combining hypothesis scores:

e The probabilities are directly used as scores. These scores are normalized,
which is a desirable property: when increasing the score for a certain element
in the set of all hypotheses, there must be one or several other elements whose
scores are reduced at the same time.

e It is straightforward to combine scores. Depending on the task, the probabili-
ties are either multiplied or added.

e Weak and vague dependences can be modelled easily. Especially in spoken
and written natural language, there are nuances and shades that require ‘grey
levels’ between O and 1.
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11.2.2 Bayes Decision Rule for Written Language Translation

In machine translation for written language, the goal is the translation of a text given
in a source language into a target language. We are given a source string fi =
fi...fj...fs, which is to be translated into a target string el = e;...es...er. For
historical reasons [12], we use the symbols f (like French) for source words and the
symbol e (like English) for target words. In this chapter, the term word always refers
to a full-form word. Among all possible target strings, we will choose the string with
the highest probability which is given by Bayes decision rule [12]:

éj = argmax {Pr(e{|f{)}
€1

= argmyx {Pr(e]) - Pr(f|e]))
1

Here, Pr(el) is the language model of the target language, and Pr(f{|el) is the
string translation model which will be decomposed into lexicon and alignment mod-
els. The argmax operation denotes the search problem, i.e. the generation of the
output sentence in the target language. The overall architecture of the statistical
translation approach is summarized in Figure 11.1.

In general, as shown in this figure, there may be additional transformations to make
the translation task simpler for the algorithm. The transformations may range from
the categorization of single words and word groups to more complex preprocessing
steps that require some parsing of the source string. We have to keep in mind that in
the search procedure both the language and the translation model are applied after
the text transformation steps. However, to keep the notation simple, we will not make
this explicit distinction in the subsequent exposition.

11.2.3 Related Approaches

There are a number of related approaches that are also corpus-based and therefore
closely related to the statistical approach:

e finite-state approaches [2, 4, 14, 46]:
Here, the probabilistic dependences are represented by finite-state structures
that can be learned automatically from training data.

e example-based approaches [3, 39, 42]:
In example-based approaches, large bilingual chunks are excised from the
set of bilingual sentence pairs. In the translation process, the most similar
chunk in the set of source-language chunks is determined, and its correspond-
ing target-language chunk is used as translation. This baseline variant may
be refined in various ways to introduce generalization capabilities (see also
Section 11.5.4).

e syntax-based statistical approaches [1, 52, 53]:
These approaches are obtained as an extension of the statistical approach,
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FIGURE 11.1
Architecture of the translation approach based on Bayes decision rule.

where syntactic structures are incorporated into the baseline statistical ap-
proach, in particular the so-called alignment models (see later). The syntactic
structure may be modelled in the target language only or in both target and
source language.

11.3 Alignment and Lexicon Models
11.3.1 Concept of Alignment Modelling

A key issue in modelling the string translation probability Pr(f|el) is the question
of how we define the correspondence between the words of the target sentence and
the words of the source sentence. In typical cases, we can assume a sort of pairwise
dependence by considering all word pairs (f;, e;) for a given sentence pair (f{;ef).
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FIGURE 11.2
Example of an alignment for a German-English sentence pair.

Here, we will further constrain this model by assigning each source word to exactly
one target word. Models describing these types of dependences are referred to as
alignment models [12, 16, 48].

When aligning the words in parallel texts, we typically observe a strong localization
effect. Figure 11.2 illustrates this effect a German—English sentence pair from the
VERBMOBIL corpus. In many cases, although not always, there is an additional
property: over large portions of the source string, the alignment is monotone. In the
following, we will consider two approaches to alignment modelling in more detail,
namely hidden Markov models and models IBM 1-5.

11.3.2 Hidden Markov Models

The first approach to alignment modelling will be based on hidden Markov models
(HMM) as they have been used successfully in speech recognition for a long time
[22, chapter 2], [37, chapter 6]. Thus the aligment mapping in translation is similar
to the time alignment path (or state sequence) in speech recognition.
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To arrive at a quantitative specification, we first define the
alignment mapping: j — ¢ = a;

which assigns a word f; in position j to a word e; in position ¢ = a;. The general
concept of word alignments was introduced in [12].

Using the same basic principles as in HMMs for speech recognition, we can rewrite
the probability by introducing the ‘hidden’ alignments a{ := aj...a;...ay for each
sentence pair [f;; el ]:

f1 |‘31 ZPT f1Ja 1J|e{)

To clarify the meaning of the term ‘hidden’ in comparison with speech recognition,
we note that the model states as such (representing words) are not hidden but the
actual alignments, i.e. the sequence of position index pairs (j,i) with i = a;. To
draw the analogy with speech recognition, we have to identify the states (along the
vertical axis) with the positions ¢ of the target words e; and the time (along the
horizontal axis) with the positions j of the source words fi [y

We can decompose the probability distribution Pr(f;’, a{|el) as follows:

Pr(f{,aflef) =

= P’I"(J|6{) : Pr(ff,aﬁe{, J)
J
Prdle) - TT [Pr(syajlai™ A" el )

<.
Il
-

(J|61)

’:]g

[Pr(aj|a{715 1] ' 61, J) - Pr(fj|f alvele)

j=1

The above formulation does not make any assumptions about the dependences in the
probability distribution and results in three distributions which need further specifi-
cations: the length model Pr(J]e!), the alignment model Pr(aj|al ", fi~" el,J),
and the lexicon model Pr(f;|f/~", al,el,.J). These models are too general to be
used directly and, in the following, we will limit the dependences in these models,
e.g., we will assume first-order over even zero-order dependences for the conditional
probability Pr(a;|al ", fi~", el,J). We consider three cases:
e baseline HMM:

By looking at real alignments for sentence pairs, it is evident that the mathe-

matical model should try to capture the strong dependence of a ; on the preced-

ing alignment. Therefore, when simplifying the dependences in the alignment

model, we would like to retain the dependence of Pr(a ;|-) on the position

aj_1 of the immediate predecessor. Thus we obtain the alignment model:

Pr(aj|a{717 1].7176{7 J) = p(aj|aj,1,I, J)
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where we also have retained the dependence on the length .J of the observed
source sentence and the length I of the hypothesized target sentence.

For the lexicon model Pr(f;|-), we make the assumption that the dependence
is limited to the target word e; with ¢ = a;, i.e. e,;, and nothing else:

(f]|f alaelaJ) ::p(fj|ea]‘)

Finally, for the length model Pr(
J of the source sentence f{ only:

-), we assume a dependence on the length

Pr(Jle) = p(JII)

We mention that the length model has been included for the sake of com-
pleteness and is not very important in practice. In speech recognition, there is
typically no length model. Instead, a special symbol for sentence end is added
to the vocabulary.

¢ homogeneous HMM
To render the alignment probability independent of absolute positions and also
to reduce the number of alignment parameters [16, 48], we assume that the
alignment probabilities p(a;|a;—1, I, .J) depend only on the jump width (a; —
a;—1) and nothing else. Using i = a; and i’ = a;j_1, we have:

Pr(ajla]™", fi7" el J) = p(ajlaj_1,1,J)

with a non-negative table ¢(.):
Ai=i—i o q(Ad)

which has to be estimated from the bilingual training corpus (like the free
parameters of the other distributions introduced).

e context dependent HMM:
It can be argued that, for good models, more context should be captured in the
dependences.

Thus, we extend the alignment model:
Pr(a]'|a{717 1] 17 17J) _p(aj|aj717I7J;fjfl)

So, in comparison with the baseline model, there is an additional dependence
on the source word f;_q in position (j — 1). First experiments with such a
type of model are reported in [32].
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The lexicon model can be extended in a similar way:

P’I“(f]|f a17617‘]) = p(fj|eaj;fj71,eaj,1)

Here, the dependences have been extended to f;_1 and e,;_, . Instead of these
additional words themselves, parts-of-speech classes or automatically trained
word classes could be used (see later) [13, 23, 31]. Such a type of extended
lexicon model does not seem to have been tested yet experimentally.

11.3.3 Models IBM 1-5

The historical development of statistical machine translation was slightly different
from this presentation in that the models IBM 1-5 were introduced for alignment
modelling before HMMs were used. The models IBM 1-5 were introduced in [12]
as a series of alignment models with increasing complexity.

e models IBM-1 and IBM-2: zero-oder dependence.
Rather than a first-order dependence, we can also use a zero-order model for
the alignment model, where there is only a dependence on the absolute posi-
tion index j of the source string:

Pr(ajla]™", fi7" el J) := pla;|j, I, J)

Both the length model and the lexicon model are the same as for the HMM.
For such a zero-order model, it can be shown [12] that we have the following
identity:
J
Pr(fllef) = p(JIT) - Y [T p(asli, I, 1) - p(flea;)]
a{ j=1

N J T
CURVSSURRNEAS)

: =1

The sum in the last equation can be interpreted as a mixture-type distribution
with mixture weights p(i|j, I, J) as alignment probabilities and with compo-
nent distributions p(f;|e;) as lexicon probabilities. The model IBM-1 is a
special case with a uniform alignment probability:

Plj T ) = 5

The presentation so far has not used the so-called ‘empty word’ [12]. The
empty word is added to the target sentence e to allow for source words which
have no direct counterpart in the target sentence e!. Formally, the concept
of the empty word is incorporated into the alignment models by adding the
empty word eq at position i = 0 to the target sentence e! and aligning all

source words f; without a direct translation to this empty word.
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e model IBM-3: fertility concept.
As introduced in [12], the alignment model can be extended by the concept of
fertility. The idea is that often a word in the target language may be aligned to
several words in the source language. This extension results in the so-called
model IBM-3. For each target word e, there is a probability distribution over
its possible fertilities ¢:

p(¢le)

Experimentally, we observe that the fertilities take on values from O to 4. For a
given alignment a7, we compute the fertility ¢; of a target word e; in position
i as the number of aligned source words f; with a; = i:

fertility: ¢; := 25(Gjai)
J

Using this equation, we can start with an HMM or model IBM-2 and then
compute initial values for the fertilities. In particular, the fertility concept
can be used to better model target words having no counterpart in the source
sentence, i.e. target words e; with fertility ¢; = 0.

e models IBM-4 and IBM-5: inverted alignments with first-order depen-
dence.
For space limitations, we can give only a simplified description of these mod-
els. To obtain these models, we assume that the probability distribution
Pr(f{,af|el)is the result of a process consisting of three steps, each of which
involves a (simple) probability distribution. The first step is the selection of
a fertility ¢; for each (hypothesized) target word e;,¢ = 1,...,I. In the next
step, for each target word e;, we generate the set of associated source words
f according to the fertility ¢;, where the (final) positions are not specified yet.
In the third step, the source words are permuted so that the observed sequence
f{ is produced. The main advantage of the above interpretation is that, as we
will see later, it is better suited for a search strategy that builds up partial string
hypotheses e} over target positions i = 1, ..., I.

As a result, we have a sort of inverted alignments, i.e. a mapping from the
target positions % to the source positions j:

inverted alignment mapping: ¢ — j = b;

which in [12] is referred to as distortion model. For these inverted alignments
bl :=by,...,b;, ..., by, we assume a first-order dependence as for the HMM:

p(bi|bi71;fb“€i71)

Here, there is an additional dependence on the word context that is captured by
the source word f; in position j = b; and the target word e;_;. To really apply
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the above probability model, several refinements are needed. First, we must
take into account that the fertility of word e; in position 2 may be different from
1, e.g., for a fertility larger than 1, several positions on the target axis j have
to be produced. Second, the dependence on b;_; does not use the absolute
positions, but only relative positions. Thus, we have a dependence on the
“jump width® Aj = b; — b; 1 along the source axis j as for the homogeneous
HMM along the target axis 4. Third, to reduce the number of free parameters,
the dependence on the words f5, and e;_; is replaced by a dependence on
the corresponding parts-of-speech or word classes [13, 23, 31]: G(fs,) and
G (ei_ 1 ) .

p(bz’|bz’71a G(fv:)s G(ei,l))

These word classes can be trained separately for target and source language
[13, 23]. or jointly for both languages [31]. The resulting approach is referred
to as model IBM-4.

Remarkably enough, the model IBM-4 is not normalized as each probability
distribution should be because it puts probability mass on events that can never
occur (for more details see [12]). From the model IBM-4, we obtain the model
IBM-5 by enforcing the strict normalization of the probabilities. The resulting
model can be summarized as follows. We imagine that the source positions
are covered in a left-to-right strategy, where occasionally some of the source
positions can be skipped. To keep track of the occupied source positions, the
probability of the inverted alignment is made dependent on the whole history
for the partial alignment b’i_l. For a vacant position j = b;, we have:

p (bz|b21717G(sz))

To be more exact, we note that the dependence on b lfl is mainly limited to the
number of free source positions V/ (b’i_l) and to the number of free source posi-
tions between b;_; and b;. In comparison with model IBM-4, the dependence
on the preceding target word e;_; has been dropped to reduce the number of
free parameters.

Although some of the above models take one-to-many alignments explicitly into
account, the lexicon probabilities p(f|e) are still based on single words in each of
the two languages. The lexicon model presented so far is very simple. In reality, the
translation of a word may depend on the details of the word context. To capture these
types of dependences, maximum entropy models were proposed [9, 20].

11.3.4 Training

The free parameters of the probability distributions introduced are estimated from a
corpus of bilingual sentence pairs. The training criterion is the maximum likelihood
criterion. Since the models that have been introduced are complex, the training algo-
rithms can guarantee only local convergence. In order to mitigate the problems with
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poor local optima, we apply the concept presented in [12]. The training procedure
is started with a simple model for which the problem of local optima does not occur
or is not critical. In particular, the model IBM-1 has the advantage that it has only a
single optimum and thus convergence problems cannot exist [12]. The parameters of
the simple model are then used to initialize the training procedure of a more complex
model. In such a way, a series of models with increasing complexity can be trained.
Typical sequences are [IBM-1,-2,-4,-5] or [IBM-1, HMM].

The training procedure is based on the maximum likelihood criterion, which however
can be used only in an iterative way. For the models IBM-1, IBM-2 and HMM, this is
the so-called expectation-maximization algorithm for which a closed-form solution
is available within each iteration. For the other models, namely IBM-3, IBM-4,
and IBM-5, this is not the case anymore, and even within each iteration, numerical
approximations have to be used [12, 33]. What has been said so far goes for the
exact likelihood criterion, where we sum over all possible alignments. When instead
we use the maximum approximation, where only the best alignment is considered,
the situation might be very much different in that some of the problems go away.
However, there have not yet been many systematic studies on how much we lose by
the maximum approximation [33].

In systematic experiments, it was found that the quality of the alignments determined
from the bilingual training corpus has a direct effect on the translation quality [32].
By exchanging the role of target and source language in the training procedure, we
found that the quality of the alignments could be significantly improved.

From a general point of view, the alignments can be interpreted as a method for find-
ing words or word groups that are equivalent in source language and target language.
After these equivalences have been found, they may be modelled in various, data-
driven approaches to build a translation system. In this chapter, we will consider the
so-called alignment templates (see later), but these equivalences may as well be used
in finite-state transducers [14].

11.3.5 Search

The task of the search algorithm is to generate the most likely target sentence e ! of
unknown length I for an observed source sentence f . The search must make use of
all three knowledge sources as illustrated by Figure 11.3: the alignment model, the
(bilingual) lexicon model and the language model. All three of them must contribute
in the final decision about the words in the target language.

To illustrate the specific details of the search problem, we specify the alignment
model in more detail:

e we use inverted alignments as in the model IBM-4 [12] which define a map-
ping from target to source positions rather than the other way round.

o we allow several positions in the source language to be covered, i.e. we con-
sider mappings B of the form:

B:i—B;C{l,...j,....,J}
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FIGURE 11.3
Illustration of search in statistical translation.

For this inverted alignment mapping with sets B; of source positions, we again as-
sume a sort of first-order model:

p(Bi|Bi—1,€i-1)

where we have dropped the dependence on I and .J.

We replace the sum over all alignments by the best alignment, which is referred to
as maximum approximation in speech recognition. Using a trigram language model
pleilei—2,e;—1), we obtain the following search criterion:

I
max ¢ p(J|1) - max [T | pleilei=s) - p(BilBiov, ein) - [] p(filen)

1’6{ : .
i=1 JEB;
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FIGURE 11.4
Ilustration of bottom-to-top search.

Considering this criterion, we can see that we can build up hypotheses of partial
target sentences in a bottom-to-top strategy over the positions ¢ of the target sentence
el as illustrated in Figure 11.4. An important constraint for the alignment is that all
positions of the source sentence should be covered exactly once. This constraint is
similar to that of the traveling salesman problem where each city has to be visited
exactly once. Details on various search strategies can be found in [7, 27, 30, 35].
The type of language model we use ranges from a trigram to a 5-gram, which can be
either word- or class-based. Beam search is used to handle the huge search space.
To normalize the costs of partial hypotheses covering different parts of the input
sentence, an (optimistic) estimation of the remaining cost is added to the current
accumulated cost as follows. For each word in the source sentence, a lower bound on
its translation cost is determined beforehand. Using this lower bound, it is possible
to achieve an efficient estimation of the remaining cost [35, 44]. For other papers on
the search process in translation, the reader is referred to [8, 21, 24, 50].

11.3.6 Algorithmic Differences between Speech Recognition and Lan-
guage Translation

It is interesting to consider the differences between the algorithms for speech recog-
nition and those for machine translation:
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e monotonicity:
In speech recognition, there is a strict monotonicity between the sequence of
acoustic vectors and the sequence of recognized words or phonemes. This is
not the case for machine translation, and therefore the search problem becomes
more complicated.

o fertility:
In machine translation, we have to decide whether a word is present in the
target string or not. Therefore, it is important to assign a fertility to each word
of the target vocabulary. In speech recognition, the counterpart of a word is an
HMM state. However, we never take decisions about states, but about whole
phoneme models either with or without context. Therefore the concept of
fertility is not really needed in speech recognition.

11.4 Alignment Templates: From Single Words to Word Groups
11.4.1 Concept

A general shortcoming of the baseline alignment models is that they are mainly de-
signed to model the lexicon dependences between single words. Therefore, we ex-
tend the approach to handle word groups or phrases rather than single words as the
basis for the alignment models [34]. In other words, a whole group of adjacent
words in the source sentence may be aligned with a whole group of adjacent words
in the target language. As a result, the context of words tends to be explicitly taken
into account, and the differences in local word orders between source and target lan-
guages can be learned explicitly. Figure 11.5 shows some of the extracted alignment
templates for a sentence pair from the VERBMOBIL training corpus. The training
algorithm for the alignment templates extracts all phrase pairs which are aligned in
the training corpus up to a maximum length of seven words. To improve the gen-
eralization capability of the alignment templates, the templates are determined for
bilingual word classes rather than words directly. These word classes are determined
by an automatic clustering procedure [31].

A general deficiency of the baseline alignment models is that they are able to model
correspondences only between single words. A first countermeasure was the refined
alignment model used in the quasi-monotone search. A more systematic approach
is to consider word groups rather than single words as the basis for the alignment
models. In other words, a whole group of adjacent words in the source sentence
may be aligned with a whole group of adjacent words in the target language [34].
Such a mapping will be referred to as alignment template in the following. Example
of such alignment templates are shown in Figure 11.5; these examples were real
experimental results obtained by the method to be presented. As can be seen from
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FIGURE 11.5
Example of alignment templates for a German-English sentence pair.

these examples, the advantage of the alignment template is that both the word context
and the local re-ordering of words can be taken into account.

To describe the alignment template approach in a formal way, we first decompose
both the source sentence fj and the target sentence e! into a sequence of word
groups:

flJ = flKa fk = fjk—l"rlﬂ'“’fjk , k=1, K

I _ 3K 5 —
€1 = €1, €k = €ip_1+15 €y k= ]-7"'7K

To simplify the notation and the presentation, we ignore the fact that there can be a
large number of possible segmentations, and assume that there is only one segmen-
tation. We distinguish two levels of alignments: alignment within the word groups
and alignment between word groups. For the alignment & & between the source word
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groups flK and the target word groups é%€, we have the following equation:

Pr(f{le]) = Pr(f{|ef")
- ZPT al ) 1K ~K)

= ZPr( Flef) - Pr(fiflar, ef)

-'K

where we have used a first-order alignment model p(a|ag—1, K).
For the alignment within the word group, we introduce a new hidden variable z,
which w1ll be referred to as alignment template Denoting the source word group by
f f1 and the target word group by é = e{ , we have the model:

p(f18) =Y p(218) - p(flz,é)

Each alignment template z can be represented as a binary matrix with I’ rows and
J' columns where only the high-probability (7, j)-pairs have a value of 245 =1
(denoted by a full square in Figure 11.5). The probabilities p(z|€) and p( f|z, €) are
determined using the aligned training corpus and are set to zero if the triple ( f, €, z)
did not occur in the training corpus. If the triple did occur in the training corpus, we
use the following model for p( f|z, €):

J' T

p(f12,€) HZP ilj 2) - p(fj1é:)

j=11i=1

Zij
> zirj
Z'/

p(ilj,2) =

Typically, there is an additional refinement step by introducing a set of bilingual word
classes that are determined automatically [31]. The alignment templates are then
defined at this level of bilingual word classes rather than on the level of the words
themselves. This step slightly improves the generalization capability for unseen test
data.

11.4.2 Training

The training of alignment templates starts with the training of two HMM alignment
models for each of the two translation directions (source — target and target —
source). As a result, we obtain an alignment matrix for each training sentence pair
by merging the alignment paths of both translation directions. In such an alignment
matrix, it is possible that one source word is aligned to more than one target word.
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Using the whole set of alighment matrices for the training corpus, we then extract
the alignment templates by considering all possible source-target word groups un-
der the constraint that the words within the source/target phrase are only aligned to
words within the target/source phrase. The probability p(z|€) is then estimated as
the relative frequency for the event pairs (z, €).

11.4.3 Search

To perform the search, we use the following models:

e As language model, we use a class-based n—gram (e.g. trigram or 5-gram)
language model with backing-off. Typically, this is slightly better than the
standard bigram language model.

e We assume that all possible segmentations have the same probability.

e The alignment model at the template level is an HMM-type alignment model.
Obviously, as usual, all words in the source string must be covered.

To generate the unknown target sentence in the search procedure, we have to allow
for all possible segmentations of the source sentence into word groups, for all possi-
ble alignments between the word groups and for possible alignments within the word
groups. There are a couple of simplifications and approximations to reduce the com-
putational cost of the search, which cannot be described here for space limitations.
In principle, we use a beam search strategy. The search algorithm builds up hypothe-
ses of increasing length along the positions of the target string. During the search
process, we compute an estimate for the remaining portion of the source string that
has not been covered. This estimate for the remaining portion is combined with the
probability score for the already covered portion of the source string to narrow down
the search to the most promising search hypotheses.

11.5 Experimental Results
11.5.1 The Task and the Corpus

The goal of the VERBMOBIL [49] is the translation of spoken dialogues in the do-
mains of appointment scheduling and travel planning. In a typical situation, a native
German speaker and a native English speaker conduct a dialogue where they can
only interact by speaking and listening to the VERBMOBIL system.

Within the VERBMOBIL project, spoken dialogues were recorded. These dialogues
were manually transcribed and later manually translated by VERBMOBIL partners
(Hildesheim for Phase I and Tiibingen for Phase II). Since different human transla-
tors were involved, there is great variability in the translations.
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Each of these so-called dialogue turns may consist of several sentences spoken by
the same speaker and is sometimes rather long. As a result, there is no one-to-
one correspondence between source and target sentences. To achieve a one-to-one
correspondence, the dialogue turns are split into shorter segments using punctuation
marks as potential split points. Since the punctuation marks in source and target
sentences are not necessarily identical, a dynamic programming approach is used to
find the optimal segmentation points. The number of segments in the source sentence
and in the test sentence can be different. The segmentation is scored using a word-
based alignment model, and the segmentation with the best score is selected. This
segmented corpus is the starting point for the training of translation and language
models. Alignment models of increasing complexity are trained on this bilingual
corpus [32, 33].

A standard vocabulary had been defined for the various speech recognizers used in
VERBMOBIL. However, not all words of this vocabulary were observed in the train-
ing corpus. Therefore, the translation vocabulary was extended semi-automatically
by adding about 13 000 German—English word pairs from an online bilingual lexicon
available on the web. The resulting lexicon contained not only word-word entries, but
also multi-word translations, especially for the large number of German compound
words. To counteract the sparseness of the training data, a couple of straightforward
rule-based preprocessing steps were applied before any other type of processing:

e categorization of proper names for persons and cities,
e normalization of:

— numbers,

— time and date phrases,

—spelling: don’t — do not,...
e splitting of

German compound words.

Table 11.1 gives the characteristics of the training corpus and the lexicon. The 58 000
sentence pairs comprise about half a million running words for each language of the
bilingual training corpus. The vocabulary size is the number of distinct full-form
words seen in the training corpus. Punctuation marks are treated as regular words
in the translation approach. Notice the large number of word singletons, i. e. words
seen only once. The extended vocabulary is the vocabulary after adding the manual
bilingual lexicon.

11.5.2 Offline Results

During the progress of the VERBMOBIL project, different variants of statistical trans-
lation were implemented, and experimental tests were performed for both text and
speech input. To summarize these experimental tests, we briefly report experimental
offline results for the following translation approaches:

e single-word based approach [44];
e alignment template approach [34];
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e cascaded transducer approach [47]:
Unlike the other two-approaches, this approach requires a semi-automatic
training procedure, in which the structure of the finite state transducers is de-
signed manually. For more details, see [47].

The offline tests were performed on text input for the translation direction from Ger-
man to English. The test set consisted of 251 sentences, which comprised 2197
words and 430 punctuation marks. The results are shown in Table 11.2. To judge
and compare the quality of different translation approaches in offline tests, we typi-
cally use the following error measures [29]:

e mWER (multi-reference word error rate):
For each test sentence in the source language, there are several reference trans-
lations in the target language. For each translation of the test sentence, the
edit distances (number of substitutions, deletions, and insertions as in speech
recognition) to all reference translations are calculated, and the smallest dis-
tance is selected and used as error measure. For an extension of mWER-based
measures, see also [36].

e SSER (subjective sentence error rate) [29]:
Each translated sentence is judged by a human examiner according to an er-
ror scale from 0.0 (semantically and syntactically correct) to 1.0 (completely
wrong).

Both error measures are reported in Table 11.2. Although the experiments with the
cascaded transducers [47] were not fully optimized yet, the preliminary results indi-
cated that this semi-automatic approach does not generalize as well as the other two
fully automatic approaches. Among these two, the alignment template approach was
found to work consistently better across different test sets (and also tasks different
from VERBMOBIL). Therefore, the alignment template approach was used in the
final VERBMOBIL prototype system.

TABLE 11.1
Bilingual training corpus, recognition lexicon and translation lexicon.

German | English
Training Text Sentence Pairs 58073
Words 418979 | 453632
Words + Punct.Marks | 519523 | 549921
Vocabulary 7940 4673
Singletons 44.8% | 37.6%
Recognition ~ Vocabulary 10157 6871
Translation Added Word Pairs 12779
Vocabulary 11501 ] 6867
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TABLE 11.2
Comparison of three statistical translation approaches (test on text input: 251
sentences = 2197 words + 430 punctuation marks).

Translation mWER | SSER
Approach [%] [%]
Single-Word Based 382 | 357
Alignment Template 36.0 | 29.0
Cascaded Transducers | >40.0 | >40.0

11.5.3 Integration into the VERBMOBIL Prototype System

The statistical approach to machine translation is embodied in the stattrans module
which is integrated into the VERBMOBIL prototype system. We briefly review those
aspects of it that are relevant for the statistical translation approach. The implemen-
tation supports the translation directions from German to English and from English
to German. In regular processing mode, the stattrans module receives its input from
the repair module [41]. At that time, the word lattices and best hypotheses from the
speech recognition systems have already been prosodically annotated, i.e. informa-
tion about prosodic segment boundaries, sentence mode, and accentuated syllables
are added to each edge in the word lattice [5]. The translation is performed on the
single best sentence hypothesis of the recognizer.

The prosodic boundaries and the sentence mode information are utilized by the stat-
trans module as follows. If there is a major phrase boundary, a full stop or ques-
tion mark is inserted into the word sequence, depending on the sentence mode as
indicated by the prosody module. Additional commas are inserted for other types
of segment boundaries. The prosody module calculates probabilities for segment
boundaries, and thresholds are used to decide if the sentence marks are to be in-
serted. These thresholds have been selected in such a way that, on the average, for
each dialogue turn, a good segmentation is obtained. The segment boundaries re-
strict possible word reordering between source and target language. This not only
improves translation quality, but also restricts the search space and thereby speeds
up the translation process.

11.5.4 Final Evaluation

Whereas the offline tests reported above were important for the optimization and
tuning of the system, the most important evaluation was the final evaluation of the
VERBMOBIL prototype in spring 2000. This final evaluation of the VERBMOBIL
system was performed at the University of Hamburg [43].

Three other translation approaches had been integrated into the VERBMOBIL proto-
type system:

e a classical transfer approach [6, 18, 45],
which is based on a manually designed analysis grammar, a set of transfer
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rules, and a generation grammar,

e a dialogue act based approach [38],
which amounts to a sort of slot filling by classifying each sentence into one out
of a small number of possible sentence patterns and filling in the slot values,
and

e an example-based approach [3],
where a sort of nearest neighbor concept is applied to the set of bilingual train-
ing sentence pairs after suitable preprocessing.

In the final evaluation, human evaluators judged the translation quality for each of
the four translation results using the following criterion:

Is the sentence approximatively correct:  yes/no?

The evaluators were asked to pay particular attention to the semantic information
(e.g. date and place of meeting, participants etc.) contained in the translation. A
missing translation as it may happen for the transfer approach or other approaches
was counted as wrong translation. The evaluation was based on 5069 dialogue turns
for the translation from German to English and on 4136 dialogue turns for the trans-
lation from English to German. The speech recognizers used had a word error rate
of about 25%. The overall sentence error rates, i.e. resulting from recognition and
translation, are summarized in Table 11.3. As we can see, the error rates for the
statistical approach are smaller by a factor of about 2 in comparison with the other
approaches. Although the absolute values of the error rates shown in Table 11.3
may depend heavily on the specific test conditions used in [43], there is no reason to
assume that the relative performance of the four approaches will be thereby changed.
In addition to the four methods shown in Table 11.3, there was a fifth method called
substring-based translation [10]. This method is based on bilingual word strings that
are similar to alignment templates and are extracted from statistical alignments. Its
performance was slightly inferior to the statistical approach. However, this method
was not part of the original prototype system and was not evaluated on exactly the
same corpus [43].

TABLE 11.3

Sentence error rates of final evaluation (speech recognizer with WER=25%; corpus
of 5069 and 4136 dialogue turns for translation German to English and English to
German, respectively).

Translation Method | Error [%]
Semantic Transfer 62
Dialogue Act Based 60
Example Based 52
Statistical 29

© 2003 by CRC Press LLC



In agreement with other evaluation experiments, these experiments show that the
statistical modelling approach may be comparable to or better than the conventional
rule-based approach. In particular, the statistical approach seems to have the ad-
vantage if robustness is important, e.g. when the input string is not grammatically
correct or when it is corrupted by recognition errors.

Although both text and speech input are translated with good quality on the average
by the statistical approach, there are examples where the syntactic structure of the
produced sentence is not correct. Some of these syntactic errors are related to long
range dependences and syntactic structures that are not captured by the n-gram lan-
guage model used. To cope with these problems, morpho-syntactic analysis [28] and
grammar-based language models [40] are currently being studied.

11.6 Speech Translation: The Integrated Approach
11.6.1 Principle

In the Bayes decision rule, we have so far assumed written input, i.e. perfect input
with no errors. When trying to derive a strict statistical decision rule for translation
of spoken input, we are faced with the additional complication of speech recognition
errors. So the question comes up of how to integrate the probabilities of the speech
recognition process into the translation process. Although there have been activities
in speech translation at several places [1, 25, 46], there has been not much work on
this question of recognition/translation integration.

Considering the problem of speech input rather than text input for translation, we
can distinguish three levels, namely the acoustic vectors mf = T1...T¢...XT Over

time ¢ = 1...T, the source words f{, and the target words e?:

zl = f] el

From a strict point of view, the source words f{ are not of direct interest for the
speech translation task. Mathematically, this is captured by introducing the possible
source word strings f; as hidden variables into the Bayes decision rule:
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arg max Pr(ef|aT) =
€1

argmax{Pr el) Pr(z 1T|e{)}

1

:argmax Pr(el) ZPT £, 2l el)
i

= argmax Pr(ef) -y Pr(file]) - Pr(z{|f{,e])
i

argmax Pr(el) ZPT flel) - Pr(z]|f])
i

= argmax {Pr(e{) -n}z}X{Pr(fﬁe{) . Pr(a:ﬂff)}}

1

Here, we have made no special modelling assumption, apart from the reasonable
assumption that

Pr(z{|f{,el) = Pr(z{|f]),

i.e. the target string e! does not help to predict the acoustic vectors (in the source lan-
guage) if the source string f{ is given. In addition, in the last equation, we have used
the maximum approximation. Only in that special case of speech translation, at least
from a strict point of view, there is the notion of a ‘recognized’ source word sequence
fi. However, this word sequence is very much determined by the combination of the
language model Pr(el) of the target language and the translation model Pr(f|el).
In contrast, in recognition, there would be only the language model Pr(f{).

11.6.2 Practical Implementation

When presenting the statistical approach to written language translation, the tacit
assumption had been that the source sentence f;' was well formed. However, for
speech input, this assumption is no more valid. Therefore, to take into account the
requirement of *well-formedness’, we use a more complex translation model by in-
cluding the dependence on the predecessor word:

p(fj|fj—17€aj) in lieu of p(fj|€aj)

Pr(f{le]) = ZH (ajlaj—1, 1) - p(fjlfi-1,€q;)]
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FIGURE 11.6

Integrated architecture of speech translation approach based on Bayes decision
rule.

For the sake of simplicity, here we have chosen the bigram dependence.

It is instructive to re-interpret already existing approaches for handling speech input
in a translation task in the light of the Bayes decision rule for speech translation,
even if these approaches are not based on stochastic modelling. The key issue in
all these approaches is the question of how the requirement of having both a well-
formed source sentence fj and a well-formed target sentence e/ at the same time
is satisfied. From the statistical point of view, this question is captured by finding
suitable models for the joint probability Pr(f{,el) = Pr(el) - Pr(f{|el).

From the decision rule, it is clear that the translation process will have an effect
on the recognition process only if the target language model Pr(e) is sufficiently
strong or, to be more exact, if its strength is comparable to that of the source language
model Pr(f{). We mention the following approaches:

e In many systems, the method of n-best lists is used. The recognizer produces

a list of n best source sentences, and the translation system works as a filter
that selects one out of the n sentences using some suitable criterion. This joint
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generation and filtering process can be viewed as a crude approximation of the
joint probability Pr(f{,el).

e When using finite-state methodology rather than a fully stochastic approach,
the probability Pr(f;’,e!) is modelled by the finite-state network of the cor-
responding transducer, which is typically refined by domain and range restric-
tions [14, 46].

¢ In the extreme case, we might be only interested in the meaning of the target
translation. Such an approach was used in [38] for the Verbmobil task. In
Bayes decision rule, this case is captured by putting most emphasis on a se-
mantically constrained language model Pr(el). In addition, confidence mea-
sures [51] can be used to filter out those words that are most likely to have
been recognized correctly.

However, it is clear that none of these approaches fully implements the integrated
coupling of recognition and translation from a statistical point of view. We consider
this integrated approach and its suitable implementation to be an open question for
future research on spoken language translation.

What we have considered here is speech input in the source language. In machine-
aided translation, the speech input is in the target language, and thus the source
sentence is typically used to change the language model in the target language [11,
17].

11.7 Summary

In this chapter, we have given an overview of the statistical approach to machine
translation and especially its implementation in the VERBMOBIL prototype system.
The statistical system has been trained on about 500 000 running words from a bilin-
gual German-English corpus. Translations are performed for both directions, i.e.
from German to English and from English to German. Comparative evaluations
with other translation approaches of the VERBMOBIL prototype system show that
the statistical translation is superior, especially in the presence of speech input and
ungrammatical input. In addition, we have presented the fully integrated approach
to spoken language translation.
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Topic detection and tracking (TDT) is a research program and an evaluation
paradigm that investigates techniques for automatically organizing broadcast news
stories by the events that they describe. TDT is an outgrowth of information retrieval
(IR) technology and shares many of its techniques and ideas. The specific tasks
within event-based organization and the nature of the stories to which those tasks
are applied, means that TDT admits a range of approaches that are not universally
applicable within IR.

One of the research issues within TDT is representing a news topic based on sparse
information—for example, based on a single story. This chapter discusses several
ways in which topics are modeled within the TDT research community and com-
pares and contrasts them. We are agnostic as to which is the best model—research
suggests that most of the approaches are equally effective. However, it is disappoint-
ing that no techniques explicitly model the events out of which TDT topics arise. We
will conclude the chapter with speculation about how events might be more directly
incorporated into the topic models.

12.1 Topic Detection and Tracking

The goal of TDT research is to organize news stories by the events that they describe,
and to do that as soon as the stories appear, whether as newswire, television, or radio.
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That is, the decision about how to handle a story must be made before any additional
stories are processed.

The TDT research program began in 1996 as a collaboration between Carnegie Mel-
lon University, Dragon Systems, the University of Massachusetts, and DARPA [2].
That group of researchers ran a pilot study that defined the basic tasks of TDT and
how they should be evaluated. To find out how well classic IR technologies ad-
dressed TDT, they created a small collection of news stories and identified some
topics within them.

Because the results were encouraging, a larger and more formal series of evaluations
were held every year from 1998 through 2001 (and continues in 2002 and perhaps
longer). These evaluations more carefully defined the notions of topic and event,
developed the set of tasks more fully, and constructed a larger and richer corpus of
stories and topics.

12.1.1 Topic and Events

An event was defined as something that happens at some specific time and place,
along with all necessary preconditions and unavoidable consequences. That is, it is
something that happens in the real world. A particular earthquake is an event, as is
the discovery of a new comet.

A topic is meant to capture the larger set of happenings that are related to some
triggering event. The official definition of a topic is that it is a seminal event, along
with all directly related events and activities. By forcing the additional events to be
directly related, the topic is prevented from spreading out to include too much news.
One way to think of a topic is that, given a starting event, it includes the additional
events that a typical reader would expect to see in follow-up news. (Or, given an
event that is not of interest, the set of following events that the reader would prefer
not to see.)

Topics, then, are anchored in time and space by the seminal event. The focus on
events and the tight relation to time distinguish TDT topics from the more general
use of the word “topic” within information retrieval. In that setting, a topic is usually
subject-based: it represents an area of interest to the searcher. Some subject-based
topics are identical to TDT topics (“I am interested in information about the Kobe
earthquake of 1995”) but some have no parallel in TDT (“Tell me about endangered
species in Africa”).

The differences between TDT topics and IR topics means that different techniques
should be useful to address their respective tasks. The similarities are sufficient
enough, though, that most research has focused on the direct application of IR meth-
ods to TDT tasks.

12.1.2 TDT Tasks

The TDT evaluation program defines five tasks for organizing news by events: seg-
mentation, cluster detection, tracking, new event detection, and link detection.
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12.1.2.1 Segmentation

News that arrives via newswire is divided into individual stories, whereas television
and radio news is not. The task of segmentation is to break an audio track into
discrete stories, each on a single topic. Most research on this problem has used
speech recognizer output as a starting point rather than working on the audio itself.
This task is a necessary precondition to all of the other tasks since they assume a set
of stories that need to be organized. We will not talk about segmentation in the rest
of this chapter. It has been discussed elsewhere [49, 10]

12.1.2.2 Cluster Detection

In the cluster detection task (also referred to simply as “detection”), a system must
place all arriving news stories into groups based on their topics. If no existing group’s
topic matches the story sufficiently, the system must decide whether to create a new
group. The decision about how to process an individual story must be made before
the next story is considered.

The TDT evaluation program requires that the each story be placed in precisely one
cluster, implying that each story is about a single topic. This simplifying assumption
was useful in early evaluations and is being dropped after TDT 2001.

12.1.2.3 Tracking

The task of tracking starts with a small set of news stories that a user has identified
as being on the same topic. Given that set, the system must monitor the stream of
arriving news to find all additional stories on the same topic. As with detection,
a decision must be made about each story before additional stories can be seen.
Further, the system is never given feedback (other than a final evaluation) about
whether it has made a correct decision.

This task is analogous to the IR filtering problem [38]. Differences between the two
lie primarily in the definition of topic (as in Section 12.1.1) and in different evaluation
paradigms [26, 7, 5].

12.1.2.4 New Event Detection

The task of new event detection focuses on the cluster creation aspect of cluster
detection. A system is evaluated entirely on its ability to decide when a new topic
(event) appears. Whether or not the remaining stories in the topic are properly placed
in their topics is unimportant. As usual, decisions must be made as stories arrive.
This task is also referred to as “first story detection.”

12.1.2.5 Link Detection

The final TDT task, link detection, was created as a core technology for the other
tasks. The idea is to determine whether or not two randomly presented stories discuss
the same topic. A solution to this task could be used to solve new event detection,
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for example, by comparing the newly arrived story to every story in the past. If no
earlier story had the same topic, then a new topic can be declared.

It is not necessary that link detection be the technology to address other tasks, but
most approaches to TDT problems use ideas similar to this task.

12.1.3 Corpora

The corpus for the pilot study included about 16,000 stories from two sources (CNN
and Reuters) gathered from the last half of 1994 and the first half of 1995. In addition,
25 topics were selected by the researchers that each story was judged against. The
construction of the corpus and the formation of the topics was sufficient for a pilot
study, but not for a more rigorous evaluation.

For the remaining TDT evaluations, the Linguistic Data Consortium was contracted
to create the corpora, topics, and judgments [14]. Three corpora have been created
to date. The corpora contain substantially more news stories than in the pilot study,
include stories created from audio sources, and incorporate news written or read in
foreign languages.

The TDT-2 corpus (the pilot corpus can be thought of as TDT-1) includes about
80,000 news stories from January through June of 1998. The stories comes from six
English sources, three Chinese sources, and in 2002 is being augmented with some
Arabic news from the same time period. Approximately 100 topics were identified
by random selection of stories from the corpus and were judged against the entire set
of 80,000 stories.* The TDT-2 collection was used as the evaluation collection for
the 1998 evaluation and has been used as training data since then.

The TDT-3 corpus was created for the 1999 evaluation, but was also used for the 2000
and 2001 evaluations. It includes about 40,000 stories from the last three months of
1998, including eight English sources and three Chinese sources. Stories from four
Arabic sources are being added during 2002. A total of 120 news topics were devel-
oped for this corpus. The first 60 were developed for the 1999 evaluation and have
the unusual requirement that there must be at least four on-topic stories in each of
English and Chinese. The other 60 topics were developed for the 2000 evaluation and
remove that requirement—however, they were seeded equally from English and Chi-
nese stories, so each language is represented. This latter set of topics is being judged
against the newly added Arabic sources. In addition, the judgments for the second
set of 60 topics were not done by complete reviewing of every story for each topic.
Instead, as a cost saving measure, the annotations were made using human-guided
search techniques (experiments showed equal accuracy between the approaches). In
the 2001 evaluation, 30 topics from each set were chosen for the evaluation. The
TDT-3 corpus will be used as training data for the TDT 2002 evaluation.

The latest TDT corpus is TDT-4, being created in the fall of 2001 and spring of
2002. It includes approximately 45,000 stories covering October 2000 through Jan-

*This is in contrast to typical IR judgments that are only judged against stories retrieved by some system
participating in the evaluation. The reason that TDT can manage the complete judgment set is because
the corpus is substantially smaller than a typical IR collection.
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uary 2001. The multi-lingual aspect of TDT is being stressed more in this corpus, so
the stories come from eight English sources, seven Chinese sources, and four Arabic
sources. (Additional languages were collected in parallel but are not being included
with the TDT-4 corpus at this time.) Sixty new topics are being developed from this
data using a model similar to that of the second sixty topics in TDT-3 (i.e., seeded
equally from each language). This corpus will be used for the TDT 2002 evaluation.
In all three corpora, audio sources were passed through a speech recognition system
and the output is included in the corpus. In addition, a reference closed-caption-
quality transcript was made if it was not available (e.g., for radio sources). Non-
English sources were recognized for audio and then translated to English using the
SYSTRAN' system. The source language and the translation were made available
to all sites.

12.1.4 Evaluation

All TDT tasks are envisioned as “on-line” tasks that must completely process each
story before receiving any additional stories. Decisions are irrevocable, even if a
mistake is detected later. This approach models a situation where the output is con-
sumed immediately and in a time-critical fashion. It explores the core technology
rather than how it might be used in an interactive setting [26]. Output is couched in
terms of a detection task, where “yes” or “no” decisions must be made [19]. Evalu-
ation is in terms of errors (misses and false alarms) and the tradeoff between them.
Figure 12.1 shows a sample detection error tradeoff (DET) graph [28] for a TDT
task. The false alarm rate is shown on the X-axis and the miss rate is on the Y-axis.
As with most language tasks, the graph shows that the errors tradeoff against each
other: lowering one tends to raise the other.
The official evaluation measure of TDT is based on a cost function, a weighted com-
bination of miss and false alarm rates:

Cost = Ciis P(miss) P(target) + Cf, P(fa) P(off-target)
where P(target) is the prior probability that a story will be on topic, C', are user-
specified values that reflect the cost associated with each error, and P(miss) and
P(fa) are the actual system error rates. Within TDT evaluations, C ;s = 10, Cf, =
1, and P(target) = 1 — P(off-target) = 0.02 (derived from training data).
In fact, a normalized version of the cost function is used. A system that always
answers “no” would have no false alarms, though it would have a 100% miss rate.
That system would get a score of 0.2 (10 x 0.02). Similarly, a system that always
answers “yes” would get a score of 0.98. To ensure that systems that under-perform
such simple approaches are visible, the cost value is divided by the minimum of the
“always say yes” or “always say no” approaches; in this case, by 0.2. A normalized
detection cost of 1.0 means that the system performs exactly as well as a system that
does no work.

Thttp://www.systransoft.com/
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FIGURE 12.1
A sample detection error tradeoff (DET) curve for the TDT tracking task with
one training story (/V; = 1).

Note that every point of the DET curve corresponds to a miss and false alarm rate,
so there is a cost at every point of the curve. Within TDT, sites are expected to find a
minimum cost on the curve, but differences between training and test data generally
mean they miss it slightly. A common evaluation within the TDT community is
the minimum cost that could have been attained using that DET curve. That is, an
evaluation that sidesteps the final selection of threshold to get a sense of potential for
a technology if threshold selection can be resolved.

All evaluations in TDT have been carried out by the National Institute of Standards
and Technology. Participating sites were provided with the corpus and information
that specified the starting condition for each task. For example, tracking required
the set of training stories for each topic and the other tasks required a list of which
stories to consider in the stream. Each site generated its decisions on the stories in
the evaluation set and submitted them to NIST. In turn, NIST did the evaluation and
generated comparative results of all the systems [19].
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12.2 Basic Topic Models

Underlying all approaches to all of the TDT tasks is the notion of “topic.” To ad-
dress the tasks, it is necessary that a site somehow model topics and possibly the
events within them. The model could be very simple (a list of significant words) or
extremely complicated (in the spirit of a knowledge base of participants and their
actions). Most work within TDT to date has represented topics either as a vector of
weighted words or as a probability distribution of words. The approaches are similar
in their implementation and effectiveness, but quite differently motivated.

12.2.1 Vector Space

The vector space has a long history within information retrieval research [39, 45] and
is probably the most popular way of implementing an IR system. Not surprisingly,
given the similarity in the problems, the vector space has been used by several sites
in TDT [8, 32, 49, 17, 40].
The basic idea of the vector space approach is to represent items (stories or topics) as
vectors in a high dimensional space. The dimensions correspond to the features that
are used to represent the items and are orthogonal. Items that are similar enough—
generally as measured either by the cosine of the angle between them or by their
separation in Euclidean space—are assumed to be on the same topic.
Generally the words that occur in stories are the features of the vector space (it is
obvious that the words are not independent of each other, but the model has been
repeatedly shown to work empirically nonetheless). Words are given weights as
discussed later in this chapter. The most common comparison function is the cosine
of the angle between the two vectors:

-

Il - {1212

When the vectors are normalized to length one, the cosine can be calculated just by
taking the inner product of the two vectors (i.e., the denominator is 1.0).

A topic is modeled as one or more vectors in this model. When a set of stories is
known to belong to a topic, the story vectors might be added to create a topic vector,
perhaps with the more recent stories given higher weight. Some systems leave the
vectors separate, noting that they are all part of the same topic, but keeping the topic
model disperse [8].

Because the vector space model is so simple, the bulk of research is empirical ef-
forts to find the right set of features, weights, and comparison method. The theory
does not, in and of itself, provide much help in those efforts. However, the model
remains popular precisely because it is so simple: it can be easily understood and
implemented.
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12.2.2 Language Models

Statistical language modeling approaches came to TDT via the speech recognition
community [47] and the IR community [36, 35] (which also got the idea from speech
recognition). In this approach, a topic is represented as a probability distribution of
words. Higher probability words are much more likely to appear in on-topic stories
than are lower probability words.

The difficult aspect of language modeling is coming up with good ways for estimat-
ing the probabilities. One or more stories that are known to be on the same topic are
the starting point for building a topic model. The initial probability estimates come
from the maximum likelihood estimate based on that document:

tf,
Pm] (w) = f

where tf,, represents the count of times that the word w occurs in a story, and tf .
is the total number of words in the story. This estimate is not sufficient because it
will give zero probabilities to any word not in the story. For that reason, the maxi-
mum likelihood estimate is usually smoothed with estimates from a larger corpus of
news stories with some mixing parameter A that determines whether the story or the
background corpus contributes more of the estimate.

There are generally two ways to use these topic models. The first is to see how likely
it is that a particular story could be generated by the model, P(story|M). A standard
independence assumption is made and the probability is estimated as,

P(story|M) = [ P(w|M)
westory

Stories that have higher probability are more likely to be part of the same topic that
is modeled.

A second way to use topic models is to compare them directly. That is usually
accomplished with a symmetric version of the Kullback-Leibler divergence [27],
such as D(M;y || M) + D(Ms || My). Other ways of comparing the models are
also used [22].

12.3 Implementing the Models

In this section, we discuss several of the techniques that have been used in TDT to
improve the model. Most of these techniques are applicable in some to either of the
major types of model, though some make sense in only one, or some have been tried
in only one. We discuss the use of named entities, the use of query expansion ideas,
story clustering, and the inclusion of a time decay factor.
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12.3.1 Named Entities

News is usually about people, so it seems reasonable that their names could be treated
specially, in a way that would improve the accuracy of TDT systems. Named entity
extraction systems have achieved high levels of accuracy, both for good quality news
text and for the output of a speech recognizer [29, 31]. That means that it is possible
to extract with reasonable confidence the names of people and organizations from
the TDT news stories.

A simple way to use named entities in the model is to treat them as a separate part
of the model and then merge the parts. For example, names of people in two stories
might be compared and contribute part of the similarity, while comparison of orga-
nization or place names might contribute additional amounts [17]. On the hand, a
system might just boost the weight of any words in the stories that come from names,
giving them a larger contribution to the similarity when the names are in common
[3]. Unfortunately, although names clearly provide importance for similarity and in-
creasing their weight can improve results slightly, there has been no strong success
so far.

We know of no uses of named entities in a language modeling system. Instead,
systems use the individual words of the names independently. It may be that doing
so allows for partial matches for variant forms of names (e.g., at least one word of
President Bush and George Bush will match), an important issue while name co-
reference [9] remains a difficult problem.

Given the importance of people, places, and dates to news reporting, it is disappoint-
ing that named entities have not yet found a place of prominence in topic models.
It may be that the models are not yet sophisticated enough to improve upon simple
word-based models. For example, errors in name extraction and comparison may be
swamping the value that using names adds. As the models become more sophisti-
cated and accurate, there may be more value in using names.

12.3.2 Document Expansion

When topic models are created from a single story, they suffer from extremely lim-
ited vocabulary. There are countless words that could be used in the topic and some
of them that have a high likelihood of appearing. So both modeling approaches need
a way of expanding the set of words that are included in the topic model.

Vector space systems generally use techniques based on query expansion [18, 11, 48]
that have been highly successful in IR evaluations. For example, in the segmentation
task, a possible segmentation boundary could be checked by comparing the models
generated by text on either side. To improve the chance of vocabulary overlap, the
text could be used as a query to retrieve a few dozen related stories and then the most
frequently occurring words from those stories could be used for the comparison [37].
Similar approaches could be used to add words to stories for the other tasks [6].
Adding words to a language model is in some ways simpler and in other ways more
complex. It is simpler because smoothing with the background model (as described
above) creates non-zero probabilities for every word in the corpus and therefore
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brings those words into the topic to some degree. However, it does not increase
the probability of words that are related to the topic.

One statistical language modeling approach to capturing the related words is to use
relevance models [23]. That technique assumes that strongly similar news stories
arise out of topics that are either the same as or strongly related to the topic that is
being modeled. Each retrieved story generates a model and all of the models are
combined to create a topic model:

PwM)= [[ P(M)P@w|M)

MeM

The final result is similar in implementation to query expansion, but is justified prob-
abilistically so that important properties of the language models are preserved. Rel-
evance models result in substantial improvements in the link detection task [22].

12.3.3 Clustering

Grouping stories together can improve the representation of a topic if the stories are
really on the same topic. The group provides a larger statistical sample from which
the model can be estimated. Since grouping, or clustering, is a fundamental aspect
of TDT (the detection task is a clustering task), it is not surprising that much work
has focused on ways to leverage the ideas to improve TDT effectiveness [33].

The most obvious situation where clustering occurs is in the tracking task where
several news stories are indicated as being on the same topic. Since the system
“knows” that the stories are on the same topic, it can find features that are common
in those stories that are not common elsewhere. Although the same process can be
done starting from a single story, it is much more reliable with several stories. This
approach is common in the vector space model, where the topic might be represented
by the average of the on-topic story vectors minus the average off-topic story vector.
Clustering is not a clearly defined operation within a language modeling context,
though if two models are similar enough it might make sense to merge them. To date,
we know of no sites that have attempted to mimic vector clustering in the language
model context. Instead, the larger set of on-topic stories is used to provide better
estimates of word probabilities within the topic (in much the same way that relevance
models do, as described above in Section 12.3.2).

Although clustering makes sense in tracking, it can also be done for all of the other
tasks. Detection, for example, is a clustering task and requires that the system gen-
erate groupings. A system can adapt its topic models by incorporating newly arrived
stories into the cluster when they seem sufficiently close [34, 24]. This notion of
adapting the topic model is similar to the adaptive filtering ideas that have recently
been adopted by the IR filtering community [38].

Note that some sites have found better results by keeping the stories within a cluster
entirely distinct—in a sense, they are not doing the clustering [8]. Instead, the topic
is represented by a set of topics, one for each story that is believed to be part of the
topic.
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Other sites have used a cross between the two ideas, clustering stories within the topic
when they are sufficiently similar, but keeping them apart when they are not [16].
This creates a notion of “microclusters” that has the potential to provide flexibility
when a topic is multi-faceted. It is similar to work done in the IR community on
keeping track of shifting user interests [1].

12.3.4 Time Decay

Several sites have observed that the likelihood that two stories discuss the same topic
diminishes as the stories are further separated in time. It is possible to leverage
this observation by creating a prior probability that two stories are relevant and then
modifying that based on content. Or in a vector space model, the cosine similarity
function can be changed so that it includes a time decay [4].

After a surge of interest in the use of a time decay within the TDT pilot study and
1998 evaluation, it has used by substantially fewer systems in recent TDT evalu-
ations. We suspect that the quality of word-based matching has improved to the
extent that the time decay no longer helps as much as it did. It may also be the case
that the evaluation topics are not enough to each other that the time they are reported
can be an important distinguishing characteristic. Imagine how much simpler it is to
separate similar terrorist events (e.g., bombings) given the time that the attack was
reported.

124 Comparing Models

Once topic models are built, regardless of the model, they need to be used. Within
TDT, that means comparing a story to a model to see if the story is part of the topic, or
possibly comparing two models to determine the chance that they represent the same
topic. In this section we discuss a few of the comparison functions that have been
used. The first is specific to the vector space model: nearest neighbor decisions. The
second, the use of decision trees, is independent of the models discussed here so far.
We also discuss direct model comparisons within the language modeling framework.

12.4.1 Nearest Neighbors

In the vector space model, a topic might be represented as a single vector. So when
a TDT system is running, it would have a large set of vectors representing all of the
topics seen to date. A newly arrived news story can also be represented by a vector
and dropped into the same space. To determine whether or not that story is on any of
the existing topics, we consider the distance (usually measured by the cosine of the
angle between vectors) between the story’s vector and the closest topic vector. If it
is sufficiently small, the story is assumed to be part of the topic. If it falls outside a

© 2003 by CRC Press LLC



specified distance, the story is likely to be the seed of a new topic and a new vector
can be formed.

The approach listed above is essentially a k-nearest neighbor approach, where & is
one. A story is assigned the topic of its single nearest neighbor. Larger values of
k make sense when the topic is represented by multiple vectors, either because the
topic is multi-faceted [16] or because the topic’s story vectors are never consolidated
into a single vector [8].

In those cases, a system might look at several neighbors to estimate the topic of a
new story. If it looked at three vectors, for example, it would select the topic that is
most common within that small set. Within most of the TDT tasks, even when topics
are represented by multiple vectors, k& remains one, using a clustering model that is
similar in spirit to single link clustering [45].

The reason for this is that topics tend to grow over time and include a wider range of
discussion. If the stories in a topic are merged together, the core of the topic is clear,
but its edges get lost. Stories on the fringe of the topic would not be considered part
of the topic and would incorrectly create new topics. By keeping the topic as a set of
distinct story vectors, the range of issues and events discussed within the topic is not
blurred.

The downside of this approach is that there are also fringe stories that should not truly
be considered part of the topic. For example, they might contain a brief mention of
the topic, but primarily discuss a different topic. If not treated carefully, such stories
can incorrectly merge unrelated topics together.

Note that £ > 1 as a nearest neighbor strategy may make the most sense for the
tracking task where there are two classes: on topic and off topic. So comparing a
story vector to a set of already classified vectors allows a wider range of possibilities.
Yang et al. [49] have experimented with a wide range of k-NN strategies to find ones
that work best for tracking. Although they were able to improve the effectiveness
of their system using variant k-NN methods, the error tradeoffs of the techniques
were different enough that it was not clear which would be best. They found that
combining results from different techniques addressed much of that concern.

12.4.2 Decision Trees

Another model comparison approach is the use of decision trees. In some ways,
a decision tree is really a third type of model. It analyzes some training instances
(e.g., stories that are known to be on or off topic) and develops a set of rules for
classifying future instances. This approach can be used within the tacking task when
there are sufficient number of on-topic training instances. (In theory, tracking can be
done with as few as one positive instance of a story, but that is very scant training
for building a reliable decision tree.) It has been shown to have acceptable results,
comparable to k-NN methods [12], but is not widely adopted, perhaps because it is
not as flexible.

The best place for decision trees within TDT may be the segmentation task, where
there are numerous training instances (i.e., hand-segmented stories). Finding features
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that are indicative of a story boundary (or the absence of a boundary) is possible and
achieves good quality results [16].

12.4.3 Model-to-Model

Another style of comparison is direct comparison of statistical language models that
represent topics.? The typical way to compare two probability distributions is to
use relative entropy, or the Kullback-Leibler divergence, D(M; || Ms). The value
D(p || q) represents “the average number of bits that are wasted by encoding events
from a distribution p with a code based on a not-quite-right distribution ¢.” [27,
p-72]. Larger values correspond to less similar distributions. If the distributions are
identical, the KL divergence has a value of zero.

Generally in TDT we are interested in a notion of similarity rather than distance,
so the number is negated. Therefore larger numbers (closer to zero) indicate more
similar distributions. Note that the calculation of the KL divergence:

Dlla) = 3 ple)log 22

= q(z)

is not symmetric. However, we generally assume that if story A is on the same
topic as story B, then story B is on the same topic as story A. To finesse that
problem, we calculate the KL divergence both ways and add them together: D (M ||
Ms) + D(Ms || My). (And, of course, negate it.)

One of the problems with comparing models is that it is also important that the
models be meaningful. Suppose that two models are constructed that are indistin-
guishable from general newswire text. Those models may be nearly identical by
the KL divergence, but it is not useful to know that they are. One approach that
has been used to incorporate that notion penalizes the comparison if the models are
too much like background news [22]. That is, the initial comparison is replaced by
D(My || M2) — D(M; || news). The second value is referred to as “query clarity”
[15] since the larger it is, the more the model M ; diverges from background news,
so the less generic it is.}?

12.5 Miscellaneous Issues

In this section, we talk about several additional issues that can affect how topic mod-
els are constructed. TDT allows a modest amount of “look ahead” into the future,

t Arguably, vector comparisons of topic models is also a direct comparison, so this is not strictly specific
to language models. However, it is convenient to distinguish between the two for clarity.

§Of course, it could still be a terrible model of the topic. However, at least we know it is more specific
than general news that could be about anything.
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it requires supporting multiple languages (English, Chinese, and more recently, Ara-
bic), and it expects that multiple modalities will appear (viz., newswire and speech
recognizer output). Each of those can impact the creation of a topic model.

12.5.1 Deferral

All of the TDT tasks are envisioned as “on-line” tasks that operate on a continuously
arriving stream of news. In the limit, that means that a decision about a story is
expected before the next story is presented. In fact, TDT provides a moderate amount
of look ahead for the tasks.

First, stories are always presented to the system grouped into “files” that correspond
to about a half hour of news (newswire stories are grouped together to approximate
the same amount of news). A system can do any processing it likes on that entire
file before presenting its results for the first story in the file. That means that there
is always an effective look ahead of up to thirty minutes (or an equivalent number of
stories).

Second, the formal TDT evaluation [19] incorporates a notion of deferral that al-
lows a system to explore the advantage of deferring decisions until several files have
passed. Typical values are no deferral (i.e., just the within-file deferral), ten, or 100
additional files.

The advantage of deferring a decision appears for stories that are heavily reported.
The extra stories would typically be used by clustering them together and then using
the agglomerated super-story to find an appropriate topic. This approach has the
advantage that if a new topic appears that is very similar to an existing one, the extra
stories might augment the distinction between the new and old topics and decrease
the chance of a false alarm. Obviously, the deferral is only useful for topics with
multiple stories in the period.

Although several sites have worked with deferral periods, we know of no exhaustive
studies to determine their advantage. The TDT pilot study included an infinite defer-
ral period whose purpose was to explore the possibilities of retrospective clustering
of news [2].

12.5.2 Multi-modal Issues

The news stories that TDT systems must deal with are either written text (newswire)
or read text (audio). Almost all TDT systems used the provided speech recognizer
output, though a few worked directly with the audio [41]. (A human-generated tran-
scription of closed caption quality was also provided and used to explore the impact
of speech recognition errors.)

On the face of things, it seems that it should be possible to treat both types of text the
same. However, speech recognizers make numerous mistakes, inserting, deleting,
and even completely transforming words into other (sometimes similar sounding)
words. For very clean recordings such as the newscaster reading broadcast news in
a studio, the word error rate runs in the 10-20% range [30]. Research in information
retrieval has shown little impact on effectiveness from recognition errors as high as
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40% [21], but it has not been totally clear the extent to which that would carry over
into TDT technology.

One area where the two modes (text and audio) have clear differences are in score
normalization. If pairs of stories are compared (in the link detection task) that are
from the same mode (i.e., newswire story against newswire story), we get one distri-
bution of scores. If the pairs are instead drawn from audio sources, the distribution is
different. And if the stories come from different modes, a third distribution appears.
This effect means that in order for scores to be comparable no matter the modes of
the stories, a system needs to normalize depending on those modes.

The different score distributions might be handled by noting the mean and standard
deviation of each distribution. Then, when running the system, the system scores
could be shifted according to the appropriate mean and distribution so that all modes
have the same mean and roughly the same distribution.

There is some evidence that document expansion smoothing techniques reduce the
problem of different distributions, making it simpler to choose single parameters
across all modes [22].

12.5.3 Multi-lingual Issues

So far, the discussion of topic modeling has implicitly assumed that all news stories
are in English. The TDT research program has strong interest in evaluating the tasks
across multiple languages. For TDT 1999 through 2001, sites were required to han-
dle English and Chinese news stories intermixed (though within each file the stories
were in the same language). For TDT 2002, sites will be incorporating Arabic as a
third language.

The approach that most sites have used is to convert the Chinese stories into English.
Since a SYSTRAN translation of every Chinese story is supplied with the corpus,
that is the simplest solution and one adopted by many sites. However, other groups
are actively researching cross-language information retrieval and related problems,
and they did their own information retrieval quality translations of the stories [24, 13]

Similar problems arise in processing cross-language stories as in cross-mode sto-
ries. The distributions of scores are different depending on the modes—perhaps
even more so in the cross-language case. The SYSTRAN stories, for example, use
English in a way that is peculiar to the system’s output and quite distinct from human-
generated text. That means that SYSTRAN stories are much more likely to be similar
to each other than to stories that were originally written in English. The upshot of
this is that normalizing the distributions can have an even larger impact than in the
cross-mode case [6].
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FIGURE 12.2

Screen snapshot of the Lighthouse system that was created to portray TDT topic
clusters and their relationships.

12.6 Using TDT Interactively

TDT is viewed as an enabling technology for a range of tasks that want to impose
event-based organization on news stories. Ultimately the technology must be incor-
porated into systems so that people can use it and see whether it is helpful. It has
turned out that this type of organization is unfamiliar to people, so is difficult to
present. In this section we discuss two ways that TDT technology can be exposed.

12.6.1 Demonstrations

Lighthouse is a prototype system that visually portrays inter-document similarities
to help the user find relevant material more quickly [25]. It represents documents as
spheres in space and places the spheres such that highly similar documents are nearby
in space and the less alike they are, the farther apart they should be. The portrayal
of document clustering that is possible in Lighthouse has been shown to allow a
statistically significant improvement in effectiveness over IR’s classical ranked list.

We created a version of Lighthouse where the portrayed objects were topics and
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their relative locations in space indicated similar topics in the news [20]. Figure 12.2
shows a sample screen shot of this prototype. The image would change every time
the user asks pending stories to be incorporated into the visualization. (Recall that
TDT operates on a stream of news, so stories are constantly arriving while the user
is viewing the current state. In this demonstration, the view was held constant until
the user asked it to be updated since it was felt that constant uncontrolled shifts in
the view would be disconcerting.)

In this demonstration, the user has the ability to search for topics that match a query
and to annotate topics with colors so they can more readily be identified at a later
viewing. A pie slice is depicted on the top of each sphere that indicates the proportion
of the topic made up of stories that appeared since the last time the view was updated.
This feature allows highly volatile or entirely new topics to be recognized at a glance.
A topic can be selected so that the stories within it can be read.

The Lighthouse-based TDT system was fun and flashy and provided most of the
functionality a user would probably like. However, it was awkward to use: people
do not understand spheres floating in space and their inter-relationships made no
sense. We are currently working on a substantially changed presentation of the same
ideas, but based upon the “file folder” metaphor common on computer desktops.

12.6.2 Timelines

Another way of presenting TDT information is using a timeline to show not only
what the topics are, but how they occur in time. The interesting part of the problem
is finding ways to construct the timeline automatically [43, 44, 42]. The work in this
area is not part of TDT directly, but leverages similar ideas.

We start by extracting all names and noun phrases from a collection of news, assum-
ing that names and things are the central components of most of the news. We then
scan through those features, considering a day of news at a time. For each day, we
use the x2 measure to determine whether or not that feature is occurring on that day
in an unusual way—typically that means that it occurs much more often on that day
than on other days. For example, the word Oklahoma occurred in the news much
more often shortly after the Oklahoma City bombing in 1995 than it did during the
many months of news before that. The y 2 measure picks that up readily.

Given a set of features that are interesting within a particular time period, we group
them together based on whether they co-occur frequently. So Oklahoma might group
with McVeigh but not with other features (e.g., Simpson from the O.J. Simpson mur-
der trial) that occurred at about the same time.

Now that a group of features has been found, the collection of stories that talk about
that topic is easy to isolate. The timeline can then be constructed as in Figure 12.3.
Each topic is depicted as a rectangle. The left-right span of the topic reflects the
duration of reporting on the topic. Its area is determined by the total number of
stories on a topic: so a flat rectangle has a moderate number of stories over a long
period, where a very tall rectangle indicates much reporting in a very short period.
The vertical positioning of the rectangle is determined by its “importance” or surprise
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FIGURE 12.3

Overview of January-June 1998. The topic labeled monica lewinsky allegation is
the highest ranked topic by the x> measure. The pop-up on oregon school shoot-
ing shows significant named entities for that event. The other pop-up displays a
sub-menu for obtaining more information on the name kip kinkel.

value based on the 2 value of its features. Topics that are very unusual are presented
at the top of the graph.

The graph in Figure 12.3 includes the ten most “important” topics in the time period.
A nice feature of that importance value is that it can be used to keep 10 topics on
the display at any level of granularity: the most important 10 (or any other number)
topics in a particular period of time can always be selected.

12.7 Modeling Events

All of the above discussion is about modeling topics within TDT, with a smattering
of discussion on presenting the results of the work. Interestingly, almost nothing
in the research literature for TDT attempts to model topics as more than a “bag of
words” that are weighted appropriately. Topics in the news are related to events.
Events are about people. They take place at a particular place and in a given time.
With the exception of the use of named entities [17] and the explicit inclusion of time
[8] there is almost no recognition that those components of the news topics might be
useful. So far, there is virtually no distinction between the technology used for TDT
and that used for document retrieval.

That lack of distinction might not be an issue, except that TDT performance is not
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adequate for anything other than limited uses: its error rates are still too high. Fur-
ther, the effectiveness of information retrieval systems appears to have plateaued in
the last several years, suggesting that gains in effectiveness are not likely to be had
from that direction. ¥

It may be possible to incorporate the missing aspects of event-based topics by model-
ing them explicitly. Eichmann and Srinivasan [17] built different vectors for people,
organizations, and so on, compared them separately, and then merged them using a
linear combination of the piecewise similarities. This approach was not highly suc-
cessful, but it clearly captured some of the notions of events. We speculate that the
problem is starting this approach from the vector space perspective which gives no
theoretical justification or motivation for any of the steps along the way.

Why should names and organizations be separate? What are they trying to capture?
Why a linear combination? Perhaps it would be better to look for the who, where,
what, and when of news stories: to explicitly model the subject of a topic (or event)
or try to identify the location of the happening. Knowing that the system is trying to
capture those specific pieces of the event makes it possible to evaluate those items
directly rather than evaluating only at the level of topic match.

We have begun some work in this area, hoping to build a rich topic model that cap-
tures the various aspects of events. We are motivated by the statistical language
modeling approaches and hope that we can extend that well enough to improve ef-
fectiveness. Results as of this writing can only be described as promising.
Regardless of whether our work is successful, or whether Eichmann and Srinivasan’s
approach is the one that works, the important point is that small steps are being made
toward modeling events explicitly. TDT tasks are not likely to improve substantially
in accuracy as long as broader, more general IR technology is the only approach
used.

12.8 Conclusion

We have talked about the topic detection and tracking (TDT) research program and
sketched several of the approaches that have been used to address the tasks. We
talked about vector space models and statistical language models, the two dominant
paradigms in the TDT research literature. We discussed several of the techniques
that systems have used to build or enhance those models and listed merits of many
of them.

We concluded by talking about the failure of topic models to incorporate the notion
of “event” explicitly, relying on technology that is just as useful for the subject-

Yinformation retrieval research has not plateaued. The work is being extended into a wide range of new
areas and new technologies and ideas appear constantly. After improving 10% a year for several years,
ranked document retrieval has not improved substantially since the late 1990s [46].
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based topics familiar to IR document retrieval. We believe that TDT researchers
have clearly demonstrated the extent to which IR technology can be used to solve
TDT problems. However, we also believe that TDT technology must and can be
substantially improved, and that the only avenue to that goal is through incorporating
information about events into the models directly.
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