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PREFACE

This book is an outgrowth of an association between the authors which started over 10
years ago when one of us (BHJ) was a graduate student at the University of California at
Santa Barbara and the other (LRR) was a supervisor at AT&T Bell Laboratories. We began
our relationship with a mutual interest in the problem of designing and implementing
vector quantization for speech processing. This association turned into a full technical
partnership and strong friendship when Fred Juang joined Bell Laboratories, initially in
the development area and subsequently in research. The spark that ignited formal work on
this book was a series of short courses taught by one of us (LRR) on speech recognition.
After several iterations of teaching, it became clear that the area of speech recognition,
although still changing and growing, had matured to the point where a book that covered
its theoretical underpinnings was warranted.

Once we had decided to write this book, th=re were several key issues that had to be
resolved, including how deep to go into areas like linguistics, natural language processing,
and the practical side of the problem; whether to discuss individual systems proposed
by various research labs around the world; and how extensively to cover applications.
Although there were no simple answers to these questions, it rapidly became obvious
to us that the fundamental goal of the book would be to provide a theoretically sound,
technically accurate, and reasonably complete description of the basic knowledge and
ide.as that constitute a modern system for speech recognition by machine. With these basic
guiding principles in mind, we were able to decide consistently (and hopefully reasonably)
what material had to be included, and what material would be presented in only a cursory
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manner. We leave it up to you, the reader, to decide if our choices have been wise ones.
The formal organization of the book is as follows. Chapter 1, called “Fundamentals
of Speech Recognition,” provides an overview of the entire field with a discussion of the
breadth and depth of the various disciplines that are required for a deep understanding of ail
aspects of speech recognition. The concept of a task-oriented, speech-recognition system
is introduced and it is shown that “base level” speech or sound recognition is only one
step in a much larger process where higher-level task information, in the form of syntax,
semantics, and pragmatics, can often play a major role. After a formal description of the
material to be covered in each of the chapters, we give a brief history of speech recognition
research in order to put the material presented in this book in its proper perspective.

Chapter 2, entitled the “The Speech Signal: Production, Perception, and Acoustic-
Phonetic Characterization,” provides a review of the theory of acoustic-phonetics in which
we try to characterize basic speech sounds according to both their linguistic properties and
the associated acoustic measurements. We show that although there is a solid basis for the
linguistic description of sounds and a good understanding of the associated acoustics of
sound production, there is, at best, a tenuous relationship between a given linguistic sound
and a repeatable, reliable, measureable set of acoustic parameters. As such a wide variety of
approaches to speech recognition have been proposed, including those based on the ideas
of acoustic-phonetics, statistical pattern-recognition methods, and artificial intelligence
(so-called expert system) ideas. We discuss the relative advantages and disadvantages of
each of these approaches and show why, on balance, the pattern-recognition approach has
become the method of choice for most modern systems.

In Chapter 3, entitled “Signal Processing and Analysis Methods for Speech Recog-
nition,” we discuss the fundamental techniques used to provide the speech features used in
all recognition systems. In particular we discuss two well-known and widely used methods
of spectrum analysis, namely the filter bank approach and the linear prediction method. We
also show how the method of vector quantization can be used to code a spectral vector into
one of a fixed number of discrete symbols in order to reduce the computation required in a
practical system. Finally we discuss an advanced spectral analysis method that is based on
processing within the human auditory system-—an ear model. The ultimate goal of such
a system is to increase the robustness of the signal representation and make the system
relatively insensitive to noise and reverberation, in much the same way as the human ear.

Chapter 4, entitled “Pattern-Comparison Techniques,” deals with the fundamental
problems of defining speech feature vector patterns (from spoken input), and comparing
pairs of feature vector patterns both Jocally (i.e., at some point in time), and globally (..,
over the entire pattern) so as to derive a measure of similarity between patterns. To solve this
pattern-comparison problem requires three types of algorithms, namely a speech-detection
method (which essentially separates the speech signal from the background), a spectral
vector comparison method (which compares two individual spectral vectors), and a global
pattern comparison method which aligns the two patterns locally in time and compares the
aligned patterns over the entire duration of the patterns. It is shown that a key issue is the
way in which time alignment between patterns is achieved.

Chapter 5, entitled “Speech Recognition System Design and Implementation Issues,”
discusses the key issues of training a speech recognizer and adapting the recognizer pa-
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rameters to different speakers, transmission conditions, and speaking environments. A
key concept in most modern systems is that of learning, namely improving recognizer
performance over time based on additional training provided by the user of the system.
Adaptation methods provide a formalism for such learning.

In Chapter 6, “Theory and Implementation of Hidden Markov Models,” we discuss

a basic set of statistical modeling techniques for characterizing speech. The collection of

methods, popularly called Hidden Markov Models, is a powerful set of tools for providing

a statistical model of both the static properties of sounds and the dynamical changes that

occur across sounds. Methods for time aligning patterns with models are discussed along

with different ways of building the statistical models based on the type of representation

the sound being modeled, the class of talkers, and so forth. ,

Chapters 7 and 8, entitled “Speech Recognition Based on Connected Word Models”
and “Large Vocabulary Continuous Speech Recognition,” extend the speech-recognition
problem from single word sequences to fluent speech. Modeling techniques based on

?)vhole word models are discussed in Chapter 7 where we assume that we are interested
in recognizing sequences of digits, alphanumerics, and so forth. For this type of system
whole-word models are most reasonable since the vocabulary is typically small and highly
constrained. Hence the statistical properties of the word models, in all word contexts, can
be learned from a reasonably sized training set. Modeling techniques based on subword
units are discussed in Chapter 8 where we assume unlimited size vocabulary. Hence a
key issue is what units are used, how context dependent the units should be, how unit
models are trained reliably (and robustly to different vocabularies and tasks), and how
large vocabulary recognition systems based on such units are efficiently implemented.

Finally, in Chapter 9, entitled “Task-Oriented Applications of Automatic Speech
Rf:cognition," we come full circle and return to the concept of a task-oriented system. We
discuss the basic principles that make some tasks successful while others fail. By way of
example we discuss, in fairly general terms, a couple of task-oriented recognizers and show
how they perform in practice.

) .The material in this book is primarily intended for the practicing engineer, scientist,
linguist, programmer, and so forth, who wants to learn more about this fascinating field.
We assume a basic knowledge of signal processing and linear system theory as provided
in an entry level course in digital signal processing. Although not intended as a formal
university course, the material in this book is indeed suitable for a one-semester course at
the graduate or high undergraduate level. Within almost every chapter we have provided
“exercises” for the student to assess how well he or she understands the material. Solutions
to the exercises are provided immediatety following the exercise. Hence, for maximum
effectiveness, each student must exercise self-discipline to work through an answer before
comparing it with the published solution.

In order to truly understand the fundamentals of speech recognition, a person needs
hands-on experience with the software, hardware, and platforms. Hence we strongly
encourage all serious readers of this book to program the algorithms, implement the systems,
and literally build applications. Without such practical experience the words in this book
will not come alive for most people.




XXXV Preface

ACKNOWLEDGMENTS

Although the authors take full responsibility for the material presented in this book, we
owe a great debt 1o our colleagues, both with AT&T Bell Laboratories and outside, for
their many technical contributions which underly the material presented. In particular the
authors owe a debt of gratitude to Dr. James L. Flanagan (currently director of the CAIP
Institute at Rutgers University) for his roles in guiding and shaping both our careers and the
field of speech processing. Without Jim’s understanding and inspiration, this book would
never have existed.

The number of people who have made substantial contributions to speech recognition
are too numerous to mention. However there are three individuals who have had a profound
influence on the field and they deserve special mention. The first is Professor Raj Reddy of
Carnegie-Mellon University who was essentially the first person to realize the vast potential
of speech recognition and has devoted over 25 years as a leader, innovator, and educator
in this field. The second individual of note is Dr. Jack Ferguson (retired from Institute for
Defense Analyses in Princeton) who is the person most responsible for development of the
theory of the Hidden Markov Model as applied to speech recognition. Dr. Ferguson, as
editor of the key textbook in this area and lecturer, par excellence, has spread the word on
Hidden Markov Models so that this technology has rapidly risen from technical obscurity
to become the preeminent method of speech recognition today. Finally, the third individual
of note is Dr. Fred Jelinek of IBM, who has led the world’s largest speech-recognition
research group for almost two decades and has been responsible for a large number of
major innovations in large vocabulary speech recognition. These three individuals have
played major roles in nurturing the technology and enabling it to reach the state of maturity
it has achieved today.

Within Bell Laboratories the authors have drawn freely from the research of our
former and current colleagues. We would like to acknowledge the direct support and
contributions of the following individuals: Prof. Ronald Schafer (currently at Georgia
Tech.), Dr. Steve Levinson, Dr. Bishnu Atal, Dr. Esther Levin, Dr. Tali Tishby (currently
at the Hebrew University in Jerusalem), Dr. Oded Ghitza, Jay Wilpon, Dr. Frank Soong,
Dr. Mohan Sondhi, Dr. Yariv Ephraim, Dr. Cory Myers (currently at Atlantic Aerospace),
Dr. Aaron Rosenberg, Dr. Chin Lee and Dr. Roberto Pieraccini. We thank these colleagues
for their research contributions and for their friendship and guidance over the years.

Several individuals provided technical comments on a preliminary version of the
manuscript. These comments were invariably insightful and provided valuable feedback

" on ways to improve the book. We would like to acknowledge and thank the follow-
ing individuals for their help: Dr. Mohan Sondhi, Dr. Yariv Ephraim, Dr. Esther Levin,
Dr. Oded Ghitza, Dr. Roberto Pieraccini, Dr. Chin Lee Dr. Wu Chou and Dr. Sadaoki Furui
(NTT Corporation, JAPAN).

The production of a book is an essentially infinite task which is seemingly an endless
one. However all good things do come to an end and this one was no exception. The
authors owe a great deal to Ms. Martina Sharp of the Bell Labs Word Processing group,
who entered all the text material for the book using the IATgX system. Tina worked on three

Preface XXXV
generations of the manuscript with a degree of skill that is essentially unmatched among
her peers. It was a pleasure working with Tina and we look forward to future projects with
her. Most of the art work for the book was produced by Ms. Danuta Sowinska-Khan of the
Bell Labs art department. Danuta was a pleasure to work with and is a professional in her
trade. The material she produced always met the highest professional standards and did
honor to the manuscript in which it appears. A great deal of assistance in the preparation
of drafts of the book, getting figures ready for production, and so forth was provided by
Irene Morrongiello. We thank her and wish to express our appreciation for a job well done.

Finally, to the crew at Prentice Hall we owe a debt of gratitude for the professional
way the book was handled from inception to final production. Karen Gettman provided the
incentive to the authors to actually produce the manuscript and make the book a reality. We
thank Lisa Garboski, the production editor, for help in all phases of the book production
cycle.

Lawrence R. Rabiner
Biing-Hwang Juang




Chapter 1

1.1

FUNDAMENTALS OF
SPEECH RECOGNITION

INTRODUCTION

Automatic recognition of speech by machine has been a goal of research for more than four
decades and has inspired such science fiction wonders as the computer HAL in Stanley
Kubrick’s famous movie 2001—A Space Odyssey and the robot R2D2 in the George Lucas
classic Star Wars series of movies. However, in spite of the glamour of designing an
intelligent machine that can recognize the spoken word and comprehend its meaning, and
in spite of the enormous research efforts spent in trying to create such a machine, we are
far from achieving the desired goal of a machine that can understand spoken discourse on
any subject by all speakers in all environments. Thus, an important question in this book
is, What do we mean by “speech recognition by machine.” Another important question is,
How can we build a series of bridges that will enable us to advance both our knowledge
as well as the capabilities of modern speech-recognition systems so that the “holy grail” of
conversational speech recognition and understanding by machine is attained?

Because we do not know how to solve the ultimate challenge of speech recognition,
our goal in this book is to give a series of presentations on the fundamental principles of
most modern, successful speech-recognition systems so as to provide a framework from
which researchers can expand the frontier. We will attempt to avoid making absolute
judgments on the relative merits of various approaches to particular speech-recognition
problems. Instead we will provide the theoretical background and justification for each
topic discussed so that the reader is able to understand why the techniques have proved
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valuable and how they can be used to advantage in practical situations.

One of the most difficult aspects of performing research in speech recognition by
machine is its interdisciplinary nature, and the tendency of most researchers to apply
a monolithic approach to individual problems. Consider the disciplines that have been
applied to one or more speech-recognition problems:

1. signal processing—the process of extracting relevant information from the speech
signal in an efficient, robust manner. Included in signal processing is the form of
spectral analysis used to characterize the time-varying properties of the speech signal
as well as various types of signal preprocessing (and postprocessing) to make the
speech signal robust to the recording environment (signal enhancement).

2. physics (acoustics)—the science of understanding the relationship between the phys-
ical speech signal and the physiological mechanisms (the human vocal tract mecha-
nism) that produced the speech and with which the speech is perceived (the human
hearing mechanism).

3. pattern recognition—the set of algorithms used to cluster data to create one or more
prototypical patterns of a data ensemble, and to match (compare) a pair of patterns
on the basis of feature measurements of the patterns.

4. communication and information theory—the procedures for estimating parameters
of statistical models; the methods for detecting the presence of particular speech
patterns, the set of modemn coding and decoding algorithms (including dynamic
programming, stack algorithms, and Viterbi decoding) used to search a large but
finite grid for a best path corresponding to a “best” recognized sequence of words.

5. linguistics—the relationships between sounds (phonology), words in a language

. (syntax), meaning of spoken words (semantics), and sense derived from meaning

‘"(pragmatigs). Included within this discipline are the methodology of grammar and
language parsing.

6. physiology—understanding of the higher-order mechanisms within the human cen-
tral nervous system that account for speech production and perception in human
beings. Many modern techniques try to embed this type of knowledge within the
framework of artificial neural networks (which depend heavily on several of the
above disciplines).

7. computer science—the study of efficient algorithms for implementing, in software
or hardware, the various methods used in a practical speech-recognition system.

8. psychology—the science of understanding the factors that enable a technology to be
used by human beings in practical tasks.

Successful speech-recognition systems require knowledge and expertise from a wide range
of disciplines, a range far larger than any single person can possess. Therefore, it is
especially important for a researcher to have a good understanding of the fundamentals of
speech recognition (so that a range of techniques can be applied to a variety of problems),
without necessarily having to be an expert in each aspect of the problem. It is the purpose
of this book to provide this expertise by giving in-depth discussions of a number of
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Figure 1.1 General block diagram of a task-oriented speech-recognition system,

fundamental topics in speech-recognition research.

1.2 THE PARADIGM FOR SPEECH RECOGNITION

A general model for speech recognition, shown in Figure 1.1, is used throughout this book.
The model begins with a user creating a speech signal (speaking) to accomplish a given
task. The spoken output is first recognized in that the speech signal is decoded into a series
of words that are meaningful according to the syntax, semantics, and pragmatics of the
recognition task. The meaning of the recognized words is obtained by a higher-level pro-
cessor that uses a dynamic knowledge representation to modify the syntax, semantics, and
pragmatics according to the context of what it has previously recognized. In this manner,
things such as non sequitors are omitted from consideration at the risk of misunderstanding,
but at the gain of minimizing errors for sequentially meaningful inputs. The feedback from
the higher-level processing box reduces the complexity of the recognition model by limiting
the search for valid (acceptable) input sentences (speech) from the user. The recognition
system responds to the user in the form of a voice output, or equivalently, in the form of
the requested action being performed, with the user being prompted for more input,

1.3 OUTLINE

The material in this book is organized into nine chapters. Chapters 2 through 9 each
deals with a basic concept or a fundamental technique used in various speech-recognition
systems. The material discussed in these chapters is as follows.

Chapter 2—The Speech Signal: Production, Perception, and Acoustic-Phonetic
Characterization. In this chapter we review the speech production/perception process
in human beings. We show how different speech sounds can be characterized by a set of
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spectral and temporal properties that depend on the acoustic-phonetic features of the sound
and are manifest in the waveform, the sound spectrogram, or both. Included in the chapter
is an overview of the three most common approaches to speech recognition, namely the
acoustic-phonetic approach (which tries to directly exploit individual sound properties), the
pattern recognition approach (which relies only on gross spectral and temporal properties
of speech sounds and uses conventional as well as neural network pattern recognition
technology to classify sounds), and the artificial intelligence (AI) approach in which an
expert system or a self-organizing (learning) system, as implemented by neural networks,
is used to classify sounds. We discuss the strengths and weaknesses of each approach and
explain why the pattern-recognition approach is the one most heavily relied on in practical
systems. We conclude the chapter with a discussion of the fundamental issues in speech
recognition (i.e., those factors that most influence overall system performance), and with a
brief overview of current applications.

Chapter 3—Signal Processing and Analysis Methods for Speech Recognition.
In this chapter we present the two fundamental signal-processing approaches to speech
spectral analysis: filter bank and linear predictive methods. We specialize the presentation
of these two fundamental techniques to aspects related to speech analysis and compare and
contrast the two methods in terms of robustness to speech sounds and required computation.
For completeness we also discuss the popular source-coding technique referred to as
vector quantization (VQ). Here, a codebook is created to represent the anticipated range
of spectral vectors. This enables us to code an arbitrary continuous speech spectral vector
into one of a fixed number of discrete codebook symbols at the cost of increased error
in signal representation but with the benefit of significantly reduced computation in the
recognition process. We conclude this chapter with a discussion of a spectral analysis
model that attempts to mimic the processing in the human auditory system—the so-called
ear model. Although our knowledge of the higher-order processing in the central nervous
system is rudimentary, the importance of ear models is related to their robustness to noise,
reverberation, and other environmental factors that often seriously degrade performance of
current speech recognizers.

e

Chapter 4—Pattern-Comparison Techniques. In this chapter we discuss three
fundamental aspects of comparing a pair of speech patterns. These are the basic concept of
detecting speech (i.e., finding the speech signal in a background of noise or other acoustic
interference), the idea of computing a measure of the local distance (or similarity) of a pair
of spectral representations of a short-time piece of speech signal (a distance or distortion
measure), and the concept of temporally aligning and globally comparing a pair of speech
patterns corresponding to different speech utterances that may or may not be the same
sequence of sounds or words (dynamic time warping algorithms). We show in this chapter
how the basic pattern-comparison techniques can be combined in a uniform framework for
speech-recognition applications.

Chapter 5—Speech-Recognition System Design and Implementation Issues. In
this chapter we discuss the remaining pieces (after signal processing and pattern compari-
son) that enable us to build and study performance of a practical speech-recognition system.
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In particular we discuss how speech recognizers are trained and how we can enhance the
basic recognition procedure by adding features, by exploiting a preprocessor, by the use of
methods of adaptation or by postprocessing the recognizer outputs using a set of pattern
discriminators (as opposed to the pattern classifiers used in a conventional implementa-
tion). We conclude the chapter with a discussion of various ways of recognizing speech
in adverse environments (e.g., noise, stress conditions, or mismatch between training and
testing).

Chapter 6—Theory and Implementation of Hidden Markov Models. In this
chapter we discuss aspects of the theory and implementation of the set of statistical modeling
techniques collectively referred to as hidden Markov modeling. Included within these
techniques are the algorithms for scoring a statistical (Markovian) model against a speech
pattern, the techniques for aligning the model with the speech pattern so as to recover
an estimate of the alignment path between different speech sounds and different model
states, and the techniques for estimating parameters of the statistical models from a training
set of utterances of the sounds being modeled. Also included is a discussion of the
practical aspects of building hidden Markov models, including the issues of scaling of
data, handling of multiple observation sequences, providing initial estimates of model
parameters, and combating the problems of insufficient training data. We conclude the
chapter with a practical example illustrating how a simple, isolated word recognizer would
be implemented using hidden Markov models.

Chapter 7—Speech Recognition Based on Connected Word Models. In this
chapter we show how the basic set of techniques developed for recognizing an isolated
word or phrase can be readily extended to recognizing a sequence of words (e.g., a string
of digits of a credit card number) spoken in a fluent or connected manner. We make the
simplifying assumption that the connected word string is recognized by finding the optimal
sequence of word models that best matches the spoken string. Hence we assume that the
word is the basic recognition unit for these systems, and therefore the training problem is
one of estimating the optimal parameters of word models on the basis of training data, which
need not contain isolated versions of the words. We describe three “optimal™ approaches
to solving the recognition part of connected word-recognition problems: (1) the two-level
dynamic programming method, (2) the level building method, and (3) the time synchronous
level building (or the one-pass) method and discuss the properties, and the relative strengths
and weaknesses of each method. We then show how we can optimally train connected
word systems, even if isolated versions of the vocabulary words are not available. We
conclude the chapter with a discussion of a connected digit recognizer implemented using
the methods described in the chapter.

Chapter 8—Large Vocabulary Continuous Speech Recognition. In this chapter
we discuss the issues in applying speech-recognition technology to the problem of recog-
nizing fluently spoken speech with vocabulary sizes of 1000 or more words (with unlimited
vocabularies as the ultimate goal). It is shown that a number of fundamental problems
must be solved to implement such a system, including the choice of a basic subword
speech unit (from which words, phrases, and sentences can be built up), an effective way
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of modeling the basic speech unit, a way of deriving models of the unit, a way of designing
and implementing a word lexicon (which provides a mapping between words and subword
units), a way of implementing task syntax (the system grammar), a way of implementing
the overall recognition part of the system (via some type of network search), and a way of
imposing task semantics onto the solution. We concentrate primarily on the issues involved
in building large vocabulary recognition systems. For illustrative purposes we describe
one reasonable way of building such a system and discuss the resulting performance on a
standard database management task.

Chapter 9—Task Oriented Applications of Automatic Speech Recognition. The
final chapter of the book provides a brief overview of how one might apply the ideas
discussed in the book to building a real, task-oriented, speech recognition system. It
includes discussions of how one would evaluate recognizer performance and how one
might decide whether a proposed task is viable for speech recognition. We also discuss a
set of broad classes of applications, which appear to be the most promising ones at this time,
along with typical examples of how recognizers have been successfully employed within
these broad classes. The chapter concludes with some broad performance projections
through the year 2000.

1.4 A BRIEF HISTORY OF SPEECH-RECOGNITION RESEARCH

Research in automatic speech recognition by machine has been done for almost four
decades. To gain an appreciation for the amount of progress achieved over this period, it is
worthwhile to briefly review some research highlights. The reader is cautioned that such
a review is cursory, at best, and must therefore suffer from errors of judgment as well as
omission.

The earliest attempts to devise systems for automatic speech recognition by machine
were made in the 1950s, when various researchers tried to exploit the fundamental ideas
of acoustic-phonetics. In 1952, at Bell Laboratories, Davis, Biddulph, and Balashek built
a system for isolated digit recognition for a single speaker [1]. The system relied heavily
on measuring spectral resonances during the vowel region of each digit. In an independent
effort at RCA Laboratories in 1956, Olson and Belar tried to recognize 10 distinct syllables
of a single talker, as embodied in 10 monosyllabic words [2]. The system again relied
on spectral measurements (as provided by an analog filter bank) primarily during vowel
regions. In 1959, at University College in England, Fry and Denes tried to build a phoneme
recognizer to recognize four vowels and nine consonants [3]. They used a spectrum analyzer
and a pattern matcher to make the recognition decision. A novel aspect of this research
was the use of statistical information about allowable sequences of phonemes in English
(a rudimentary form of language syntax) to improve overall phoneme accuracy for words
consisting of two or more phonemes. Another effort of note in this period was the vowel
recognizer of Forgie and Forgie, constructed at MIT Lincoln Laboratories in 1959, in which
10 vowels embedded in a /b/-vowel-/t/ format were recognized in a speaker-independent
manner [4]. Again a filter bank analyzer was used to provide spectral information, and a
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time varying estimate of the vocal tract resonances was made to decide which vowel was
spoken.

In the 1960s several fundamental ideas in speech recognition surfaced and were
published. However, the decade started with several Japanese laboratories entering the
recognition arena and building special-purpose hardware as part of their systems. One
early Japanese system, described by Suzuki and Nakata of the Radio Research Lab in
Tokyo [5], was a hardware vowel recognizer. An elaborate filter bank spectrum analyzer
was used along with logic that connected the outputs of each channel of the spectrum
analyzer (in a weighted manner) to a vowel-decision circuit, and a majority decision logic
scheme was used to choose the spoken vowel. Another hardware effort in Japan was the
work of Sakai and Doshita of Kyoto University in 1962, who built a hardware phoneme
recognizer [6]. A hardware speech segmenter was used along with a zero-crossing analysis
of different regions of the spoken input to provide the recognition output. A third Japanese
effort was the digit recognizer hardware of Nagata and coworkers at NEC Laboratories in
1963 [7]. This effort was perhaps most notable as the initial attempt at speech recognition
at NEC and led to a long and highly productive research program.

In the 1960s three key research projects were initiated that have had major implica-
tions on the research and development of speech recognition for the past 20 years. The
first of these projects was the efforts of Martin and his colleagues at RCA Laboratories,
beginning in the late 1960s, to develop realistic solutions to the problems associated with
nonuniformity of time scales in speech events. Martin developed a set cf elementary
time-normalization methods, based on the ability to reliably detect speech starts and ends,
that significantly reduced the variability of the recognition scores [8]. Martin ultimately
developed the method and founded one of the first companies, Threshold Technology,
which built, marketed, and sold speech-recognition products. At about the same time, in
the Soviet Union, Vintsyuk proposed the use of dynamic programming methods for time
aligning a pair of speech utterances [9]. Although the essence of the concepts of dynamic
time warping, as well as rudimentary versions of the algorithms for connected word recog-
nition, were embodied in Vintsyuk’s work, it was largely unknown in the West and did
not come to light until the early 1980s; this was long after the more formal methods were
proposed and implemented by others.

A final achievement of note in the 1960s was the pioneering research of Reddy in
the field of continuous speech recognition by dynamic tracking of phonemes [10]. Reddy’s
research eventually spawned a long and highly successful speech-recognition research
program at Carnegie Mellon University (to which Reddy moved in the late 1960s) which,
to this day, remains a world leader in continuous-speech-recognition systems.

In the 1970s speech-recognition research achieved a number of significant milestones.
First the area of isolated word or discrete utterance recognition became a viable and usable
technology based on fundamental studies by Velichko and Zagoruyko in Russia [11],
Sakoe and Chiba in Japan [12], and Itakura in the United States [13]. The Russian studies
helped advance the use of pattern-recognition ideas in speech recognition; the Japanese
research showed how dynamic programming methods could be successfully applied; and
Itakura’s research showed how the ideas of linear predictive coding (LPC), which had
already been successfully used in low-bit-rate speech coding, could be extended to speech-
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recognition systems through the use of an appropriate distance measure based on LPC
spectral parameters.

Another milestone of the 1970s was the beginning of a longstanding, highly successful
group effort in large vocabulary speech recognition at IBM in which researchers studied
three distinct tasks over a period of almost two decades, namely the New Raleigh language
[14] for simple database queries, the laser patent text language [15] for transcribing laser
patents, and the office correspondence task, called Tangora [16], for dictation of simple
memos.

Finally, at AT&T Bell Labs, researchers began a series of experiments aimed at
making speech-recognition systems that were truly speaker independent [17]. To achieve
this goal a wide range of sophisticated clustering algorithms were used to determine the
number of distinct patterns required to represent all variations of different words across a
wide user population. This research has been refined over a decade so that the techniques
for creating speaker-independent patterns are now well understood and widely used.

Just as isolated word recognition was akey focus of research in the 1970s, the problem
of connected word recognition was a focus of research in the 1980s. Here the goal was
to create a robust system capable of recognizing a fluently spoken string of words (e.g.,
digits) based on matching a concatenated pattern of individual words. A wide variety of
connected word-recognition algorithms were formulated and implemented, including the
two-level dynamic programming approach of Sakoe at Nippon Electric Corporation (NEC)
[18], the one-pass method of Bridle and Brown at Joint Speech Research Unit (JSRU) in
England [19], the level building approach of Myers and Rabiner at Bell Labs [20], and the
frame synchronous level building approach of Lee and Rabiner at Bell Labs [21]. Each
of these “optimal” matching procedures had its own implementational advantages, which
were exploited for a wide range of tasks.

"Speech research in the 1980s was characterized by a shift in technology from
template-based approaches to statistical modeling methods—especially the hidden Markov
model approach [22, 23]. Although the methodology of hidden Markov modeling (HMM)
was well known and understood in a few laboratories (primarily IBM, Institute for Defense
Analyses (IDA), and Dragon Systems), it was not until widespread publication of the meth-
ods and theory of HMMs, in the mid-1980s, that the technique became widely applied in
virtually every speech-recognition research laboratory in the world.

Another “new” technology that was reintroduced in the late 1980s was the idea of
applying neural networks to problems in speech recognition. Neural networks were first
introduced in the 1950s, but they did not prove useful initially because they had many
practical problems. In the 1980s, however, a deeper understanding of the strengths and
limitations of the technology was obtained, as well as the relationships of the technology to
classical signal classification methods. Several new ways of implementing systems were
also proposed [24, 25].

Finally, the 1980s was a decade in which a major impetus was given to large vocab-
ulary, continuous-speech-recognition systems by the Defense Advanced Research Projects
Agency (DARPA) community, which sponsored a large research program aimed at achiev-
ing high word accuracy for a 1000-word, continuous-speech-recognition, database man-
agement task. Major research contributions resuited from efforts at CMU (notabiy the well-
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known SPHINX system) {26], BBN with the BYBLOS system [27], Lincoln Labs [28],
SRI [29], MIT [30], and AT&T Bell Labs {31]. The DARPA program has continued into
the 1990s, with emphasis shifting to natural language front ends to the recognizer, and the
task shifting to retrieval of air travel information. At the same time, speech-recognition
technology has been increasingly used within telephone networks to automate as well as
enhance operator services.
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Chapter 2

THE SPEECH SIGNAL:
PRODUCTION, PERCEPTION,
AND ACOUSTIC-PHONETIC
CHARACTERIZATION

2.1 INTRODUCTION

In this chapter we discuss the mechanics of producing and perceiving speech in human
beings, and we show how an understanding of these processes leads naturally to several
different approaches to speech recognition by machine. We begin by showing how the
different classes of speech sounds, or phonetics, can each be characterized in terms of
broad acoustic features whose properties are relatively invariant across words and speakers.
The ideas of acoustic-phonetic characterization of sounds lead naturally to straightforward
implementation of a speech-recognition algorithm based on sequential detection of sounds
and sound classes. The strengths and weaknesses of such an approach are discussed. An
alternative approach to speech recognition is to use standard pattern-recognition techniques
in a framework in which all speech knowledge is “learned” via a training phase. We show
that such a “blind” approach has some natural advantages for a wide range of speech-
recognition systems. Finally we show how aspects of both the acoustic-phonetic approach
and the pattern-recognition approach can be integrated into a hybrid method that includes
techniques from artificial intelligence as well as neural network methods.

2.1.1 The Process of Speech Production and Perception in Human Beings

Figure 2.1 shows a schematic diagram of the speech-production/speech-perception process
in human beings. The production (speech-generation) process begins when the talker
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Figure 2.1 Schematic diagram of speech-production/speech-perception process (after Flanagan [unpublished]).

formulates a message (in his mind) that he wants to transmit to the listener via speech.
The machine counterpart to the process of message formulation is the creation of printed
text expressing the words of the message. The next step in the process is the conversion
of the message into a language code. This roughly corresponds to converting the printed
text of the message into a set of phoneme sequences corresponding to the sounds that
make up the words, along with prosody markers denoting duration of sounds, loudness of
sounds, and pitch accent associated with the sounds. Once the language code is chosen,
the talker must execute a series of neuromuscular commands to cause the vocal cords to
vibrate when appropriate and to shape the vocal tract such that the proper sequence of
speech sounds is created and spoken by the talker, thereby producing an acoustic signal
as the final output. The neuromuscular commands must simultaneously control all aspects
of articulatory motion including control of the lips, jaw, tongue, and velum (a “trapdoor”
controlling the acoustic flow to the nasal mechanism).

Once the speech signal is generated and propagated to the listener, the speech-
perception (or speech-recognition) process begins. First the listener processes the acoustic
signal along the basilar membrane in the inner ear, which provides a running spectrum
analysis of the incoming signal. A neural transduction process converts the spectral signal at
the output of the basilar membrane into activity signals on the auditory nerve, corresponding
roughly to a feature extraction process. In a manner that is not well understood, the neural
activity along the auditory nerve is converted into a language code at the higher centers
of processing within the brain, and finally message comprehension (understanding of
meaning) is achieved.

A slightly different view of the speech-production/speech-perception process is
shown in Figure 2.2. Here we see the steps in the process laid out along a line corre-
sponding to the basic information rate of the signal (or control) at various stages of the
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Figure 2.2  Alternative view of speech-production/speech-perception process (after Rabiner and Levinson [1]).

process. The discrete symbol information rate in the raw message text is rather low (about
50 bps [bits per second] corresponding to about 8 sounds per second, where each sound is
one of about 50 distinct symbols). After the language code conversion, with the inclusion
of prosody information, the information rate rises to about 200 bps. Somewhere in the next
stage the representation of the information in the signal (or the control) becomes continuous
with an equivalent rate of about 2000 bps at the neuromuscular control level, and about
30,000-50,000 bps at the acoustic signal level.

A transmission channel is shown in Figure 2.2 [1], indicating that any of several
well-known coding techniques could be used to transmit the acoustic waveform from the
talker to the listener. The steps in the speech-perception mechanism can also be interpreted
in terms of information rate in the signal or its control and follows the inverse pattern
of the production process. Thus the continuous information rate at the basilar membrane
is in the range of 30,000-50,000 bps, while at the neural transduction stage it is about
2000 bps. The higher-level processing within the brain converts the neural signals to a
discrete representation, which ultimately is decoded into a low-bit-rate message.

To illustrate, in a trivial way, how the speech-production/speech-perception process
works, consider that the speaker has a goal of finding out whether his office mate has eaten
his lunch yet. To express this thought, the speaker formulates the message *“Did you eat
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yet?” In the process of converting the message to a language code, the text becomes a
phonetic sequence of sounds of the form /dId yu it yet?/, in which each word is expressed
as a sequence of phonemes constituting the ideal pronunciation of the sounds of the word
(as spoken in isolation) within the spoken language. However, because the words are
not spoken in isolation, and a physical mechanism is used to produce the sounds (the
human vocal tract system), and because physical systems obey continuity and smoothness
constraints, by the time the message is spoken the sounds become more like the phonetic
string /dl jo it jet?/. The final d in d1d is dropped, the word you becomes converted to a word
that sounds a lot like “juh,” and finally the word yet is pronounced as “jet.” Remarkably,
through the speech-perception process, human beings are usually able to decode this highly
stylized version of the text into the correct string; sadly, however, this remains a most
difficult task for almost all speech-recognition machines.

2.2 THE SPEECH-PRODUCTION PROCESS

Figure 2.3 shows a mid-sagittal plane (longitudinal cross-section) X-ray of the human vocal
apparatus [2]. The vocal tract, outlined by the dotted lines in Figure 2.3, begins at the
opening of the vocal cords, or glottis, and ends at the lips. The vocal tract consists of the
pharynx (the connection from the esophagus to the mouth) and the mouth, or oral cavity. In
the average male, the total length of the vocal tract is about 17 cm. The cross-sectional area
of the vocal tract, determined by the positions of the tongue, lips, jaw, and velum, varies
from zero (complete closure) to about 20 cm®. The nasal tract begins at the velum and
ends at the nostrils. When the velum, (a trapdoor-like mechanism at the back of the mouth
cavity) is lowered, the nasal tract is acoustically coupled to the vocal tract to produce the
nasal sounds of speech.

A schematic diagram of the human vocal mechanism is shown in Figure 2.4 [3]. Air
enters the lungs via the normal breathing mechanism. As air is expelled from the lungs
through the trachea (or windpipe), the tensed vocal cords within the larynx are caused to
vibrate (in the mode of a relaxation oscillator) by the air flow. The air flow is chopped
into quasi-periodic pulses which are then modulated in frequency in passing through the
pharynx (the throat cavity), the mouth cavity, and possibly the nasal cavity. Depending
on the positions of the various articulators (i.e., jaw, tongue, velum, lips, mouth), different
sounds are produced.

Figure 2.5 shows plots of the glottal air flow (volume velocity waveform) and the
resulting sound pressure at the mouth for a typical vowel sound [4]. The glottal waveform
shows a gradual build-up to a quasi-periodic pulse train of air, taking about 15 msec to
reach steady state. This build-up is also reflected in the acoustic waveform shown at the
bottom of the figure. ’

A simplified representation of the complete physiological mechanism for creating
speech is shown in Figure 2.6 [3]. The lungs and the associated muscles act as the source
of air for exciting the vocal mechanism. The muscle force pushes air out of the lungs
(shown schematically as a piston pushing up within a cylinder) and through the bronchi
and trachea. When the vocal cords are tensed, the air flow causes them to vibrate, producing
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Figure 2.3 Mid-sagittal plane X-ray of the human vocal apparatus (after Flanagan et al. {2]).

so-called voiced speech sounds. When the vocal cords are relaxed, in order to produce a
sound, the air flow either must pass through a constriction in the vocal tract and thereby
become turbulent, producing so-called unvoiced sounds, or it can build up pressure behind
a point of total closure within the vocal tract, and when the closure is opened, the pressure
is suddenly and abruptly released, causing a brief transient sound.

Speech is produced as a sequence of sounds. Hence the state of the vocal cords, as
well as the positions, shapes, and sizes of the various articulators, changes over time to
reflect the sound being produced. The manner in which different sounds are created will be
described later in this chapter. First we divert to a brief discussion of the speech waveform



16

Chap. 2  The Speech Signal

R,

~

NASAL CAVITY

VELUM
TONGUE
EPIGLOTTIS

e VOCAL FOLDS

ESOPHAGUS

SPINAL
COLUMN

Figure 24 Schematic view of the human vocal mechanism (after Flana-

gan [3]).

N

g‘i‘s«oooL\

=3

ogk

J925 500

> PAWAWANA
2 o | { 1 | |
g % s 10 15 20 25 30

TIME (MILLISECONDS)

o

g&la 1.0

22

D=

zNg o]

£

oo&

2 T -0

Figure 2.5 Glottal volume velocity and resulting sound pressure at the start of a voiced sound
(after Ishizaka and Flanagan {4]).

Sec. 2.3 Representing Speech in the Time and Frequency Domains

PHARYNX MOUTH

~
LARYNX

\ég:sg_,é,\§ TUBE

| ¢ TRACHEA AND
BRONCHI

T

NOSE
OUTPUT

)))

CAVITY CAVITY ))) ) ) )
W oumH
e~ Hume OUTPUT

LUNG
VOLUME
%
MUSCLE
FORCE
Figure 2.6 Sch p ion of the complete physiological h
speech production (after Flanagan [3]).

and its spectral representation.

2.3 REPRESENTING SPEECH IN THE TIME AND FREQUENCY DOMAINS

of

17

The speech signal is a slowly time varying signal in the sense that, when examined over
a sufficiently short period of time (between 5 and 100 msec), its characteristics are fairly
stationary; however, over long periods of time (on the order of 1/5 seconds or more) the
signal characteristics change to reflect the different speech sounds being spoken. An illus-
tration of this effect is given in Figure 2.7, which shows the time waveform corresponding
to the initial sounds in the phrase, “It’s time ...” as spoken by a male speaker. Each line
of the waveform corresponds to 100 msec (1/10 second) of signal; hence the entire plot

encompasses about 0.5 sec.
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Figure 2.7 Waveform plot of the beginning of the utterance “It’s time.”

The slowly time varying nature of the signal can be seen by contrasting the first
100 msec of the waveform (the first line), which corresponds to background silence and is
therefore low in amplitude, to the next 100 msec of the waveform (the second line), which
first shows a small increase in level, and then a sharp increase in level and a gross change
in waveform shape and regularity (it becomes almost periodic).

There are several ways of classifying (labeling) events in speech. Perhaps the simplest
and most straightforward is via the state of the speech-production source—the vocal cords.
It is accepted convention to use a three-state representation in which the states are (1)
silence (S), where no speech is produced; (2) unvoiced (U), in which the vocal cords are
not vibrating, so the resulting speech waveform is aperiodic or random in nature; and (3)
voiced (V), in which the vocal cords are tensed and therefore vibrate periodically when air
flows from the lungs, so the resulting speech waveform is quasi-periodic. The result of
applying this type of classification to the waveform of Figure 2.7 is shown in the figure.

Initially, before speaking begins, the waveform is classified as silence (S). A brief period of
unvoiced (U) sound (whisper or aspiration) is seen prior to the voicing (V) corresponding
to the initial vowel in the word It’s. Following the voicing region, there is a brief, unvoiced
aspiration (devoicing of the vowel), followed by a sileénce region (prior to the /t/ in If’s), and
then a relatively long, unvoiced (U) region corresponding to the /t/ release, followed by the
/s/, followed by the /t/ in time. Finally there is a long voicing (V) region corresponding to
the diphthong /a¥/ in time.

It should be clear that the segmentation of the waveform into well-defined regions of
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Figure 2.8 Wideband and narrowband spectrograms and speech amplitude for the utterance
“Every salt breeze comes from the sea.”

silence, unvoiced, and voiced signals is not exact; it is often difficult to distinguish a weak,
unvoiced sound (like /f/ or /th/) from silence, or a weak, voiced sound (like /v/ or /m/) from
unvoiced sounds or even silence. However, it is usually not critical to segment the signal to
a precision much less than several milliseconds; hence, small errors in boundary locations
usually have no consequence for most applications.

An alternative way of characterizing the speech signal and representing the informa-
tion associated with the sounds is via a spectral representation. Perhaps the most popular
representation of this type is the sound spectrogram in which a three-dimensional rep-
resentation of the speech intensity, in different frequency bands, over time is portrayed.
An example of this type of speech representation is given in Figure 2.8, which shows a
wideband spectrogram in the first panel, a narrowband spectrogram in the second panel,
and a waveform amplitude plot in the third panel, of a spoken version of the utterance
“Every salt breeze comes from the sea” by a male speaker. The wideband spectrogram
corresponds to performing a spectral analysis on 15-msec sections of waveform using a
broad analysis filter (125 Hz bandwidth) with the analysis advancing in intervals of 1 msec.
The spectral intensity at each point in time is indicated by the intensity (darkness) of the
plot at a particular analysis frequency. Because of the relatively broad bandwidth of the
analysis filters, hence the relatively short duration of the analysis window, the spectral
envelope of individual periods of the speech waveform during voiced sections are resolved
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and are seen as vertical striations in the spectrogram.

The narrowband spectrogram (shown in the second panel of Figure 2.8) corresponds
to performing a spectral analysis on 50-msec sections of waveform using a narrow analysis
filter (40 Hz bandwidth), with the analysis again advancing in intervals of 1 msec. Because
of the relatively narrow bandwidth of the analysis filters, individual spectral harmonics
corresponding to the pitch of the speech waveform, during voiced regions, are resolved and
are seen as almost-horizontal lines in the spectrogram. During periods of unvoiced speech,
we see primarily high-frequency energy in the spectrograms; during periods of silence we
essentially see no spectral activity (because of the reduced signal level).

A third way of representing the time-varying signal characteristics of speech is viaa
parameterization of the spectral activity based on the model of speech production. Because
the human vocal tract is essentially a tube, or concatenation of tubes, of varying cross-
sectional area that is excited either at one end (by the vocal cord puffs of air) or at a point
along the tube (corresponding to turbulent air at a constriction), acoustic theory tells us that
the transfer function of energy from the excitation source to the output can be described
in terms of the natural frequencies or resonances of the tube. Such resonances are called
formants for speech, and they represent the frequencies that pass the most acoustic energy
from the source to the output. Typically there are about three resonances of significance, for
a human vocal tract, below about 3500 Hz. Figure 2.9 [5] shows a wideband spectrogram,
along with the computed formant frequency estimates, for the utterance “Why do I owe
you a letter,” spoken by a male speaker. There is a good correspondence between the
estimated formant frequencies and the points of high spectral energy in the spectrogram.
The formant frequency representation is a highly efficient, compact representation of the
time-varying characteristics of speech. The major problem, however, is the difficulty of
reliably estimating the formant frequencies for low-level voiced sounds, and the difficulty
of defining the formants for unvoiced or silence regions. As such, this representation is
more of theoretical than of practical interest.

Figures 2.10 and 2.11 show spectral and temporal representations of the phrase
“Should we chase,” spoken by a male speaker, along with a detailed segmentation of the
waveform into individual sounds. The ultimate goal of speech recognition is to uniquely
and automatically provide such a segmentation and labeling of speech into constituent
sounds or sound groups such as words, then sentences. To understand the limitations on
this approach, we will next discuss, in detail, the general sounds of English and the relevant
acoustic and phonetic features of the sounds.

2.4 SPEECH SOUNDS AND FEATURES

The number of linguistically distinct speech sounds (phonemes) in a language is often a
matter of judgment and is not invariant to different linguists. Table 2.1 shows a condensed
list of phonetic symbols of American English, their ARPABET representation [6], and an
example word in which the sound occurs. Shown in this table are 48 sounds, including 18
vowels or vowel combinations (called diphthongs), 4 vowel-like consonants, 21 standard
consonants, 4 syllabic sounds, and a phoneme referred to as a glottal stop (literally a symbol
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Figure 2.9 Wideband spectrogram and formant frequency represen-
tation of the utterance “Why do 1 owe you a letter” (after Atal and
Hanauer [5}).

for a sound corresponding to a break in voicing within a sound).

Many of the sounds or phonemes shown in Table 2.1 are not considered standard;
they represent specialized cases such as the so-called barred I (/#) in the word roses. As
such, a more standard representation of the basic sounds and sound classes of American
English is shown in Figure 2.12. Here we see the conventional set of 11 vowels, classified
as front, mid, or back, corresponding to the position of the tongue hump in producing the
vowel; 4 vowel combinations or diphthongs; the 4 semivowels broken down into 2 liquids
and 2 glides; the nasal consonants, the voiced and unvoiced stop consonants; the voiced
and unvoiced fricatives; whisper; and the affricates. There are a total of 39 of the 48 sounds
of Table 2.1 represented in Figure 2.12.

2.4.1 The Vowels

The vowel sounds are perhaps the most interesting class of sounds in English. Their
importance to the classification and representation of written text is very low; however,
most practical speech-recognition systems rely heavily on vowel recognition to achieve
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Figure 2.10 Wideband spectrogram and intensity contour of the
phrase “Should we chase.”

high performance. To partially illustrate this point, consider the following sections of text:
Section |

Th_y n_t_d s_gn_f c_nt _mpr_v_m_nts i_ th_ c_mp_ny's _m_g_, s_p_rv.s__n,

th__r w_rk_ng ¢c_nd_t__ns, b_n_f_ts _nd _pp_rt_n_t__s fr gr_wth.

Section Il
A_iue oa_ __a __ae_ e_e__ja____e_ae _i__ _e _oe_ o
o__u_a_io_a_e___o_ee i e__ea_i__.

" In Section I we have omitted the conventional vowel letters (a,e.i,o,u); however, with a
little effort the average reader can “fill in” the missing vowels and decode the section so
that it reads

They noted significant improvements in the company’s image, supervision,
their working conditions, benefits and opportunities for growth.

In Section II we have omitted the conventional consonant letters; the resulting text is
essentially not decodable. The actual text is
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Figure 2.11 The speech waveform and a segmentation and labeling of
the constituent sounds of the phrase “Should we chase.”

Attitudes toward pay stayed essentially the same, with the scores of
occupational employees slightly decreasing.

In speaking, vowels are produced by exciting an essentially fixed vocal tract shape
with quasi-periodic pulses of air caused by the vibration of the vocal cords. The way
in which the cross-sectional area varies along the vocal tract determines the resonance
frequencies of the tract (the formants) and thereby the sound that is produced. The vowel
sound produced is determined primarily by the position of the tongue, but the positions of
the jaw, lips, and to a small extent, the velum, also influence the resulting sound.
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TABLE 2.1. A condensed list of phonetic symbols for American English.
Ph ARPABET Example Phoneme ARPABET Example
1 Y beat ml NX sing
n H bit Ipl P pet
Jel (¢*) EY bait N T ten
el EH bet I K kit
=/ AE bat % B bet
faf AA Bob / D debt
In AH but Iy H get
I AO bought N HH hat
fof (0%) ow boat L) F fat
n/ UH book 18/ TH thing
il uw boot Is/ S sat
fol AX about A/ (sh) SH shut
i) X roses W v vat
I ER bird 8/ DH that
1/ AXR butter 174 Z 200
fa*/ AW down 2/ (zh) ZH azure
12/ AY buy R/ (tsh) CH church
Y oy boy J/ (dzh, j) H judge
! Y you /! WH which
Pl w wit N EL battle
h R rent v/ EM bottom
I L let 11} EN button
m/ M met / DX batter
n N net n Q (glottal stop)

The vowels are generally long in duration (as compared to consonant sounds) and
are spectrally well defined. As such they are usually easily and reliably recognized and
therefore contribute significantly to our ability to recognize speech, both by human beings
and by machine. .

There are several ways to characterize and classify vowels, including the typical
articulatory configuration required to produce the sounds, typical waveform plots, and typ-
ical spectrogram plots. Figures 2.13-2.15 show typical articulatory configurations of the
vowels (2.13), examples of vowel waveforms (2.14), and examples of vowel spectrograms
(2.15). A convenient and simplified way of classifying vowel articulatory configurations is
in terms of the tongue hump position (i.e., front, mid, back), and tongue hump height (high,
mid, low), where the tongue hump is the mass of the tongue at its narrowest constriction
within the vocal tract. According to this classification the vowels /i/, /1/, /=/, and /e/ are
front vowels, (with different tongue heights) /a/, /a/, and /o/ are mid vowels, and /U/, fu/,
and /o/ are back vowels (see also Figure 2.12). )

As shown in the acoustic waveform plots of the vowels, in Figure 2.14, the front
vowels show a pronounced, high-frequency resonance, the mid vowels show a balance
of energy over a broad frequency range, and the back vowels show a predominance of
low-frequency spectral information. This behavior is evidenced in the vowel spectrogram

Sec. 2.4

VOWELS

FRONT mMiD
iqy) 2 {AA)
I(IH) 3(ER)

o(EH) A0 (AH,AX)
ae (AE) 9 (AO)

Speech Sounds and Features

PHONEMES:

BACK DIPHTHONGS
u (UW) aY (AY)

U (UH) oYy (0Y)
O (Ow) av (Aw)
oY (EY)
SEMIVOWELS
LIQUIDS GLIDES
wiw) r(R)
L) Yy

NASALS
m (M)
n{N)
7 (NG)

25
CONSONANTS
WHISPER
h (H)
VOICED UNVOICED AFFRICATES
b(B) P (P) Tan)
d (D) t(m 2 (CH)
9(G) k (K)
FRICATIVES
VOICED  UNVOICED
v (V) 1M
8 (TH) 8 (THE)
. 2(2) s (S)
2,zh (ZH)  §,sh, [(SH)

Figure 2.12  Chart of the classification of the standard phonemes of American English into broad sound classes.
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Figure 2.13  Articulatory configurations for typical vowel sounds (after Flanagan [3)).
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- 50 msec

Figure 2.14 Acoustic waveform plots
of typical vowel sounds.

plots of Figure 2.15, in which the front vowels show a relatively high second and third
formant frequency (resonance). whereas the mid vowels show well-separated and balanced
locations of the formants, and the back vowels (especially /u/) show almost no energy
beyond the low-frequency region with low first and second formant frequencies.

The concept of a “typical” vowel sound is, of course, unreasonable in light of the
variability of vowel pronunciation among men, women and children with different regional
accents and other variable characteristics. To illustrate this point, Figure 2.16 shows a
classic plot, made by Gordon Peterson and Harold Bamey, of measured values of the first
and second formant for 10 vowels spoken by a wide range of male and female talkers
who attended the 1939 World’s Fair in New York City [7].A wide range of variability can
be seen in the measured formant frequencies for a given vowel sound, and also there is

Sec. 2.4 Speech Sounds and Features 27

02 04 00 02 0400 02
TIME (sec)

04 00 02 04
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Figure 2.16 Measured frequencies of first and second for-
mants for a wide range of talkers for several vowels (after
Peterson & Barney [7]).

overlap between the formant frequencies for different vowel sounds by different talkers.
The ellipses drawn in this figure represent gross characterizations of the regions in which
most of the tokens of the different vowels lie. The message of Figure 2.16, for speech
recognition by machine, is fairly clear; that s, it is not just a simple matter of measuring
formant frequencies or spectral peaks accurately to accurately classify vowel sounds; one




24.2

28 Chap. 2  The Speech Signal

2400

1Y (i

2200

1800
oAE (%)

1800

F2 (H2)

1400} oER()

1200 oAH (A)

AA (8)

so('4.:00 300 400 500 600 700 800

Figure 2.17 The vowel triangle with centroid positions of the com-
mon vowels.

must do some type of talker (accent) normalization to account for the variability in formants
and overlap between vowels.

A common way of exploiting the information embodied in Figures 2.15 and 2.16 is to
represent each vowel by a centroid in the formant space with the realization that the centroid,
at best, represents average behavior and does not represent variability across talkers. Such
a representation leads to the classic vowel triangle shown in Figure 2.17 and represented
in terms of formant positions by the data given in Table 2.2. The vowel triangle represents
the extremes of formant locations in the F;-F, plane, as represented by /i/ (low Fy, high
Fa), /u/ (fow Fy, low Fy), and /a/ (high Fy, low F;), with other vowels appropriately placed
with respect to the triangle vertices. The utility of the formant frequencies of Table 2.2 has
been demonstrated in text-to-speech synthesis in which high-quality vowel sounds have
been synthesized using these positions for the resonances [8].

Diphthongs

Although there is some ainbiguity and disagreement as to what is and what is not a
diphthong, a reasonable definition is that a diphthong is a gliding monosyllabic speech

Lopreba e nbada § e
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TABLE 2.2. Formant frequencies for typical vowels.

ARPABET .
IPA Typical
Symbol for Symbol Word F F> F3
Vowel
1Y I beet 270 2290 3010
H n bit 390 1990 2550
EH fel bet 530 1840 2480
AE [=/ bat 660 1720 2410
AH N but 520 1190 2390
AA fal hot 730 1090 2440
AO I2% bought 570 840 2410
UH ul foot 440 1020 2240
uw I boot 300 870 2240
ER I3/ bird 490 1350 1690

sound that starts at or near the articulatory position for one vowel and moves to or toward
the position for another. According to this definition, there are six diphthongs in American
English, namely /a¥/ (as in buy), /a*/ (as in down), /e¥/ (as in bait), and /57 / (as in boy),
/o/ (as in boat), and /ju/ (asin yow. o

The diphthongs are produced by varying the vocal tract smoothly between vowel
configurations appropriate to the diphthong. Figure 2.18 shows spectrogram plots of four
of the diphthongs spoken by a male talker. The gliding motions of the formants are
especially prominent for the sounds /a¥/, /a¥/ and /2’/ and are somewhat weaker for
/e / because of the closeness (in vowel space) of the two vowel sounds comprising this
diphthong.

An alternative way of displaying the time-varying spectral characteristics of diph-
thongs is via a plot of the values of the second formant versus the first formant (implicitly
as a function of time) as shown in Figure 2.19 [9]. The arrows in this figure indicate the
direction of motion of the formants (in the (F, — F;) plane) as time increases. The dashed
circles in this figure indicate average positions of the vowels. Based on these data, and
other measurements, the diphthongs can be characterized by a time-varying vocal tract area
function that varies between two vowel configurations.

2.4.3 Semivowels

The group of sounds consisting of /w/, /lf, /t/, and /y/ is quite difficult to characterize.
These sounds are called semivowels because of their vowel-like nature. They are generally
characterized by a gliding transition in vocal tract area function between adjacent phonemes.
Thus the acoustic characteristics of these sounds are strongly influenced by the context in
which they occur. For our purposes, they are best described as transitional, vowel-like
sounds, and hence are similar in nature to the vowels and diphthongs.
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Figure 2.18  Spectrogram plots of four diphthongs.

2.4.4 Nasal Consonants

The nasal consonants /m/, /n/, and /n/ are produced with glottal excitation and the vocal
tract totally constricted at some point along the oral passageway. The velum is lowered so
that air flows through the nasal tract, with sound being radiated at the nostrils. The oral
cavity, although constricted toward the front, is still acousticaily coupled to the pharynx.
Thus, the mouth serves as a resonant cavity that traps acoustic energy at certain natural
frequencies. As far as the radiated sound is concerned, these resonant frequencies of the
oral cavity appear as antiresonances, or zeros of the transfer function of sound transmis-
sion. Furthermore, nasal consonants and nasalized vowels (i.e., some vowels preceding or
following nasal consonants) are characterized by resonances that are spectrally broader, or
more highly damped, than those for vowels.
’ The three nasal consonants are distinguished by the place along the oral tract at
which a total constriction is made. For /m/ the constriction is at the lips; for /n/ the
constriction is just behind the teeth; and for /n/ the constriction is just forward of the
velum itself. Figure 2.20 shows typical speech waveforms and Figure 2.21 spectrograms
for two nasal consonants in the context vowel-nasal-vowel. The waveforms of /m/ and /n/
look very similar. The spectrograms show a concentration of low-frequency energy with a
midrange of frequencies that contain no prominent peaks. This is because of the particular
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Figure 2.19 Time variation of the first two formants for the diphthongs (after
Holbrook and Fairbanks {9]).

combination of resonances and antiresonances that result from the coupling of the nasal
and oral tracts.

2.4.5 Unvoiced Fricatives

The unvoiced fricatives /f/, /8/, /s/, and /sh/ are produced by exciting the vocal tract by a
steady air flow, which becomes turbulent in the region of a constriction in the vocal tract.
The location of the constriction serves to determine which fricative sound is produced.
For the fricative /f/ the constriction is near the lips; for /8/ it is near the teeth; for /s/ it
is near the middle of the oral tract; and for /sh/ it is near the back of the oral tract. Thus
the system for producing unvoiced fricatives consists of a source of noise at a constriction,
which separates the vocal tract into two cavities. Sound is radiated from the lips—that is,
from the front cavity. The back cavity serves, as in the case of nasals, to trap energy and
thereby introduce antiresonances into the vocal output. Figure 2.22 shows the waveforms
and Figure 2.23 the spectrograms of the fricatives /f/, /s/ and /sh/. The nonperiodic nature
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Figure 2.20 Waveforms for the sequences
fo-m-a/ and /o-n-a/.

of fricative excitation is obvious in the waveform plots. The spectral differences among
the fricatives are readily seen by comparing the three spectrograms.

2.4.6 Voiced Fricatives

The voiced fricatives /v/, /th/, /z/ and /zh/ are the counterparts of the unvoiced fricatives /f/,
/61, Is/, and /sh/, respectively, in that the place of constriction for each of the corresponding
phonemes is essentially identical. However, the voiced fricatives differ markedly from
their unvoiced counterparts in that two excitation sources are involved in their production.
For voiced fricatives the vocal cords are vibrating, and thus one excitation source is at
the glottis. However, since the vocal tract is constricted at some point forward of the
glottis, the air flow becomes turbulent in the neighborhood of the constriction. Thus the
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Figure 2.21 Spectrograms of the sequences /o-m-a/ and a-n-a/.

spectra of voiced fricatives can be expected to display two distinct components. These
excitation features are readily observable in Figure 2.24, which shows typical waveforms,
and in Figure 2.25, which shows spectra for two voiced fricatives. The similarity of the
unvoiced fricative /f/ to the voiced fricative /v/ is easily shown in a comparison between
corresponding spectrograms in Figures 2.23 and 2.25. Likewise, it is instructive to compare
the spectrograms of /sh/ and /zh/.

2.4.7 Voiced and Unvoiced Stops

The voiced stop consonants /b/, /d/, and /g/, are transient, noncontinuant sounds produced
by building up pressure behind a total constriction somewhere in the oral tract and then
suddenly releasing the pressure. For /b/ the constriction is at the lips; for /d/ the constriction
is at the back of the teeth; and for /g/ it is near the velum. During the period when there is
total constriction in the tract, no sound is radiated from the lips. However, there is often a
small amount of low-frequency energy radiated through the walls of the throat (sometimes
called a voice bar). This occurs when the vocal cords are able to vibrate even though the
vocal tract is closed at some point.

Since the stop sounds are dynamical in nature, their properties are highly influenced
by the vowel that follows the stop consonant. As such, the waveforms for stop consonants
give little information about the particular stop consonant. Figure 2.26 shows the waveform
of the syllable /a-b-a/. The waveform of /b/ shows few distinguishing features except for
the voiced excitation and lack of high-frequency energy.
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Figure 2.22 Waveforms for the sounds /f/, /s/ and /sh/ in the context /a-x-a/ where /x/ is
the unvoiced fricative.
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Figure 2.23  Spectrogram comparisons of the sounds /o-f-a/, /o-s-a/ and /a-sh-a/.
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Figure 2.24 Waveforms for the sequences /a-
v-af and /o-zh-a/.

The unvoiced stop consonants /p/, /t/, and /k/ are similar to their voiced counterparts
/b/, /d/, and /g/, with one major exception. During the period of total closure of the tract,
as the pressure builds up, the vocal cords do not vibrate. Then, following the period of
closure, as the air pressure is released, there is a brief interval of friction (due to sudden
turbulence of the escaping air) followed by a period of aspiration (steady air flow from the
glottis exciting the resonances of the vocal tract) before voiced excitation begins.

Figure 2.27 shows waveforms and Figure 2.28 shows spectrograms of the voiced stop
/b/ and the voiceless stop consonants /p/ and /t/. The “stop gap,” or time interval, during
which the pressure is built up is clearly in evidence. Also, it can be readily seen that the
duration and frequency content of the frication noise and aspiration vary greatly with the
stop consonant,
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Figure 2.25 Spectrograms for the sequences /o-v-a/ and /o-zh-a/.

/3pa/

Figure 2.26 Waveform for the sequence /a-b-a/.
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Figure 2.27 Waveforms for the sequences /a-p-a/
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As a self-check on the reader’s understanding of the material on speech sounds and their
acoustic manifestations, we now digress and present some simple exercises along with the
solutions. For maximum effectiveness, the reader is encouraged to think through each
exercise before looking at the solution.

Exercise 2.1

1. Write out the phonetic transcription for the following words:
he, eats, several, light, tacos

2. What effect occurs when these five words are spoken in sequence as a sentence? What
does this imply about automatic speech recognition?
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Figure 2.28 Spectrogram comparisons of the sequences of voiced (/a-b-a/) and voiceless (/a-p-a/
and /a-t-a/) stop consonants.

Solution 2.1
1. The phonetic transcriptions of the words are

Word Phoneme Seguence ARPABET
he i/ HH-lY
eats fits/ IY-TS
several /sevral/ S-EH-V-R-AH-L
light Na'y : L-AY-T
tacos fakoz/ T-AA-K-OW-Z

2, When the words are spoken together, the last sound of each word merges with the
first sound of the succeeding word (since they are the same sound), resulting in strong
coarticulation of boundary sounds. The ARPABET transcription for the sentence is:

HH-1Y-T-S-EH-V-R-AH~-L-AY-T-AA-K-OW-Z
All information about word boundaries is totally lost; furthermore, the durations of
the common sounds at the boundaries of words are much shorter than what would be
predicted from the individual words.

Exercise 2.2

Some of the difficulties in large vocabulary speech recognition are related to the irregularities
in the way basic speech sounds are combined to produce words. Exercise 2.2 highlights a
couple of these difficulties.

1. In word initial position of American English, which phoneme or phonemes can never
occur? Which hardly ever occur? ’

2, There are many word initial consonant clusters of length two, such as speak, drank,
plead, and press. How many word initial consonant clusters of length three are there
in American English? What general rule can you give about the sounds in each of the
three positions?
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3. A nasal consonant can be combined with a stop consonant (e.g., camp, tend) in a limited
number of ways. What general rule do such combinations obey? There are several
notable exceptions to this general rule. Can you give a couple of exceptions? What
kind of speaking irregularity often results from these exceptions?

Solution 2.2
1. The only phoneme that never occurs in initial word position in English is the /ng/ sound
(e.g., sing). The only other sound that aimost never occurs naturally in English, in
initial word position, is /zh/ except some foreign words imported into English, such as
gendarme, which does have an initial /zh/.
2. The word initial consonant clusters of length three in English include

fspf  — split
/spr/ — spring
/skw/ — squirt
/skr/ — script
/sttf — string

The general rule for such clusters is
/sound s/unvoiced stop/semivowel/

3. The general rule for 2 nasal-stop combination is that the nasal and stop have the
same place of articulation, e.g., front/lips (/mp/), mid/dental (/nt/), back/velar (/ng k/).
Exceptions occur in words like summed (/md/) or hanged (/ng d/) or dreamt (/mt/).
There is often a tendency to insert an extra stop in such situations (e.g., dreamt —
/drempty).

Exercise 2.3
An important speech task is accurate digit recognition. This exercise seeks to exploit knowl-
edge of acoustic phonetics to recognize first isolated digits, and next some simple connected
digit strings. We first need a sound lexicon (a dictionary) for the digits. The sound lexicon
describes the pronunciations of digits in terms of the basic sounds of English. Such a sound
lexicon is given in Table 2.3. A single male adult talker (LRR) spoke each of the 11 digits in
random sequence and in isolation, and spectrograms of these spoken utterances are shown in
Figure 2.29. Figure 2.30 shows spectrograms of two connected digit sequences spoken by the
same talker.
1. Identify each of the 11 digits based on the acoustic properties of the sounds within the
digit (as expressed in the sound lexicon). Remember that each digit was spoken exactly
once.

2. Try to identify the spoken digits in each of the connected digit strings.

Solution 2.3
1. The digits of the top row are 3 and 7:

a. The digit 3 is cued by the distinctive brief initial fricative (/8/), followed by the
semivowel /r/ where the second and third formants both get very low in frequency,
followed by the /i/ where F, and F3 both become very high in frequency.

b. The digit 7 is cued by the strong /s/ frication at the beginning, the distinctive /¢/,
followed by the voiced fricative /v/, a short vowel /a/ and ending in the strong
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TABLE 2.3. Sound Lexicon of Digits

Word Sounds ARPABET
Zero fzlro/ Z-IH-R-OW
One fwan/ W-AH-N
Two o/ T-UwW
Three jorif TH-R-1Y
Four ffor/ F-OW-R
Five far v/ F-AY-V

Six /slks/ S-IH-K-S
Seven fsevan/ S-EH-V-AX-N
Eight et/ EY-T

Nine /na' n/ N-AY-N

Oh Jo/ ow
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Figure 2.30  Spectrograms of two connected digit sequences.

nasal /n/.
The digits in the second row are 0 and 9:
a. The initial /z/ is cued by the strong frication with the presence of voicing at low
frequencies; the following /I/ is seen by the high F» and Fs, the /t/ is signaled by
the low F, and Fs, and the diphthong /o/ is signaled by the gliding motion of F
and F; toward an /u/-like sound.
b. The digit 9 is cued by the distinct initial and final nasals /n/ and by the /a*/ glide
between the nasals.
The digits in the third row are 1 and 5:
a. The digit 1 is cued by the strong initial semivowel /w/ with very low F; and by the
strong final nasal /n/.
b. The digit 5 is cued by the weak initial frication of /f/, followed by the strong
diphthong /a’/ and ending in the very weak fricative /v/.
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The digits in the fourth row are 2 and 8:
a. The digit 2 is cued by the strong /t/ burst and release followed by the glide to the
fu/ sound.
b. The digit 8 is cued by the initial weak diphthong /e*/ followed by a clear stop gap
of the /t/ and then the // release.
The digits in the fifth row are “oh” and 4:
a. The digit “oh” is virtually a steady sound with a slight gliding tendency toward /u/
at the end.
b. The digit 4 is cued by the weak initial fricative /f/, followed by the strong /of vowel
and ending with a classic /r/ where F2 and F3 merge together.
The digit in the last row is 6:
a. The digit 6 is cued by the strong /s/ frication at the beginning and end, and by the
steady vowel /I/ followed by the stop gap and release of the /k/.
2. By examining the isolated digit sequences, one can eventually (with a lot of work and
some good luck) conclude that the two sequences are

Row 1: 2-oh-1 (telephone area code)
Row 2: 5-8-2-3-3-1-6 (7-digit telephone number)

We will defer any explanation of how any reasonable person, or machine, could perform
this task until later in this book when we discuss connected word-recognition techniques.
The purpose of this exercise is to convince the reader how difficult a relatively simple
recognition task can be.

2.5 APPROACHES TO AUTOMATIC SPEECH RECOGNITION BY MACHINE

The material presented in the previous sections leads to a straightforward way of performing
speech recognition by machine whereby the machine attempts to decode the speech signal
in a sequential manner based on the observed acoustic features of the signal and the known
relations between acoustic features and phonetic symbols. This method, appropriately
called the acoustic-phonetic approach, is indeed viable and has been studied in great depth
for more than 40 years. However, for a variety of reasons, the acoustic-phonetic approach
has not achieved the same success in practical systems as have alternative methods. Hence,
in this section, we provide an overview of several proposed approaches to automatic speech
recognition by machine with the goal of providing some understanding as to the essentials
of each proposed method, and the basic strengths and weaknesses of each approach.
Broadly speaking, there are three approaches to speech recognition, namely:

1. the acoustic-phonetic approach
2. the pattern recognition approach
3. the artificial intelligence approach

The acoustic-phonetic approach is based on the theory of acoustic phonetics that postulates
that there exist finite, distinctive phonetic units in spoken language and that the phonetic
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Figure 2.31 Phoneme lattice for word string.

units are broadly characterized by a set of properties that are manifest in the speech sig-
nal, or its spectrum, over time. Even though the acoustic properties of phonetic units
are highly variable, both with speakers and with neighboring phonetic units (the so-called
coarticulation of sounds), it is assumed that the rules governing the variability are straight-
forward and can readily be learned and applied in practical situations. Hence the first
step in the acoustic-phonetic approach to speech recognition is called a segmentation and
labeling phase because it involves segmenting the speech signal into discrete (in time)
regions where the acoustic properties of the signal are representative of one (or possibly
several) phonetic units (or classes), and then attaching one or more phonetic labels to each
segmented region according to the acoustic properties. To actually do speech recognition,
a second step is required. This second step attempts to determine a valid word (or string of
words) from the sequence of phonetic labels produced in the first step, which is consistent
with the constraints of the speech-recognition task (i.e., the words are drawn from a given
vocabulary, the word sequence makes syntactic sense and has semantic meaning, etc.).

To illustrate the steps involved in the acoustic-phonetic approach to speech recogni-
tion, consider the phoneme lattice shown in Figure 2.31. (A phoneme lattice is the result of
the segmentation and labeling step of the recognition process and represents a sequential set
of phonemes that are likely matches to the spoken input speech.) The problem is to decode
the phoneme lattice into a word string (one or more words) such that every instant of time
is included in one of the phonemes in the lattice, and such that the word (or word sequence)
is valid according to rules of English syntax. (The symbol SIL stands for silence or a pause
between sounds or words; the vertical position in the lattice, at any time, is a measure of
the goodness of the acoustic match to the phonetic unit, with the highest unit having the
best match.) With a modest amount of searching, one can derive the appropriate phonetic
string SIL-AO-L-AX-B-AW-T corresponding to the word string “all about,” with the
phonemes L, AX, and B having been second or third choices in the lattice and all other
phonemes having been first choices. This simple example illustrates well the difficulty in
decoding phonetic units into word strings. This is the so-called lexical access problem.
Interestingly, as we will see in the next section, the real problem with the acoustic-phonetic
approach to speech recognition is the difficulty in getting a reliable phoneme lattice for the
lexical access stage.

The pattern-recognition approach to speech recognition is basically one in which the
speech patterns are used directly without explicit feature determination (in the acoustic-
phonetic sense) and segmentation. As in most pattern-recognition approaches, the method
has two steps—namely, training of speech patterns, and recognition of patterns via pattern
comparison. Speech “knowledge” is brought into the system via the training procedure.
The concept is that if enough versions of a pattern to be recognized (be it a sound, a word, a
phrase, etc.) are included in a training set provided to the algorithm, the training procedure
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should be able to adequately characterize the acoustic properties of the pattern (with no
regard for or knowledge of any other pattern presented to the training procedure). This
type of characterization of speech via training is called pattern classification because the
machine leans which acoustic properties of the speech class are reliable and repeatable
across all training tokens of the pattern. The utility of the method is the pattem-comparison
stage, which does a direct comparison of the unknown speech (the speech to be recognized),
with each possible pattern leamed in the training phase and classifies the unknown speech
according to the goodness of match of the patterns.

The pattern-recognition approach to speech recognition is the basis for the remainder
of this book. Hence there will be a great deal of discussion and explanation of virtually every
aspect of the procedure. However, at this point, suffice it to say that the pattern-recognition
approach is the method of choice for speech recognition for three reasons:

1. Simplicity of use. The method is easy to understand, it is rich in mathematical and
communication theory justification for individual procedures used in training and
decoding, and it is widely used and understood.

2. Robustness and invariance to different speech vocabularies, users, feature sets, pat-
tern comparison algorithms and decision rules. This property makes the algorithm
appropriate for a wide range of speech units (ranging from phonemelike units all the
way through words, phrases, and sentences), word vocabularies, talker populations,
background environments, transmission conditions, etc.

3. Proven high performance. It will be shown that the pattern-recognition approach
to speech recognition consistently provides high performance on any task that is

* reasonable for the technology and provides a clear path for extending the technology
in a wide range of directions such that the performance degrades gracefully as the
- problem becomes more and more difficult.

The so-called artificial intelligence approach to speech recognition is a hybrid of the
acoustic-phonetic approach and the pattern-recognition approach in that it exploits ideas and
concepts of both methods. The artificial intelligence approach attempts to mechanize the
recognition procedure according to the way a person applies its intelligence in visualizing,
analyzing, and finally making a decision on the measured acoustic features. In particular,
among the techniques used within this class of methods are the use of an expert system
for segmentation and labeling so that this crucial and most difficult step can be performed
with more than just the acoustic information used by pure acoustic-phonetic methods
(in particular, methods that integrate phonemic, lexical, syntactic, semantic, and even
pragmatic knowledge into the expert system have been proposed and studied); learning and
adapting over time (i.e., the concept that knowledge is often both static and dynamic and
that models must adapt to the dynamic component of the data); the use of neural networks
for learning the relationships between phonetic events and all known inputs (including
acoustic, lexical, syntactic, semantic, etc.) as well as for discrimination between similar
sound classes.

The use of neural networks could represent a separate structural approach to speech
recognition or be regarded as an implementational architecture that may be incorporated
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Figure 2.32  Block diagram of acoustic-phonetic speech-recognition system.

in any of the above three classical approaches. The concepts and ideas of applying neural
networks to speech-recognition problems are relatively new; hence we will devote a fair
amount of discussion within this chapter to outline the basic ways in which neural networks
are used in general, and applied to problems in speech recognition, in particular. In the
next several sections we expand on the ideas of these three general approaches to speech
recognition by machine.

2.5.1 Acoustic-Phonetic Approach to Speech Recognition

Figure 2.32 shows a block diagram of the acoustic-phonetic approach to speech recognition.
The first step in the processing (a step common to all approaches to speech recognition)
is the speech analysis system (the so-called feature measurement method), which provides
an appropriate (spectral) representation of the characteristics of the time-varying speech
signal. The most common techniques of spectral analysis are the class of filter bank
methods and the class of linear predictive coding (LPC) methods. The properties of these
methods will be discussed in great detail in Chapter 3. Broadly speaking, both of these
methods provide spectral descriptions of the speech over time.

The next step in the processing is the feature-detection stage. The idea here is to
convert the spectral measurements to a set of features that describe the broad acoustic
properties of the different phonetic units. Among the features proposed for recognition are
nasality (presence or absence of nasal resonance), frication (presence or absence of ran-
dom excitation in the speech), formant locations (frequencies of the first three resonances),
voiced-unvoiced classification (periodic or aperiodic excitation), and ratios of high- and
low-frequency energy. Many proposed features are inherently binary (e.g., nasality, frica-
tion, voiced-unvoiced); others are continuous (e.g., formant locations, energy ratios). The
feature-detection stage usually consists of a set of detectors that operate in parailel and
use appropriate processing and logic to make the decision as to presence or absence, or
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value, of a feature. The algorithms used for individual feature detectors are sometimes
sophisticated ones that do a lot of signal processing, and sometimes they are rather trivial
estimation procedures.

The third step in the procedure is the segmentation and labeling phase whereby the
system tries to find stable regions (where the features change very little over the region) and
then to label the segmented region according to how well the features within that region
match those of individual phonetic units. This stage is the heart of the acoustic-phonetic
recognizer and is the most difficult one to carry out reliably; hence various control strategies
are used to limit the range of segmentation points and label possibilities. For example,
for individual word recognition, the constraint that a word contains at least two phonetic
units and no more than six phonetic units means that the control strategy need consider
solutions with between 1 and 5 internal segmentation points. Furthermore, the labeling
strategy can exploit lexical constraints on words to consider only words with n phonetic
units whenever the segmentation gives n — 1 segmentation points. These constraints are
often powerful ones that reduce the search space and significantly increase performance
(accuracy of segmentation and labeling) of the system.

The result of the segmentation and labeling step is usually a phoneme lattice (of
the type shown in Figure 2.31) from which a lexical access procedure determines the best
matching word or sequence of words. Other types of lattices (e.g., syllable, word) can
also be derived by integrating vocabulary and syntax constraints into the control strategy
as discussed above. The quality of the matching of the features, within a segment, to
phonetic units can be used to assign probabilities to the labels, which then can be used in
a probabilistic lexical access procedure. The final output of the recognizer is the word or
word sequence that best matches, in some well-defined sense, the sequence of phonetic
units in the phoneme lattice.

2.5.1.1 Acoustic Phonetic Vowel Classifier

To illustrate the labeling procedure on a segment classified as a vowel, consider the flow
chart of Figure 2.33. We assume that three features have been detected over the segment—
namely, first formant, Fy, second formant, F,, and duration of the segment, D. Consider
just the set of steady vowels (i.e., we exclude the diphthongs). To classify a vowel segment
as one of the 10 steady vowels, several tests can be made to separate groups of vowels.
As shown in Figure 2.33 the first test separates vowels with low F; (called diffuse vowels
and including /i/, /I/, /o/, fU/, fuf) from vowels with high F; (called compact vowels and
including /e/, /2/, /a/, /a/, /o). Each of these subsets can be split further on the basis of F,
measurements, with acute vowels having high F, and grave vowels having low F,. The
third test is one based on segment duration, which separates tense vowels (large values
of D) from lax vowels (small values of D). Finally, a finer test on formant values separates
the remaining unresolved vowels, resolving the vowels into flat vowels (where F; + F,
exceeds a threshold T) and plain vowels (where F, + F; falis below the threshold T).

It should be clear that there are several thresholds embedded within the vowel classi-
fier. Such thresholds are often determined experimentally so as to maximize classification
accuracy on a given corpus of speech.

Sec. 2.5  Approaches to Automatic Speech Recognition by Machine 47

lVOWEL FEATURES

COMPACT/DIFFUSE
{HIGH F1/LOW F1)

EdaAa ileUu
ACUTE/GRAVE ACUTE/GRAVE
(HIGH F2/LOW F2) (HIGH F2/LOW F2)
7 Yb 7 K
TENSE/LAX TENSE/LAX TENSE/LAX TENSE/LAX

(LONG/SHORT) (LONG/SHORT) (LONG/SHORT) (LONG/SHORT)

IN./N /N 7N

FLAT, FLAT/PLAIN
(F1+F2>T/F1+F2<T) (F1+F2>T/F1+F2<T)

NN

Figure 2.33  Acoustic-phonetic vowel classifier.

2.5.1.2 Speech Sound Classifier

Vowel classification is just a small part of the phonetic labeling procedure of an acoustic-
phonetic recognizer. In theory, one needs a method of classifying an arbitrary segment into
one (or more) of the 40 plus phonetic units discussed earlier in this chapter. Rather than
discussing how to solve this very difficult problem, consider the somewhat simpler problem
of classifying a speech segment into one of several broad speech classes—e.g., unvoiced
stop, voiced stop, unvoiced fricative. Again there is no simple or generally well-accepted
procedure for accomplishing this task; however, we show in Figure 2.34 one simple and
straightforward way to accomplish such a classification.

The method uses a binary tree to make decisions as to various broad sound classes.
The first decision is a soundisilence split in which the speech features (primarily energy in
this case) are compared to selected thresholds, and silence is split off if the test is negative
for speech sounds. The second decision is a voiced/unvoiced decision (primarily based on
the presence of periodicity within the segment) in which unvoiced sounds are split apart
from voiced sounds. A test for-unvoiced stop consonants is made (seeing if a stop gap
of silence preceded the segment), and this separates the unvoiced stops (/t/, /p/, /k/, [C/)
from the unvoiced fricatives (/f/, /6/, /s/, /3/). A high-frequencyllow-frequency (energy) test
separates voiced fricatives (/v/, /8/, /z/, /2/) from other voiced sounds. Voiced stops are
separated out by checking to see whether the preceding sound is silence (or silencelike).
Finally, a vowel/sonorant spectral test (searching for spectral gaps) separates vowels from
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Figure 2.34 Binary tree speech sound classifier.

sonorants (nasal consonants and /w/, /l/, fr/, and /y/). The vowel classifier of Figure 2.33
can then be used for finer vowel distinctions.

The tests shown in Figure 2.34 are rather crude and are therefore highly prone to
error. For example, some voiced stop consonants are nor preceded by silence or by a
silencelike sound. Another problem is that no way of distinguishing diphthongs from
vowels is provided. Virtually every decision in the binary tree is subject to scrutiny as to
its utility in any practical system.

2.5.1.3 Examples of Acoustic Phonetic Labeling ;

To illustrate some of the difficulties faced by the acoustic-phonetic approach to speech
recognition, consider the following example. (Shown in the example is the phonetic
labeling of a sentence [only the top-choice phonetic candidate is shown for each segment],
along with its decoding into the proper word sequence.) In this example (taken from
an actual acoustic-phonetic recognizer) we see that there are inserted phonetic units (Y
in “MAY,” AX in “BY"), deleted phonetic units (N in “EARN,” N in “MONEY"), and
phonetic substitutions (J for K in “WORKING,” N for NG in “WORKING”). The difficulty
of proper decoding of phonetic units into words and sentences grows dramatically with
increases in the rates of phoneme insertion, deletion, and substitution.

phonemes:  /sil/  ~/j/-le/-Ind Imi-fel-tyl [xi~di-1of < fr]  Ini-Iaf ~sili-fe/
ARPABET: SIL —JH-EY-N + M -EY-Y +ER-M-AO- R + M -AH-SIL-EY
words: JANE MAY EARN MORE MONEY
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Figure 2.35 Segmentation and labeling for word sequence “seven—six.”

phonemes:  /b/~/a¥/~/ol Mi-I3I-IsiliH/-N-Ind 1N -lal ri-isili-/d/
ARPABET: B -AY-AX+ W-ER-SIL-J—H-N +HH-AA-R-SIL-D
words: BY WORKING HARD

Two other examples of acoustic-phonetic segmentation and labeling are given in
Figures 2.35 and 2.36. Shown in these figures are the energy contour of the speech
signal, the voiced-unvoiced-silence classification over time, the segmentation points, and
the lattice of phonetic units. The “proper” decoding of the lattice corresponding to the
spoken word is shown as the phonetic units enclosed within the solid heavy lines. For
the example of Figure 2.35 (the digit sequence “seven-six™), we see that although most
top phoneme candidate errors are within the same sound class (e.g., /sh/ instead of /s/),
some errors are between classes (e.g., /m/ instead of /v/). For decoding into digits, such
cross-class errors are usually of little significance.

For the example of Figure 2.36 (the word sequence “did you”), the decoding into
phonetic units is only the first step in a difficult decoding problem, because the basic
speech sounds of the words “did” and “you” are phonologically changed in context from
D-IH-D-Y-UW to D-IH-J-UH. This phonological effect exacerbates the problem of acoustic
phonetic decoding even further than the insertion/deletion/substitution problems mentioned
earlier.

2.5.1.4 lIssues in Acoustic Phonetic Approach

Many problems are associated with the acoustic-phonetic approach to speech recog-
nition. These problems, in many ways, account for the lack of success in practical
speech-recognition systems. Among these are the following:
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1. The method requires extensive knowledge of the acoustic properties of phonetic

units. (Recall that the existence of phonetic units is assumed a priori in the acoustic-
phonetic approach. Knowledge of acoustic properties of these phonetic units often is
established in an a posteriori manner.) This knowledge is, at best incomplete, and at

_ worst totally unavailable for all but the simplest of situations (e.g., steady vowels).
. The choice of features is made mostly based on ad hoc considerations. For most

systems the choice of features is based on intuition and is not optimal in a well-defined
and meaningful sense.

. The design of sound classifiers is also not optimal. Ad ho¢ methods are generally

used to construct binary decision trees. More recently classification and regression
tree (CART) methods have been used to make the decision trees more robust [10].
However, since the choice of features is most likely to be suboptimal, optimal
implementation of CART is rarely achieved.

. No well-defined, automatic procedure exists for tuning the method (i.e., adjusting

decision thresholds, etc.) on real, labeled speech. In fact, there is not even an ideal
way of labeling the training speech in a manner consistent and agreed on uniformly
by a wide class of linguistic experts.

Because of all these problems, the acoustic-phonetic method of speech recognition remains
an interesting idea but one that needs much more research and understanding before it can
be used successfully in actual speech-recognition problems.
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Figure 2.37 Block diagram of pattern-recognition speech recognizer.

2.5.2 Sstatistical Pattern-Recognition Approach to Speech Recognition

A block diagram of a canonic pattern-recognition approach to speech recognition is shown
in Figure 2.37. The pattern-recognition paradigm has four steps, namely:

1. Feature measurement, in which a sequence of measurements is made on the input
signal to define the “test pattern.” For speech signals the feature measurements are
usually the output of some type of spectral analysis technique, such as a filter bank
analyzer, a linear predictive coding analysis, or a discrete Fourier transform (DFT)
analysis.

2. Pattern training, in which one or more test patterns corresponding to speech sounds
of the same class are used to create a pattern representative of the features of that
class. The resulting pattern, generally called a reference pattern, can be an exemplar
or template, derived from some type of averaging technique, or it can be a model that
characterizes the statistics of the features of the reference pattern.

3. Pattern classification, in which the unknown test pattern is compared with each
(sound) class reference pattern and a measure of similarity (distance) between the
test pattern and each reference pattern is computed. To compare speech patterns
(which consist of a sequence of spectral vectors), we require both a local distance
measure, in which local distance is defined as the spectral “distance” between two
well-defined spectral vectors, and a global time alignment procedure (often called a
dynamic time warping algorithm), which compensates for different rates of speaking
(time scales) of the two patterns.

4. Decision logic, in which the reference pattern similarity scores are used to decide
which reference pattern (or possibly which sequence of reference pattems) best
matches the unknown test pattern.

The factors that distinguish different pattern-recognition approaches are the types of feature
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measurement, the choice of templates or models for reference patterns, and the method
used to create reference patterns and classify unknown test patterns.

The remaining chapters of this book will discuss all aspects of the model shown
in Figure 2.37. The general strengths and weaknesses of the pattern recognition model
include the following:

1. The performance of the system is sensitive to the amount of training data available
for creating sound class reference patterns; generally the more training, the higher
the performance of the system for virtually any task.

2. The reference patterns are sensitive to the speaking environment and transmission
characteristics of the medium used to create the speech; this is because the speech
spectral characteristics are affected by transmission and background noise.

3. No speech-specific knowledge is used explicitly in the system; hence, the method is
relatively insensitive to choice of vocabulary words, task, syntax, and task semantics.

4, The computational load for both pattern training and pattern classification is generally
linearly proportional to the number of patterns being trained or recognized; hence,
computation for a large number of sound classes could and often does become
prohibitive.

§5. Because the system is insensitive to sound class, the basic techniques are applicable
to a wide range of speech sounds, including phrases, whole words, and subword
units. Hence we will see how a basic set of techniques developed for one sound
class (e.g., words) can generally be directly applied to different sound classes (e.g.,
subword units) with little or no modifications to the algorithms.

6. It is relatively straightforward to incorporate syntactic (and even semantic) con-

- straints directly into the pattern-recognition structure, thereby improving recognition
accuracy and reducing computation.

2.5.3 Artificial Intelligence (Al) Approaches to Speech Recognition

The basic idea of the artificial intelligence approach to speech recognition is to compile and
incorporate knowledge from a variety of knowledge sources and to bring it to bear on the
problem at hand. Thus, for example, the Al approach to segmentation and labeling would
be to augment the generally used acoustic knowledge with phonemic knowledge, lexical
knowledge, syntactic knowledge, semantic knowledge, and even pragmatic knowledge. To
be more specific, we first define these different knowledge sources:

o acoustic knowledge—evidence of which sounds (predefined phonetic units) are
spoken on the basis of spectral measurements and ptesence or absence of features

o lexical knowledge—the combination of acoustic evidence so as to postulate words
as specified by a lexicon that maps sounds into words (or equivalently decomposes
words into sounds)

e syntactic knowledge—the combination of words to form grammatically correct
strings (according to a language model) such as sentences or phrases
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¢ semantic knowledge—understanding of the task domain so as to be able to validate
sentences (or phrases) that are consistent with the task being performed, or which are
consistent with previously decoded sentences

e pragmatic knowledge—inference ability necessary in resolving ambiguity of meaning
based on ways in which words are generally used.

To illustrate the correcting and constraining power of these knowledge sources,
consider the following sentences:

1. Go to the refrigerator and get me a book.
2. The bears killed the rams.

3. Power plants colorless happily old.

4. Good ideas often run when least expected.

The first sentence is syntactically meaningful but semantically inconsistent. The second
sentence can be interpreted in at least two pragmatically different ways, depending on
whether the context is an event in a jungle or the description of a football game between two
teams called the “bears” and the “rams.” The third sentence is syntactically unacceptable
and semantically meaningless. The fourth sentence is semantically inconsistent and can
trivially be corrected by changing the word run to come, a slight phonetic difference.

The word-correcting capability of higher-level knowledge sources is illustrated in
Figure 2.38, which shows the word error probability of a recognizer both with and without
syntactic constraints, as a function of a “deviation” parameter sigma. As the deviation
parameter gets larger, the word error probability increases for both cases; however, without
syntax the word error probability rapidly leads to 1.0, but with syntax it increases gradually
with increases in the noise parameter.

There are several ways to integrate knowledge sources within a speech recognizer.
Perhaps the most standard approach is the “bottom-up” processor (Figure 2.39), in which
the lowest-level processes (e.g., feature detection, phonetic decoding) precede higher-level
processes (lexical decoding, language model) in a sequential manner so as to constrain
each stage of the processing as little as possible. An aiternative is the so-called “top-down”
processor, in which the language model generates word hypotheses that are matched against
the speech signal, and syntactically and semantically meaningful sentences are built up on
the basis of the word match scores. Figure 2.40 shows a system that is often implemented
in the top-down mode by integrating the unit n.«atching, lexical decoding, and syntactic
analyses modules into a consistent framework. (This system will be discussed extensively
in the chapter on large-vocabulary continuous-speech recognition.)

A third alternative is the so-called blackboard approach, as illustrated in Figure 2.41.
In this approach, all knowledge sources (KS) are considered independent; a hypothesis-
and-test paradigm serves as the basic medium of communication among KSs; each KS is
data driven, based on the occurrence of patterns on the blackboard that match the templates
specified by the KS; the system activity operates asynchronously; assigned cost and utility
considerations and an overall ratings policy to combine and propagate ratings across all
levels. The blackboard approach was extensively studied at CMU in the 1970s [11].
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recognition. Therefore, two key concepts of artificial intelligence are automatic knowl-
edge acquisition (learning) and adaptation. One way in which these concepts have been
implemented is via the neural network approach. In this section, we discuss the moti-
vation for why people have studied neural networks and how they have been applied to

INVENTORY
OF SPEECH
RECOGNITION
UNITS

WORD TASK
DICTIONARY, @ MODEL

speech-recognition systems.
Figure 2.42 shows a conceptual block diagram of a speech understanding system
loosely based on a model of speech perception in human beings. The acoustic input SPEECH o
signal is analyzed by an “ear model” that provides spectral information (over time) about — :S:E';g | MATCHING || LEXICAL L __| SYNTACTIC | _| SEMANTIC
the signal and stores it in a sensory information store. Other sensory information (e.g., SYSTEM HYPOTHESES HYPOTHESES HYPOTHESES
from vision or touch) is available in the sensory information store and is used to provide
several “feature-level” descriptions of the speech. Both long-term (static) and short-term
(dynamic) memory are available to the various feature detectors. Finally, after several Uvrégmi
stages of refined feature detection, the final output of the system is an interpretation of the MATCHER
information in the acoustic input. 1
The system of Figure 2.42 is meant to model the human speech understanding system. RECOGNIZED
The auditory analysis is based loosely on our understanding of the acoustic processing in UTTERANCE

the ear. The various feature analyses represent processing at various levels in the neural
pathways to the brain. The short- and long-term memory provide external control of the
neural processes in ways that are not well understood. The overall form of the model is
that of a feed forward connectionist network—that is, a neural net. To better explain the
strengths and limitations of neural networks, we now give a brief introduction to the issues

Figure 240 A top-down approach to knowledge integration for speech recognition.
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Figure 2.41 A blackboard approach to knowledge integration for speech recognition
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Figure 2.42 Conceptual block diagram of a human speech understanding system.

in the theory and implementations of neural networks. Then we return to some practical
proposals for how neural networks could implement actuai speech recognizers. ’

2.5.4.1 Basics of Neural Networks

A neural network, which is also called a connectionist model, a neural net, or a parallel
distributed processing (PDP) model, is basically a dense interconnection of simple, non-
linear, computation elements of the type shown in Figure 2.43. It is assumed that there
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XN-1

Figure 2.43 Simple computation element of a neural network.

are N inputs, labeled x, x, ..., xy, which are summed with weights wy, wy, .
thresholded, and then nonlinearly compressed to give the output y, defined as

N
y=f(2w.~x,»—¢), @1
i=1

where ¢ is an internal threshold or offset, and f is a nonlinearity of one of the types given

oy Wy,

below:
1. hard limiter
+1, x<0
f) = {_1’ £<0 2.2)
or
2. sigmoid functions
f(x) =tanh(Bx), B>0 2.3)
or
1
fx) = Fpped B>0. 24)

'I"h;lsigmoid nonlinearities are used most often because they are continuous and differen-
tiable.

The biological basis of the neural network is a model by McCullough and Pitts [12] of
neurons in the human nervous system, as illustrated in Figure 2.44. This model exhibits all
the properties of the neural element of Figure 2.43, including excitation potential thresholds
for neuron firing (below which there is little or no activity) and nonlinear amplification,
which compresses strong input signals.

2.5.4.2 Neural NeMork Topologies

There are §evera.l issues in the design of so-called artificial neural networks (ANNs), which
model various physical phenomena, where we define an ANN as an arbitrary connection of
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Figure 2.44 McCullough-Pitts model of neurons (after McCullough and Pitts [12]).

simple computational elements of the type shown in Figure 2.43. One key issue is network
topology—that is, how the simple computational elements are interconnected. There are
three standard and well known topologies:

. single/multilayef perceptrons
o Hopfield or recurrent networks
¢ Kohonen or self-organizing networks

In the single/multilayer perceptron, the outputs of one or more simple computational
elements at one layer form the inputs to a new set of simple computational elements of
the next layer. Figure 2.45 shows a single-layer perceptron and a three-layer perceptron.
The single-layer perceptron has N inputs connected to M outputs in the output layer. The
three-layer perceptron has two hidden layers between the input and output layers. What
distinguishes the layers of the multilayer perceptron is the nonlinearity at each layer that
enables the mapping between the input and output variables to possess certain particular
classification/discrimination properties. For example, it can be proven that a single-layer
perceptron, of the type shown in Figure 2.45a, can separate static patterns into classes with
class boundaries characterized by hyperplanes in the (x{,xz,...,xy) space. Similarly, a
multilayer perceptron, with at least one hidden layer, can realize an arbitrary set of decision
regions in the (xy, . . ., xv) space. Thus, for example, if the inputs to a multilayer perceptron
are the first two speech resonances (F; and F,), the network can implement a set of decision
regions that partition the (F; — F) space into the 10 steady state vowels, as shown in
Figure 2.46 [13].
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Figure 2.46 A multilayer perceptron for classifying steady vowels based on Fy, F, (after Lj {13D.

The Hopfield network is a recurrent network in which the input to each computational
e.lement includes both inputs as well as outputs. Thus with the input and output indexed by
time, x;(f) and y,(?), and the weight connecting the /" node and the j node denoted by w;;
the basic equation for the i recurrent computational element is v

o =f [x.—(r) +Y wiye— 1) ¢] @2.5)
i

alzxd a recurrent network with N inputs and N outputs would have the form shown in
Figure 2.47. The most important property of the Hopfield network is that when wij = wj; and
when thg recurrent computation (Eq. (2.5)) is performed asynchronously, for an arbitrary
coqstant input, the network will eventually settle to a fixed point where y,() = yi(¢ — 1) for
all i. These fixed relaxation points represent stable configurations of the network and can
be used in applications that have a fixed set of patterns to be matched (e.g., printed letters)
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Figure 2.48 A fixed point interpretation of the Hopfield network.

in the form of a content addressable or associative memory. A $imple interpretation of the
Hopfield network is shown in Figure 2.48, which shows that the recurrent network has a
stable set of attractors and repellers, each forming a fixed point in the input space. Every
input vector, X, is either “attracted” to one of the fixed points or “repelled” from another
of the fixed points. The strength of this type of network is its ability to correctly classify
“noisy” versions of the patterns that form the stable fixed points.

The third popular type of neural network topology is the Kohonen, self-organizing
feature map, which is a clustering procedure for providing a codebook of stable patterns in
the input space that characterize an arbitrary input vector, by a small number of represen-
tative clusters. We defer a discussion of this type of network to the next chapter, where the
ideas of vector quantization are presented in detail.

2.5.4.3 Network Characteristics

Four model characteristics must be specified to implement an arbitrary neural network:
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1. number and type of inputs—The issues involved in the choice of inputs to a neural
network are similar to those involved in the choice of features for any pattern-
classification system. They must provide the information required to make the
decision required of the network.

2. connectivity of the network—This issue involves the size of the network—that is, the
number of hidden layers and the number of nodes in each layer between input and
output. There is no good rule of thumb as to how large (or small) such hidden layers
must be. Intuition says that if the hidden layers are large, then it will be difficult to
train the network (i.e., there will be too many parameters to estimate). Similarly, if the
hidden layers are too small, the network may not be able to accurately classify all the
desired input patterns. Clearly practical systems must balance these two competing
effects.

3. choice of offset—The choice of the threshold, ¢, for each computational element
must be made as part of the training procedure, which chooses values for the
interconnection weights (wy;) and the offset, ¢.

4. choice of nonlinearity—Experience indicates that the exact choice of the nonlinearity,
£, is not very important in terms of the network performance. However, f must be
continuous and differentiable for the training algorithm to be applicable.

2.5.4.4 Training of Neural Network Parameters

To completely specify a neural network, values for the weighting coefficients and the
offset threshold for each computation element must be determined, based on a labeled
set of training data. By a labeled training set of data, we mean an association between
a set of Q input vectors X,,X;, . ..,Xg and a set of Q output vectors y;, yz, . .. , Yo where
X| = ¥1,X2 = ¥2,...,Xg = ¥o. Formultilayer perceptrons a simple iterative, convergent
procedure exists for choosing a set of parameters whose value asymptotically approaches
a stationary point with a certain optimality property (e.g., a local minimum of the mean
squared error, etc.). This procedure, called back propagation learning, is a simple stochastic
gradient technique. For a simple, single-layer network, the training algorithm can be
realized via the following convergence steps:

Perceptron Convergence Procedure

1. Initialization: At time ¢ = 0, set w;;(0), ¢; to small random values (where w; are
the weighting coefficients connecting ' input node and / output node and ¢; is the
offset to a particular computational element, and the w;; are functions of time).

2. Acquire Input: At time 1, obtain a new input X = {x,xs,...,xy} with the desired

output, y* = {y%,y%,.. -_1)’;4}-

3. Calculate Output:
N
Yi =f(z wii(t)x; — 4’1) .

i=1
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4, Adapt Weights: Update the weights as
W,'j(t +1)= W,'j(t) +7T@® w - y]'] - X;

where the “step size” T (¢) satisfies the constraints:

T
a. lim. ; T(t) = o0
T
: 2
b. Jim ; T2 < 00

That is, compute the gradient of the error ZM= o= y;)? in the direction of the weight
wy(f). (A conventional choice of 7(r) is 1/1.)
5. Iteration: Iterate steps 2—4 until:

wi(t + 1) = wy(1), Vi, t, j.

The perceptron convergence procedure is a slow, methodical procedure for estimating the
coefficients of a system (a classifier as well as a neural network) based on a mean squared
error criterion and has been extensively studied for several decades. The algorithm is
simple and is guaranteed to converge, in probability, under a restricted set of conditions on
T(r). However, its speed of convergence in many cases is not sufficiently fast. Alternative
procedures for estimating neural network coefficients have been used with varying degrees
of success.

2.5.4.5 Advantages of Neural Networks

Neural networks have been given serious consideration for a wide range of problems
(including speech recognition) for several reasons. These include the following:

1. They can readily implement a massive degree of parailel computation. Because a
neural net is a highly parallel structure of simple, identical, computational elements,
it should be clear that they are prime candidates for massively parallel (analog or
digital) computation.

2. They intrinsically possess a great deal of robustness or fault tolerance. Since the
“information” embedded in the neural network is “spread” to every computational
element within the network, this structure is inherently among the least sensitive of
networks to noise or defects within the structure.

3. The connection weights of the network need not be constrained to be fixed; they can
be adapted in real time to improve performance. This is the basis of the concept of
adaptive learning, which is inherent in the neural network structure.

4. Because of the nonlinearity within each computational element, a sufficiently large
neural network can approximate (arbitrarily closely) any nonlinearity or nonlinear
dynamical system. Hence neural networks provide a convenient way of implementing
nonlinear transformations between arbitrary inputs and outputs and are often more
efficient than alternative physical implementations of the nonlinearity.
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Figure 2.49 The time delay neural network computational element (after
‘Waibel et al. [14]).

2.5.4.6 Neural Network Structures for Speech Recognition

Conventional artificial neural networks are structured to deal with static patterns. As
discussed throughout this chapter, speech is inherently dynamic in nature. Hence, some
modifications to the simple structures discussed in the previous sections are required for all
but the simplest of problems. There is no known correct or proper way of handling speech
dynamics within the framework already discussed; however, several reasonable structures
have been proposed and studied and we will point out a few such structures in this section.

Perhaps the simplest neural network structure that incorporates speech pattern dy-
namics is the time delay neural network (TDNN) computation element shown in Figure 2.49
[14]. This structure extends the input to each computational element to include N speech
frames (i.e., spectral vectors that cover a duration of NA seconds, where A is the time
separation between adjacent speech spectra). By expanding the input to NV frames (where
N is on the order of 15), various types of acoustic-phonetic detectors become practical via
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the TDNN. For example, Figure 2.50 shows a TDNN network with two hidden layers that
has been used to distinguish /b/ from /d/ from /g/.

A somewhat different neural network architecture for speech recognition, which
combines the concept of a matched filter with a conventional neural network to account
for the dynamic within speech, is shown in Figure 2.51 [15]. The “acoustic features™
of the speech are estimated via conventional neural network arChitectures; the pattern
classifier takes the detected acoustic feature vectors (delayed appropriately) and convolves
them with filters “matched” to the acoustic features and sums up the results over time.
At the appropriate time (corresponding to the end of some speech unit to be detected or
recognized), the output units indicate the presence of the speech.

To illustrate how the network of Figure 2.51 could be used for speech recognition,
consider, as shown in Figure 2.52, a “sound” to be recognized that is characterized (in some
type of sound lexicon) as the sequence of acoustic features (a, €, 6, 8,~). Assume that this
sound is the input to an appropriately designed network of the type shown in Figure 2.51,
and the input is as shown in the first line of Figure 2.52. When the acoustic feature o is
detected (as indicated by the line labeled D, (#)), it is delayed and then convolved with a
matched filter with a long time spreading function, yielding the signal D,(t — 7) x Po(7) as
shown in the next line of the figure. Similarly acoustic features €, §, 8, and ~y are detected,
delayed appropriately, and convolved with the appropriate matched filter, as shown in the
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Figure 2.51 A combination neural network and matched filter for speech recognition
(after Tank & Hopfield [15]).

succeeding lines in Figure 2.52. Finally, at the end of the sequence, the convolved outputs
are summed up and yield a large value, indicating the recognition of the appropriate sound.

Finally, yet a third way of integrating temporal information into a neural network is
shown in Figure 2.53. This network is called a hidden control neural network (HCNN)
(16] and uses the time varying control, ¢, as a supplement to the standard input, x, to allow

the network properties (input-output relations) to change over time in a well-prescribed
manner.

2.6 SUMMARY

In this chapter we have presented a brief discussion of the basic speech-production/
perception mechanism in human beings, and we have illustrated how we can exploit the so-
called acoustic-phonetic properties of speech to identify basic sounds. Acoustic-phonetics
?s the broad underpinning of all speech-recognition work. Differences in approach lie
in the degree of reliance on how much acoustic-phonetics can be used in the recogni-
tion process. At one extreme is the class of acoustic-phonetic recognition methods that
places total reliance on the acoustic-phonetic mapping; at the other extreme is the class
of pattern-recognition approaches that do not make a priori assumptions on the phonetic
characteristics and instead choose to “relearn” the appropriate acoustic-phonetic mapping
for specific word vocabularies and tasks via an appropriately designed training set. Finally,
there is the hybrid class of artificial intelligence approaches that exploit, in various degrees,
aspects of both extreme views of the speech-recognition process. We also discussed the
fundamentals of neural networks, which can be considered a separate structural approach,
as well as a new pattern classifier design, with potential to benefit or advance all three
classical approaches described in this chapter.




Chap. 2  The Speech Signal

time —=

a . € .S}B:)':

RS

Da“‘r)°Pa(T) ‘/_\

De(t) | e—
Delt-T)0Pe(T) _/_\
Oy (") 1

Da(t-T) o Py(T) /\
Oglt) 1

Dalt-T) @ Py(T) /\_
Dy(t) ™

Dy(t=T) o Py(T) /\__
3 Oglt-) e Pe(v)

Figure 2.52 Example illustrating the combination of a neural network and a set of matched filters (after
Tank & Hopfield [15]).

In the remainder of this book we will primarily discuss aspects of the pattern-

recognition approach to speech recognition. However, the alternative methods will always
be lurking just below the surface of our discussion.
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Figure 2.53 The hidden control neural network (after Levin [16]).
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Chapter 3

SIGNAL PROCESSING
AND ANALYSIS METHODS
FOR SPEECH RECOGNITION

3.1 INTRODUCTION

As discussed in Chapter 1, a speech-recognition system, at its most elementary level,
comprises a collection of algorithms drawn from a wide variety of disciplines, including
statistical pattern recognition, communication theory, signal processing, combinatorial
mathematics, and linguistics, among others. Although each of these areas is relied on to
varying degrees in different recognizers, perhaps the greatest common denominator of all
recognition systems is the signal-processing front end, which converts the speech waveform
to some type of parametric representation (generally at a considerably lower information
rate) for further analysis and processing. Because of the singular importance of signal-
processing techniques to the understanding of how speech recognizers are designed and
how they function, we devote this chapter to a discussion of the most commonly used
techniques in this area.

A wide range of possibilities exists for parametrically representing the speech signal.
These include the short time energy, zero crossing rates, level crossing rates, and other
related parameters. Probably the most important parametric representation of speech is
the short time spectral envelope, as discussed in Chapter 2. Spectral analysis methods
are therefore generally considered as the core of the signal-processing front end in a
speech-recognition system. In this chapter we discuss two dominant methods of spectral
analysis—namely, the filter-bank spectrum analysis model, and the linear predictive coding
(LPC) spectral analysis model. Also discussed in this chapter is the technique called vector
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quantization, which is a procedure for encoding a continuous spectral representation by
a “typical” spectral shape in a finite codebook (collection) of spectral shapes, thereby
reducing the information rate of the signal processing even further. The technique of vector
quantization can be applied to any spectral representation, including both the filter bank
and LPC models.

Finally, we close with a brief discussion of an auditory signal-processing model that
has been proposed as an alternative to both filter banks and LPC models for speech spectral
analysis. The argument for such a model is that, because it is based on known properties
of the human auditory system (i.e., a model of cochlea mechanics), it is inherently a better
representation of the relevant spectral information than either a filter-bank or an LPC model,
and furthermore it should be quite robust to noise and reverberation.

3.1.1 Spectral Analysis Models

To motivate our discussion and see how the signal-processing techniques fit into our canonic
recognition systemn models, let us review the pattern-recognition model of Figure 3.1a and
the acoustic-phonetic model of Figure 3.1b. The three basic steps in the pattern-recognition
model are (1) parameter measurement (in which a test pattern is created), (2) pattern
comparison, and (3) decision making. The function of the parameter measurement block
is to represent the relevant acoustic events in the speech signal in terms of a compact,
efficient set of speech parameters. Although the choice of which parameters to use is
dictated by other considerations (e.g., computational efficiency, type of implementation,
available memory), the way in which the chosen representation is computed is based strictly
on signal-processing considerations. In a similar manner, in the acoustic-phonetic model
of recognition, the first step in the processing is essentially identical to that used in the
pattern-recognition approach—namely, parameter measurement—although the steps that
follow are markedly different. Hence, it is clear that a good fundamental understanding
of the way in which we use signal-processing techniques to implement the parameter-
measurement phase of the recognizer is mandatory for understanding the strengths and
shortcomings of the various approaches to speech recognition that have been proposed and
studied in the literature.

As mentioned previously, the two most common choices of a signal-processing front
end for speech recognition are a bank-of-filters model and an LPC model. The overall
structure of the bank-of-filters model is shown in Figure 3.2. The speech signal, s(n),
(assumed to be in digital form throughout this book), is passed through a bank of Q bandpass
filters whose coverage spans the frequency range of interest in the signal (e.g., 1003000 Hz
for telephone-quality signals, 100-8000 Hz for broadband signals). The individual filters
can and generally do overlap in frequency, as shown at the bottom of Figure 3.2. The
output of the i bandpass filter, X,(¢/') (where w; is the normalized frequency 2xf; /Fs,
with F, the sampling frequency) is the short-time spectral representation of the signal s(n),
at time n, as seen through the /" bandpass filter with center frequency w;. It can readily
be seen that in the bank-of-filters model each bandpass filter processes the speech signal
independently to produce the spectral representation X,. The LPC analysis approach, as
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illustrated in Figure 3.3, performs spectral analysis on blocks of speech (speech frames)
with an all-pole modeling constraint. This means that the resulting spectral representation
X,(¢/) is constrained to be of the form /A(¢/), where A(¢*) is a p™ order polynomial
with z-transform

A =1+aiz ' +az2+--- +apz?.

The order, p, is called the LPC analysis order. Thus the output of the LPC spectral analysis
block is a vector of coefficients (LPC parameters) that specify (parametrically) the spectrum
of an all-pole model that best matches the signal spectrum over the period of time in which
the frame of speech samples was accumuiated. '

Although alternative signal-processing front-end processors have been proposed for
speech-recognition systems, the filter-bank and LPC models have proven themselves to give
the highest performance in practical speech-recognition systems. Thus, in this chapter, we
will discuss these two analysis approaches in greater detail and show how they fit into the
framework of the pattern-recognition and acoustic-phonetic approaches to recognition.
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3.2 THE BANK-OF-FILTERS FRONT-END PROCESSOR

A block diagram of the canonic structure of a complete filter-bank front-end analyzer is
given in Figure 3.4. The sampled speech signal, s(n), is passed through a bank of Q
bandpass filters, giving the signals

si(n) = s(n) * hi(n), 1<i<Q (3.1a)
M;—1
=Y hims(n —m), (3.1b)
m=0 .

where we have assumed that the impulse response of the i bandpass filter is A;(m) with
a duration of M; samples; hence, we use the convolution representation of the filtering
operation to give an explicit expression for s;(n), the bandpass-filtered speech signal. Since
the purpose of the filter-bank analyzer is to give a measurement of the energy of the speech
signal in a given frequency band, each of the bandpass signals, si(n), is passed through a
nonlinearity, such as a full-wave or half-wave rectifier. The nonlinearity shifts the bandpass
signal spectrum to the low-frequency band as well as creates high-frequency images. A
lowpass filter is used to eliminate the high-frequency images, giving a set of signals, u;(n),
1 < i < Q, which represent an estimate of the speech signal energy in each of the Q
frequency bands.

To more fully understand the effects of the nonlinearity and the lowpass filter, let us
assume that the output of the i" bandpass filter is a pure sinusoid at frequency w;, i.e.

s,-(n) =o; sin(win). (3.2)

This assumption is valid for speech in the case of steady state voiced sounds when the
bandwidth of the filter is sufficiently narrow so that only a single speech harmonic is passed
by the bandpass filter. If we use a full-wave rectifier as the nonlinearity, that is,

fGsim)) =si(m) forsin) >0

33)
= —si(n) fors;(n) <O.
Then we can represent the nonlinearity output as
vi(n) = f(si(n)) = si(n) - w(n), (34
where ) = { +1 ifsi(n) >0 35
-1 ifs;(n) <0

as illustrated in Figure 3.5(a)<(c). Since the nonlinearity output can be viewed as a
modulation in time, as shown in Eq. (3.4), then in the frequency domain we get the result
that

Vi(e™) = 5(e) @ W(e™), 3.6)

where V;(e/), Si(¢“), and W(e™) are the Fourier transforms of the signals vi(n), si(n)
and w(n), respectively, and ® is circular con_volution. The spectrum S;(¢/) is a single
impulse at wy = w;, whereas the spectrum W(e/“) is a set of impulses at the odd-harmonic
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Figure 3.5 Typical waveforms and spectra for analysis of a pure sinusoid
in the filter-bank model.

frequencies w, = wiq, ¢ = 1,3,...,gma. Hence the spectrum of Vi(e™) is an impulse at
w = 0 and a set of smaller amplitude impulses at w, = wiq, ¢ = 2,4,6,..., as shown in
Figure 3.5 (d)—(f). The effect of the lowpass filter is to retain the DC component of Vi(e®)
and to filter out the higher frequency components due to the nonlinearity.

The above analysis, although only strictly correct for a pure sinusoid, is a reasonably
good model for voiced, quasiperiodic speech sounds so long as the bandpass filter is not so
wide that it has two or more strong signal harmonics. Because of the time-varying nature of
the speech signal (i.e., the quasiperiodicity), the spectrum of the lowpass signal is not a pure
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Figure 3.6 Typical waveforms and spectra of a voice speech signal in the bank-of-filters
analysis model.

DC impulse, but instead the information in the signal is contained in a low-frequency band
around DC. Figure 3.6 illustrates typical waveforms of s(n), s/(n), w(n) and v;(n) for a brief
(20 msec) section of voiced speech processed by a narrow bandwidth channel with center
frequency of 500 Hz (sampling frequency for this example is 10,000 Hz). Also shown
are the resuiting spectral magnitudes for the four signals. It can be seen that |Si(e™)| has
most of its energy around 500 Hz (w = 1000~), whereas |W,-(e"")| (which is quasiperiodic)
approximates an odd harmonic signal with peaks at 500, 1500, 2500 Hz. The resulting
signal spectrum, |Vi(e)|, shows the desired low-frequency concentration of energy as
well as the undesired spectral peaks at 1000 Hz, 2000 Hz, etc. The role of the final lowpass
filter is to eliminate the undesired spectral peaks.

The bandwidth of the signal, v;(n), is related to the fastest rate of motion of speech
harmonics in a narrow band and is generally acknowledged to be on the order of 20-30 Hz.
Hence, the final two blocks of the canonic bank-of-filters model of Figure 3.4 are a sampling
rate reduction box in which the lowpass-filtered signals, #;(n), are resampled at a rate on
the order of 4060 Hz (for economy of representation), and the signal dynamic range is
compressed using an amplitude compression scheme (e.g., logarithmic encoding, p-law
encoding).

Consider the design of a Q = 16 channel filter bank for a wideband speech signal
where the highest frequency of interest is 8 kHz. Assume we use a sampling rate of
F; = 20 kHz on the speech data to minimize the effects of aliasing in the analog-to-digital
conversion. The information (bit rate) rate of the raw speech signal is on the order of
240 kbits per second (20 k samples per second times 12 bits per sampie). At the output of
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Figure 3.7 Ideal (a) and realistic (b) set of filter responses of a Q-channel filter bank
covering the frequency range F,/N to (Q + 'A)F:/N.

the analyzer, if we use a sampling rate of 50 Hz and we use a 7 bit logarithmic amplitude
compressor, we get an information rate of 16 channels times 50 samples per second per
channel times 7 bits per sample, or 5600 bits per second. Thus, for this simple example
we have achieved about a 40-to-1 reduction in bit rate, and hopefully such a data reduction
would result in an improved representation of the significant information in the speech
signal.

3.2.1 Types of Filter Bank Used for Speech Recognition

The most common type of filter bank used for speech recognition is the uniform filter bank
for which the center frequency, f;, of the /™ bandpass filter is defined as

A=t 15igg EE)

where F is the sampling rate of the speech signal, and N is the number of uniformly spaced
filters required to span the frequency range of the speech. The actual number of filters used
in the filter bank, Q, satisfies the relation

Q@ <N/2 (3.8

with equality when the entire frequency range of the speech signal is used in the analysis.
The bandwidth, b;, of the i filter, generally satisfies the property

b2 (39)
with equality meaning that there is no frequency overlap between adjacent filter channels,
and with inequality meaning that adjacent filter channels overlap. (If b; < F/N, then
certain portions of the speech spectrum would be missing from the analysis and the resuiting
speech spectrum would not be considered very meaningful.) Figure 3.7a shows a set of @
ideal, non-overlapping, bandpass filters covering the range from F,/N( /) to (Fs/N)XQ +
/). Similarty Figure 3.7b shows a more realistic set of Q overlapping filters covering
approximately the same range.
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The alternative to uniform filter banks is nonuniform filter banks designed according
to some criterion for how the individual filters should be spaced in frequency. One
commonly used criterion is to space the filters uniformly along a logarithmic frequency
scale. (A logarithmic frequency scale is often justified from a human auditory perception
point of view, as will be discussed in Chapter 4.) Thus for a set of Q bandpass filters with
center frequencies, f;, and bandwidths, b;, 1 < i < Q, we set

bh=C (3.10a)
b,'=0bi-|, ZSISQ (3.10'3)
i—1
_ o, bi—b)
f,—fn+j§b,+ > G.11)

where C and f are the arbitrary bandwidth and center frequency of the first filter, and a is
the logarithmic growth factor.

The most commonly used values of a are & = 2, which gives an octave band spacing
of adjacent filters, and & = 4/3 which gives a 1/3 octave filter spacing. Consider the
design of a four band, octave-spaced, non-overlapping filter bank covering the frequency
band from 200 to 3200 Hz (with a sampling rate of 6.67 kHz). Figure 3.8a shows the ideal
filters for this filter bank. Values for f; and C of 300 Hz and 200 Hz are used, giving the
following filter specifications:

Flter1: f; =300Hz, &, =200Hz
Filter2: £, =600Hz, &, =400Hz
Filter 3: f; = 1200Hz, b; =800 Hz
Filter4: f; =2400Hz, b, = 1600 Hz

An example of a 12-band, 1/3-octave, ideal filter-bank specifications, covering the band
from about 200 to 3200 Hz, is given in Figure 3.8b. For this example, C = 50 Hz, and
f 1 =~ 225 Hz. 7

An alternative criterion for designing a nonuniform filter bank is to use the critical
band scale directly. The spacing of filters along the critical band is based on perceptual
studies and is intended to choose bands that give equal contribution to speech articulation.
The general shape of the critical band scale is given in Figure 3.9. The scale is close to
linear for frequencies below about 1000 Hz (i.e., the bandwidth is essentially constant as a
function f), and is close to logarithmic for frequencies above 1000 Hz (i.e., the bandwidth
is essentially exponential as a function of f). Several variants on the critical band scale
have been used, including the mel scale and the bark scale. The differences between
these variants are small and are, for the most part, insignificant with regard to design of
filter banks for speech-recognition purposes. For example, Figure 3.8c shows a 7-band
critical-band filter-bank specification.

Other criteria for designing nonuniform filter banks have been proposed in the liter-
ature. For the most part, the uniform and nonuniform designs based on critical band scales
have been the most widely used and studied filter-bank methods.
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Implementations of Filter Banks

A filter bank can be implemented in several ways, depending on the method used to design
the individual filters. Design methods for digital filters fall into two broad classes: (1)
infinite impulse response (IIR) and (2) finite impulse response (FIR) methods. For IIR
filters (also commonly called recursive filters in the literature), the most straightforward,
and generally the most efficient implementation is to realize each individual bandpass filter
as a cascade or parallel structure. (See Reference [1], pp. 4046, for a discussion of such
structures.)

For FIR filters there are several possible methods of implementing the bandpass filters
in the filter bank. The most straightforward and the simplest implementation is the direct
form structure. In this case, if we denote the impulse response for the / channel as h;(r),
0 < n < L — 1, then the output of the i* channel, x;(n), can be expressed as the discrete,
finite convolution of the input signal, s(n), with the impulse response, h;(n), i.e.

xi(n) = s(n) = hi(n) (3.12a)
L-1

= Z hi(m)s(n — m). (3.12b)
m=0

The computation of Eq. (3.12) is iterated on each channel i, for i = 1,2,...,Q. The
advantages of the convolutional, direct form structure are its simplicity and that it works
for arbitrary hi(n). The disadvantage of this implementation is the high computational
requirement. Thus for a Q-channel FIR filter bank, where each bandpass FIR filter has an
impulse response of L samples duration, we require

CorFr =LQ -+ (multiplication, addition) (3.13)

for a complete evaluation of x;(n), i = 1,2,...,Q, at a single value of n.

An alternative, less-expensive implementation can be derived for the case in which
each bandpass filter impulse response can be represented as a fixed lowpass window, w(n),
modulated by the complex exponential, ¢“”—that is,

’

hi(n) = w(n)e“". (3.19)
In this case Eq. (2.12b) becomes

xi(n) = Z w(m)e™™s(n — m)
= Z s(m) win — mye/“in—m

= gwin Z s(mw(n — m)ev‘f“""" (3.15a)

m

= &“n5, (e, (3.15b)

where S,(¢/) is the short-time Fourier transform of $(n) at frequency w; = 2af;. The
importance of Eq. (3.15) is that efficient procedures often exist for evaluating the short-
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Figure 3.10  The signals s(m) and w(n — m) used in evaluation of the short-time Fourier transform.

time Fourier transform using FFT methods. We will discuss such procedures shortly; first,
however, we briefly review the interpretations of the short-time Fourier transform (see
Ref. [2] for a more complete discussion of this fascinating branch of signal processing).

3.2.2.1 Frequency Domain Interpretation of the Short-Time Fourier
Transform

The short-time Fourier transform of the sequence s(m) is defined as

Sa(e¥) = Z s(mw(n — m)e /™. (3.16)

If we take the point of view that we are evaluating S,(e¢*) for a fixed n = ng, then we can
interpret Eq. (3.16) as

So(e") = FT[s(m)w(ng — m)]|

where FT[-] denotes the Fourier Transform. Thus S,,(¢/“%) is the conventional Fourier
transform of the windowed signal, s(m) w(ng — m), evaluated at the frequency w = w;.
Figure 3.10 illustrates the signals s(m) and w(n — m), at times n = np = 50, 100, and 200 to
show which parts of s(m) are used in the computation of the short-time Fourier transform.
Since w(m) is an FIR filter (i.e., of finite size), if we denote that size by L, then using the
conventional Fourier transform interpretation of S,(¢/%), we can state the following:

3.17)

w=w;

1. If L is large, relative to the signal periodicity (pitch), then S,(¢") gives good fre-

quency resolution. That is, we can resolve individual pitch harmonics but only

" roughly see the overall spectral envelope of the section of speech within the window.

2. If L is small relative to the signal periodicity, then S,(e') gives poor frequency

resolution (i.e., no pitch harmonics are resolved), but a good estimate of the gross
spectral shape is obtained.

To illustrate these points, Figures 3.11-3.14 show examples of windowed signals,
s(m)w(n — m), (part a of each figure) and the resulting log magnitude short time spectra,
20 log |S,,(ei“’)| (part b of each figure). Figure 3.11 shows results for an L = 500-point
Hamming window applied to a section of voiced speech. The periodicity of the signal is
clearly seen in the windowed time waveform, as well as in the short-time spectrum in which
the fundamental frequency and its harmonics show up as narrow peaks at equally spaced
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Figure 3.11 Short-time Fourier transform using a long (500 points or 50 msec)
Hamming window on a section of voiced speech.
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Figure 3.15 Lincar filter interpretation of the short-time Fourier
transform.

frequencies. Figure 3.12 shows a similar set of comparisons for an L = 50-point Hamming
window. For such short windows, the time sequence s(m)w(n ~ m) does not show the signal
periodicity, nor does the signal spectrum. In fact, what we see in the short-time Fourier
transform log magnitude is a few rather broad peaks in frequency corresponding roughly
to the speech formants.

Figures 3.13 and 3.14 show the effects of using windows on a section of unvoiced
speech (corresponding to the fricative /sh/) for an L = 500 sample window (Figure 3.13)
and L = 50 sample window (Figure 3.14). Since there is no periodicity in the signal, the
resulting short-time spectral magnitude of Figure 3.13, for the L = 500 sample window
shows a ragged series of local peaks and valleys due to the random nature of the unvoiced
speech. Using the shorter window smoothes out the random fluctuations in the short-time
spectral magnitude and again shows the broad spectral envelope very well.

3.2.2.2 Linear Filtering Interpretation of the Short-Time Fourier Transform

The linear filtering interpretation of the short-time Fourier transform is derived by consid-
ering Sx(e"), of Eq. (3.16), for fixed values of w;, in which case we have

Sa(&) = s(m)e " ® w(n). (3.18)

That is, S,(e/*) is a convolution of the lowpass window, w(n), with the speech signal, s(n),
modulated to center frequency w;. This linear filtering interpretation of S,(e) is illustrated
in Figure 3.15.

If we denote the conventional Fourier transforms of s(n) and w(n) by S(e™) and
W(e™), then we see that the Fourier transform of 5(n) of Figure 3.15 is just

$(e¥) = S(fr) (3.19)

and thus we get .
FT(Sa(e)) = SE@“T)W(e™). (3.20)

Since W(e/*) approximates 1 over a narrow band, and is O everywhere else, we see that, for
fixed values, w;, the short-time Fourier transform gives a signal representative of the signal
spectrum in a band around w;. Thus the short-time Fourier transform, S,(¢/), represents
the signal spectral analysis at frequency w by a filter whose bandwidth is that of W(e).
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3.2.2.3 Review Exercises

Exercise 3.1
A speech signal is sampled at a rate of 20,000 samples per second (F; = 20 kHz). A 20-msec
window is used for short-time spectral analysis, and the window is moved by 10 msec in
consecutive analysis frames. Assume that a radix-2 FFT is used to compute DFTs.

1. How many speech samples are used in each segment?

2. What is the frame rate of the short-time spectral analysis?

3. What size DFT and FFT are required to guarantee that no time-aliasing will occur?

4. What is the resulting frequency resolution (spacing in Hz) between adjacent spectral

samples?

Solution 3.1
1. Twenty msec of speech at the rate of 20,000 samples per second gives

20 x 10~ sec x 20,000 samples/sec = 400 samples.

Each section of speech is 400 samples in duration.

2. Since the shift between consecutive speech frames is 10 msec (i.e., 200 samples at a
20,000 samples/sec rate), the frame rate is

1 1

frame shift ~ 10 x 10-3 sec
That is, 100 spectral analyses are performed per second of speech.

3. To avoid time aliasing in using the DFT to evaluate the short-time Fourier transform,
we require the DFT size to be at least as large as the frame size of the analysis frame.
Hence, from part 1, we require at least a 400-point DFT. Since we are using a radix 2
FFT, we require, in theory, a 512-point FFT (the smallest power of 2 greater than 400) to
compute the DFT without time aliasing. (We would use the 400 speech samples as the
first 400 points of the 512-point array; we pad 112 zero-valued samples to the end of the
array to fill in and give a 512-point array.) Since the speech signal is real (as opposed
to complex), we can use an FFT size of 256 by appropriate signal preprocessing and
postprocessing with a complex FFT algorithm.

4. The frequency resolution of the analysis is defined as

frame rate =

= 100/sec.

sampling rate _ 20,000 Hz
DFTsize 512

frequency resolution = 2 39 Hz.

Exercise 3.2
If the sequences s(n) and w{(n) have normal (long-time) Fourier transforms S(¢) and w(e),
then show that the short-time Fourier transform

oo

Su(e”) = Z s(myw(n — m)e "

m=—co

can be expressed in the form

S.(e) = 2_1_7r W™ s+ 9)db.
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That is, S.(¢*) is a smoothed (by the window spectrum) spectral estimate of S(¢*) at frequency
w.

Solution 3.2
The long-time Fourier transforms of s(n) and w(n) can be expressed as

S@) =Y stme

W) = Y wime ™.
The window sequence, w(n), can be recovered from its long-time Fourier transform via the
integration

1 [* o joon
win) = 7 W) duw.

-
Hence, the short-time Fourier transform

5@y =D stmwin — mye™"

can be put in the form (by substituting for w(n — m)):
Sy =Y stm) [51; / W(e"w""-"’de} eiom

_1 [T e e] © ~Hu+Om
=5 /_ *W(e‘ )e Lf\;s(m)e ]da

=L W) s+ )db.
2

v/
Exercise 3.3
If we define the short-time spectrum of a signal in terms of its short-time Fourier transform as
Xu€) = |$:(e*)]

and we define the short-time autocorrelation of the signal as

Rib)= Y win—mis(myw(n — k= m) s(m + B)

then show that for - .
SE) = Y stmwin — mye™"

Ru(k) and X,(¢™) are related as a normal (long-time) Fourier transform pair. In other words,
show that X,(¢“) is the (long-time) Fourier transform of R,(k), and vice versa.
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Solution 3.3
Given the definition of S,(¢) we have

Xo(€) = |54 = [S:@NSHE)"

= i s(mywin — m)e ™™ '] Lf: s(ryw(n — r)f‘""}

—00 -0

= i f: w(n—m)s(m)w(g—r)s(r)e”""“"‘"

r=-—-00 m=—00

Let r = k + m, then:

X@y= 3 | D stmwin — mystm + by win — k — m)] ot

k=—~00 'm=—o00
o o
= ) R0 = Y Rt
k==00 k==00

(since R,(k) = Ry(—k)); therefore

Xa(e*) = [Su(e)|" 5 Rath).

3.2.2.4 FFT implementation of Uniform Filter Bank Based on the Short-Time
Fourier Transform

We now retum to the question of how to efficiently implement the computation of the set
of filter-bank outputs (Eq. (3.15)) for the uniform filter bank. If we assume, reasonably,
that we are interested in a uniform frequency spacing—that is, if

fi=iF/N), i=0,1,....N—1 321
then Eq. (3.15a) can be written as
xi(m) = & S~ smywin — m)e (¥ )im, (3.22)

Now consider breaking up the summation over m, into a double summation of r and £, in
which

m=Nr+k, 0<k<N-1, —oc0<r<oo. (3.23)
In other words, we break up the computation over m into pieces of size N. If we let
Sa(m) = s(m)w(n — m), 329
then Eq. (3.22) can be written as
~1
xi(n) = e’(‘ﬁ‘)"‘ Z ES"(N,- + k)} e-j(zi)i(Nr+k)‘ (3.25)

r “k=0
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Since e~/2%" = 1, forall i, r, then

N-1

xi(n) = UFIn S [Z su(NF + k)] eIk (3.26)
k=0"% r
If we define
Uy =Y suNr+k), O<k<N-1 327
we wind up with
N-1
xn) = XIFY [z u,me—f(w] 2%
k=0

which is the desired result; that is, x;(n) is a modulated N-point DFT of the sequence u,(k).
Thus the basic steps in the computation of a uniform filter bank via FFT methods are
as follows:

1. Form the windowed signal s,(m) = s(m) win —m),m =n— L+ 1,...,n, where
w(n) is a causal, finite window of duration L samples. Figure 3.16a illustrates this
step.

2. Form u,(k) = Es,,(Nr + k), 0 < k < N — 1. That is, break the signal s,(m) into

pieces of size N 'samples and add up the pieces (alias them back unto itself) to give a
signal of size N samples. Figures 3.16b and c illustrate this step for the case in which
L>N.

3. Take the N-point DFT of u,(k).

4. Modulate the DFT by the sequence e/ ¥ )ir,

The modulation step 4 can be avoided by circularly shifting the sequence, u,(k), by n @ N
samples (where & is the modulo operation), to give u,((k — n))N,’O <k <N-1,priorto
the DFT computation.

The computation to implement the uniform filter bank via Eq. (3.28) is essentially

Crerer 2 2N log N-, +. (3.29)

Consider now the ratio, R, between the computation for the direct form implementation of
a uniform filter bank (Eq. (3.13)), and the FFT implementation (Eq. (3.29)), such that

Corrr LQ
If we assume N = 32 (i.e., a 16-channel filter bank), with L = 128 (i.e., 12.8 msec impulse
response filter at a 10-kHz sampling rate), and Q = 16 channels, we get
128 - 16
=2.32-5
The FFT implementation is about 6.4 times more efficient than the direct form structure.

R =

=64,
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Figure 3.16 FFT implementation of a uniform filter bank.
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Figure 3.17 Direct form implementation of an
arbitrary nonuniform filter bank.

3.2.2.5 Nonuniform FIR Filter Bank Implementations

The most general form of a nonuniform FIR filter bank is shown in Figure 3.17, where the
K banfipass filter impulse response, h(n), represents a filter with center frequency wy, and
bandwidth Aw,. The set of Q bandpass filters is intended to cover the frequency range of
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Figure 3.18 Two arbitrary nonuniform filter-bank ideal filter specifications
consisting of either 3 bands (part a) or 7 bands (part b).

interest for the intended speech-processing application.

In its most general form, each bandpass filter is implemented via a direct convolution;
that is, no efficient FFT structure can be used. In the case where each bandpass filter is
designed via the windowing design method (Ref. [1]), using the same lowpass window, we
can show that the composite frequency response of the Q-channel filter bank is independent
of the number and distribution of the individual filters. Thus a filter bank with the three
filters shown in Figure 3.18a has the exact same composite frequency response as the filter
bank with the seven filters shown in Figure 3.18b.

To show this we denote the impulse response of the k™ bandpass filter as

hy(n) = win)he(n), (3.31)

where w(n) is the FIR window, and }.l,‘(n) is the impulse response of the id_ea.l bandpass f.ilter
being designed. The frequency response of the k™ bandpass filter, Hy(e™), can be written
as

H(e¥) = W(e™) ® Hi(e™). (3.32)
Thus the frequency response of the composite filter bank, H(e™), can be written as
Q Q . ‘_
HE)y =Y Hue*) =Y W(*) @ Hi(e"). (3.33)
k=1 k=1

By interchanging the summation and the convolution we get

Q
H(e®) = W) @ Y_ H(e). (3.34)
k=1
By realizing that the summation of Eq. (3.34) is the summation of ideal frequency responses,
we see that it is independent of the number and distribution of the individual filters. Thus
we can write the summation as

Whin € W < Whax

e 1,
A@*) =Y Al = {0 , (3.35)

P , otherwise
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where wyiy is the lowest frequency in the filter bank, and wp,, is the highest frequency.
Then Eq. (3.34) can be expressed as

H(e*) = W(“) ® H(e) (3.36)

independent of the number of ideal filters, Q, and their distribution in frequency, which is
the desired result.

3.2.2.6 FFT-Based Nonuniform Filter Banks

One possible way to exploit the FFT structure for implementing uniform filter banks
discussed earlier is to design a large uniform filter bank (e.g., N = 128 or 256 channels)
and then create the nonuniformity by combining two or more uniform channels. This
technique of combining channels is readily shown to be equivalent to applying a modified
analysis window to the sequence prior to the FFT. To see this, consider taking an N-point
DFT of the sequence x(n) (derived from the speech signal, s(n), by windowing by w(n)).
Thus we get
N-1
Xe=)Y xme®™  0<k<N-1 3.37)
n=0

as the set of DFT values. If we consider adding DFT outputs X; and X1, we get

N-1
XetXepr = Y xn) (7% 4 miifneen) (338)
n=0 *
which can be written as
N-1
' - —i% i ] ~i%Fnk
X! = X¢ + Xegs go [x(n)ze cos ( i ) e (3.39)
i.c. the equivalent k* channel value, X;, could have been obtained by weighting the
sequence, x(n), in time, by the complex sequence 2¢~/¥ cos (). If more than two
channels are combined, then a different equivalent weighting sequence results. Thus FFT
channel combining is essentially a “quick and dirty” method of designing broader bandpass
filters and is a simple and effective way of realizing certain types of nonuniform filter bank
analysis structures.

3.2.2.7 Tree Structure Realizations of Nonuniform Filter Banks

A third method used to implement certain types of nonuniform filter banks is the tree
structure in which the speech signal is filtered in stages, and the sampling rate is successively
reduced at each stage for efficiency of implementation. An example of such a realization
is given in Figure 3.19a for the 4-band, octave-spaced filter bank shown (ideally) in
Figure 3.19b. The original speech signal, s(n), is filtered initially into two bands, a low
band and a high band, using quadrature mirror filters (QMFs)—i.e., filters whose frequency
responses are complementary. The high band, which covers half the spectrum, is reduced
in sampling rate by a factor of 2, and represents the highest octave band (7/2 < w < 7) of
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Figure 3.19 Tree structure implementation of a 4-band, octave-spaced, filter bank.

the filter bank. The low band is similarly reduced in sampling rate by a factor of 2, and is
fed into a second filtering stage in which the signal is again split into two equal bands using
QMEF filters. Again the high band of stage 2 is decimated by a factor of 2 and is used as the
next-highest filter bank output; the low band is also decimated by a factor of 2' and.fed into
a third stage of QMF filters. These third-stage outputs, in this case after decimation by a
factor of 2, are used as the two lowest filter bands.

QMF filter bank structures are quite efficient and have been used for a number of
speech-processing applications [3]. Their efficiency for arbitrary nonuniform filter bank
structures is not as good as for the octave band designs of Figure 3.19.

3.2.3 Summary of Considerations for Speech-Recognition Filter Banks

In the previous sections we discussed several methods of implementing filter banks for
speech recognition. We have not gone into great detail here because our goal was t'o make
the reader familiar with the issues involved in filter-bank design and implementation, not
to make the reader an expert in signal processing. The interested reader is urged to pursue
this fascinating area further by studying the material in the References at Fhe end of this
chapter. In this section we summarize the considerations that go into choosing the number
and types of filters used in the structures discussed earlier.in this section.

The first consideration for any filter bank is the type of digital filter used. The
choices are IIR (recursive) and FIR (nonrecursive) designs. The IIR designs have the
advantage of being implementable in simple, efficient structures. The big disadvantage of
IIR filters is that their phase response is nonlinear; hence, to minimize this disadvantage
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a trade-off is usually made between the ideal magnitude characteristics that can readily
be realized, and the highly nonideal phase characteristics. On the other hand, FIR filters
can achieve linear phase without compromising the ability to approximate ideal magnitude
characteristics; however, they are usually computationally expensive in implementation.
For speech-recognition applications, we have shown how an FFT structure can often be
applied to alleviate considerably the computational inefficiency of FIR filter banks; hence,
most practical digital filter bank structures use FIR filters (usually in an FFT realization).

Once the type of filter has been decided, the next consideration is the number of filters
to be used in the filter bank. For uniform filter banks, the number of filters, Q, cannot be too
small or else the ability of the filter bank to resolve the speech spectrum is greatly impaired.
Thus values of Q less than about 8 are generally avoided. Similarly, the value of Q cannot
be too large (unless there is considerable filter overlap), because the filter bandwidths would
eventually be too narrow for some talkers (e.g., high-pitch females or children), and there
would be a high probability that certain bands would have extremely low speech energy
(i.e., no prominent harmonic would fall within the band). Thus, practical systems tend to
have values of @ < 32. Although uniformly spaced filter banks have been widely used for
recognition, many practical systems have used nonuniform spacing in an effort to reduce
overall computation and to characterize the speech spectrum in a manner considered more
consistent with human perception.

A final consideration for practical filter-bank analyzers is the choice of nonlinearity
and lowpass filter used at the output of each channel. Typically the nonlinearity has been
a full wave rectifier (FWR), a half wave rectifier (HWR), or a center clipper. The resultant
spectrum is only weakly sensitive to the nonlinearity. The lowpass filter used in practice
varies from a simple integrator to a fairly good quality IIR lowpass filter (typically a Bessel
filter).

3.2.4 Practical Examples of Speech-Recognition Filter Banks

Figures 3.20-3.25 [4] show examples of a wide range of speech-recognition filter banks,
including both uniform and nonuniform designs. Figure 3.20 is for a 15-channei uniform
filter bank in which the basic lowpass filter was designed using the windowing technique
with a 101-point Kaiser window. Part a of the figure shows the impulse response of the
lowpass filter (i.e., an ideal lowpass filter response multiplied by a Kaiser window). Partb
of the figure shows the responses of the individual filters in the filter bank (note there is no
overlap between adjacent filters), and part ¢ shows the composite frequency response of the
overall filter bank. The sidelobe peak ripple of each individual filter is down about 60 dB,
and the composite frequency response is essentially ideally flat over the entire frequency
range of interest (approximate 100-3000 Hz).

By contrast, Figure 3.21 is for a 15-channel uniform filter bank in which the basic
lowpass filter was a Kaiser window (instead of the Kaiser windowed version of the ideal
lowpass filter). From parts b and ¢ of this figure, it can be seen that the individual bandpass
filters are narrower in bandwidth than those of Figure 3.20; furthermore, the composite
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Figure 3.20 Window sequence, w(n), (part a), the individual filter response (part b), and
the composite response (part ¢) of a @ = 15 channel, uniform filter bank, designed using a
101-point Kaiser window smoothed lowpass window (after Dautrich et al. [4]).

filter-bank response shows 18 dB gaps at the boundaries between each filter. Clearly, this
filter bank would be unacceptable for speech-recognition applications.

Figures 3.22 and 3.23 show individual filter frequency responses, and the composite
frequency response, for a 4-channel, octave-band filter bank, and a 12-channel, 1/3 octave
filter bank, frequency, respectively. Each of these nonuniform filter banks was designed
to cover the frequency band from 200 to 3200 Hz and used linear-phase FIR filters (101
points for the octave band design, and 201 points for the 1/3 octave band design) for each
individual channel. The peak sidelobe ripple was about —40 dB for both filter banks.

Figure 3.24 shows a similar set of responses for a 7-channel critical band filter bank
in which each individual filter encompassed two critical bands. Again we used 101-point,
linear phase, FIR filters with a peak sidelobe of —54 dB to realize each individual bandpass
filter, Finally, Figure 3.25 shows the responses of a 13-channel, critical band filter bank
in which the individual channels were highly overlapping. The individual bandpass filter
responses are rather poor (¢.g., the ratios of center frequency to bandwidth of each filter was
about 8). However, this poor frequency resolution characteristic was balanced somewhat
by the excellent time resolution of the filters. ‘
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Figure 321 Window sequence, w(n), (part a), the individual filter responses (part b), and
the composite response (part ¢) of a Q = 15 channel, uniform filter bank, designed using a
101-point Kaiser window directly as the lowpass window (after Dautrich et al. [4]).

3.2.5 Generalizations of Filter-Bank Analyzer

Although we have been concerned primarily with designing and implementing individual
channels of a filter-bank analyzer, there is a generalized structure that must be considered
as part of the canonic filter-bank analysis method. This generalized structure is shown in
Figure 3.26. The generalization includes a signal preprocessor that “conditions” the speech
signal, s(n), to a new form, 3(n), which is “more suitable” for filter-bank analysis, and a
postprocessor that operates on the filter-bank output vectors, x(m), to give the processed
vectors %(m) that are “more suitable” for recognition. Although a wide range of signal-
processing operations couid go into the preprocessor and postprocessor boxes, perhaps the
most reasonable ones include the following.

Preprocessor Operations

o signal preemphasis (to equalize the inherent spectral tilt in speech)
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Figure 322 Individual channel responses (parts a to d) and composite filter response (part c)ofa
Q = 4 channel, octave band design, using 101-point FIR filters in each band (after Dautrich et al. [4]).

e noise elimination
o signal enhancement (to make the formant peaks more prominent)

Postprocessor Operations

e temporal smoothing of sequential filter-bank output vectors

e frequency smoothing of individual filter-bank output vectors

o normalization of each filter-bank output vector

e thresholding and/or quantization of the filter-bank output vectors
e principal components analysis of the filter-bank outbut vector.

The purpose of the preprocessor is to make the speech signal as clean as possible so far
as the filter bank analyzer is concerned; hence, noise is eliminated, long-time spectral
trends are removed, and the signal is spectrally flattened to give the best immunity to
measurement imperfections. Similarly, the purpose of the postprocessor is to clean up the
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Figure 3.23 Individual channel responses and composite filter response of a Q = 12 channel, 1/3 octave band
design, using 201-point FIR filters in each band (after Dautrich et al. [4]).

sequence of feature vectors from the filter-bank analyzer so as to best represent the spectral
information in the speech signal and thereby to maximize the chances of successful speech
recognition [4,5].

3.3 LINEAR PREDICTIVE CODING MODEL FOR SPEECH RECOGNITION

The theory of linear predictive coding (LPC), as applied to speech, has been well understood
for many years (see for example Ref. [6]). In this section we describe the basics of how LPC
has been applied in speech-recognition systems. The mathematical details and derivations
will be omitted here; the interested reader is referred to the references.

Before describing a general LPC front-end processor for speech recognition, it is
worthwhile to review the reasons why LPC has been so widely used. These include the
following:
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. LPC provides a good model of the speech signal. This is especially true for the quasi Figare 325 Individual ) - )
steady state voiced regions of speech in which the all-pole model of LPC provides ﬁlti:l:ank, wsing h‘l';my o‘:'::::; “rlegsmin anﬁdeq C::rlngosz:ﬁ:i:tl;ra :;ms: ;f[:]? = 13 channel, critical band spacing
a good approximation to the vocal tract spectral envelope. During unvoiced and Y o

transient regions of speech, the LPC model is less effective than for voiced regions, o . . g

- . o . s(n .
but it still provides an acceptably useful model for speech-recognition purposes. —| PREPROCESSOR @ BANK x(m) POSTPROCESSOR X (m)
2. The way in which LPC is applied to the analysis of speech signals leadstoa reasonable ANALYZER

source-vocal tract separation. As a result, a parsimonious representation of the vocal
tract characteristics (which we know are directly related to the speech sound being
produced) becomes possible. .

3. LPC is an analytically tractable model. The method of LPC is mathematically precise
and is simple and straightforward to implement in either software or hardware. The
computation involved in LPC processing is considerably less than that required for . . . .
an all-digital implementation of the bank-of-filters model described in Section 3.2. Based on the above considerations, LPC front-end processing has been used in a farge

4. The LPC model works well in recognition applications. Experience has shown that number of TECOBNIZETS. In particular, most of the systems to be described in this book are

g pp perien 8 based on this model.

Figure 3.26 Generalization of filter-bank analysis model.

the performance of speech recognizers, based on LPC front ends, is comparable to or
better than that of recognizers based on filter-bank front ends (see References [4,5,7]).
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Figure 3.27 Linear prediction model of speech,

3.3.1 The LPC Model

The basic idea behind the LPC model is that a given speech sample at time n, s(n), can be
approximated as a linear combination of the past p speech samples, such that

sm=asn—)+asn—-2)+--+ aps(n — p), (3.40)

where the coefficients a;,a3, .. .,ap, are assumed constant over the speech analysis frame.
We convert Eq. (3.40) to an equality by including an excitation term, G u(n), giving:

I
sty =Y ais(n — i) + G u(n), (3.41)
i=1
where u(n) is a normalized excitation and G is the gain of the excitation. By expressing
Eq. (3.41) in the z-domain we get the relation

14
5@ =Y az7'S@) +GUQ (342)

i=1
leading to the transfer function
Sz _ 1 1

GUGD 7A@
1- a,-z"
i=1

H@) =

(3.43)

The interpretation of Eq. (3.43) is given in Figure 3.27, which shows the normalized
excitation source, u(n), being scaled by the gain, G, and acting as input to the all-pole
system, H(z) = A—‘z—), to produce the speech signal, s(n). Based on our knowledge that the
actual excitation function for speech is essentially either a quasiperiodic pulse train (for
voiced speech sounds) or a random noise source (for unvoiced sounds), the appropriate
synthesis model for speech, corresponding to the LPC analysis, is as shown in Figure 3.28.
Here the normalized excitation source is chosen by a switch whose position is controlled
by the voiced/unvoiced character of the speech, which chooses either a quasiperiodic train
of pulses as the excitation for voiced sounds, or a random noise sequence for unvoiced
sounds. The appropriate gain, G, of the source is estimated from the speech signal, and the
scaled source is used as input to a digital filter (H(z)), which is controlled by the vocal tract
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Figure 3.28 Speech synthesis model based on LPC model.

parameters characteristic of the speech being produced. Thus the parameters of this model
are voiced/unvoiced classification, pitch period for voiced sounds, the gain parameter, and
the coefficients of the digital filter, {a;}. These parameters all vary slowly with time.

3.3.2 LPC Analysis Equations

Based on the model of Figure 3.27, the exact relation between s(n) and u(n) is

P
sty =Y astn — b+ Gu(n). (3.44)

k=1

We consider the linear combination of past speech samples as the estimate 5(n), defined as

14
5n) = Z as(n — k). (3.45)

k=1

We now form the prediction error, e(n), defined as

P
e(n) = s(n) — 3(n) = s(n) — _ aus(n — k) (3.46)
k=1
with error transfer function
IR W
AQ = g5 =1 é az . (347

Clearly, when s(n) is actually generated by a linear system of the type shown in Figure 3.27,
then the prediction error, e(n), will equal G u(n), the scaled excitation.
The basic problem of linear prediction analysis is to determine the set of predictor
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coefficients, {a;}, directly from the speech signal so that the spectral properties of the digital
filter of Figure 3.28 match those of the speech waveform within the analysis window. Since
the spectral characteristics of speech vary over time, the predictor coefficients at a given
time, n, must be estimated from a short segment of the speech signal occurring around
time n. Thus the basic approach is to find a set of predictor coefficients that minimize
the mean-squared prediction error over a short segment of the speech waveform. (Usually
this type of short time spectral analysis is performed on successive frames of speech, with
frame spacing on the order of 10 msec.)

To set up the equations that must be solved to determine the predictor coefficients,
we define short-term speech and error segments at time » as

sp(m) = s(n+m) (3.48a)
ex(m) = e(n+ m) (3.48b)

and we seek to minimize the mean squared error signal at time
E,=)_eim) (3.49)
m

which, using the definition of e,(m) in terms of s,(m), can be written as

P 2
E,= Z [s,,(m) - 2:1 agSa(m — k)] . (3.50)
k=

To solve Eq. (3.50), for the predictor coefficients, we differentiate E, with respect to each
ai and set the result to zero,

BE, _ a
3 =0 k=12..p (3.51)
giving
P
3 sulm — Dsalm) =&k Y sa(m = Dsalm ~ k). (3.52)
m k=1 m

By recognizing that terms of the form 3 s,(m — i) s,(m — k) are terms of the short-term
covariance of s,(m), i.e.,

Bnli, k) =D 5a(m — Dsa(m — &) (3.53)

we can express Eq. (3.52) in the compact notation

; .
$n(i,0) =Y ardali, k) (3.54)

k=1

which describes a set of p equations in p unknowns. 1t is readily shown that the minimum
mean-squared error, E,, can be expressed as

Sec. 3.3 Linear Predictive Coding Model for Speech Recognition 103
P
Ey=Y skm = a Y simsa(m— k) (3.55)
m k=1 m
P
= 6a(0,0) — ) &ba(0, b). (3.56)
k=1

Thus the minimum mean-squared error consists of a fixed term (#,(0,0)) and terms that
depend on the predictor coefficients.

To solve Eq. (3.54) for the optimum predictor coefficients (the a,s) we have to
compute ¢,(i,k) for 1 < i <pand0 < k < p, and then solve the resulting set of p
simultaneous equations. In practice, the method of solving the equations (as well as the
method of computing the ¢s) is a strong function of the range of m used in defining both
the section of speech for analysis and the region over which the mean-squared error is
computed. We now discuss two standard methods of defining this range for speech.

3.3.3 The Autocorrelation Method

A fairly simple and straightforward way of defining the limits on m in the summations is
to assume that the speech segment, s,(m), is identically zero outside the interval 0 < m <
N — 1. This is equivalent to assuming that the speech signal, s(m + n), is multiplied by a
finite length window, w(m), which is identically zero outside therange 0 < m < N - 1.
Thus the speech sample for minimization can be expressed as

sm+n)-wim), 0<m<N-1
s,.(rn)={

. (3.57
0, otherwise.

The effect of weighting of the speech by a window is illustrated in Figures 3.29-3.31.
In each of these figures, the upper panel shows the running speech waveform, s(m), the
middle panel shows the weighted section of speech (using a Hamming window for w(m)),
and the bottom panel shows the resulting error signal, e,(m), based on optimum selection
of the predictor parameters.

Based on Eq. (3.57), for m < 0, the error signal en(m) is exactly zero since s,(m) =0
for all m < 0 and therefore there is no prediction error. Furthermore, form >N —1+p
there is again no prediction error because s,(m) = O for all m > N — 1. However, in
the region of m = 0 (i.e., fromm = 0 to m = p — 1) the windowed speech signal s,(m)
is being predicted from previous samples, some of which are arbitrarily zero. Hence the
potential for relatively large prediction errors exists in this region and can actually be seen
to exist in the bottom panel of Figure 3.29. Furthermore, in the region of m =N — 1 Gi.e.,
fromm = N — 1 tom = N — 1 + p) the potential of large prediction errors again exists
because the zero-valued (weighted) speech signal is being predicted from at least some
nonzero previous speech samples. In the bottom panel of Figure 3.30 we see this effect
at the end of the prediction error waveform. These two effects are especially prominent
for voiced speech when the beginning of a pitch period occurs at or very close to the
m =0orm = N — 1 points of the sample. For unvoiced speech, these problems are
essentially eliminated because no part of the waveform is position sensitive. Hence we see
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Figure 3.29 Illustration of specch sample, weighted speech section, and prediction error
for voiced speech where the prediction error is large at the beginning of the section.
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Figure 3.30 Illustration of speech sample, weighted speech section, and prediction error
for voiced speech where the prediction error is large at the end of the section.
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Figure 3.31 [llustration of speech sample, weighted speech section, and prediCﬁor! error
for unvoiced speech where there are almost no artifacts at the boundaries of the section.

neither effect occurring in the bottom panel of Figure 3.3.1. The purpose of the window
of Eq. (3.57) is to taper the signal near m = 0 and near m = N — 1 so as to minimize the
errors at section boundaries.

Based on using the weighted signal of Eq. (3.57) the mean-squared error becomes

N=1+p
E.= Y ém) (3.58)
m=0
and @,(i, k) can be expressed as
N-l+4p .
1<i<p
bl ) =D sm—Dsm =K, 52T, (3.59)
m=0
or e
N—1—(i— X
i 1<i<p
b= Y smslm+i=B, 0T (3.60)
m=0

Since Eq. (3.60) is only a function of i — k (rather than the two independent vajable§ i and
k), the covariance function, @,(i, k), reduces to the simple autocorrelation function, i.e.,
N—1—(i—k)
Onli k) =rp(i — k) = Z Sa(m)sa(m + i — k). (3.61)

m=0
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Since the autocorrelation function is symmetric, i.e. r,(—k) = r,(k), the LPC equations Using the extended speech interval to define the covariance values, ¢,(i, k), the matrix
can be expressed as form of the LPC analysis equations becomes
7 &1, 1) ¢a(1,2) ¢a(1,3) -+ &a(1,p) {11 n(1,0)
(i — k))ag = ra(d), 1<i< 3.62 $n(2,1) $a(2,2) ¢a(2,3) --- #a(2,p) a (2,0
2 rlli= K =rd,  1<isp 662 63D 63,2 63,3 - 4Gp || & | 2| 63,0
k=1 N G X.Y))
and can be expressed in matrix form as , 6@ 1) 32,2 40,3 - halop) | | 3 64(5,0)
+(0) ra(1) a2 =1 a ] ra(1) The resulting covariance matrix is symmetric (since ¢,;(i, k) = ¢a(k, i)) but not Toeplitz,
ra(1) r.(0) ra(1) v =2 & r(2) and can be solved efficiently by a set of techniques called the Cholesky decomposition
ra(2) ra(1) ra0) - rp=3) & =|nmd|. @ 63) method [6]. Since the full covariance form of the LPC analysis equations is generally not

used for speech-recognition systems, we will not discuss this method further but instead
: will concentrate on the autocorrelation method of LPC analysis for the remainder of this
ra(p) chapter.

np—1) mP-2) rip=3) - 1,0) ap |
The p x p matrix of autocorrelation values is a Toeplitz matrix (symmetric with all diagonal
elements equal) and hence can be solved efficiently through several well-known procedures. 3.3.5 Review Exercise
(We will discuss one such procedure, the Durbin algorithm, later in this chapter.)
Exercise 3.4

3.3.4 The Covariance Method Given an LPC system of the form

G
An alternative to using a weighting function or window for defining s,(m) is to fix the H@) = ?
interval over which the mean-squared error is computed to the range 0 < m < N — 1 and 3 ’ - Z az™t
to use the unweighted speech directly—that is, k=
7 N-1 how would you evaluate H(¢™) using FFT techniques?
Ex=)_ exm) (3.64)
m=0 Solution 3.4
with ¢,(i, k) defined as . Define the LPC polynomial as
N-1 /4
. , 1<i< .G _._ -t
dnli, k) = Zosn(m — Dsp(m — k), 0<k gi (3.65) Az = o 1 ; @z k.
m= =
or, by a change of variables, . This finite polynomial in z has a time domain response, f(n), which is an FIR sequence of the
form
N—i-1
A . 1<i<p 1, n=0
Bali, k) = _Z_ Sa(m)sa(m + i — k), 0<k<p" (3.66) f(m) = { —an, 1<n<p.
m=—i 0, otherwise

If we consider when i = p we see that the computation of Eq. (3.66) involves speech samples
Sx(m) defined fromm = —puptom =N — 1 — p and, when k = 0, 5,(m + i — k) involves
samples from 0 to N — 1. Hence the range of speech required for the complete computation
is from s,(—p) to s,(N — 1)—that is, the samples s,(—p), s,(—=p + 1), ..., s4(—1), outside )
the error minimization interval, are required. w=2 k=01, N-1las G/AE™) =g

Hence we can evaluate A(¢’), using FFTs, by supplethenting f(n) with sufficient zero-valued
samples to form an N-point sequence (e.g., N = 256, or N = 512), and taking the DFT of that
sequence giving A(@F5),0 < k <N - 1, ie. A(e""')|“=;ﬁ,. We can then evaluate H(e/) for
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Figure 3.32 Typical signals and spectra for LPC autocorrelation method for a segment of
speech spoken by a male speaker (after Rabiner et al. [8]).

3.3.6 Examples of LPC Analysis

To illustrate some of the properties of the signals involved in LPC analysis, Figures 3.32
and 3.33 show series of waveform and spectral plots of the windowed speech signal (part a),
the prediction error signal (part b), the signal log spectrum (FFT-based) fitted by an LPC
log spectrum (as defined from Exercises 3.4, part c), and the log spectrum of the prediction
error signal (part d). The results in Figure 3.32 are for the IY vowel spoken by a male
speaker; those of Figure 3.33 are for the AH vowel spoken by a female speaker. For both
examples the speech sample size was 20 msec (200 samples at a 10-kHz rate) and the
analysis was performed using a p = 14" order LPC analysis. For the male speaker, about
two periods of signal were used in the analysis frame. The error signal is a factor of almost
4 smaller in magnitude than the speech signal and has a much flatter spectral trend than
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Figure 3.33 Typical signals and spectra for LPC autocorrelation method for a segment of
speech spoken by a female speaker (after Rabiner et al. [8]).

the speech signal. This is the important “whitening” chaIacteﬁsﬁc§ of the LPC ar}alySls
whereby the error signal spectrum is approximately a flat spectrum stgnal. rep'resentu'lg the
source characteristics rather than those of the vocal tract. Similar beha.vmr is seen in the
plots of the vowel from the female talker. Finally, it can be seen that fairly close matches
exist between the peaks of the FFT-based signal spectrum and t.he LPC spectrum. )
Figures 3.34-3.36 illustrate some additional properties 'of the' LPC analysis
method. Figure 3.34 shows a series of sections of the wav.eforms (d{fferentxated for pfee.m-
phasis) for several vowels, and the corresponding prediction error 51g'nals. (The pred:::ltlon
error signals have been scaled up in value so as t0 make their am.plltudes comparable t(;
those of the signal; hence, gains of about 4 to 1 were used.) The hlgh-frequencx naturefo
the prediction error signal is seen in all these examples. What can also be seen is thaiu, or
many cases, the prediction error signal exhibits sharp pulseg at intervals correspondutl)g to
the pitch periods of these vowels. This characteristic behavior has been used as the basis
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Figure 3.34 Examples of signal (differentiated) and prediction error for several
vowels (after Strube [9]).
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Figure 3.35 Variation of the RMS prediction error with the number of predic-
tor coefficients, p (after Atal and Hanauer [10]).
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for several LPC-based pitch period estimation methods.

Figure 3.35 shows the effect of LPC prediction order, p, on the RMS prediction error,
E,,, for both sections of voiced speech (solid curve) and unvoiced speech (dashed curve).
The prediction error in the curves is normalized by the signal energy such thatat p = 0
(i.e., no prediction) E, = R,(0). A sharp decrease in normalized prediction error occurs
for small values of p (e.g., 1-4); however, beyond this value of p the normalized prediction
error decreases much more slowly. It is also seen that the normalized prediction error for
unvoiced speech, for a given value of p, is significantly higher than for voiced speech. The
interpretation of this result is that unvoiced speech is less linearly predictable than voiced
speech, a result one would anticipate based on our understanding of the speech-production
mechanisms.

Finally, Figure 3.36 shows the effect of prediction order, p, on the all-pole spectrum
and its ability to match details in the FFT spectrum of the speech segment. Shown in
this figure are the input speech segment, the Fourier transform of that segment, and linear
predictive spectra for values of p from 4 to 20. It is clear that as p increases, more of the
detailed properties of the signal spectrum are preserved in the LPC spectrum. It is equally
clear that beyond some value of p, the details of the signal spectrum that are preserved
are generally irrelevant ones; that is, they do not reflect the relevant spectral resonances
or antiresonances of the inherent sound. When the analysis order, p, becomes large, the
LPC spectrum often tries to fit individual pitch harmonics of the speech signal, thereby
resulting in a less parsimonious representation of the sound. On the basis of extensive
experimental evaluations, it is generally acknowledged that values of p on the order of
8—10 are reasonable for most speech-recognition applications.

3.3.7 LPC Processor for Speech Recognition

At this point, rather than spending more time discussing general properties of LPC methods,
we describe the details of the LPC front-end processor that has been widely used in speech-
recognition systems. Figure 3.37 shows a block diagram of the LPC processor. The basic
steps in the processing include the following:

1. Preemphasis—The digitized speech signal, s(n), is put through a low-order digital
system (typically a first-order FIR filter), to spectrally flatten the signal and to make
it less susceptible to finite precision effects later in the signal processing. The digital
system used in the preemphasizer is either fixed or slowly adaptive (e.g., to average
transmission conditions, noise backgrounds, or even to average signal spectrum).
Perhaps the most widely used preemphasis network is the fixed first-order system:

Hz=1-az"!, 09<a<l10. (3.68)

In this case, the output of the preempbhasis network, 5(n), is related to the input to the
network, s(n), by the difference equation

3(n) = s(n) — as(n — 1). (3.69)
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Figure 3.37 Block diagram of LPC processor for speech recognition.
2.0

1.0

% T

Figure 3.38  Magnitude spectrum of

LPC preemphasis network for @ =
0.95.

The most common value for & is around 0.95. (For fixed-point implementations a
value of @ = 15/16 = 0.9375 is often used.) A simple example of a first-order
adaptive preemphasizer is the transfer function

H@E) = 1-apz7!, (3.70)

where a, changes with time (n) according to the chosen adaptation criterion. One
possibility is to choose @, = ra(1)/r.(0). Figure 3.38 shows the magnitude charac-
teristics of H(e/*) for the value @ = 0.95. It can be seen that at w = 7 (half the
sampling rate) there is a 32 dB boost in the magnitude over that atw = 0.

2. Frame Blocking—In this step the preemphasized speech signal, 3(n), is blocked
into frames of N samples, with adjacent frames being separated by M samples.
Figure 3.39 illustrates the blocking into frames for the case in which M = (1/3)N.
The first illustrated frame consists of the first N speech samples. The second frame
begins M samples after the first frame, and overlaps itby N — M samples. Similarly,
the third frame begins 2M samples after the first frame (or M samples after the second
frame) and overlaps it by N —2M samples. This process continues until all the speech
is accounted for within one or more frames. It is easy to see that if M < N, then
adjacent frames overlap (as in Figure 3.39), and the resulting LPC spectral estimates
will be correlated from frame to frame; if M < N, then LPC spectral estimates from
frame to frame will be quite smooth. On the other hand, if M > N, there will be no
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Figure 3.39 Blocking of speech into overlapping frames.

overlap between adjacent frames; in fact, some of the speech signal will be totally lost
(i.e., never appear in any analysis frame), and the correlation between the resulting
LPC spectral estimates of adjacent frames will contain a noisy component whose
magnitude increases as M increases (i.e., as more speech is omitted from analysis).
This situation is intolerable in any practical LPC analysis for speech recognition. If
we denote the £ frame of speech by x¢(n), and there are L frames within the entire
speech signal, then

xen)=3MEl+n), n=01,....N—1, £€=0]1,..,L-1. 3T

That is, the first frame of speech, xo(n), encompasses speech samples 3(0), 5(1),...,
5(N — 1), the second frame of speech, x;(n), encompasses speech samples (M),
SM+1),...,5(M + N — 1), and the L' frame of speech, x;_,(n), encompasses
speech samples S(M(L — 1)), SM(L — 1) + 1),...,5(M(L — 1) + N — 1). Typical
values for N and M are 300 and 100 when the sampling rate of the speech is 6.67 kHz.
These correspond to 45-msec frames, separated by 15 msec, or a 66.7-Hz frame rate.

. Windowing—The next step in the processing is to window each individual frame so

as to minimize the signal discontinuities at the beginning and end of each frame. The

_concept here is identical to the one discussed with regard to the frequency domain

interpretation of the short-time spectrum in Section 3.2—namely, to use the window
to taper the signal to zero at the beginning and end of each frame. If we define the
window as w(n), 0 < n < N — 1, then the result of windowing is the signal

X¢(n) = xe(n)w(n), 0<n<N-L 3.72)

A “typical” window used for the autocorrelation method of LPC (the method most
widely used for recognition systems) is the Hamming window, which has the form

w(n) = 0.54 — 0.46 cos ( sz

. Autocorrelation Analysis—Each frame of windowed signal is next autocorrelated

to give
N~1-m ’
rmy= Y Hmu(n+m), m=0,1,. ..,p, (3.74)
n=0
where the highest autocorrelation value, p, is the order of the LPC analysis. Typically,
values of p from 8 to 16 have been used, with p = 8 being the value used for most
systems to be described in this book. A side benefit of the autocorrelation analysis

1), 0<n<N~-1 (3.73)
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is that the zeroth autocorrelation, R,(0), is the energy of the £ frame. The frame
energy is an important parameter for speech-detection systems and will be discussed
further in the next chapter.

. LPC Analysis—The next processing step is the LPC analysis, which converts each

frame of p + 1 autocorrelations into an “LPC parameter set,” in which the set might
be the LPC coefficients, the reflection (or PARCOR) coefficients, the log area ratio
coefficients, the cepstral coefficients, or any desired transformation of the above
sets. The formal method for converting from autocorrelation coefficients to an LPC
parameter set (for the LPC autocorrelation method) is known as Durbin’s method
and can formally be given as the following algorithm (for convenience, we will omit
the subscript £ on r¢(m)):

E® = r0) 3.75)
L-1

k= {rw =3 o Ori —j|>} / BV, 1<i<p  (376)
=1

P =k 3.7

a}o = a}“” - k;a,(.i_'jl) 3.78)

E® = (1 — BHECD, (3.79)

where the summation in Eq. (3.76) is omitted for i = 1. The set of equations
(3.75-3.79) are solved recursively fori = 1,2,...,p, and the final solution is given
as

a,, = LPC coefficients = o@, 1<m<p (3.80)

km = PARCOR coefficients (3.81)
1-k&

gm = log area ratio coefficients = log =, (3.82)
14 kn

. LPC Parameter Conversion to Cepstral Coefficients—A very important LPC

parameter set, which can be derived directly from the LPC coefficient set, is the LPC
cepstral coefficients, c(m). The recursion used is

co = Ina? (3.83a)
m—1 k
Cm = am + Z (;) CkQm—k, 1<m<p (3~83b)
k=1
m—1 k
n=3 (;) Celdm—t,  M>P, (3.83¢)
k=1

where o2 is the gain term in the LPC model. The cepstral coefficients, which
are the coefficients of the Fourier transform representation of the log magnitude
spectrum, have been shown to be a more robust, reliable feature set for speec:h
recognition than the LPC coefficients, the PARCOR coefficients, or the log area ratio
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coefficients. Generally, a cepstral representation with Q > p coefficients is used,
where Q ~ (3) p.

. Parameter Weighting—Because of the sensitivity of the low-order cepstral coeffi-

cients to overall spectral slope and the sensitivity of the high-order cepstral coeffi-
cients to noise (and other forms of noiselike variability), it has become a standard
technique to weight the cepstral coefficients by a tapered window so as to minimize
these sensitivities. A formal way of justifying the use of a cepstral window is to con-
sider the Fourier representation of the log magnitude spectrum and the differentiated
(in frequency) log magnitude spectrum, such that

log [SE)| = D cme " (3.84)
3 . = i
35 [log |se)]] = > (=jmcneim. (3.85)

The differential log magnitude spectrum has the property that any fixed spectral
slope in the log magnitude spectrum becomes a constant; furthermore, any prominent
spectral peak in the log magnitude spectrum (e.g., the formants) is well preserved
as a peak in the differentiated log magnitude spectrum. Hence, by considering the
multiplication by (—jm) in the representation of the differentiated log magnitude
spectrum as a form of weighting, we get

8 ) ke )

3 llog [5(e)]] = S emeom, (3.86)

. m=—00
where
&m = Cm{—jm). (3.87)

To achieve the robustness for large values of m (i.e., low weight near m = Q) and
to truncate the infinite computation of Eq. (3.86), we must consider a more general
weighting of the form :

im=WmCm, 1Sm<Q, (3.88)
where an appropriate weighting is the bandpass lifter (filter in the cepstral domain)
W = [1+%sin (%)] 1<m<Q. (3.89)

This weighting function truncates the computation and de-emphasizes ¢, around
m =1 and around m = Q.

. Temporal Cepstral Derivative—The cepstral representation of the speech spectrum

provides a good representation of the local spectral properties of the signal for
the given analysis frame [11]. An improved representation can be obtained by
extending the analysis to include information about the temporal cepstral derivative
(both first and second derivatives have been investigated and found to improve the
performance of speech-recognition systems). To introduce temporal order into the
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cepstral representation, we denote the m™ cepstral coefficient at time ¢ by ca(f). Of
course, in practice, the sampling time ¢ refers to the analysis frame rather than an
arbitrary time instance. The way in which the cepstral time derivative is approximated
is as follows: The time derivative of the log magnitude spectrum has a Fourier series
representation of the form

3 o ol = Om(®) _jm

5 llog [Se, 0[] = ,..-X_:m —5 e (3.90)
Hence, the temporal cepstral derivative must be determined in an appropriate manner.
It is well known that since c,(?) is a discrete time representation (where ¢ is the frame
index), simply using a first- or second-order difference is inappropriate to approximate
the derivative (it is very noisy). Hence, a reasonable compromise is to approximate
Ocy(t)/ 8t by an orthogonal polynomial fit (a least-squares estimate of the derivative)
over a finite length window; that is,

Acm(D)
ot

K
=Aca®mp Y kemlt +K), 3.91)

k=-K

where u is an appropriate normalization constant and (2K + 1) is the number of
frames over which the computation is performed. Typically, a value of K = 3 has
been found appropriate for computation of the first-order temporal derivative. Based
on the computations described above, for each frame ¢, the result of the LPC analysis
is a vector of Q weighted cepstral coefficients and an appended vector of Q cepstral
time derivatives; that is,

0; = (z‘l(t)v z‘2(“)1 v 7£‘Q(t)7 Acl(t), ACZ(t)v ey ACQ(t))y (3'92)

where o, is a vector with 2Q components and ' denotes matrix transpose. Similarly, if
second-order temporal derivatives are computed (giving Ac(f)), these are appended
to o, giving a vector with 3Q components (see Section 4.6 for more details).

3.3.8 Review Exercises

Exercise 3.5

To illustrate LPC analysis via the autocorrelation method, consider a predictor of order p = 2.
Assume an autocorrelation vector with components R = (r(0), (1), 7(2)). Use the Durbin
method, described in the previous section, to solve for the LPC coefficients a; and a, in terms
of the Rs. Check your answer by solving the matrix equation

n0) 1) ap | _ | D)
) "0 a r2)

using simple matrix algebra.
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Solution 3.5
Using the Durbin method, we get the following steps:
E® = r0)
= n(1)/r(0)

" = n(1)/r0)
EP = ((0) - F(1))/r0)

= (r(r(0) — A1)/ (P©) — (1)
"’ = (()r(0) — 1Y/ (P ©) — (1)
"’—(r(l)rw) HDN2)/(F(0) — (1)

@

a = a,
a=af
Using matrix algebra we get

ar(0) + a2r(1) = (1)

) air(1) + @r(0) = r(2)

Solving directly for a; and a; we get
= (r(Hr(O) — r(HA2)/(P(©0) = 2(1)
a = (r(2r(0) — P/ (PO ~ (1)

which is the same result as obtained via the Durbin method.
Exercise 3.6 .
Consider two (windowed) speech sequences x(n) and X(n) both defined for 0 < n < N-1.

(Outside this region both sequences are defined to be 0.) We perform an LPC analysis (using
the autocorrelation method) on each frame. Thus, from the autocorrglation sequences

N—1-k

M= Y xmxtn+B, O0<k<p
=0
N=1—k

= Y smi+hb, O0<k<p
=0

we solve fonhepmdlctorpamneter a’ = (do,a1,..-,ap) and &’ = (80,d1,...,3p) (G0 =
do = —1) where ’ denotes matrix
1. Showﬂmdwpmdxcuonenor(mxdual), defined as

N—-1+p N-1-p P 2
E? = Z ez(n) = Z [—Za.»x(n—i)]
a=0 =0 i=0

can be written in the form
E? =a'Ra,
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where R, is a (p + 1) by (p + 1) matrix. Determine R;.

2. Consider passing the sequence i(n) through the inverse LPC system with LPC coeffi-
cients a, to give the error signal &(n), defined as

P
“m=- Zaii(n - .
i=0
Show that the mean-squared error, £, defined by

N=l4p
=Y @mr
a=0
can be written in the form _
E") = a'R;,a,

where R; is a (p + 1) by (p + 1) matrix. Determine R;.

3. If we form the ratio
@

D=ﬁ

what can be said about the range of D?
(This exercise gives an initial appreciation of the concept of distortion measures. Chapter 4
discusses this topic in great detail.)

Solution 3.6
1. Since

P
fn)=—Y axn—i

i=0

N-14p N—l+p r
=Y ém+ z [—Ea,-x(n - o] [ Za,x(n —,)]
=0 i=0 j=0
P N=14p

"Z"'Z“J Z x(n — ix(n — j)-

i=0 j=0 a=0
But

N—l14p N—14p
S xtn-ixtn-p= "y xmxtn—j+d=rii-jD.
=0 =0
Thus
P P
= }:a.-zajf(li —jh=aRa,
i=0  j=0
where
o 1 - P
I ECIEL IR

Mp) -1 - O
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P
2. é(n) = —Za.'i(n—i)

i=0
Repeating the derivation of part 1, we get

E? = zp:ai ia,-i'(li —-jh= SIRiav

i=0  j=0
where
Hy Hy - Hp
) HO) -+ Hp-D
R; = . . .
Hp) Hp-1) -+ HO
o ,
3D= % = :—,gf% Since D is a ratio of prediction residuals, and since E® is the
X -
minimum prediction residual for LPC system a, then £/’ must be greater than (or equal
to) E®. Therefore
D>10
Exercise 3.7

A proposed measure of spectral distance between two frames of speech represented by LPC
coefficient sets a and &, and augmented autocorrelation matrices R, and R; (see Exercise 3.6)
is:

a'R:a

D(a,d) = i'_Ri;

1. Show that the distance function D(a, &) can be written in the computationally efficient
form

L4
CalOHO) +2 Y raDHD)

i=1

D(a,d) =

a'R;d .

where r,(i) is the autocorrelation of the a array, i.e.,

—
ra() = Za/‘ajﬁy 0<i<p.

=0

2. Assume that the quantities (i.e., vectors, matrices, scalars) a, a, Ry, Rz, #'R;4, R; and
R, are precomputed; that is, they are available at the time the distance calculation is
required. Contrast the computation required to evaluate D(a, 4) using both expressions
for D given in this exercise.

Solution 3.7
We have that ]
a’R;, a _ Epi

be.d=Fra = o
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From Exercise 3.6 we get
[ P
E2=%"a) aili-iD.
=0 j=0
Letting k = j — i (j = k + i) we get

? p—i

E‘P) = Za,- Z ak+,‘i'(|k|)‘.

i=0 =i

By rearranging the summations on i and k and by recognizing thata; = 0,£ < Qanda, =0,
£ > p, we can complete the square by summing on k from —p (the smallest value of k) to +p
(the largest value of k), giving

p =l
EP = Z r aiak+-] A(&[).

k=—p L i=0
The inner summation is defined as r,(k), hence

14
B =" ror(k).

k=—p

Since r,(k) = ro(—k) and #(k) = H(—k) we can write E® as

P
E® = r0H0) +2 ) _ ra®)ih).

k=1

2 Since all the individual quantities are precomputed, to evaluate D as a ratio of residuals;

that is,
_a'Ra
T @'Rid
requires
a. (p+ 1) X (p + 2) multiplies and adds to multiply a’ by R; and then multiply the
result by a.

b. 1 divide to give D since 4'R;4 is a precomputed scalar.
For the alternative method of evaluating D, as discussed in part 1 of this exercise, we
require:

a. (p+ 1) multiplies and adds to give the product #(k)r,(k) for 1 < k < p and to give

HO0)ra(0).

b. 1 divide to give D since 4'R;4 is a precomputed scalar.
Thus, neglecting the divide, the alternative computation of D requires a factor of (p +2)
less computation and therefore is significantly more efficient than direct computation
of the ratio of prediction residuals.

3.3.9 Typical LPC Analysis Parameters

The computation of the LPC analysis system of Figure 3.37 is specified by a2 number of
variable parameters, including
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N number of samples in the analysis frame

M number of samples shift between frames

p LPC analysis order

Q dimension of LPC derived cepstral vector

K number of frames over which cepstral time derivatives are computed.

Although each of these parameters can be varied over a wide range of values, the following
table gives typical values for analysis systems at three different sampling rates (6.67 kHz,
8 kHz, 10 kHz).

Typical Values of LPC Analysis Parameters for Speech-Recognition Systems
parameter F, = 6.67 kHz Fs = 8 kHz Fs = 10 kHz

N 300 (@Smsec) 240 (30msec) 300 (30 msec)
M 100 (1Smsec) 80 (IOmsec) 100 (10 msec)
P 8 10 10
0 12 12 12
K 3 3 3

3.4 VECTOR QUANTIZATION

The results of either the filter-bank analysis or the LPC analysis are a series of vectors char-
acteristic of the time-varying spectral characteristics of the speech signal. For convenience,
we denote the spectral vectors as v¢, £ = 1,2,...,L, where typically each vector is a p-
dimensional vector. If we compare the information rate of the vector representation to that
of the raw (uncoded) speech waveform, we see that the spectral analysis has significantly
reduced the required information rate. Consider, for example, 10-kHz sampled speech with
16-bit speech amplitudes. A raw signal information rate of 160,000 ,bps is required to store
the speech samples in uncompressed format. For the spectral analysis, consider vectors
of dimension p = 10 using 100 spectral vectors per second. If we again represent each
spectral component to 16-bit precision, the required storage is about 100 x 10 x 16 bps, or
16,000 bps—about a 10-to-1 reduction over the uncompressed signal. Such compressions
in storage rate are impressive. Based on the concept of ultimately needing only a singie
spectral representation for each basic speech unit, it may be possible to further reduce
the raw spectral representation of speech to those drawn from a small, finite number of
“unique” spectral vectors, each corresponding to one of the basic speech units (i.e., the
phonemes). This ideal representation is, of course, impractical, because there is so much
variability in the spectral properties of each of the basic speech units. However, the concept
of building a codebook of “distinct” analysis vectors, albeit with significantly more code
words than the basic set of phonemes, remains an attractive idea and is the basis behind a
set of techniques commontly called vector quantization (VQ) methods. Based on this line
of reasoning, assume that we require a codebook with about 1024 unique spectral vectors
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(i.e., about 25 variants for each of the 40 basic speech units). Then to represent an arbitrary
spectral vector all we need is a 10-bit number—the index of the codebook vector that best
matches the input vector. Assuming a rate of 100 spectral vectors per second, we see that
a total bit rate of about 1000 bps is required to represent the spectral vectors of a speech
signal. This rate is about 1/16™ the rate required by the continuous spectral vectors. Hence
the VQ representation is potentially an extremely efficient representation of the spectral
information in the speech signal. This is one of the main reasons for the interest in VQ
methods. ’

Before discussing the concepts involved in designing and implementing a practical
VQ system, we first discuss the advantages and disadvantages of this type of representation.
The key advantages of the VQ representation are

e reduced storage for spectral analysis information. We have already shown that the
VQ representation is potentially very efficient. This efficiency can be exploited in a
number of ways in practical VQ-based speech-recognition systems.

reduced computation for determining similarity of spectral analysis vectors. In speech

recognition a major component of the computation is the determination of spectral

similarity between a pair of vectors. Based on the VQ representation, this spectral
similarity computation is often reduced to a table lookup of similarities between pairs
of codebook vectors.

e discrete representation of speech sounds. By associating a phonetic label (or possibly
a set of phonetic labels or a phonetic class) with each codebook vector, the process
of choosing a best codebook vector to represent a given spectral vector becomes
equivalent to assigning a phonetic label to each spectral frame of speech. A range
of recognition systems exist that exploit these labels so as to recognize speech in an
efficient manner.

The disadvantages of the use of a VQ codebook to represent speech spectral vectors are

e an inherent spectral distortion in representing the actual analysis vector. Since there
is only a finite number of codebook vectors, the process of choosing the “best”
representation of a given spectral vector inherently is equivalent to quantizing the
vector and leads, by definition, to a certain level of quantization error. As the size of
the codebook increases, the size of the quantization error decreases. However, with
any finite codebook there will always be some nonzero level of quantization error.

e the storage required for codebook vectors is often nontrivial. The larger we make
the codebook (so as to reduce quantization error), the more storage is required for
the codebook entries. For codebook sizes of 1000 or larger, the storage is often
nontrivial. Hence an inherent trade-off among quantization error, processing for
choosing the codebook vector, and storage of codebook vectors exists, and practical
designs balance each of these three factors.

3.4.1 Elements of a Vector Quantization implementation

To build a VQ codebook and implement a VQ analysis procedure, we need the following:
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Figure 3.40 Block diagram of the basic VQ training and classification structure.

1. alarge set of spectral analysis vectors, v;, V2, ..., vz, which form a training set. The
training set is used to create the “optimal” set of codebook vectors for representing
the spectral variability observed in the training set. If we denote the size of the
VQ codebook as M = 28 vectors (we call this a B-bit codebook), then we require
L > M so as to be able to find the best set of M codebook vectors in a robust manner.
In practice, it has been found that L should be at least 10M in order to train a VQ
codebook that works reasonably well.

2. ameasure of similarity, or distance, between a pair of spectral analysis vectors so as
to be able to cluster the training set vectors as well as to associate or classify arbitrary
spectral vectors into unique codebook entries. We denote the spectral distance,
d(v;, v;), between two vectors v; and v; as d;;. We defer a discussion of spectral
distance measures to Chapter 4.

3. a centroid computation procedure. On the basis of the partitioning that classifies
the L training set vectors into M clusters we choose the M codebook vectors as the
centroid of each of the M clusters.

4, aclassification procedure for arbitrary speech spectral analysis vectors that chooses
the codebook vector closest to the input vector and uses the codebook index as the
resulting spectral representation. This is often referred to as the nearest-neighbor
labeling or optimal encoding procedure. The classification procedure is essentially a
quantizer that accepts, as input, a speech spectral vector and provides, as output, the
codebook index of the codebook vector that best matches the input.

Figure 3.40 shows a block diagram of the basic VQ training and classification structure. In
the following sections we discuss each element of the VQ structure in more detail.

3.42 The VQ Training Set

To properly train the VQ codebook, the training set vectors should span the anticipated
range of the following: ’
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o talkers, including ranges in age, accent, gender, speaking rate, levels, and other

variables.

speaking conditions, such as quiet room, automobile, and noisy workstation.

transducers and transmission systems, including wideband microphones, telephone

handsets (with both carbon and electret microphones), direct transmission, telephone

channel, wideband channel, and other devices.

o speech units including specific-recognition vocabularies (e.g., digits) and conversa-
tional speech.

The more narrowly focused the training set (i.e., limited talker populations, quiet room
speaking, carbon button telephone over a standard telephone channel, vocabulary of digits)
the smaller the quantization error in representing the spectral information with a fixed-size
codebook. However, for applicability to a wide range of problems, the training set should
be as broad, in each of the above dimensions, as possible.

3.4.3 The Similarity or Distance Measure

The spectral distance measure for comparing spectral vectors v; and v; is of the form

=0 ifV,'=Vj

d(vi,vj) = dij{ (3.93)

>0 otherwise
As we will see in Chapter 4, the distance measure commonly used for comparing filter-
bank vectors is an L;, L, or covariance weighted spectral difference, whereas for LPC
vectors (and related feature sets such as LPC derived cepstral vectors), measures such as
the likelihood and cepstral distance measures are generally used.

3.4.4 Clustering the Training Vectors

The way in which a set of L training vectors can be clustered into a set of M codebook
vectors is the following (this procedure is known as the generalized Lloyd algorithm or the
K-means clustering algorithm):

1. Initialization: Arbitrarily choose M vectors (initially out of the training set of L
vectors) as the initial set of code words in the codebook.

2. Nearest-Neighbor Search: For each training vector, find the code word in the current
codebook that is closest (in terms of spectral distance), and assign that vector to the
corresponding cell (associated with the closest code word).

3. Centroid Update: Update the code word in each cell using the centroid of the training
vectors assigned to that cell.

4. Tteration: Repeat steps 2 and 3 until the average distance falls below a preset threshold.

Figure 3.41 illustrates the result of designing a VQ codebook by showing the parti-
tioning of a (2-dimensional) spectral vector space into distinct regions, each of which is
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Figure 3.41 Partitioning of a vector space into VQ cells with each cell represented by a centroid
vector.

represented by a centroid vector. The shape of each partitioned cell is highly dependent
on the spectral distortion measure and the statistics of the vectors in the training set. (For
example, if a Euclidean distance is used, the cell boundaries are hyperplanes.)

Although the above iterative procedure works well, it has been shown that it is
advantageous to design an M-vector codebook in stages—i.e., by first designing a 1-vector
codebook, then using a splitting technique on the code words to initialize the search for a 2-
vector codebook, and continuing the splitting process until the desired M-vector codebook
is obtained. This procedure is called the binary split algorithm and is formally implemented
by the following procedure:

1. Design a 1-vector codebook; this is the centroid of the entire ‘set of training vectors
(hence, no iteration is required here).
2. Double the size of the codebook by splitting each current codebook y, according to
the rule
¥f =yl +e
(3.94)
Yo =¥a(l—6),
where n varies from 1 to the current size of the codebook, and e is a splitting parameter
(typically e is chosen in the range 0.01 < ¢ < 0.05).
3. Use the K-means iterative algorithm (as discussed above) to get the best set of
centroids for the split codebook (i.e., the codebook of twice the size).
4. Tterate steps 2 and 3 until a codebook of size M is designed.
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Figure 3.42 Flow diagram of binary split codebook
generation algorithm.

Figure 3.42 shows, in a flow diagram, the detailed steps of the binary split VQ codebook
generation technique. The box labeled “Classify Vectors” is the nearest-neighbor search
procedure, and the box labeled “Find Centroids” is the centroid update procedure of the
K-means algorithm. The box labeled “Compute D (Distortion)” sums the distances of all
training vectors in the nearest-neighbor search so as to determine whether the procedure
has converged (i.e., D = D' of the previous iteration).

To illustrate the effect of codebook size (i.e., number of codebook vectors) on average
training set distortion, Figure 3.43 [12] shows experimentally measured values of distortion
(in terms of the likelihood ratio measure and the equivalent dB values; see Chapter 4 for
more details) versus codebook size (as measured in bits per frame, B) for vectors of both
voiced and unvoiced speech. It can be seen that very significant reductions in distortion
are achieved in going from a codebook size of 1 bit (2 vectors) to about 7 bits (128 vectors)
for both voiced and unvoiced speech. Beyond this point, reductions in distortion are much
smaller.

One initial motivation for considering the use of a VQ codebook was the assumption
that, in the limit, the codebook should ideally have about 40 vectors—i.e., one vector
per speech sound. However, since the codebook vectors represent short time spectral
measurements, there is inherently a certain degree of variability in specific codebook
entries. Figure 3.44 shows a comparison of codebook vector locations in the F — F; plane
for a 32-vector codebook, along with the vowel ellipses discussed in Chapter 2. (The 32
codewords were generated from a training set of conversational speech spoken by a set
of male talkers. The training set included both speech and background signals.) It can
be seen that the correspondence between codebook vector location and vowel location is
weak. Furthermore, there appears to be a tendency to cluster around the neutral vowel /3/.
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Figure 3.43 Codebook distortion versus codebook size (measured in bits per
frame) for both voiced and unvoiced speech (after Juang et al. [12]).
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Figure 3.44 Codebook vector locations in the Fy — F plane (for a 32-vector
codebook) superimposed on the vowel ellipses (after Juang et al. [12)).

This can be attributed, in part, to both the distortion measure and to the manner in which
spectral centroids are computed. :

3.45 Vector Classification Procedure

The classification procedure for arbitrary spectral vectors is basically a full search through
the codebook to find the “best” match. Thus if we denote the codebook vectors of an

vt i s =
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M-vector codebook as y,, 1 < m < M, and we denote the spectral vector to be classified
(and quantized) as v, then the index, m*, of the best codebook entry is

m* = arg lénmlgMd(v,y,,,). 3.95)

For codebooks with large values of M (e.g., M > 1024), the computation of Eq. (3.95) could
be excessive, depending on the exact details of the distance measure; hence, altenative,
suboptimal, procedures for designing VQ codebooks have been investigated. We will
briefly discuss such methods in a later section of this chapter.

3.4.6 Comparison of Vector and Scalar Quantizers

To illustrate the power of the concept of quantizing an entire vector (rather than quantizing
individual components of the vector), Figures 3.45 and 3.46 show comparisons of the results
of using vector and scalar quantizers on typical speech spectral frames. In Figure 3.45 we
see both model (speech) spectra and the resulting quantization error spectrum for 10-bit and
24-bit scalar quantizers and for a 10-bit vector quantizer. It is clear that the quantization
error of the 10-bit vector quantizer is comparable to that of the 24-bit scalar quantizer. This
implies that the vector quantizer provides a 14-bit reduction in storage (per frame) over a
scalar quantizer, i.€., more than a 50% reduction in storage for the same distortion.

Figure 3.46 shows temporal plots of distortion as well as distortion error histograms
for the three quantizers of Figure 3.45. It can be seen that even though the average distortion
of the 10-bit VQ is comparable to that of the 24-bit scalar quantizer, the peak distortion of
the 10-bit VQ is much smaller than the peak distortion of the 24-bit scalar quantizer. This
represents another distinct advantage of VQ over scalar quantization.

3.4.7 Extensions of Vector Quantization

As mentioned earlier, several straightforward extensions of the ideas of VQ have been
proposed and studied, including the following:

1. Use of multiple codebooks in which codebooks are created separately (and indepen-
dently) for each of several spectral (or temporal) representations of speech. Thus
we might consider using a separate codebook for cepstral vectors and a separate
codebook for the time derivatives of the cepstral vectors. This method of multiple
codebooks has been used extensively in large vocabulary speech-recognition systems.

2. Binary search trees in which a series of suboptimal VQs is used to limit the search
space 50 as to reduce the computation of the overall VQ from M distances to log (M)
distances. The training procedure first designs an optimal M = 2 VQ and then
assigns all training vectors to one of the VQ cells. Next the procedure designs a
pair of M = 2 VQs, one for each subset of the preceding stage. This process is
iterated until the desired size is obtained in log M steps. The suboptimality of the
procedure is related to the fact that training vectors initially split along one branch of
the VQ cannot join the other branch at a later stage of processing; hence, the overall
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Figure 345 Model and distortion error spectra for scalar and vector quantizers (after Juang
etal. [12]).

distortion is not minimal at each branch of the tree.

3. K-tuple (fixed-length block) quantizers in which K-frames of speech are coded at a

time, rather than single frames, as is conventionally the case. The idea is to exploit
correlations in time for vowels and vowel-like sounds. The disadvantage occurs for
sounds where the correlation along the K-tuple is low—i.e., transient sounds and
many consonants.

4. Matrix quantization in which a codebook of sounds or words of variable sequence
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Figure 3.46 Plots and histograms of temporal distortion for scalar and vector quantizers (after
Juang et al. {12]).

length is created. The concept here is to handle time variability via some types of
dynamic programming procedure and thereby create a codebook of sequences of
vectors that represent typical sounds or words. Such techniques are most applicable
to word-recognition systems.

5. Trellis codes in which time sequential dependencies among codebook entries are
explicitly determined as part of the training phase. The idea here is that when
input vector v, is quantized using codeword y,, then input vector v, is quantized
using one of a limited subset of codebook entries that are related to y, via a set of
learned sequential constraints, thereby reducing computation of encoding the input,
and increasing the ability to interpret the codebook output in terms of basic speech
units.

&

Hidden Markov models in which both time and spectral constraints are used to
quantize an entire speech utterance in a well-defined and efficient manner. We defer
a discussion of hidden Markov models fo Chapter 6.

3.4.8 Summary of the VQ Method

In later chapters of this book we will see several examples of how VQ concepts can be
exploited in speech-recognition systems. Here we have shown that the basic idea of VQ
is to reduce the information rate of the speech signal to a low rate through the use of
a codebook with a relatively small number of code words. The goal is to be able to




132 Chap. 3 Signal Processing and Analysis Methods

OUTER MIDDLE INNER
EAR | EAR l EAR

VESTIBULAR APPARATUS

HAMMER
(MALLEUS)’
ANVIL
{INCuS)
STIRRUP _

OSSICLES.

EXTERNAL
T EARDRUM ™
{TYMPANIC =~ "%
EMBRANE) ;. 7
U2 OVAL WINDOW
. "ROUND WINDOW "

" EUSTACHIAN TUBE

A

NASAL CAVITY

\

Figure 3.47 Physiological model of the human car.

represent the spectral information of the signal in an efficient manner and in a way that
direct connections to the acoustic-phonetic framework discussed in Chapter 2 can be made.
Various techniques for achieving this efficiency of representation were discussed, and their
properties were illustrated on representative examples of speech.

3.5 AUDITORY-BASED SPECTRAL ANALYSIS MODELS

The motivation for investigating spectral analysis methods that are physiologically based
is to gain an understanding of how the human auditory system processes speech, so as to
be able to design and implement robust, efficient methods of analyzing and representing
speech. It is generally assumed that the better we understand the signal processing in the
human auditory system, the closer we will come to being able to design a system that can
truly understand meaning as well as content of speech. '

With these considerations in mind, we first examine a physiological model of the
human ear. Such a model is given in Figure 3.47 and it shows that the ear has three distinct
regions called the outer ear, the middle ear, and the inner ear. The outer ear consists
of the pinna (the ear surface surrounding the canal in which sound is funneled), and the
external canal. Sound waves reach the ear and are guided through the outer ear to the
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middle ear, which consists of the tympanic membrane or eardrum upon which the sound
wave impinges and causes to move and a mechanical transducer (the malleus or hammer,
the incus or anvil, and the stapes or stirrup), which converts the acoustical sound wave to
mechanical vibrations along the inner ear. The inner ear consists of the cochlea, which is a
fluid-filled chamber partitioned by the basilar membrane, and the cochlea or auditory nerve.
The mechanical vibrations impinging on the oval window at the entrance to the cochlea
create standing waves (of the fluid inside the cochlea) that cause the basilar membrane to
vibrate at frequencies commensurate with the input acoustic wave frequencies (e.g., the
formants of voiced speech) and at a place along the basilar membrane that is associated
with these frequencies. (An expanded view of the middle and inner ear mechanics is given
in Figure 3.48. The 2 !/; turn, snail-like shape of the cochlea is shown as a straight tube in
this figure for ease of presentation.)

The basilar membrane is characterized by a set of frequency responses at different
points along the membrane. Hence, in its simplest form, the cochlea can be modeled as a
mechanical realization of a bank of filters (appropriately called cochlea filters). Distributed
along the basilar member (in a dense but discrete manner) is a set of sensors called inner
hair cells (IHC), which act as mechanical motion to neural activity converters. Mechanical
motion at some point along the basilar membrane is sensed by the inner hair cells and
causes firing activity at the nerve fibers that innervate the bottom of each IHC. Each IHC
is connected to about 10 nerve fibers, each of different diameter and of different synaptic
connection. It has been shown experimentally that thin fibers fire (emit neural impulses)
only at high motion levels, whereas thick fibers fire at much lower motion levels. A total
of about 30,000 nerve fibers link the IHCs to the auditory nerve.
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Beyond the auditory nerve, our knowledge of how the information signals (the neural
activity along the auditory nerve) are processed and eventually converted to intelligence in
the brain is almost primitive. Hence when we attempt to build auditory models for signal
processing, we are primarily modeling the middle ear, cochlea, and hair cell systems. The
assumption is that the signal produced by such a model exhibits some of the robustness
(immunity to noise, reverberation) and efficiency of the human auditory systems. Thus
in the remainder of this section we present one such model, called the Ensemble Interval
Histogram (EIH) model and show some of the properties of speech signals processed by
such a model.

3.5.1 The EIH Model

On the basis of the discussion in the preceding section, a model of the cochlea and the hair
cell transduction consists of a filter bank that models the frequency selectivity at various
points along a simulated basilar membrane, and a nonlinear processor for converting the
filter bank output to neural firing patterns along a simulated auditory nerve. Such a model
is shown in Figure 3.49 and is called the EIH model [13].

In the ETH model, the mechanical motion of the basilar membrane is sampled using
165 IHC channels, equally spaced, on a log-frequency scale, between 150 and 7000 Hz.
The corresponding cochlear filters are based on actual neural tuning curves for cats. The
amplitude responses of 28 of these filters (i.e., about 1 in 8 from the model) are shown in
Figure 3.50. The phase characteristics of these filters is minimum phase, and the relative
gain, measured at the center frequency of the filter, reflects the corresponding value of the
cat’s middle ear transfer function.

The next stage of processing in the ETH model of Figure 3.49 is an array of level cross-
ing detectors that models the motion-to-neural activity transduction of the hair cell mech-
anisms. The detection levels of each detector are pseudo-randomly distributed (based on
measured distributions of level firings), thereby simulating the variability of fiber diameters
and their synaptic connections.

The output of the level-crossing detectors represents the discharge activity of the
auditory nerve fibers. Figure 3.51 shows simulated auditory nerve activity, for the first
60 msec of the vowel /o/ in the word “job,” as a function of both time and the “characteristic
frequency” of the IHC channels. (Note the logarithmic scale of the characteristic frequency
which represents the place-to-frequency mapping on the basilar membrane.) In Figure 3.51,
a level-crossing occurrence is marked as a single dot, and the output activity of each level-
crossing detector is plotted as a scparate trace. Each THC channel contributes seven
parallel traces (corresponding to the seven level-crossing detectors for each channel), with
the lowest trace representing the lowest-threshold level-crossing detector. If the magnitude
of the filter’s output is low, only one level will be crossed, as is seen for the very top
channels in Figure 3.51. However, for large signal magnitudes, several levels will be
activated, creating a “darker” area of activity in the figure.

The level-crossing patterns represent the auditory nerve activity, which, in turn, is
the input to a second, more central stage of neural processing, which gives the overall
ensemble interval histogram (EIH). Conceptually, the EIH is a measure of the spatial
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Figure 3.49 Block diagram of the EIH model (after Ghitza [13p.

extent of coherent neural activity across the simulated -auditory nerve. Mathematically,
it is the short-term probability density function of the reciprocal of the intervals betv\fet‘fn
successive firings, measured over the entire simulated auditory nerve in a characteristic
frequency-dependent time-frequency zone. )

As a consequence of the multilevel crossing detectors, the ETH representatl.on pre-
serves information about the signal’s overall energy. To illustrate this point, consider the
case in which the input signal is a pure sinusoid, i.e. s(f) = A sin27fyt), and .the cl.xaractf:r-
istic frequency of a selected channel is Jfo, as shown in Figure 3.52a. For a given intensity
A, the cochlear filter output will activate only some low level-crossing detectors. ) For a
given detector, the time interval between two successive positive-going lev?l crossings is
1/fo. Since the histogram is scaled in units of frequency, this interval contributes a count
to the fp bin. For the input signal in Figure 3.52a, all of the intervals are the same, resu}tmg
in a histogram in which the magnitude of each bin, save one (fp). is zero. As the signal




ol m"
‘,%, 0»

FREQUENCY, Hz
Figure 3.50 Frequency response curves of a cat’s basilar membrane (after Ghitza [13]).

4800

n

3

CHARACTERISTIC FREQUENCY,

o2 T T
lo-40 lo-20 o o+20

TIME, milliseconds

Figure 3.51 Magnitude of EIH for vowel /o/ showing the time-frequency resolution (after
Ghitza [13]).

Sec. 3.5  Auditory-Based Spectral Analysis Models

(@)

-y
s(t)sAsin (27 fot)

(b)

[EXGIEEY

LEVEL CROSSINGS /— - HISTOGRAMS

L
s

v-qi FILTER }
i

Lt ]

AAAAA

z
2

\)
\ N N\ &

i

AAAAA

fo log f
s(t)=Asin(2wfy t)

I%L-

Figure 3.52 Operation of the EIH model for a pure sinusoid (after Ghitza [13]).

137




138 Chap. 3 Signal Processing and Analysis Methods

FOURIER [o0] EIN

-0},
-20
- CLEAN

-50

=10

-30

8
EIN, integer
8888, 3888, 88°¢°32

-50

AMPLITUDE SPECTRUM, ¢

-10fF
-20fF
-30}
-40}

-50 L 1 I 1 1
800 1600 2400 3200 ] 800 1600 2400 3200

FREQUENCY, H2 FREQUENCY, Hz

- LPC
fit

(=)
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amplitude A increases, more levels are activated. As a result, this cochlear filter contributes
additional counts to the fp bin of the EIH. Since the crossing levels are equally distributed
on a log-amplitude scale, the magnitude of any EIH bin is related, in some fashion, to
decibel units. However, this relation is not a straightforward one because there are several
sources contributing counts to the fp bin in a nonlinear manner. Figure 3.52b shows an
input signal s(t) = Asin(2xnfyt) driving five adjacent cochlear filters with an amplitude
response |H;(f)| and a phase response ¢;(f),i = 1,2,...,5. Due to the shape of the filters,
more than one cochlear channel will contribute to the fp bin. In fact, all the cochlear filters
that produce s;(f) = A |H;(fo)} sin(2xfot + ¢i(fo)) will contribute to the fo bin of the EIH,
provided that A |H,(fo)| exceeds any of the level-crossing thresholds. In Figure 3.52b only
cochlear filters 2, 3, and 4 are contributing nonzero histograms to the EIH. The number of
counts is different for each filter, depending on the magnitude of A |H(fy)|-

One goal of auditory-based signal processing is to make the signal more robust to
noise and reverberation than alternative spectral analysis procedures such as the filter-bank
method or the LPC method. Figure 3.53 illustrates how well the EIH model achieves this
goal. Shown in the figure are the log magnitude spectra of a clean (no noise) and a noisy
(signal-to-noise ratio of 0 dB) speech signal processed by a standard Fourier filter bank
(curves on the left) and by the EIH model (curves on the right). Also shown are LPC
polynomial fits to the original signal spectrum (on the left) and to the EIH signal spectrum
(on the right) for both the clean signal and the noisy signal. This figure clearly shows a
tremendous sensitivity of the Fourier and LPC analyses to noise for the original signals.
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(This is especially seen in the LPC polynomial fits.) In the EIH case, the log magnitude
spectra are almost unaltered by the noise, and the LPC polynomial fits are extremely close
to each other.

The implication of the above results for speech recognition is that the EIH model has
potential for use in recognizing speech robustly in noisy and reverberant environments. We
will explore this issue in Chapter 5 when we talk about the effects of noise on performance
of speech recognizers.

3.6 SUMMARY

In this chapter we have discussed several ways of performing spectral analysis of speech,
including filter-bank analysis, LPC analysis, vector quantization, and auditory modeling.
We have discussed the relative strengths and weaknesses of each approach and given a hint
of the advantages and disadvantages for application to actual speech-recognition systems.
We will see, in later chapters, how the type of spectral analysis that is used interacts with
the processing of other parts of the recognizer. Only through such an understanding can
one fully see the trade-offs among the different approaches to speech spectrum analysis.

REFERENCES

{1] L.R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice
Hall, Englewood Cliffs, NJ, 1975.

[2] LR. Rabiner and R.W. Schafer, Digital Processing of Speech Signals, Prentice Hall,
Englewood Cliffs, NJ, 1978.

[3] R.E. Crochiere and L.R. Rabiner, Multirate Digital Signal Processing, Prentice Hall,
Englewood Cliffs, NJ, 1983.

{4] B.A. Dautrich, L.R. Rabiner, and T.B. Martin, “On the Effects of Varying Filter Bank
Parameters on Isolated Word Recognition,” IEEE Trans. Acoustics, Speech, Signal Proc.,
ASSP-31 (4): 793-807, August 1983. .

[51 B.A. Dautrich, L.R. Rabiner, and T.B. Martin, “The Effects of Selected Signal Processing
Techniques on the Performance of a Filter Bank Based Isolated Word Recognizer,” Bell
System Tech. J., 62 (5): 1311-1336, May-June 1983.

[6] 1.D. Markel and A H. Gray, Ir., Linear Prediction of Speech, Springer-Verlag, 1976.

{7) G.M. White and R.B. Neely, “Speech Recognition Experiments with Linear Prediction,
Bandpass Filtering, and Dynamic Programming,” IEEE Trans. Acoustics, Speech, Signal
Proc., ASSP-24 (2): 183-188, 1976.

(8] L.R.Rabiner, B.S. Atal,and M.R. Sambur, “LPC Prediction Error—Analysis of its Variation
with the Position of the Analysis Frame,” IEEE Trans. Acoustics, Speech, Signal Proc.,
ASSP-25 (5): 434—442, October 1977.

[9] H. Strube, “Determination of the Instant of Glottal Closure from the Speech Wave,” J.
Acoust. Soc. Am., 56 (5): 1625-1629, November 1974.




140 Chap.3  Signal Processing and Analysis Methods

{10] B.S. Atal and S.L. Hanauer, “Speech Analysis and Synthesis by Linear Prediction of the
Speech Wave,” J. Acoust. Soc. Am., 50 (2): 637-655, August 1971.

[11] S. Furui, “Speaker Independent Isolated Word Recognition Using Dynamic Features of
Speech Spectrum,” [EEE Trans. Acoustics, Speech, Signal Proc., ASSP-34 (1): 52-59,
February 1986.

[12] J.-H.Juang, D.Y. Wong, and A.H. Gray, Jr., “Distortion Performance of Vector Quantization
for LPC Voice Coding,” IEEE Trans. Acoustics, Speech, Signal Proc., ASSP-30 (2): 294
304, April 1982.

[13] O. Ghitza, “Auditory Nerve Representation as a Basis for Speech Processing,” in Advances
in Speech Signal Processing, S. Furui and M. Sondhi, Eds., Marcel Dekker, NY, 453485,
1991.

Chapter 4

PATTERN-COMPARISON
TECHNIQUES

INTRODUCTION

A key question in speech recognition is how speech patterns are compared to determine
their similarity (or equivalently, the distance between patterns). Depending on the specifics
of the recognition system, pattern comparison can be done in a wide variety of ways.

Consider, for example, the acoustic-phonetic recognizer discussed in Chapter 2,in
which every analysis frame is classified according to a defined set of features. Thus the
spectral features of compactness, graveness, stress, and flatness can be used to classify
sounds as specific vowels (recall Figure 2.33). The decision as to the presence or absence
of these vowel features is made based on values of acoustic parameters (e.g., formants,
energy in spectral bands, durations). Such decisions are usually based on empirically
derived thresholds on the acoustic parameters. The comparison between the vowel features
of an arbitrary piece of speech, and those predefined for various vowel classes, can be made
via a decision tree (of the type shown in Figure 2.33). An alternative procedure would be to
combine the vowel features into a vowel feature vector, and to apply a mathematical rule to
make the appropriate vowel classification. The mathematical rule could be in the form of a
dissimilarity or distance measure that evaluates the closeness of the input feature vector to
a set of predefined vowel feature vectors, or it could be implemented as a Boolean function
that maps the binary-valued feature vector directly to a vowel-classification decision (in
which case the neural net classifiers of Chapter 2 would potentially be quite useful).

Of greater interest is the pattern-based approach to speech recognition in which the
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speech is directly represented by the time sequence of spectral vectors as obtained from the
front-end spectral analysis discussed in Chapter 3. Thus we define a test pattern, T, as the
concatenation of spectral frames over the duration of the speech, such that

T ={t,ta,t3,...,t:},

where each t; is the spectral vector of the input speech at time i, and / is the total num-
berlof ;'rames of speech. In a similar manner we define a set of reference patterns,
{R',R?,...,R"} where each reference pattemn, R/, is also a sequence of spectral frames,
such that

R = {r’l,r'z,,r_’,}

The goal of the pattern-comparison stage is to determine the dissimilarity or distance of 7~
toeachofthe R/, 1 < j <V, in order to identify the reference pattern that has the minimum
dissimilarity, and to associate the spoken input with this pattern. (More generally, as will
be shown in Chapter 6, we would like to compare the test pattern to a mathematical or
statistical characterization of each reference pattern, rather than to a specific reference
pattern sequence. In this chapter we will concentrate primarily on comparing two patterns,
both of which are sequences of spectral vectors. We call such patterns templates. In
Chapter 6 we will extend the pattern comparison concept to the case of statistical models.)

To determine the global similarity of 7 to R/ we need to be concerned with each of
the following problems:

1. 7 and R/ generally are of unequal lengths (time durations). This is, of course,
because of different speaking rates across different talkers with different dialects.

2. T and R/ need not line up in time in any simple or well-prescribed manner. This
is because different sounds cannot be varied in duration to the same degree. Thus
vowels are easily lengthened or shortened; however, most consonants cannot change
dramatically in duration.

3. We need a way to compare pairs of spectral vectors (or equivalently, pairs of spectral
representations)—that is, a local dissimilarity or distance measure to evaluate the
global similarity and to facilitate a postulated temporal lineup between 7 and R/.

These problems imply the need for both a local dissimilarity measure and a global method
of time aligning 7 and R/ so that the accumulated local dissimilarity between spectral
frames in the time-aligned patterns is minimized. It will be shown in this chapter that the
problem of global time alignment of two patterns can be handled with analytical rigor, and,
in fact, can be merged with the problem of determining a good local dissimilarity measure
to yield optimal solutions for a wide range of spectral dissimilarity (or, as generally called,
spectral distortion) measures.

The concept of a spectral dissimilarity measure is equally applicable to both the
feature-based approach and the template-based approach. However, because the acoustic-
phonetic feature vector is essentially qualitative (often consisting of simple binary features),
the measure so defined has limited numerical sensitivity. For template-based systems,
however, the dissimilarity measures that are used have strong physical interpretations in
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terms of spectral difference or spectral distortion between the pair of spectra. For this
reason, such measures are called spectral-distortion or spectral-distance measures.

One other fundamental problem must be handled to define a global dissimilarity
between pairs of patterns. We have implicitly assumed that both the test and reference
patterns being compared consist solely of spectral frames corresponding to speech—that
is, all background signal has been eliminated from consideration. For this to be the case
in practice, we must be able to reliably separate speech from background signal. We call
this problem the (speech) endpoint-detection problem and we begin with a discussion of
various methods of solving this basic problem in speech processing.

4.2 SPEECH (ENDPOINT) DETECTION

The goal of speech detection is to separate acoustic events of interest (e.g., speech to be pro-
cessed) in a continuously recorded signal from other parts of the signal (e.g., background). -
The need for speech detection occurs in many applications in telecommunications. For
example, in analog multichannel transmission systems, a technique called time-assignment
speech interpolation (TASI) is often used to take advantage of the channel idle time by de-
tecting the presence of a talker’s speech and assigning an unused channel only when speech
is detected in order to allow more customer services than the channels would normally
provide [1]. With TASI, a transmission medium with 96 voice channels can serve 235
customers; a factor of 2.5 more users is served because of the long pauses in fluent speech.
For automatic speech recognition, endpoint detection is required to isolate the speech of
interest so as to be able to create a speech pattern or template.

A key question in speech recognition is how accurately speech must be detected so
as to provide the “best” speech patterns for recognition. The definition of “best” here is the
pragmatic one—namely, the patterns that provide highest recognition accuracy. To answer
this question, a multispeaker digit-recognition experiment was performed to determine the
effect of endpoint errors on digit-recognition accuracy [2]. The recorded utterances were
first examined by hand (including both examination of the waveform and energy contour,
and listening to the hand-endpointed speech) and the endpoints were manually determined.
This data set was then used as a standard set from which a set of reference templates for
the digits was created and used in subsequent recognition trials. The recognizer employed
was one based on a standard LPC front end. For the standard data set, the overall digit
recognition accuracy was found to be 93%. With the original reference templates remaining
unchanged, the manually determined endpoints of each utterance in the test set were then
varied in 15-ms (one speech frame) steps from 150 ms before the standard beginning point

_to 150 ms after the standard ending point. For each set of changed endpoints, the resulting

recognition accuracy was measured using the same utterances as in the base system (the
one with hand endpoints). Figure 4.1 shows a contour plot of overall (averaged over all 10
digits) digit recognition accuracy as a function of the perturbation in the endpoint position
in ms. As the figure shows, even small endpoint errors often result in relatively significant
degradation in digit accuracy. For example, a 3% reduction in digit accuracy occurred if
both the endpoints were in error by £60 ms (4 frames). As the endpoints are moved farther
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Figure 4.1 Contour of digit recognition accuracy (percent correct) as a function of
endpoint perturbation (in ms) in a multispeaker digit-recognition experiment. Both
the initial (beginning point) and the final (ending point) boundary of the detected
speech signal were varied (after Wilpon et al. [2]).

away from the reference endpoints, recognition accuracy decreases uniformly. While the
. results are undoubtedly dependent on the particular recognizer implementation and the
way the endpoint information is used in the recognizer, the figure dramatically illustrates
the effects of endpoint errors on speech-recognition performance, thereby showing the
importance of accurate endpoint detection.

For speech produced in the most benign circumstances—that is, carefully articulated
and spoken in a relatively noise-free environment—accurate detection of speech is a simple
problem. However, this is not usually the case. In practice, one or more problems usually
make accurate endpoint detection difficult. One particular class of problems is those
attributed to the speaker and to the manner of producing the speech. For example, during
articulation, the talker often produces sound artifacts, including lip smacks, heavy breathing,
and mouth clicks and pops. Figures 4.2 through 4.4 show examples of this type of humanly
produced sound artifact. The top part of each figure is the energy contour of the utterance
on a logarithmic (dB) scale, and the lower part is the time waveform of the corresponding
utterance.

Figure 4.2 shows a typical mouth click produced by opening the lips (prior to speak-
ing) when the mouth is relatively dry, thereby causing the lips to pop, (i.e., produce a
high-frequency, transient sound). Figure 4.3 shows a high level of breath noise produced at
the end of speaking, caused by the speaker’s heavy breathing. This artifact typically occurs
when a speaker is short of breath (usually from exertion) and combines heavy breathing
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Figure 4.2 Example of mouth click preceding a spoken word
(after Wilpon et al. [2]).

with speaking. Unlike the precursor mouth click, the heavy bn.aathin‘g noi_se is not stamted
from the speech and therefore makes accurate endpoint de.tecnon qmte. difficult. Figure 4.4
shows an example of a mouth click produced after speakmg.. Such clicks are often gener-
ated inadvertently from the speaker clicking the lips or snapping th.e tongue after speaking.
In all three examples, we see that the energy level of the artifacts is comparable to speech
vels. )
en’?’rg):'xlesecc)nd factor making reliable speech endpoint detection difficult is the environ-
mental conditions in which the speech is produced. The ideal environment for talking
is a quiet room with no acoustic noise or signal generators other than that produced_ by
the speaker. Such an ideal environment is not always practlcal;' hence, one mus.t consider
speech produced in noisy backgrounds (as with fans or .machmery runm{lg), in nonsta-
tionary environments (as in the presence of door slams, irregular road noise, car poms),
with speech interference (as from TV, radio, or background conveysan.ons), an'd in hos-
tile circumstances (when the speaker is stressed, such as when navigating an airplane or
while moving at high speeds). Some of these interfering signals possess as much speech-
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Figure 43 Example of breathy speech due to heavy breathing
while speaking (after Wilpon et al. [2]).

like quality as the desired speech signal itself, making accurate endpoint detection quite
difficult. '

A final source of signal degradation is the distortion introduced by the transmission
system over which the speech is sent. Factors like cross-talk, intermodulation distortion,
and various types of tonal interference arise to various degrees in the communications
channel, again adding to the inherent difficulties in reliably detecting speech endpoints [1].

Many methods have been proposed for speech detection for use in speech recognition
systems. These methods can be broadly classified into three approaches according to their
interaction with the pattern matching paradigm: (1) the explicit approach, (2) the implicit
approach, and (3) the hybrid approach [2].

The explicit approach is based on the premise that speech detection can be ac-
complished independent of other pattern-matching operations in the later stages of the
speech-recognition process. Figure 4.5 shows a block diagram of the explicit approach
to endpoint detection. The speech signal is first processed and feature measurements are
made. The speech-detection method is then applied to locate and define the speech events.
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Figure 4.4 Example of click produced at the end of a spoken
word (after Wilpon et al. [2]).
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Figure 4.5 Block diagram of the explicit approach to speech endpoint detection.

The detected speech is sent to the pattern-comparison algorithm, and‘ﬁnally the c.iec'lsxon
mechanism chooses the recognized word. Although the speech-detection module is likely
to use the same measured features as those used for recognition, it is independent pf the
recognition processing and can use a different set of features, if appropriate. For signals
with a stationary and low-level noise (and acoustic) background, the approac'h product?s
reasonably good detection accuracy. The approach fails often when the environment 1s
noisy or the interference is nonstationary. ) '
The implicit approach considers the speech-detection prol?lem simultaneously with
the pattern-matching and recognition-decision process. It recognizes that s;.)e.ech events are
almost always accompanied by a certain acoustic background. \?fnh an exphc1: model of the
background signal included in the reference templates, a signal in the form of backg.round-
speech-background” can still be compared and classified. Figure 4.6 shows a block diagram
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Figure 4.7 Examples of word boundaries as determined by the
implicit endpoint detection algorithm.

of the implicit approach to speech detection. The unmarked signal sequence is processed
by the pattern-matching module in which all (or a large set of all) possible endpoint sets
are considered and the decision mechanism provides an ordered list of the candidate words
as well as the corresponding speech locations. The final result is the best candidate and its
associated endpoints. The implicit approach obviously incurs a heavy computational load
but offers a potentially higher detection accuracy than the explicit approach.

To illustrate the inherent advantage of the implicit approach to endpoint detection,
Figure 4.7 shows an example of a measured log energy contour of an utterance and two
possible sets of word boundary locations. The example of Figure 4.7a corresponds to the
case in which the initial high-energy transient (labeled “A” in the figure) is classified as
part of the background and the word boundaries are as shown. (This case corresponds
to a word without an initial stop consonant, such as the word “even.”) The example of
Figure 4.7b corresponds to the case in which the initial high-energy transient is treated
as a stop consonant and classified as part of the word (e.g., the initial part of a word
like “acquire”). Hence, depending on the word recognized, the boundary locations could
inherently be different with the implicit method, whereas with the explicit method only a
single choice of boundary locations is made.

The computational complexity of the implicit approach can be significantly reduced
if only a small but reasonable set of estimates of the endpoint set are considered. This gives
tise to the hybrid technique, which uses the explicit method to obtain several potential
endpoint sets for recognition processing and the implicit method to choose among the
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Figure 4.8 Block diagram of the hybrid approach to speech endpoint detection.

Figure 4.9 Block diagram of typical speech activity detection algorithm.

alternatives. The most likely candidate word and the corresponding endpoints, as in the
implicit approach, are provided by the decision box. Figure 4.8 shows a block diagram of
the hybrid method. The hybrid approach has a computational load equivalent to the explicit
method, but with an accuracy comparable to the implicit method.

As pointed out, these three approaches to endpoint detection differ in their degree
of interaction with the recognition process. The basic speech-detection algorithm used to
obtain an estimate of the endpoints often involves feed-forward processing of the measured
short-time energy level. A block diagram of such a processing algorithm is shown in
Figure 4.9. The adaptive level equalization module estimates the level of the acoustic
background and uses the result to equalize the measured energy contour. Preliminary
energy pulses, which are speechlike bursts of energy during the recording interval, are then
detected from the equalized energy contour. Finally, these potential energy pulse endpoints
are ordered, according to their likelihood, to determine the possible sets of word endpoint
pairs. Extensive experimentation is necessary in deciding the best values for the required
set of thresholds and the ordering logic to provide the most reasonable sets of endpoints.

4.3 DISTORTION MEASURES—MATHEMATICAL CONSIDERATIONS

A key component of most pattern-comparison algorithms is a prescribed measurement
of dissimilarity between two feature vectors. This measurement of dissimilarity can be
handled with mathematical rigor if the patterns are visualized in a vector space. Consider
the following framework.

Assume we have two feature vectors, x and y defined on a vector space x. We define
a metric or distance function d on the vector space x as a real-valued function on the
Cartesian product x x x such that [3]:

(a) 0 <d(x,y) < oo forx,y € xand d(x,y) =0ifandonly if x = y;
(b) d(x,y) =d(y,x) forx,y € x;
() d(x,y) < d(x,z) +d(y,z) forx,y,z € x.

In addition, a distance function is called invariant if
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(d) dx +1z,y+2) =dXxY)

Properties (a), (b), and (c) are commonly referred to as the positive definiteness, the
symmetry, and the triangle inequality conditions, respectively. A metric with the above
properties ensures a high degree of mathematical tractability.

If a measure of difference, d, satisfies only the positive definiteness property, we
customarily call it a distortion measure, particularly when the vectors are representations
of signal spectra.

For speech processing, an important consideration in defining (or choosing) a measure

of distance is its subjective meaningfulness. A mathematical measure of distance, to be

useful in speech processing, has to have a high correlation between its numerical value

and the subjective distance judgment, as evaluated on real speech signals. For speech
recognition, the psychophysical consistency that we would like the measure of distance
to possess implies that the mathematical measure needs to conform to known linguistic
characteristics. This subjective requirement often cannot be satisfied by distance measures
with proven mathematical tractability. An example is the traditional squared error distance
d(x,y) = (x — y)>. A large difference in the waveform squared error does not always
imply large subjective differences; examples are the difference between an original speech
signal and an all-pass filtered version of the same signal, or for sounds like /sh/ which is
essentially a shaped noise process.

Because it is difficult to simultaneously accommodate the dual objectives of subjec-
tive meaningfulness and mathematical tractability, some compromise is inevitable. What
we will discuss in this chapter are a number of distortion measures that are considered,
to various degrees, subjectively meaningful. The focus of our discussion will be on the
mathematical properties of these distortion measures; however, we will try to show that
the subjective properties of these measures are reasonably good for recognition. For the
most part, we will talk about “distortion measures” instead of “metrics,” because of the
relaxation of the conditions on symmetry and the triangle inequality. We will not, however,
use the term distance in a strict sense according to the definition above; we will instead
follow the custom in the speech literature that the term distance is analogous to measure of
dissimilarity, a generic descriptive terminology.

4.4 DISTORTION MEASURES—PERCEPTUAL CONSIDERATIONS

A key factor in the choice of an appropriate measure of spectral dissimilarity or distance
measure is the concept of subjective judgment of sound difference or phonetic relevance.
Loosely speaking, a phonetically relevant distance measure has the property that spectral
changes that perceptually make the sounds being compared seem to be different should be
associated with large distances; similarly spectral changes that keep the sound the same
perceptually should be associated with small distances. To illustrate more specifically what
we mean by phonetic relevance, consider comparing two spectral representations, S(w)
and §'(w), using a distance measure d(S, ). Spectral changes that do not fundamentally
change the perceived sound include
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e spectral tilt, i.e., §'(w) = S(w) - w*, where a is the spectral tilt factor;

o highpass filtering, i.c., $'(w) = S(w) | Hup(e™) |2, where Hyp(e™) is a filter that is

unity in value above some cutoff frequency that is typicaily below the range of the

first formant frequency, and attenuates the signal sharply for frequencies below the

cutoff frequency;

lowpass filtering, i.e., §'(w) = S(w) | Hp(e™) 2, where Hyp(e™) is a filter that is

unity in value below some cutoff frequency that is typically above the range of the

third formant frequency, and attenuates the signal sharply for frequencies above the

cutoff frequency;

e notch filtering, i.e., §'(w) = S(w) | Hn(e™) |?, where Hy(e/) is unity except at a
narrow range of frequencies where the signal is greatly attenuated (the notch band).

For all the above cases, the differences in spectral content of the two signals being compared
is not phonetically relevant (that is, the sounds are basically perceived as being the same
phonetically); hence the associated spectral distance measure, d(S,S’) should ideally be
small.

Spectral changes that perceptually lead to the sounds judged as being phonetically
different (large phonetic distance) include

o significant differences in formant locations—that is, the spectral resonances of S(w)
and §'(w) occur at very different frequencies;

o significant differences in formant bandwidths—that is, the frequency widths of the
spectral resonances of S(w) and §’'(w) are very different.

For each of these cases the difference in spectral content of the two signals being compared is
phonetically relevant (i.e., the sounds are different); hence, the associated spectral distance
measure, d(S, S’) should ideally be large.

A key question, therefore, is, What do we mean by significant differences in formant
locations or bandwidths? To relate a physical measure of difference to a subjectively
perceived measure of difference, we need to understand some properties of human auditory
discrimination of signals. In particular it is important to understand auditory sensitivity
to changes in the speech dimensions or features such as the frequencies and bandwidths
of the complex poles and zeros of the speech spectrum, signal intensity, and fundamental
frequency. This sensitivity is often presented in the form of just-discriminable change,
the change in a physical parameter such that the auditory system can reliably detect the
change as measured in standard listening tests. Terms used to describe just-discriminable
change include the difference limen (DL), just-noticeable difference (JND), and differential
threshold. )

Using synthetic vowel sounds generated by a computer synthesizer, the DL for the
frequencies of the first and second formants have been found to be on the order of 3 to
5% of the formant frequency [4]. This result was obtained by considering changes in the
frequency of only one formant at a time and finding what level of change was reliably
detected by listeners. When all formants were changed simultaneously, the measured DL
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TABLE 4.1. Measured DLs and JNDs for Syn-
thetic Vowel Sounds

Parameter DL/IND
Fundamental frequency 0.3-0.5%
Formant frequency 3-5%
Formant bandwidth 20-40%
Overall intensity 1.5dB

was shown to be a complicated function of all formant frequencies and was shown to be
very sensitive to how close formants were to each other.

The JND in the overall intensity of a synthetic vowel has been shown to be about '

1.5 dB [4]. Since the first formant is usually the most intense formant in vowel sounds,
this JND of 1.5 dB can also be considered a rough estimate of the intensity DL for the first
formant. In terms of the second formant, the intensity DL was found to be about 3 dB for
a near-neutral vowel (/&/).

The DLs for formant bandwidth have not been directly measured. Indirect mea-
surements show that changes on the order of 20 to 40% in formant bandwidth are
just-discriminable [5].

Again using synthetic vowel sounds, the fundamental frequency DL was shown to
be about 0.3 to 0.5% of the fundamental frequency [6]. An interesting observation is that
the formant frequency DL is an order of magnitude smaller than the formant bandwidth
DL, and the fundamental frequency DL is an order of magnitude smaller than the formant
frequency DL. Table 4.1 shows measured DLs and JNDs for synthetic vowel sounds.

Of more direct interest for speech recognition are the JNDs of the poles of a linear
predictive model spectrum. This is of interest because the LPC model spectrum is highly
mathematically tractable. The JNDs for the LPC poles were measured by perturbing a
single LPC pole of a single frame (22.5 ms long) embedded in a sentential context (2-3 s
in duration) [7]. In this case, the measured DLs are not strictly the JNDs for steady-state
sounds but are mixed with the dynamics of spectral transitions in the utterance. (In the
experiment, a 10th-order LPC analysis was employed. The speech material was in Hebrew.)
A complex pole of the LPC model spectrum can be expressed as z; = r; &“i, where r; and
w; are the radius and frequency of the complex pole, respectively. The bandwidth B; of the
complex pole z; is related to the radius r; by

B = —log () - f;/= (Hz), 4.1)

where f; is the sampling frequency (8 kHz in the experiments). We use 8 = log B to
denote the bandwidth parameter B on a log scale. Figure 4.10 shows the frequency JNDs
(frequency deviation) of an LPC pole as a function of the bandwidth of the corresponding
pole. Both positive and negative frequency perturbations are shown in each plot for the
four “formant frequencies.” Each set of data points is fitted by a parabola of the form
log (AF) = log (Af)[1 + a(3 — 2) + b(3 — 2)*] where Af; represents the average-frequency
JND for the pole with a bandwidth of 100 Hz (i.e., at 3 = 2). Afas were measured to be
62, 158, 355, and 480 Hz for F1, F2, F3, and F4, respectively, displaying a clear trend of
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Figure 4.10 LPC pole frequency JNDs as a function of the pole bandwidth;
the blank circles denote positive frequency perturbations, and the solid circles
represent negative frequency perturbations; the fitting curves are parabolic (after
Erell et al. [7]).

dependence on the pole frequencies. Furthermore, the curves for F1 and F2 indicate, to a
first-order approximation, that the frequency JNDs increase as the square root (@ = 0.55)
and the cubic root (@ = 0.36) of the corresponding bandwidths, respectively.

The bandwidth JNDs (bandwidth deviation) of an LPC pole, as a function of the
corresponding pole bandwidth, is shown in Figure 4.11. Unlike the frequency JNDs,
the bandwidth JNDs do not show clear dependence on either the bandwidth itself or the
“formant” frequency. The average 3-JNDs are 0.48, 0.67, 0.77, and 0.92 for the four
“formants,” respectively. Note that for sharp formants where the pole radius is close to
unity, the JNDs in bandwidth can be used to estimate the JNDs in formant intensity, I,
according to the relationship

Al [dB] =2 —-20- Allog (1 — )]
~ =20 - Allog (—log r)] = —20(AB). 4.2)

Therefore, the equivalent average JNDs for the intensity are 9.6, 13.4, 15.4, and 18.4 dB
for the four “formants,” respectively. These figures are much larger than the measurements
obtained by Flanagan [4].

Other measurements of auditory discriminability can be made. All these quantitative
characterizations of the auditory percept may be helpful in relating a measurement of
spectral difference to a perceived distortion, potentially making comparisons of speech
patterns subjectively more meaningful. Perceptual consistency itself, however, is hard
to obtain among human listeners. As can be seen from the figures, the variability of
the JNDs is large, indicating the difficulty in deriving a perceptually consistent distortion
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Figure 4.11 LPC pole bandwidth JNDs, in a logarithmic scale, as a function
of the pole bandwidth itself (after Ereli et al. [7]).

measure. Even if some measurable speech dimensions can be accurately mapped to human
percepts, the technical difficulty that has to be overcome is to find a way to combine
these psychoacoustic quantities in a consistent and meaningful manner. It is therefore more
practical to approach the problem of defining distortion measures from mathematical signal-
processing considerations than from the perceptual point of view, with the anticipation that
the resulting distortion measure be somewhat consistent with subjective judgments of
distance, or phonetic relevance. '

4.5 SPECTRAL-DISTORTION MEASURES

Measuring the difference between two speech patterns in terms of average or accumulated
spectral distortion appears to be a very reasonable way of comparing patterns, both in terms
of its mathematical tractability and its computational efficiency. Also since many psycho-
acoustic studies of perceived sound differences can be interpreted in terms of differences
of spectral features, measurement of spectral distortion can be argued to be réasonable
both mathematically and subjectively. Before we begin a discussion of several important
spectral distortion measures, some definitions and discussion of basic properties of a speech
spectrum are necessary. .

Let S(w) represent the spectral density of a speech signal x(i), where w is normalized
frequency ranging from — to (7 being one-half of the sampling frequency). The spectral
density S(w) is a nonnegative, even function of w with Fourier coefficients r(n) which define
an autocorrelation sequence; that is,
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Swy= Y rme™™ 4.3)
n=—oc
" inw A
rn) = / S(w)e"'“’z—:. (4.4)
-

The autocorrelation function is defined in terms of the speech signal by

re(n) = E{x()x(i + n)}, (4.5)

if x(i) is a wide-sense stationary process. Taking r(n) = rg(n) makes S(w) a power spectral
density.

For computational convenience, when processing a time-varying signal such as
speech, we often use the short-term autocorrelation defined over a frame of speech samples
{x®, i=0,1,...,N -1}

N—|n|—1
=Y xixGi+n)  forn=0,1,...,N~1. @6)
i=0
If we define
ry(n), n=0,1,...,N—1
= {0, n>N @7

S(w) is then an energy spectral density.

For an ergodic wide-sense stationary process, the short-term autocorrelation, if nor-
malized by the data length N, approaches the autocorrelation of Eq. (4.5) with probability
one [8]. We assume this to be the case and define the power spectral density and the
autocorrelation as above without ambiguity. Associated with the autocorrelation sequence
is a set of autocorrelation matrices, R, k = 1,2,...,N, of dimension (k + 1) x (k + 1),
whose (i, j)-th element is given by r(|i — j|). Thus

0 (1) r2)
Ry=| ) n0) AD)
n2) n(l) A0)
and
r® 1) ... rvV)
Ry =
w . ... 1O
It is often desired in speech processing to represent the speech spectrum by an
all-pple model, denoted by o /A(z) where A(z) is a p-th order polynomial A(z) = f:o
a;z”" with @y = 1. As discussed in Chapter 2, the optimal all-pole model coefficients

represented in a vector form a,', = (@p0, dp1, - - - , App) are obtained by a residual minimization
process. The residual energy resulting from “inverse filtering” the input signal with an
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all-zero (discrete time) filter A(z) defined by the coefficient vector &' = (ag,ai,...,dp) is
x| P 2
a(a) = / Z ae S(u)d—w
—x] 2n
i=0
=aR,a. @8)
Minimization of the residual energy results in
a,= argmin a(a) = arg min(a'R,,a). 4.9)

The minimum residual is o2 = af(a,). Thus, 3/ |A,,(e""')| where 4,(2) is defined by the
optimal coefficient vector ap. is the optimal p-th order all-pole spectrum of S(w).

Other important properties of all-pole modeling of the speech spectrum pertinent
to spectral distortion measures that we will discuss in this chapter are the recursive
minimization relationship

= Ryl /IRy, (4.10)

the notion of one-step predictor error

azwéplir:loaz=exp{/

-

x

log S(w)‘;—:} , (4.11)

and the zero mean property of the log spectrum of a minimum phase all-pole model

ol 1 dw
l e ev—— 0. 4.12
/_, % Ta@)f 27 @12

Exercise 4.1

In Chapter 3, we showed that minimization of the prediction residual energy is equivalent
to solving a set of LPC equations (see Section 3.3). In particular, with the autocorrelation
method, the predictor coefficients, a;, satisfy the following set of equations

P
Y Hi-ka =), 1<i<p.
k=1
(The above equation assumes the convention that A(z) = Y 7_ @iz~ rather than A(z) =
1= 3"  az™') Verify the result of Eq. (4.10) by actually calculating o7 in terms of the
autocorrelation coefficients forp = 1, and 2.

Solution 4.1
1. Forp=1,
R, = n0) - (1)
r(l) r0)
and Ry = r(0). The predictor coefficient a, satisfies
r(0)a; = —r(1)
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and therefore a] = [1, —r(1)/r(0)}. The minimum residual energy o7 is thus

o} = ofa) = aRua

()
=r0-%
_ Ry
T Rol’

2. Forp=2,
1) r0) ~1)
n2) 1) no)
Also, [Rz| = P(0) + 22(1)r(2) — r(0)r*(2) ~ 2r(0)(1). The prediction equations are
r0)ar + r()az = —r(1)
r(Da; + r(0)a; = —r(2)
which have the following solution
a = [M(Dr2) - OFD]/[FA©0) — ()]
a = [P(1) - Or))/[#(©) - A(1)].
The minimum residual energy o then becomes

o) r(1) n2) 1
a=laalln) O ()||a

|:r(0) 1) r(Z)]

r2) «1) n0)
_ PO +27(1)r(2) - n0)(2) — 2r0)(1)
7(0) - r¥(1)

_ Ry

TR
Exercise 4.2
Derive the zero mean property of the log spectrum of a minimum phase all-pole model (Eq.
(4.12)).
Solution 4.2

Equation (4.12) can be easily derived by recognizing that

/ log |A(d"")|z% = / tog |4’ 5= d
=2Re ( /; . log {A(e‘j“')} ‘;—:)

- .
= 2Re ( f; log [Az7)] 21rjz>

* = 2Re(log [A(c0)]) = 2Re[log (1)] =0,
where I is a closed contour enclosing all the zeros of A(z) and Re denotes the real part.
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4.5.1 Log Spectral Distance 110.12

Consider two spectra S(w) and §'(w). The difference between the two spectra on a log
magnitude versus frequency scale is defined by

V(w) = log S(w) — log §'(w)- (4.13)

(dB)

One natural choice for a distance or distortion measure between S and §' is the set of L,
norms defined by

S(w)

w d -
dS,SP =@y = [ V@l 5 @.19)

For p = 1, Eq. (4.14) defines the mean absolute log spectral distortion. Forp = 2 40.12
Eq. (4.14) defines the rms log spectral distortion that has found application in many 25.774
speech-processing systems [9]. When p approaches infinity, Eq. (4.14) reduces to the peak
log spectral distortion. Since perceived loudness of a signal is approximately logarithmic, P
the log spectral distance family appears to be closely tied to the subjective assessment of
sound differences; hence, it is a perceptually relevant distortion measure.

The L, norm of Eq. (4.14) has long been a subject of rigorous mathematical studies.
The L, measures are metrics because they satisfy all the conditions defined for metrics. )
Since the integrand is expressed in log magnitude, the measures are readily related to dB NORMALIZED FREQUENCY (w)
variations by using the multiplicative factor 10/ log ,(10) = 4.34. Figure 412 Two typical FFT power spectra, S(w), of the sound /z/ in a log scale and their

Several representative examples of log spectral distortions of typical speech spectra difference magnitude |V(w)] as a function of frequency.
are shown in Figures 4.12 through 4.17. There are two groups of plots. One group,
including Figures 4.12, 4.14, and 4.16, shows the distortion as calculated from the short- . 110.12 T . ; :
time FFT power spectra and the other, Figures 4.13, 4.15, and 4.17, shows the distortion as
calculated from the all-pole smoothed model spectra. The examples chosen show typical
variations between different realizations of the vowel /z/ (Figures 4.12 and 4.13), the
fricative /sh/ (Figures 4.14 and 4.15), and between two grossly different sounds, namely
/z/ and /i/ (Figures 4.16 and 4.17). In each figure, the top plot shows an overlay of the
two spectra being compared, and the bottom plot shows the magnitude of the log spectral ~
difference |V(w)| as a function of the normalized frequency. Also marked along the vertical
axis are dy, d, and do, respectively, for the spectral pairs.

The log spectral difference |V(w)|, as computed from the FFT of the data sequence, is 3 . J
shown in these figures to be quite irregular. A major part of the variations comes from the -
difference in the fundamental frequencies, which have little effect on the perceived phonetic 40.12 L L L 1 " ! ! ! A
content of a steady-state vowel. The log spectral difference between the two all-pole models 15.057 T T T T T T T T —
of the spectra llog 'IZ(;'L':'W —log W";—)I, is much smoother than the FFT counterpart. The
smooth spectral difference function allows a closer examination of the properties of the
distortion measure. For the same class of sounds (either the sound is slowly changing or
they are simply different renditions of the same sound), formant variation produces the
largest differences as shown in the curves. Formant variation could be due to a shift in the
formant (or pole) frequency or a change in the formant bandwidth that is directly related
to the formant intensity. For comparisons of all-pole model spectra, however, variations in Figure 4.13 LPC model spectra corresponding to the FFT spectra in Figure 4.12, plotted also
a particular formant often cannot be isolated from variations in other formants. As can be in a log scale, and their difft gnitude |V(w)| as a function of frequency.

(dB)

V()]

{dB)

H§

d.—

e S

d i 1
0.0

IV(w)|

o

NORMALIZED FREQUENCY (w)
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98.72 T T T T T T T T T 108.12 T T T T T T T T T

S(w) (dB)
S(w) (dB)

= & - .
g g d—T ]
3 T L ]
> > d,7
- o0 . '

o r 0 n
NORMALIZED FREQUENCY (w) NORMALIZED FREQUENCY (w)
Figure 4.14 Two typical FFT power spectra, S(w), of the sound /sh/ in a log scale and their Figure 4.16 Typical FFT power spectra of the sounds /=/ and /i/ respectively and their
difference magnitude |V (w)] as a function of frequency. difference magnitude as a function of frequency.
98.72 T T L T L4 T T T 1 108.1 2 T T T 1 L) T ¥ T v
) o
2 =3
GO o _
Nb 3 | i Nb E
= <
28.72 1 I l L ) L I L L 38.123 L ! L ] I ! L \ )
15.751 [~ T T T T T T Y T T ] 32.14 r T T T T T T T T T ]
g I ] g . I ]
31 : i+ 3
= d::\/-l\/\/\lq\/L\ A/—‘ =" 0.0 - L . . 4 . 1 =
. o g n 0 n
NORMALIZED FREQUENCY (w) NORMALIZED FREQUENCY (w)
Figure 4.15 LPC model spectra corresponding to the FFT spectra in Figure 4.14, plotted also Figure 417 LPC model spectra coi-responding to the FFT spectra in Figure 4.16 and their

in a log scale, and their difference magnitude }V(w)| as a function of frequency. difference magnitude |V(w)| as a function of frequency.
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seen from the figures, substantial log spectral differences in low power spectrum regions are
not unusual. The L, measures weight these spectral differences equally along the frequency
axis regardless of the spectral shapes being compared. Thus the L, distortion measures
do not take the known and well-understood perceptual masking effect into consideration.
We will see how alternative spectral distortion measures attempt to use this perceptual
weighting later in this chapter.

From the data in Figures 4.12 through 4.17 it can be seen that the L, distortions, when
comparing versions of the same sound, are considerably smaller than when comparing
versions of different sounds, especially when using the all-pole model spectra. We exploit
these differences in speech recognition by accumnulating the spectral distortions over time
when comparing speech pattemns.

Exercise 4.3

Show that the L, spectral distortion measure

2%
' dw
@) = /0 |log S(w) — log S'()|

obeys the mathematical properties of distance metrics, namely:
1. Itis positive definite.
2. It is symmetric.
3. It satisfies the triangular inequality.

Solution 4.3
For compactness we let $= log S(w) and § =log §'(w).
1. Since |S(w) ~ §(w)| 2 0, for any w then

27
@) = / (nonnegative quantity) ;:r—) >0.
[)

IfS' = Sthen (d)' = 0.
2. Since ‘S‘ —S’I = |S'—S'|,(d,)l is symmetric.
3. Since
S1—-83=8-5+85-S;,
|S| - S3| S ]S] - Szl + |Sz "s3| .
Therefore,
* dw 4 dw " dw
_RIS, —Sgl-i; < /—*ISI _S2‘|2_7r+/;’lsz_s3lzr-
which leads to

di(81,83) £ di(81,82) + di(S2, S3).

Hence, (d1)" satisfies the triangular inequality.
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4.5.2 Cepstral Distances

The complex cepstrum of a signal is defined as the Fourier transform of the log of the signal
spectrum. For a power spectrum (magnitude-squared Fourier transform) S(w), which is
symmetric with respect to w = 0 and is periodic for a sampled data sequence, the Fourier
series representation of log S(w) can be expressed as

log Sw)= Y cae™™, 4.15)

n=-00

where ¢, = c_, are real and often referred to as the cepstral coefficients. Note that

T
dw
= 1 _—
Co [. ) og S(w) o (4.16)

For a pair of spectra S(w) and §'(w), by applying Parseval’s theorem, we can relate
the L, cepstral distance of the spectra to the rms log spectral distance:

"
& = / log S(w) — log S'(W)? dw
—x 27
I .
=) (- @.17)
n=—0o0
where ¢, and ¢}, are the cepstral coefficients of S(w) and §’(w) respectively.
Whenzthe speech is modeled by a minimum phase all-pole spectrum, i.e., S(w) —
a2/ |A(e”")| , the resulting cepstrum has many interesting properties.
For a stable all-pole filter, log A(z™") is analytic inside the unit circle and can be
represented by the Laurent expansion [10]

log [0/A(z)] =log o + Y caz™. (4.18)

n=1

Differentiating both sides of the equation with respect to z~! and equating the coefficients
of like powers of z~!, we derive the following recursion:'

1 n—1
Cpn = —Qyn — " Zk Ckln—k forn > 0, 4.19)
k=1

where gp = 1 and a; = 0 for k > p. In terms of the log power spectrum, the Taylor series
expansion becomes

tog [+*/ |a)['] = i coe ™ (4.20)

where ¢y = log o2 and c_, = ¢,.
For convenience, we shall refer to the cepstrum derived from a minimum phase all-
pole power spectrum as an LPC cepstrum. Equation (4.18) also shows that the gain term
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can be easily separated from the rest of the cepstrum that defines the general spectral shape
of the speech signal.

The magnitude of the cepstrum is asymptotically bounded. This can be seen by
considering the case of a rational z-transform X(2) of the signal x(?)

L] f 2]
G [H(l - utz_l)] L_l(l - sz)}

=1

P3 Pa
[1'[(1 - ztz-‘)] [Hu - wkz)]
k: k=1

=1

X@) =

, @21)

where the magnitudes of the quantities ug, Vi, wx, and z; are all less than one. This is the -

most general form for X(2), including both poles and zeros, that it is necessary to consider.
Again, using the power series expansion, we can show that the complex cepstrum has the
form

log G n=0
P 1.4
Z % _ E?‘- n>0
="t =" 4.22)
.2 —n —n
Z i’ . n<o
k=1 n k=1
It is therefore clear that the magnitude of the complex cepstrum is bounded by
Al=l .
leal < 7W for |n| = oo, 4.23)

where ) is the maximum absolute value of the quantities z, wy, ug, and v and v is a
constant scalar. The same result applies to the cepstrum derived from an arbitrary power
spectrum—that is, not an all-pole spectrum.

Since the cepstrum is a decaying sequence, the summation in Eq. (4.17) does not
require an infinite number of terms. For LPC models that represent highly smoothed
envelopes of the speech spectra, the summation in Eq. (4.17) is usually truncated to only a
small number of terms, typically 10-30. Since the first p cepstral coefficients (excluding
co) uniquely determine the minimum-phase all-pole filter, the number of terms must be no
less than p for the truncated distance to be a legitimate spectral distance for the two all-pole
spectra. A truncated cepstral distance is defined by

L

2L =) (cn—cp)- 4.24)

n=1

To further justify truncation, the relationship between the distortion measure of Eqgs. (4.17)
and (4.24), particularly in the case of the LPC cepstrum, can be experimentally examined.
Figures 4.18 and 4.19 show scatter plots of d% (without the cg term) and ZdE(L) as obtained
from 800 all-pole spectra (compared in a consecutive pair manner) for L = 20 and 30
(p = 10), respectively. The correlation in each set of data is respectively 0.997 (L = 20),
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Figure 4.18 Scatter plot of a2, the cepstral distance, versus 242(L), the
truncated cepstral distance (multiplied by 2), for 800 pairs of all-pole model
spectra; the truncation is at L = 20 (after Gray and Marke1 [9]).
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Figure 4.19 Scatter plot of 42, the cepstral distance, versus 242(L), the
truncated cepstral distance (multiplied by 2), for 800 pairs of all-pole model
spectra; the truncation is at L = 30 (after Gray and Markel [9)).
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and 0.999 (L = 30). Therefore, the truncated cepstral distance is a very efficient method
for estimating the rms log spectral distance, particularly when the spectrum is represented
by an all-pole model.

Exercise 4.4
Show that Eq. (4.17) is valid.

Solution 4.4

&GS,8) = / Jlog Sw) - log S'@)[* 5= do

/ _Zce’"‘" —Zc' eI —:
/ Z(cu—c,) i 5

./:,- z Z (Ca _cn)(cm ;')e‘lui(n—m)t;(;v

A=—ocom=-—00

i i (ca — Ch)cm —cn") /- :e—iw.-m)g_:r_:

= i f: (Cn = C)(Co = €y )B(n — m)
= i C,.—'C,. Z(Cn_cn)

Note that S and S’ are power spectra, which are even functions, and therefore the cepstral
coefficients are real.

4.5.3 Weighted Cepstral Distances and Liftering

The usefulness of cepstral distances goes far beyond the simple fact that it is an efficient
method for estimating the rms log spectral distance. Several other properties of the cep-
strum, when properly utilized, are beneficial for speech-recognition applications. We begin
with a discussion of the variability of the cepstrum.

It can be shown [11] that under certain regular conditions, the cepstral coefficients,
except cg, have: (1) zero means, and (2) variances essennally inversely proportional to the
square of the coefficient index, such that

E{c*} ~ % (4.25)

If we incorporate the n” factor into the cepstral distance so as to normalize (by the variance

Sec. 4.5  Spectral-Distortion Measures 167

inverse) the contribution from each cepstral term, the distance of Eq. (4.17) becomes

oo
&3y = Z n¥(cy — cl)?
n=—-00
o0
= Y (nca—nc)). (4.26)
A=—=00

The distance d, has two interesting interpretations. Notice that from Eq. (4.15)

d i .

—_— = —J ~jnw

7 llog S(@)} ":;m Jncye ™I @2n
&y = /" dlog Sw) _ dlog §'(w)|* dw
LA N dw 2r

which is an L; distance based upon the differences between the spectral slopes (first-order
derivatives) of the corresponding log power spectra pair.

The sequence nc,, is often referred to as the “root power sums” for the LPC cepstrum.
Similar to Eqs. (4.21) and (4.22), we can express the predictor polynomial in terms of its
roots

Therefore,

4.28)

14
A@ =[Ja-zz"h (4.29)
i=1
which leads to
P
log [1/A@1=)_>" % (4.30)
i=1 n=1

By comparing Egs. (4.18) and (4.30), we obtain
[
nen=Y_ @31

which is a sum of the n* power of the roots of A(z). The distance defined in Eq. (4.26) is
thus called the “root power sum” distance.

Equation (4.31) has another interpretation in terms of the group delay spectrum. Note
that

log [1/A(2)] = log [1/]|A2)[] + jarg [1/A(D]. 4.32)
Therefore, with z; = r;e®:,

p
log [1/ 1421 = Re{z
)Re[z"'] (4.33)

[Ms
X |..N,

(
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=

) Im{z™"], (4.34)

and

M3
EWEAY

arg [1/A(z)] = Im{z

(

where Re and Im are the real part and imaginary part, respectively. (Since A(z) has real
coefficients, the roots are either real or in conjugate pairs such that the sum Y %_, z//n is

n:

M
'M"
EREAN

real.) The group delay, which is the negative derivative of the phase with respect to the

frequency w, is then

00 P
- % arg[1/AE)] = (Z z;') Re(e™™). (4.35)

n=l M=l

The coefficients of the series expansion—the group delay spectrum—are thus seen 1o be
the root power sums, or equivalently the index-weighted cepstral sequence nc, as shown
in Eq. (4.31).

While the distance of Eq. (4.26), either motivated by variance normalization or
an attempt to emphasize spectral slopes (with the added appeal of a root power sum
formulation), indicates the possibility of using a weighted cepstral distance as a distortion
measure, the variabilities of cepstral coefficients and their significance need to be critically
considered, particularly from a speech-recognition perspective, for the choice of weighting
functions.

"The variability of various cepstral coefficients can be examined by contrasting the
coefficient variances (denoted by crf(i) for the i cepstral coefficient) as obtained from
a mixed speech source, with rich phonetic content, to those (denoted by a'fz(i)) from an
artificial signal, produced by exciting a fixed all-pole system with a Gaussian independent
identically distributed random noise. The ratio ofz(z’) /a2(i) can be shown to increase as a
function of the index i. At = 15, the variance ratio is close to 0.6, about 5 times that at
i = 1. This shows that the variability of higher cepstral coefficients are more influenced by
the inherent artifacts of the LPC analysis (due to the all-pole constraint, analysis window
position, system interaction with the excitation, etc.) than that of lower cepstral coefficients.
For speech recognition, therefore, suppression of high cepstral coefficients in the calculation
of a cepstral distance should lead to a more reliable measurement of spectral differences
than otherwise.

The variability of low cepstral coefficients, while less affected by the analysis mech-
anism, is primarily due to variations in transmission, speaker characteristics, vocal efforts,
and other factors. For example, the effect of differences in frequency response roll off in
various telephone channels is usually most prominent in the first few cepstral coefficients.
The LPC spectrum also includes components that are strong functions of the speaker’s
glottal shape and vocal cord duty cycles. These components appear, to a first order, as the
overall spectral tilt, which again affects mainly the first few cepstral coefficients. For recog-

Sec. 4.5 Spectrai-Distortion Measures 169

100

S(w) (dB)
g

8

1 1
1000 2000 3000 4000
FREQUENCY (Hz)

Figure 4.20 Effects of cepstral liftering on a log LPC spectrum, as a function
of the lifter length (L = 8 to 16) (after Juang et al. [11]).

nition of speech, independent of the talker’s identity, these sources of variability, that are
not essential in representing the phonetic content of the sound, need to be de-emphasized.
A cepstral weighting, or liftering procedure, w(n) can therefore be designed to control
the noninformation-bearing cepstral variabilities for reliable discrimination of sounds. The
index weighting, as used in Eq. (4.26), is one example of a simple form of cepstral
weighting. Another, more sophisticated weighting is a raised sine function of the form

L +hsin (%2) forn=1,2,...,L
0 forn<0,n>L,

where h is usually chosen as L/2 and L is typically 10"~ 16 for speech of 4 kHz band-
width. The weighted sequence, w(n)c,, corresponds to a smoothed log power spectrum.
Figure 4.20 shows the effect of liftering on the original LPC log spectrum as a function
of the lifter length L (from L = 8 to 16). As is clearly seen, the sharp spectral peaks
typical in the LPC spectrum of a vowel sound are effectively smoothed. The original sharp
spectral peaks are highly sensitive to the LPC analysis condition (e.g., window position)
and the resulting peakiness creates unnecessary sensitivity in spectral comparison. The
liftering process tends to reduce the sensitivity without altering the fundamental “formant”
structure. Furthermore, the LPC spectral tilt of approximately 8 dB/octave in the figure is
effectively removed.

The effect of the liftering process can be further demonstrated through a sequence of
spectral plots. Figure 4.21(a) is a hidden line plot of a series of 30 consecutive LPC log

w(n) = { (4.36)
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Figure 4.21 Comparison of (a) original sequence of LPC
log magnitude spectra; (b) liftered LPC log magnitude
spectra, and (c) liftered log magnitude spectra (after Juang
etal. [11]).

spectra, corresponding to a vowel-like sound. The randomness of the spectral components
and the sharp spectral peaks that lead to excessive spectral sensitivity are clearly shown.
Figure 4.21(b) is the same log spectral plot after the lifter defined in Eq. (4.31) with L = 12
is applied. The undesirable (noiselike) components of the LPC spectrum are reduced or
removed, while the essential characteristics of the “formant” structure are retained. For
comparison, Figure 4.21(c) displays a sequence of liftered (smoothed) log spectra of the
same speech signal as in Figure 4.21(a) and (b), obtained from Fourier transforms instead
of LPC analysis.
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Based on the above, a useful form of weighted cepstral distance is thus

L
dly = Z[W(")Cn = w(n)c, %, 4.37)

=]

where w(n) is any reasonable lifter function such as that of Eq. (4.36). The difference
between the index weighting function Eq. (4.26) and the raised sine function Eq. (4.36) is
that the latter has a smooth roll off at both low and high indices while the former has a
sharp cutoffatn = L + 1.

4.5.4 Likelihood Distortions

The log spectral difference V(w) as defined by Eq. (4.13) is the basis of many speech
distortion measures. The distortion measure originally proposed by Itakura and Saito
(called the Itakura-Saito distortion measure) in their formulation of linear prediction as an
approximate maximum likelihood estimation is [12]

dis(5,8)= [ ["“-V(w)-1] i
- 27

_ [T S(w) dw a2,
‘/_,,Wz—w ~log Z2 -1, 4.38)

where o2, and 02, are the one-step prediction errors of S(w) and §'(w), respectively, as
defined in Eq. (4.11). Besides maximum likelihood interpretations, the connection of the
Itakura-Saito distortion measure with many statistical and information theoretic notions is
also well established. These include the likelihood ratio test and relative entropy (also called
discrimination information, Kullback-Leibler information, directed divergence). Although
we have considered the Itakura-Saito measure a likelihood related quantity, our discussion
in the following focuses on the speech spectrum comparison.

The Itakura-Saito distortion measure can be used to illustrate the spectral match-
ing properties of linear prediction by replacing S'(w) with a p™ order all-pole spectrum
2/ |A(e*)]?, leading to

2 1" wn 2 @
dis (s, I%li) = -0—2/ S@) |A@)f T- ~ log o, +1log a* - 1

a'Ry,a
= a; —log 0%, +1log % ~ 1. 4.39)
The first term in Eq. (4.39) is simply the ratio of the prediction residual energy to the gain
term (squared), i.e., a/o?. Minimization of the Itakura-Saito distortion, over the predictor
coefficients a, is thus equivalent to minimization of the residual energy; that is
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. aRya
8= argmmdls H = arg min

a o2

= argmina'R, a,

P

(4.40)

as reflected in Eq. (4.9). The distortion dig (S, -I:;ZZF) can be further minimized by letting

o* = a(@) £ o2,

mmdxs ( I:T )
%
=djs (S, I-Xp‘l‘i)

=log (aﬁ 19%).
Note that the residual energy can be easily evaluated by writing

resulting in

P
a'Rya = r(0)r,(0) +2 ) _ r(mra(n),

n=1
where
p—n
raW2Y gy,  forn=0,1,...,p
i=0

441)

(4.42)

(4.43)

(4.44)

which is the autocorrelation of the predictor coefficients. (Recall Exercises 3.6 and 3.7.)
2ppose S(w) in Eq. (4.39) is replaced by its optimal p* order LPC model spectrum

02/ |Ap|*; then

o o " AP dw a9
s\ tm s | =5 Ay loe g
P a2 ) = 2 aja P 2r 7

(4.45)

Because the first (p + 1) autocorrelations, r(0), r(1),...,r(p), of S(w) and 0’: / lA,,l2 are

matched (equal), (recall that the order of A(¢') and A,(¢') are the same):

" la@f
/ S(w)|A(e"")|2dw—-/ 2 A dw

x 7 JAy(e)F 27
and thus from (4.39)

o? o2 g2 a?
dis | S, d) -——p— —5 | + log £
( |A|> ‘s(! AP o,

(4.46)
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Figure 4.22 Comparison of the distortion integrands
V(w)/2 and e — V(w) — 1 (after Gray and Markel [9]).
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This additive property is an important characteristic of the Itakura-Saito distortion measure.
It shows that the distortion between a signal spectrum and an arbitrary p™ order all-pole
model spectrum is the sum of two distortions: one from the signal spectrum to its optimal
p™ order all-pole model spectrum and the other from the optimal p™ order all-pole spectrum
(for S(w)) to the all-pole model spectrum under comparison.

It is of interest to compare the Itakura-Saito distortion to the log spectral distance of
Eq. (4.17). The integrand of Eq. (4.38) shows an asymmetric weighting with respect to the
value of V(w). Plotted in Figure 4.22 is the curve ¢ —V —1asafunctionof V, together with
the curve V2/2, which is the basis of the log spectral distance. The asymmetry is clearly
visible; a positive spectral deviation V(w) contributes more heavily toward the distortion
than a negative V(w) because

& -V-1~¢ forvV>1

and
& -V-1lx~-V forV«l.
Furthermore, since
v: V3

V - — — .o
& -V-l=rtog+
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V2
x =, for|V| « 1, (4.48)
it is observed that 1
dis(S, ") =~ §d§(s,s') (4.49)

for “small” distortion.

It is important to note that the Itakura-Saito distortion is defined for two spectra
without specific normalization of the overall spectral level (or gain). The gain matching
property of Eq. (4.41) thus gives room for other possible definitions of the distortion. This
is desirable because, as in the truncated cepstral distance case, the gain term or the overall
spectral level is often treated in a manner separate from the comparison of the spectral
shapes (i.e., 1/|A[%).

Suppose our emphasis is on the spectral shape. In evaluating dls(a2 / |A,,|
a?/ |A| ), we let o2 vary such that it matches the residual energy o resulting from inverse
filtering x(f) with A(z); that is, we set

P=a= S(w) la@)* d:. (4.50)

Then, from Eq. (4.45), we have

2
dis(@}/ 4pl" o/ 1A = log —

4.51)

which is often referred to as the Itakura distortion measure in speech-recognition applica-
tions. Since R, / a,, the residual-normalized autocorrelation matrix, is associated with the

spectrum 1/ |Ap| , another way to write the Itakura distortion measure is

2 2 _ |A(e"")| dw
a1/ ol 1/ IAP) = log { [ 2,,}

= log (%) 4.52)
14

which is defined for two unity gain all-pole spectra. The role of the gain terms is not explicit
in the Itakura distortion. This is considered sensible because the signal level essentially
makes no difference in the human understanding of speech so long as it is unambiguously
heard.

Another gain-independent distortion measure can be derived directly from the Itakura-
Saito distortion measure. Traditionally, it is called the likelihood ratio distortion and is

defined by
( 1 1) ( 1 1)
IR — = > =as| —>=y—>
l41°" |af? a,1*" 1A
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/ lA@* dw

. (e]u)|2 2r

1LY 4.53)
o}
Since 1 )
u=exp(log uy=1+1log u+ 5(log w? + ﬁ(log Wi,
and ajo? > 1,

a
a1/ 14, 1/ 141" = log

[+ 4
-1, for - = 1,
%

1 1
=dig <___ —-) . (4.54)
14 1A

That is, when the distortion is small, the Itakura distortion measure is not very different
from the likelihood ratio distortion measure.

In the above discussion of the likelihood distortions (or the Itakura-Saito distortion
family), we encountered the signal spectrum as well as various forms of the model spectra.
When we measure the distortions among various forms of spectral representations in
terms of “likelihood,” we should be cautious in evaluating arithmetic operations on these

distortions. For example, djs (IA i ) # dis (Fllg, Iflg) + dis (IAI s IAI ) Another

particular property of the likelihood distortion that deserves careful consideration is that
they are asymmetric—that is,

a
=
9

dis(S,§") # dis(§', 9). (4.55)

To illustrate this point, consider two signals, one being tonelike and the other being white
noise. These two signals are represented in terms of the all-pole models 1/A.(z) and
1/A.(2), respectively, in which

A =1-12726z""+0.81z"2
and
Au(2) = 1.

The two roots of A,(z) are 0.9 e¥/™/4 which indicate a resonance at 7/4 normalized fre-
quency or at 1000 Hz when the sampling frequency is 8000 Hz. It can be easily shown
that

dis (1/ 14,1/ |4) = 4.75

and
dis (1 J1Au? 1/ |A,|2) =228
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Figure 423 A scatterplotof dis(1/ j4,/% , 1/ |A{)+1 versusdis(1/ |Af?,
1/ |4p[*) + 1 as measured from 6800 pairs of speech model spectra.

Therefore, when an input tonelike signal is compared to a white noise, the computed
distortion is higher than that in the case in which a white noise signal is compared to a
tonelike signal. Previous studies in auditory masking have shown a similar asymmetric
behavior of masking between tone and noise; it is easier to perceive noise in a tone than
it is to perceive a tone in noise. This can be construed as a strong justification for the
Itakura-Saito distortions from strictly a subjective, qualitative viewpoint.

The asymmetry of the distortions is further seen 1n Figure 4.23 in which a scatter plot
of dis(1/ 14,12, 1/ |A) + 1 versus dis(1/ |A], 1/ |A, %) + 1 as measured from real speech
spectra is shown. Note that ,

™ A d
d 1 A 2 ’1 A 2 + 1 = / |—_——
is(1/ 14,17, 1/ 1419 —r|Ap(ei)f 2T

and

2 2 [ e du
st/ 1/ P +1= [ i
The asymmetry for large distortions is substantial.

Finally, another interpretation of the Itakura-Saito distortions is of particular interest
from a signal-processing and filtering point of view. Consider the Itakura-Saito distortion
between the input and output signals of a linear system H(z), as shown in Figure 4.24. Let
the input and output power spectra be S(w) and $'(w), respectively; clearly
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S (o) ) =AR) S'(w)
x(n) B(2) x'(n)

Figure 4.24 A linear system with transfer function H(z) =
A(2)/B(2).

§'(w) = [HE)|* Sw). (4.56)
Substituting Eq. (4.56) into (4.13), we obtain
V(w) = - log |H(e™)|*

and
N " w _df_
dis(S,8") = /_1r []H( oF +log |H(e )I 5 4.57)
Usually, H(z) has a rational form
_4Q)
H(z)= 3G’

P P2

where the polynomials A(z) = 1 + ) _a;z~' and B(z) = 1+ Y _ biz~" have all their zeros
i=1 i=1

inside the unit circle. Then l ‘

T 1 dw ™ |B(e)|* dw
dis(S,8") = -1=
G5 /-le(eml2 2n / AP 27

1 1
Is (W, W) (4.58)

due to the zero mean property of Eq. (4.12). This interpretation gives us a convenient
means of modifying a signal to achieve a prescribed distortion level from the original
signal, namely by applying the appropriate level of linear filtering.

4.5.5 Variations of Likelihood Distortions

Unlike the cepstral distance, likelihood distortions are generally asymmetric, as explained
in the preceding section. When one needs to symmetrize the distortion measure while
retaining the notion of likelihood or all-pole spectral matching, there are many possibilities,
one of which is to combine the two directed distortion measurements in a form such as

l/m

d™(s,8) == { [dis(S,$)]™ + [dis(s’, )]} (459
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Figure 4.25 A scatter diagram of the log spectral distance versus the
COSH distortion as measured from a database of 6800 pairs of speech
spectra.

Ifm=1,
05,8 = 5 [ds(6,5) + (S, 5] (4.60)

This distortion d{'’(S, §’) is termed a COSH distortion [9] because

ds,s) = % [ - VW) - 1 + e + V(w) - 1] 5;‘;‘:-

= / {cosh[V(w)] — 1};—:

2 deosu(S, 5. 4.61)
Note that ) .
v \%
coshV = I+E+z—!-+---
Therefore,
doosu(S, ) > 2445, 5). 4.62)

Figure 4.25 shows a scatter diagram, obtained from real speech data, with the log spectral
distance on the horizontal axis and the COSH distortion on the vertical axis. The COSH
distortion is almost identical to twice the log spectral distance for small distortions but
spreads out significantly above the equality line for large distortions.

The COSH distortion measure can be interpreted based on the theory of random
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processes. It is related to the symmetrized directed divergence (or simply divergence)
between N order probability densities (N being the number of data values in the sequence).
It can also be interpreted as a distance, measuring how closely two specific Gaussian
processes match each other. Beyond the theoretical appeal, however, the COSH measure
has not been extensively used in speech-recognition applications.

Another possible variation on the likelihood distortion is the family of weighted
likelihood distortions. The purpose of weighting here is to take the spectral shape directly
into account as a weighting function such that different spectral components along the
frequency axis can be emphasized or de-emphasized to reflect some of the observed per-
ceptual effects. To see how various weighting schemes have been used, we first unify the
distortion measures already presented by defining

(DF1w) 2 |log Sw) — log S'(W)f* (4.63)
8 1og S, S@)

(2)F(w) = log 5@) + @ 1 (4.64)
A 1o 3@ | Sw) _

(3)F3(w) = log 5@ + 5@ 1 (4.65)

(4.66)

_1[S@ s _
(4)&(“)—2 [S(W) S’((d)] !

Using this notation we can express the various distortion measures already discussed as

-

di(s,8") = /_ :Fn(w)g—i;— (4.67)
dis(5,8") = /_ :Fz(w);—: (4.68)
ds(S',5) = _:Fs(w)‘;—‘;ri “.69)
deosn(5,8) = [ Fur 2. @70)

Again, assume that o2/ |A(e’“‘)|2 and o2/ |A’ (e"“’)|2 are the optimal p™ order all-pole model
spectra for S(w) and §’(w), respectively. We can now examine the following weighting
functions:

1 1 1
(€))] w == |—+ — 4,71
1(w) 3 [|A(e’"")|2 |A’(e""")|2J @.71)
1 a? a”?
2 w. = 4.72
V3] 2(w) T¥o [lA(ei"’)|2 + |A’(ef“)|2} 4.72)
G)  Wiw)= @“73)

A&
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Figure 426 LPC spectral pair and various spectral weighting
functions; Wy (w), Wa(w), Wi(w) and Wy(w) are defined in (4.71),
(4.72), (4.73), and (4.74), respectively.

1

4 W. =—.
@ W)=

4.74)
Figure 4.26 shows an example of the use of these weighting functions for a given pair of
all-pole spectra. [For visual effect, the weighting functions plotted in Figure 4.26 are in
fact 10 log ;o {W(w) — minW(w)} on a dB scale.] As can be seen, W3 and W, attempt

to emphasize the spectral peaks in 1/ |A(e""")|2 and 1/ |4’ (ei“‘)|2, respectively, while W;
and W, weight both spectra in a balanced, symmetric fashion. These weighting functions
can be incorporated in the integrand of Eq. (4.67)~+4.70) to achieve the desired effects
of nonuniform frequency weighting. For example, an asymmetrically weighted COSH
distortion can be defined by using W3(w) to weight the spectral deviation F4(w), leading to

v . d
dwcosu(S,5) = FA(w)wsw)i;. 4.75)

Again, when S(w) and §'(w) are replaced by their corresponding optimal p* order all-pole
model spectra o2/ |A(e/™) |2 and 02/ |A’ (e’“’)lz, evaluation of the asymmetrically weighted
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COSH distortion measure can be accomplished by recognizing the fact that

/, 1 _dw_r0 (4.76a)

| weR

/ Tl _dv_rO 4.76b
—r |Al(eju)|2 2r o7’ (4.76b)
where r{(0) and r(0) are the energy of S(w) and §'(w) respectively. Specifically,

. @ 2\ 1o | P
W — 5 | =3 - - =
CHNAE WP ) T 2 [@nr T oAy | 2

and

- /"_L_d_w
—x |A(e)|? 27
_1 {ﬂ@ N é’=-p'{.<0?<0} r0)

- a? 0202 N @77

2

where r/(i) are the autocorrelations of the predictor coefficients of A’(z) defined in a way
similar to Eq. (4.44), and

Hiy=Y_ Hmin+i) 4.78)
n .
is the autocorrelation of the autocorrelations for o2/ |A(ei“’)|2. The autocorrelations of
%/ |A(@™)|*, Hn), are defined by
r(n), n=0,12,...,p
. P
m = Y artn-i, n>p+1 @79

i=l1

which has an extension beyond n = p according to the well known maximum entropy
principle. Figure 4.27 shows two examples of the integrands F4(w) and Fy(w)Ws3(w),ona
dB scale, as functions of frequency. Figure 4.27a plots two LPC model spectra of similar
power level; major spectral deviations of the distortion occur near spectral peaks. The
distortion emphasis in different frequency regions is clearly observed. In Figure 4.27b,
two LPC model spectra with an overall power level difference of approximately 15 dB are
compared. The COSH integrand F4(w’) does not show obvious dependence on the general
trend of the spectra being compared. After weighting by 1/ |A(e""’)|2 which comes from
the high-level spectrum, the weighted integrand F4(w)W3(w) essentially has the same shape
as 1/ ]A(e’“’)]z, showing to a certain degree the desired effects of masking.

A particular weighted distortion measure that has received considerable attention is
the weighted likelihood ratio distortion. By weighting F2(w) and F3(w) with W4(w) and
W3(w), respectively, we form a new weighted spectral deviation function

Fs) = 3 [Fa@)Wa(w) + Fx@Ws)]. (4.80)
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Figure 427a An cxample of the cosh spectml deviation Fa(w) and its
weighted version using Wa(w) = 1/ IA(:"")l as the weighting function;
in this case the two spectra are of comparable power levels.
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Figure 427b  An example of the cosh specn-al deviation F4(w) and its
weighted version using Wi(w) = 1/ ‘A(e"")] as the weighting function;
in this case, the two spectra have significantly different power levels.
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The weighted likelihood ratio distortion is then defined by integrating Fe(w) over the
frequency range [—, 7]

o
dwir(S,S") = / Fs(w)z—:- 381

If the two spectra being compared are unity gain all-pole spectra, that is, S — 1/ |A|* and
S = l/|A’| then

1 1 1 1 1
Fo==-| — - — log — —-log —= }. 4.82
=3 (w w) ( ® ap m’) @5
Integration of Fg(w) can be evaluated by
1 [~ 1 1 1 1 dw
3 e m e p { log ———
2Jx A |Ar(ew)) [A(e)| IA'(e'“)I

-5 -2 - “83)

n=1

where ¢, and ¢;, are cepstral coefficients of log —5 e AI and log ] A'I , respectively, defined by
Eq. (4.20); 02 and o2 are the minimum residual energy of S(w) and §'(w), respecnvely, and
#(n) and #(n) are defined accordmg to Eq. (4.79) for 02/ |A)* and 0”2/ |A’|? in an identical
manner. Note that both ¢ and ¢, are not involved in the weighted likelihood ratio measure
and the factor 1/2 in Eq. (4.83) is eliminated because the autocorrelation sequences and
the cepstral sequences are all symmetric with respect to n = 0.

Itis interesting to compare dw[_R in Eq. (4 83) to d according to Eq. (4.14). In d2, the
log spectral deviation (log 1/ IA| ~log 1/|A’ i ) can be considered to be welghted by itself.
In dwyg, this weighting is replaced by the linear deviation (1/ |A|* — 1 /1A | ) which shows
a heavier emphasls in spectral peak areas than the compressed deviation (log 1/ |A| -
log 1/[A’[). This property may be desirable in applications where extraordinary emphasis
on spectral peaks is necessary, such as speech recognition in noisy environments.

4.5.6 Spectral Distortion Using a Warped Frequency Scale

Psychophysical studies have shown that human perception of the frequency content of
sounds, either for pure tones or for speech signals, does not follow a linear scale. This
research has led to the idea of defining subjective pitch of pure tones. Thus for each tone
with an actual frequency, f, measured in Hz, a subjective pitch is measured on a scale
called the “mel” scale. As a reference point, the pitch of a 1 kHz tone, 40 dB above the
perceptual hearing threshold, is defined as 1000 mels. Other subjective pitch values are
obtained by adjusting the frequency of a tone such that it is half or twice the perceived
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Figure 428 Subjectively perceived pitch, in mels, of a tone
as a function of the frequency, in Hz; the upper curve relates
the subjective pitch to frequency in a linear scale and the lower
curve shows the subjective pitch as a function of the frequency
in a logarithmic scale (after Stevens and Volkmann [13]).

pitch of a reference tone (with a known mel frequency). Figure 4.28, taken from the classic
paper of Stevens and Volkmann [13], shows subjective pitch as a function of frequt':ncy.
The upper curve shows the relationship of the subjective pitch to frequency on a linear
scale; it shows that subjective pitch in mels increases less and less rapidly as the stimulus
frequency is increased linearly. The lower curve, on the other hand, shows the subj'ectiv_e
pitch as a function of the logarithmic frequency; it indicates that the subjective pitch is
essentially linear with the logarithmic frequency beyond about 1000 Hz. .

Another important subjective criterion of the frequency content of a signal is the
critical band that refers to the bandwidth at which subjective responses, such as loudness,
become significantly different. The loudness of a band of noise at a constant sound pressure
remains constant as the noise bandwidth increases up to the width of the critical band; after
that increased loudness is perceived. Similarly, a subcritical bandwidth complex sound
(multitone) of constant intensity is about as loud as an equally intense pure tone: of a
frequency lying at the center of the band, regardless of the overall frequency separation of
the multiple tones. When the separation exceeds the critical bandwidth, the complex sound
is perceived as becoming louder. Figure 4.29 shows plots of the critical bandwidth.as a
function of the frequency at the center of the band, based on the measurements by Zw1c.ker
and his colleagues [14]. Table 4.2 provides a set of approximations to measured critical
bandwidths (reliable within about +15%).
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Figure 4.29 The critical bandwidth phenomenon; the critical
bandwidth as a function of the frequency at the center of the band
(after Zwicker, Flottorp and Stevens [14]).

As can be seen from Figures 4.28 and 4.29, there is a certain resemblance between
the critical bandwidth and the subjective pitch in mels (on the log frequency scale). In
fact, it has been conjectured that critical bands as well as equal mel intervals of subjective
pitch, and even difference limens, correspond to constant spatial distances along the basilar
membrane. If we assume 24 contiguous, nonoverlapping critical bands laid on a 32-mm-
long basilar membrane, each critical band is seen to correspond to approximately 1.3 mm
in length. Also, in a critical band, the subjective pitch range is fairly constant, at about
150 mels.

The subjective nonlinear perception of frequency has led to an objective computa-
tional model that provides a mechanism to convert a physically measured spectrum of a
given sound into a psychological, “subjective spectrum.” In the model, each frequency
component of the spectrum is replaced by a specific loudness level according to an em-
pirical power law over a range of “tonalness” units. A unit of tonalness corresponds in
width to a critical band and is called a Bark (after the German acoustician Barkhausen).
For example, an ideal pure tone that has a single-line physical spectrum is represented by a
“subjective spectrum” with spread over several Barks, as inferred from the corresponding
masking audiogram.!

When applied to speech perception, however, the significance of critical bands is
not as straightforward as the case of tone perception. By measuring the intelligibility of

'An audiogram measures a subject’s sensitivity to a pure tone at various frequencies with quiet
background; a masking audiogram is an audiogram measured with constant presence of a selected
pure tone. (A series of masking audiograms can be obtained when the frequency of the selected
pure tone is varied over an intended range.)
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TABLE 4.2. Examples of Critical Bandwidth

Critical Center Critical Lower Cutoff Upper Cutoff
Band Frequency Band Frequency Frequency
Number (Hz) (Hz) (Hz) (Hz)
1 50 - - 100
2 150 100 100 200
3 250 100 200 300
4 350 100 300 400
5 450 110 400 510
6 570 120 510 630
7 700 140 630 T0
8 840 150 770 920
9 1,000 160 920 1,080
10 1,170 190 1,080 1,270
il 1,370 210 1,270 1,480
12 1,600 240 1,480 1,720
13 1,850 280 1,720 2,000
14 2,150 320 2,000 2,320
15 2,500 380 2,320 2,700
16 2,900 450 2,700 3,150
17 3,400 550 3,150 3,700
18 4,000 700 3,700 4,400
19 4,800 900 4,400 5,300
20 5,800 1,100 5,300 6,400
21 7,000 1,300 6,400 7,700
22 8,500 1,800 7,700 9,500
23 10,500 2,500 9,500 12,000
24 13,500 3,500 12,000 15,500

highpass and lowpass filtered speech, French and Steinberg [15] found that 20 adjacent
frequency bands, each approximating a critical band, contribute about equally to the intel-
ligibility of the speech, leading to the concept of the articulation index. However, it was
also found that above 1500 Hz, the width of these equal intelligibility-bearing bands does
not grow as rapidly with frequency as does the critical bandwidth.

The phenomena of the mel pitch scale and the critical band suggest some possible
modifications of the spectral distance measure. One such modification is to first warp
the frequency scale to the mel or Bark scale in order to make more meaningful distance
calculations.

To see how such a frequency scale warping can be achieved in practice, consider
the L, log spectral distance of Eq. (4.14) and a Bark scale warping. The warped cepstral
distance, 42, can be computed as [16]

. .
- di
B, 5 = / log 06 — log SGGHI = 4.84)

where b is frequency in Barks, S(9(b)) is the spectrum on a Bark scale, and B is the Nyquist
frequency in Barks. Note that § is a nonlinear function that maps the Bark scale to the
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linear frequency scale, i.e. w = (b). Using an equivalent representation of Eq. (4.15), we
can rewrite Eq. (4.84) as

i=—00k=-00
oo oo
=3 Y (- hier — chwa, (4.85)
i=—-00k=—00

where the warping function wy is defined by

B
ooy AD
Wi = PO 2
‘ /_B 2B (4.86)

) Fike the cepstral distance, we can define a truncated warped cepstral distance by
mposing a limit, say +L, to the summation range in Eq. (4.85); i.e.,
. L L
a0 =Y Y (- ek - cwa (4.87)
i=—Lk=—L
(Typically, L = 16 for 8 — 10™ order LPC smooth model spectral representations.) Because
we assume 8(—b) = —6(b) for negative frequencies, the warping function w;; depends only
on the absolute difference of the indices, wy = W}i~x), and therefore the warping matrix
W = [wg] is of a Toeplitz form. The warped distance can thus be written, with matrix
notation, as
E(L)=(c-cYWc-c), (4.88)
where ¢’ = [c_y,...,co,...,c.]. When cg is to be excluded from the distance calculation,
we set ¢g = cf.
' The value of w; can be evaluated by numerical integration along the Bark scale.
Figure 4.30 shows the real part of exp[jé(b)k] for different values of k. The x-axis of the

plots spans from 0 to 16.2 Barks, corresponding to a bandwidth of 3333 Hz. Table 4.3 lists
the values of w; for 0 < |i — k| < 64. In obtaining Table 4.3, 8(b) is defined by

_ (T 1000 bY
oB)y= 6,0) = (ﬁ') (W) tan (1—3-> for |b| < 6
K

0b) = 6,(b) = (3333

) (1000) 10¢-8776/10 o || > 13 (4.89)

1
6(b) = -2-[01(17) + 62(b)] for 6 < Jb| < 13.

. F(I)r efficient calculation of &2, the square root of the warping matrix, W2 (W =
W ~2W '), can be used to first transform the cepstral coefficients, followed by a direct Eu-
clidean distance calculation. In this manner, W " could be considered part of the front-end
processing. In an automatic speech-recognition system, where reference speech patterns
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Figure 4.30 Real part of exp [j#(b)k] as a function of b, the Bark
scale, for different values of k (after Nocerino et al. [16]).

have to be repetitively compared, this leads to a substantial reduction in computational
requirements. '

The same frequency-warping techniques can be applied to other spectral distortion
measures. The warped cepstral distance appears to be the most straightforward in terms of
computational efficiency.

Besides nonlinear frequency warping, the notion of critical band can also be in-
corporated in defining spectral distortion. This is equivalent to considering the spectral
deviations of the “subjective spectrum” discussed previously. Note that in a digital imple-
mentation of the frequency warping scheme, S(6(b)) represents an interpolated and then
nonuniformly sampled spectrum of S(w). The subjective spectrum, nevertheless, is asso-
ciated with loudness, a perceptual quantity, integrated over possible contributions from all

applicable spectral components due to the inclusion of the masking effects implied in the
critical bandwidth phenomenon.
One approach to simulating the subjective spectrum is to use a filter bank, spaced
uniformly on a nonlinear, warped frequency scale, such as the mel scale or the Bark scale

Sec. 4.5
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TABLE 4.3. Values of the Elements in the Warping Matrix

li — & wig li=4 Wig
0 1.00 33 —1.13E-3
1 0.37 34 ~5.75E-5
2 0.12 35 —9.54E-3
3 3.02E-2 36 3.70E-3
4 2.33E-3 37 ~3.24E-3
5 —1.43E-2 38 —2.74E—4
6 2.34E-3 39 1.19E—4
7 -1.78E-3 40 8.14E-3
8 6.70E-3 41 ~3.69E~3
9 1.OOE-3 42 2.68E-3
10 1.36E-3 43 6.53E—4
1 —5.25E-3 4 —1.19E-3
12 1.61E-3 45 ~7.70E-3
13 -~5.57E-3 46 2.68E—-3
14 3.13E-4 47 —3.06E-3
15 —1.28E-2 48 -1.95E-3
16 5.09E-3 49 1.30E-3
17 —2.65E-3 50 6.26E-3
18 3.74E-3 51 —2.65E-3
19 —1.27E-3 52 245E-3
20 1.15E-2 53 222E-3
21 ~5.42E-3 54 —2.36E-3
22 251E-3 55 ~5.80E~-3
23 -3.10E-3 56 1.66E—3
24 7.26E—-4 57 —2.82E-3
25 —1.12E-2 58 ~3.37E-3
26 4.59E-3 59 240E-3
27 —3.19E-3 60 4.39E-3
28 1.60E-3 61 ~1.68E-3
29 -897E—4 62 224E-3
30 991E-3 63 347E-3
31 ~4.66E—3 64 -3.35E-3
32 2.77E-3
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[17]. Figure 4.31 shows an example of such a filter bank, in which each filter has a triangular
bandpass frequency response, and the spacing as well as the bandwidth is determined by
a COnS(aI.lt mel frequency interval. (The spacing is approximately 150 mels and the width
of the triangle is 300 mels.) The modified spectrum of S(w) thus consists of the output
power of these filters when S(w) is the input. Denoting these power coefficients by Sk,
k=1,2,...,K, we can calculate what is called the mel-frequency cepstrum, ¢,, as

X
& =Y (log S cos [n (k—l) 1], n=12,..,L, (4.90)
£ \""2/k

where L is the desired length of the cepstrum. Using the mel-frequency cepstrum in
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Figure 4.31 A filter-bank design in which each filter has a triangle bandpass
frequency response with bandwidth and spacing determined by a constant mel
frequency interval (spacing = 150 mels, bandwidth = 300 mels) (after Davis
and Mermelistein [17]).

Eq. (4.24) results in a mel-frequency cepstral distance, d%(L),

L
L) =) @-&y 4.91)

n=l

for the two spectra S(w) and §’(w).

4.5.7 Alternative Spectral Representations and Distortion Measures

A speech spectrum can be represented in a number of ways. The cepstrum is just one
popular choice. When the speech spectrum is modeled by an all-pole spectrum, many
other parametric representations are also possible. An obvious parameter set that defines
the all-pole spectral shape is the set of p (nontrivial) coefficients a; of the predictor A(z).
Another important transformation of the predictor coefficients is the set of “partial correla-
tion” (PARCOR) coefficients or reflection coefficients denoted by {k;}7_,. The reflection
coefficients are directly obtained in the autocorrelation method for linear prediction analysis
as described in Chapter 3.

The reflection coefficients can be related to the cross-sectional areas of a nonuniform
acoustic tube, which is used to model the vocal tract of the speech-production apparatus.
As shown in Figure 4.32, the vocal tract can be approximated by stacking together p equal
length cylindrical sections, each with a constant cross-sectional area A;, i = 1,2,...,p.
(A,+1 = A, for impedance matching at the glottis.) When air travels through these
sections of unequal areas, wave reflection occurs at each sectional boundary with reflection
coefficients denoted by k;, i = 1,2,...,p. From these area parameters it is customary to
define the area ratio

g,-=%=—— i=1,2,...,p (4.92)
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() CYUNDRICAL SECTIONS

(b) AREA FUNCTION

GLOTTIS uPs

Figure 4.32 (a) Series of cylindrical sections con-
catenated as an acoustic tube model of the vocal tract;
(b) the area function of the cylindrical sections in (a)
(after Markel and Gray {10]).

and the log area ratio

X 1—
log g =log % = log H—: 4.93)
(3

and use these parameters for coding and quantization.
Yet another possible parametric representation of the all i
) -pole spectrum is the set of
line spectral frequencies (LSFs) defined as the roots of the fi i i
ollowing two pol
based upon the inverse filter A(z): ¢ polymomisls

P(2) = A(2) + 270DAY (4.94)
and
0(@) = Az) - 7 P+DA™). (4.95)

These Fwo polynomials are equivalent to artificially augmenting the p-section nonuniform
acoustic tube of Figure 4.32, with an extra section that is either completely closed (area = 0)
or com;ﬂetely open (area = o0). LSF parameters, due to their particular structure, possess
propemf.s similar to those of the formant frequencies and bandwidths. ’

) Given these alternative parametric representations of an all-pole spectrum, one can
dev1§e several reasonable spectral distortion measures. A Euclidean distance, defined on the
pfedxctor coefficients directly, is usually considered an inadequate measure of the spectral
dlffFre'nce, 'unless the two spectra are extremely close to each other. This is because small
deviations in the predictor coefficients can result in an unstable all-pole filter model, and
any measurement of spectral difference involving the spectrum (spectral response) of an
unstable filter usually does not have much physical significance.

For other parametric representations, such as log area ratio coefficients, a Euclidean
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distance of the form
P

d2=") (log g - log g))’
i=1
might actually be reasonable. However, spectral distortions based on parameters such as
log area ratios have not been extensively studied because it is relatively difficult to interpret
the measured distortion in terms of spectral deviations.
In contrast to distortion measures involving parametric forms of predictor parameters

(or their transforms), another proposed spectral distortion measure, motivated primarily by
perceptual studies, is the weighted slope metric [16]). Based on a series of experiments
designed to measure the subjective “phonetic” distance between pairs of synthetic vowels
and fricatives, Klatt found that by controlled variations of several acoustic parameters and
spectral distortions including formant frequency, formant amplitude, spectral tilt, highpass,
lowpass, and notch filtering, only formant frequency deviation was phonetically relevant.
(The synthetic vowels and fricatives were produced using a particular formant synthesizer
structure.) The resulting distortion measure proposed by Klatt, called the weighted slope
metric (WSM), attached a great deal of weight on the spectral slope difference near spectral
peaks, rather than the spectral magnitude difference, and took the overall energy difference
explicitly into consideration. The WSM proposed by Klatt was of the form

(4.96)

K
dwsm(S, ") = ug|Es — Es| + Y _udlAs) — M5O, @9

i=1

where ug is the weighting constant for the absolute energy difference [Es — Eg |, between
S and §', u(i) is the weighting coefficient for the critical band spectral slope difference
As(i) — A(i), between S and §’, and X is the total number of critical bands considered. In
one implementation, the slope weighting coefficient is chosen to be

u(@® = [us(i) + us(i)}/2, 4.98)
where N
N — Um UGm
usi) [u,_,, ¥ me] [MGM + VGM(:‘)] @99

and u§(i) is defined similarly for §'. V(i) and V(i) are the log spectral differences (in
dB) between the spectral magnitude at the i critical band and its nearest local maximum
(LM), and the global maximum (GM) spectral peaks, respectively. The coefficients, uzy
and ugy, are used to balance the contributions due to the local and the global spectral
characteristics and to prevent singularity in ug(i) and ug(i). All the weighting coefficients
are determined experimentally. Figure 4.33 shows a critical band spectrum of a typical
vowel sound as well as the corresponding log spectral differences V4 and Vi as functions
of the critical band number. Notice that Vi is essentially the inverse of the critical band
spectrum. The function V (i), nevertheless, has three minima at locations corresponding
to the three formants. The slope weighting coefficient, us(i), thus has large values near

Sec. 4.5 Spectral-Distortion Measures 193

(4
o

o

PERCEPTUAL
SPECTRUM
(aB)

1

I 1
2 4 a1o1z1'41's1132‘02‘2
(b)

8

VGum ()
(gB)

Y N S S |
2 4 ¢ 8101214161IBZI0212
{c)

Vim )
(dB)

) o L
2 4 6 8 10 12 14 16 18 20 22
CRITICAL BAND NUMBER
Figure 4.33 A critical bandspectrum(a)ofarypical vowel sound

and the corresponding log spectral differences V,
¢ g | ‘v (b) and Vi (c)
as functions of the critical band number (after Nocerino et al. [16]).

spectral peaks, with a maximum occurrin,
s . I g at the global spectral peak. As a conseq
$ef::a;c;¢l fi:pe dxffell'lencc is emphasized at spectral peak locations and the signif;l:al:lcc‘z
t uency shift is properly handled in the distortion
to the findings in the phonetic distance experiments. FIEESUTS 50 8810 conform
Chamcl:.elt!lo.ugh.ﬂle wel_gptcd slope metric attempts to incorporate subjectively determined
oha difﬁcnizxtcs,dxts definition has some heuristic components, such as ug, u;, and ucy, that
fficult to determine with high reliability and consist ial care i ryi

applying WSM to speech-recognition problems. e Specialcaris reeessay

4.5.8 Summary of Distortion Measures—Computational Considerations

gn !his section, we have .int.roduced a number of spectral distortion measures that are
Resflgn.ed to measure the dissimilarity or distance between two (power) spectra of speech
thz;n;r.lg .to :he definition of metric and distortion in Section 4.3, we find that many of

1Ssimtlarity measures are not metrics because the ¢ sati ymm

ym ot n y do not satisfy the s e
ﬁll;z]p:nnypeg :;uf)b]ecfnve speecd dllf\f-dxstomon measure needs to reflect the sub};ctive realitynt;};

on of sound differences, or even phonetic dispari
. ) es, parity, the asymmetry seems
tg l;zt:c}t:;il:yngfsi:(ait.)le.t ;n aut(;manc speech-recognition applications, howeve:ystudies
: icated conclusively that an asymmetric di i ,
higher recognition accurac ic di ircarir, Tht qusies o
¥ than does a symmetric distortion measure Th i

r : courac ' . The question

to which particular distortion measure is the best choice often is a function of :lhe specit:cs:
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application. For example, certain distortion measures may be better for an environment
where the background acoustic noise is kept at a minimal level, while others may turn out TABLE 44. Summary of Spectral Distortion Measures
to be more robust when the background noise is a significant source of interference.

To this point we have discussed a wide range of distortion measures suitable for
use in speech-recognition systems. We have discussed their derivations and shown how . * R EL
they can be interpreted in terms of the spectra of the signals being compared. By way of Lp Metric p [ / |tog S) ~ log 5'@)” 2;:] 2 FFTs, logs, integral
review, Table 4.4 shows, for each of nine distortion measures, the symbol used to denote ‘ o

Distortion Measure Notation Expression Computation

the distortion measure, a mathematical expression of the measure, and the computation , Truncated Cepstral L
needed (approximately) to implement the measure. (We assume that all relevant spectral Distance dX(L) Z(c,. —c)? Lx,+
parameters are precomputed or require negligible computation.) =1
The computation required to implement the L, metric is extremely large because we Weighted (Liftered) .
need two FFTs to obtain S(w) and $’(w), logarithms of all values of S and §’, and an integral. Cepstral Distance a2, Z Wim)(cn — ¢ )2 Lot
Each of these operations requires on the order of from N to N log N operations (multiply, - s " ’
add), where N is the FFT size (e.g., 256 or 512). The truncated and weighted cepstral Htakura-Saito .
distances each require just L operations where L is typically on the order of 12-16 for most Distortion dis / Sw) dw _ % _ :
spectral model-based systems; hence, a significant reduction in computation is achieved as —n S 21 2 Pt
compared to direct evaluation of the L, metric for the FFT spectra. The likelihood-based ipz_ AR dw o fﬁ 1
measures (Itakura-Saito, Itakura, Likelihood Ratio and COSH) ail require on the order of p P2 VN
operations where p is the LPC order of the all-pole polynomial (typically 8-12). Hence the
computation for these measures is essentially the same as for the cepstral measures. The Itakura Distortion dy log { / " ﬁ“_“’}
weighted likelihood ratio distortion requires L operations, similar to that of the cepstral —x 14 2w Pt
measures, and the WSM requires K operations, where K is the number of frequency bands log #Rpa
used in the computation (typically 32-64). %
The bottom line on computation is that all the measures of Table 4.4 are both Likelihood Ratio -
physically reasonable and computationally tractable for speech recognition except for Distortion dig / Al dw —1 P+
the L, metrics. Hence, in practical situations, there have been proposed and studied - g 27 '
speech-recognition systems based on all the measures shown in the table. #R,a
!
4.6 INCORPORATION OF SPECTRAL DYNAMIC FEATURES : x

INTO THE DISTORTION MEASURE ‘ COSH Distance deosn / cosh [log 2] 2 2pn,+
The distortion measures discussed in the last section are designed to compare two static ! [d,s(s ) + dis(§’ S)]
spectral representations S(w) and §'(w). In speech applications, these are usually short-time 2 ' ’
spectral estimates of the speech signal. A short-time spectrum, as discussed in Chapter 3, . o
. . . . Weighted Likelihood Lo
is normally obtained by placing a data window on the sample sequence, and the resultant Ratio Distortion P Hn)y P ,
spectral estimate is considered a snapshot of the speech characteristics at a particular time WIR [7 - 7'2'] (en —ca) L+
instant ¢. Therefore, the spectral representation is also a function of time ¢, and it is thus =t
appropriate to denote it by S(w, ) to emphasize the time variability of the speech. The Weighted Siope X
data window slides across the signal sequence, producing a series of short-time spectral Metric dwsm ug |Es — Egr| + 2"<i)[A(i) - AP K, +

representations, {S(w, /)}_,. Before we explain how sequences of spectra can be compared i=t
based on the short-time spectral distortions, we first discuss an important extension of the
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short-time spectrum for distance or dissimilarity calculation that includes the dynamic as
well as the static behavior (in terms of time variation) of the spectral sequence.

Spectral transitions are believed to play an important role in human speech percep-
tion. In an experimental study, Furui demonstrated, by using isolated syllables truncated
at the initial or final end, that the portion of the utterance where spectral variation was
locally maximum contained the most important phonetic information in the syllable [18].
It therefore seems reasonable that the use of such dynamic, variational features of the spec-
trum in speech-pattern comparison should contribute significantly to overall recognition
performance.

Dynamic features of speech are often represented by a time differential log spectrum.

A first-order differential (log) spectrum is defined by

dlog Sw,H _ w= () _jns
at ‘";m a ¢ (4.100

where c,(?) is the cepstrum at time . Note that the time-sampled cepstral sequence, ¢a(?),
usually cannot be expressed in a form suitable for differentiation. The time derivative,
dcx()/Bt, is normally obtained by polynomial approximation. This is done by fitting the
cepstral trajectory with polynomials over a finite segment of the trajectory.

Consider fitting a segment of the cepstral trajectory, c(t),t = =M, —M+1,..., M by
a second-order polynomial ky + hat + hyt?. (We drop the coefficient index for simplicity.)
That is, we choose parameters k1, h; and h3 such that the fitting error

M
E= S @)= U+ hat + s (4.101)
1=—M

is minimized. Differentiating E with respect to 1, hy and h3 and setting the result to zero
lead to three simultaneous equations:

M
2 [c(t) — by — hot =3} =0

=—M
M
S ety = e = M — ] =0
t=-M
M
3 [e()? — P — bt = h3t*] =0,
=-M

The solution to these simultaneous equations can be easily shown to be

M
> te®
t=—-M
- 4.102
hy T ( )

CEPSTRAL COEFFICIENT AMPLITUDE
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Figure 4.34 A trajectory of the (2nd) i i
! i cepstral coefficient with 2nd-order pol, i i
portions of the trajectory; the width for polynomial fitting is 7 points. polynomial(h + -+ ) fcing onshor

M M
Tu Y, cO0~QM+1) Y Pe()
=M —_—
ks = et (4.103)
Th-@M+1) ) ¢
=M
and
1 M
h = T _Z:_Mc(t) - h3TM}, (4.104)
where
M
Tu= ) 7 (4.105)
=—M

glig;re 4.12134 shows a typical cepstral trajectory with each nonoverlapping segment {c(r +
Di=—m tted by a second-order polynomial h; + hyt + hy¢2. (In the present formulation
;t is understood that the index ¢ is with respect to 7 and the polynomial fitting is done:
or all ‘r§.) The curve fitting is performed individually for each of the cepstral coefficient
trajectories c,(7 + ), n = 1,2,..., L. Note that for a first-order fit, /3 = 0 and

M
Z o(t+9)
=—M
2M+1
which is simply th i
gt ply the average, and 4, remains the same as Eq. (4.102), except for a shift of
The first and second time derivatives of ¢, can now be obtained by differentiating the

hy = (4.106)
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fitting curve, giving
M

T+l L p 2 3 teytr +0 /Tu 4.107)
o | =,
and
Bca(r +1)
PR (4.108)
{TM 2 c(‘r+t) —(2M+1) z fzc("""f) }
- =—M =M . (4.109)
Ty - M+ 1)[2 ]
=—M

Using polynomial coefficients leads to smoother estimates of the derivatives than the direct
difference operation; the coefficient h; as an estimate of i"%’,—“)L_o is much smoother
than Ac,(T) = cu(T + 1) — c,(7) which is inherently noisy. We denote the estimates of
fa{r+y) | and 82‘ s |'_o by 8{(7) and 6P (r), respectively.

=0
A differential spectral distance can now be defined, similar to Eq. (4.17), as

dlog S(w,t) dlog S'(w,t
o = [ |2loB St _ Olog St o @110)
— 2
~ Y (60 -6, @.111)
n=—00

where it is understood that the distance as well as 6" and §/V is a function of time, f.
Similarly, a second differential spectral distance can be defined as

~ z (62 — &@)?. @.113)

n=—00

_ Blog S'w, | dw
a2 ar 2

4.112)

The first and second differential spectral distances can be straightforwardly combined with
the cepstral distance, resulting in

d3s = nd3 + r2dign + Vs, (4.114)

where 7, 72 and 3 are the weights used to adjust the respective significance of the
associated distance components. Usually, v + v2 + 3 = 1.

For speech applications, it is interesting to examine the correlations among these
distance components. If these distances, d3, d2y, and d2,,, are highly correlated, sim-
ply adding more terms will not lead to better discrimination for speech sound patterns.
Figure 4.35 shows a scatter diagram where the x-axis and y-axis represent d2 and d3,,,,
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Figure 435 Scmcr diagram showing the correlation between the “in-
di d,, and the “differential” or “dynamic”
pstral di dw.,;thcu-- lation index is 0.6.

each normalized by their corresponding standard deviations, respectively. The data were
collected from a single talker, and the distances were calculated with respect to the closest
typical cepstral vector in a finite set of spectral prototypes (or vector quantization code
words). The correlation was found to be 0.6, which is quite small relative to correla-
tions between spectral representations observed in speech. Therefore, one expects that
the differential spectral distance should provide significant additional discriminability for
speech-pattern comparison. Practical evaluations of recognition systems have shown this
to be the case [19].

Cepstral weighting or liftering can be applied to the differential cepstrum in much
the same manner as it is applied to the cepstrum. One form of cepstral weighting, for
example, stems from differentiating log S(w, ) with respect to the frequency w, as shown
in Eqgs. (4.27) and (4.28). We rewrite Eq. (4.27) and further take the first time derivative to
obtain

3 = dca(t) p—
1o, llog 8w, ] > —in—=e

ot
n=—00
> .
= ) —jnsein. 4.115)
n=-—00

Therefore, we can define a weighted differential cepstral distance in a manner similar to

Eq. (4.110), as
™
d%wo = /

, .
&log Sw,t)y H*log S(w,l)l dw 4.116)

otdw | Otow
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o0
> 3 (60— 5. @.117)

n=~~00

Note that linear operations, such as scaling and differentiation, can be interchanged in
order, and thus a weighted differential cepstral distance is the same as a differential cepstral
distance defined on liftered cepstra.

The time-frequency derivative expression for the log spectrum of Eq. (4.115) suggests
that other operators can be added to produce a combined representation of the spectrum

and the differential spectra. As an example, let us consider adding the frequency derivative -

and the time-frequency derivative together to form

o, & - (1) y7 i
(5; + Bw_at) (g w01 = 3 —inen + 8701 “.118)
Taking the L, distance, similar to Eq. (4.116), we have
I (md md , 2 d
Biyys = /_, (% + 5’2’)—&) [log S(w,?) — log S'(w, )] ﬁ
= 3 2 [mea® — mcy) +msP) - m6 V)
= n%{ Y Pl - ;a)]z} + n%{ > RePm - 6;“’(»12}
+2mm Y [ealt) - ()] [0 ~ 800
= nid3y + Mdyws +2mm Y 1 [cat) — (0] [60@) - 60 -

n=—o0

(4.119)

This distance has an extra cross-product term, in addition to the weighted sum of d%,
and d2,. There are many other possible ways of augmenting the conventional cepstral
distances with differential (dynamic) spectral features. Most of these combinations have
not yet been studied extensively.

4.7 TIME ALIGNMENT AND NORMALIZATION

In the previous sections, we discussed the fundamentals of comparing speech spectra, de-
fined essentially on a short-time basis (on the order of 10-ms frames). These short-time
speech patterns are represented by a set of measurements of acoustic features or simply
by a short-time spectral model. An utterance, which is to be recognized, however, is
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more complex than a steady sound, and thus a speech pattern almost always involves a
sequence of short-time acoustic representations. The pattern-comparison technique for
speech recognition, therefore, has to be able to compare sequences of acoustic features. At
the end of the last section, we touched upon the notion of dynamic features that extend the
short-time, snapshot-like (static) spectral representations to include its (dynamic) relation-
ship with adjacent short-time data frames. However, the resulting spectral representation
is still considered a short-time representation because of the time interval involved, which
is usually in the range of several tens of milliseconds, and because of the rather simplistic,
albeit adequate, treatment of short-time spectral variations.

The problem associated with spectral sequence comparison for speech comes from the
fact that different acoustic renditions, or tokens, of the same speech utterance (e.g., word,
phrase, sentence) are seldom realized at the same speed (speaking rate) across the entire
utterance. Hence when comparing different tokens of the same utterance, speaking rate
variation as well as duration variation should not contribute to the (linguistic) dissimilarity
score. Thus there is a need to normalize out speaking rate fluctuation in order for the
utterance comparison to be meaningful before a recognition decision can be made.

Consider two speech patterns X and Y, represented by the (spectral) sequences
(x1,X2,...,%7,) and (y1,¥2,. .. , ¥r,), respectively, where x; and y; are parameter vectors
of the short-time acoustic features. (Any set of acoustic features can be used so long as
the distance measure for comparing pairs of feature vectors is known and its properties
understood.) We use i, and i, to denote the time indices of X’ and J, respectively. The
durations, T, and Ty, need not be identical. The dissimilarity between X’ and Y is defined
by considering some function of the short-time spectral distortions d(x;,, y;,), which will be
denoted for simplicity of notation as d(iy, iyywhere iy = 1,2,...,Trand iy, = 1,2,...,T,
without ambiguity. Since the sequential order of the sounds is (in most cases) critical
in the definition of an “utterance,” it is necessary that the indices of the spectral pairs
being compared, (x;,, y;,), satisfy certain order constraints. The interaction between these
sequential constraints and the natural speaking rate variation constitutes one of the central
problems in speech recognition—namely, that of time alignment and normalization.

Perhaps the simplest solution to the problem of time alignment and normalization
is a linear time normalization technique. In linear time normalization, the dissimilarity
between A’ and ) is defined simply as

T:
d(X, ) =Y diis, iy), (4.120)
=1
where iy, i, satisfy
T,
iy = i 4.121)

(Since the indices i, and iy are integer, some round-off rule is implied in Eq. (4.121).)
The summation in Eq. (4.120) can be taken from i, = 1 to i, = T, as well, depending on
the desired direction of time normalization. (In the above, we have used d to denote the
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Figure 4.36 Linear time alignment for two sequences of different
durations.

dissimilarity or distortion between a pair of short-time spectra as well as a pair of spectral
sequences. The interpretation of d should be clear from the arguments of the dissimilarity
function without ambiguity.)

Linear time normalization alignment implicitly assumes that the speaking rate vari-
ation is proportional to the duration of the utterance and is independent of the sound being
spoken. Therefore, evaluation of the distortion measure takes place along the diagonal
straight line of the rectangle in the (i;, i;) plane as shown in Figure 4.36. Each point in the
(ix, iy) plane along the diagonal represents a distortion d(iy, iy)—i.e., the distance between
the appropriate spectral feature vectors of A and ) at frames i, and i,. Obviously, this
rigid constraint of invariant speaking rate fluctuation does not adequately model the true
situation for real speech utterances and thereby points to the need for a more realistic way
of time aligning and normalizing an arbitrary pair of speech patterns.

A more general time alignment and normalization scheme involves the use of two
warping functions, ¢, and #,, which relate the indices of the two speech patterns, i, and iy,
respectively, to a common, “normal” time axis k, i.e.,

io=¢k), k=12,...,T (4.122)

and
iy = @y(k), k=12,...,T. (4.123)

A global pattern dissimilarity measure dy(X,)) can be defined based on the warping
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Figure 4.37 An example of time normalization of two se-
quential patterns to a common time index; the time warping
functions ¢, and ¢y map the individual time index iy and iy,
respectively, to the common time index k.

function pair ¢ = (¢, ¢y) as the accumulated distortion over the entire utterance, namely

T
dy(X, V) =Y d(6u(k), dy(k)Im(k) /My (4.124)

k=1

where d(¢.(k), ¢,(k)) is again a short-time spectral distortion defined for x4, and ¥4,
m(k) is a nonnegative (path) weighting coefficient and M, is a (path) normalizing factor.
Figure 4.37 shows an example of the above general time. normalization scheme; the solid
line in the lower grid represents the path along which dy(X,Y) is evaluated. The grid
points on the path are labeled incrementally from k = 1 to k = T where T is the “normal”
duration of the two patterns on the normal time scale. The indices i; and iy, as functions
of the normal time scale %, are shown at the top of the figure. The requirement to maintain
temporal order in the spectral representations of X’ and ) means that the warping functions
#x and ¢, must be monotonically nondecreasing as depicted in the curves at the top of
Figure 4.37.

To complete the definition of a dissimilarity measure for the (X, ))) pair of patterns,
we need to specify the path ¢ = (¢y, ¢y) as indicated in Eq. (4.124). There is obviously
an extremely large number of possible warping function pairs. The key issue then is
which path should be chosen such that the overall path dissimilarity can be measured with
consistency.
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One natural and popular choice [20] is to define the dissimilarity d(X,))) as the
minimum of dg(X, }), over all possible paths, such that

dx,y 2 mindy(X, Y), (4.125)
where ¢ must satisfy a set of requirements (to be discussed below). Intuitively, the definition

of Eq. (4.125) is quite appealing when X’ and ) represent utterances of the. same word,
because choosing the best path so as to minimize the accumulated distortion along the

alignment path means the dissimilarity is measured based on the best possible alignment in’

order to compensate for the nonlinear speaking rate differences between the two patterns
of the same word. When & and Y represent utterances of different words, the implications
of the best alignment in Eq. (4.125) are not immediately obvious. We shall come back to
this issue later when we discuss classifier design methodology.

The fundamental point is that finding the “best” alignment between a pair of patterns
is functionally equivalent to finding the “best” path through a grid mapping the acoustic
features of one pattern to the acoustic features of the other pattern. Finding this best path
requires solving a minimization problem to evaluate the dissimilarity between two speech
patterns.  The specific form of the accumulated distortion of Eq. (4.124) suggests that
dynamic programming techniques are readily applicable in the solution process. Before we
formally introduce and consider the set of sequential constraints that have to be imposed
on the warping functions in order for them to be meaningful in speech recognition, we first
discuss a general solution procedure for sequential minimization based on the dynamic
programming principle.

4.7.1 Dynamic Programming—Basic Considerations

Dynamic programming is an extensively studied and widely used tool in operations re-
search for solving sequential decision problems. To illustrate its applicability in speech
recognition, and particularly for the problem of time alignment and normalization, we
discuss two typical problems in which dynamic programming has been extensively used.

The first problem is an optimal path problem that can be stated as follows. Consider a
set of points labeled from 1to N. Associated with every pair of points (i, J) is a nonnegative
cost ((i,)) that represents the cost of moving directly from the i point to the /** point in
one step. The problem is to find the minimum cost, as well as the corresponding sequence
of moves, of moving from, say, point 1 in the set to another point, say i, using as many
steps as needed. This problem is illustrated in Figure 4.38. Since the sequence of moves
has an unspecified number of transitions (steps), from one point to another, we call this an
asynchronous sequential decision problem.

Using traditional terminology, we call the decision rule for determining the next point
to be visited after point / a “policy.” Since the policy determines the sequence of points
traversed from the (fixed) originating point ! to the destination point i, the cost is therefore
completely defined by the policy and the destination point ;. The question is what policy
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V(i) = §(1,3) +§(3, 5) + &(5, 1) < §(1, )

Figure 4.38 The optimal path problem—finding the mini-
mum cost path from point 1 to point i in as many moves as
necded.

leads to the minimum cost, moving from point 1 to point i. We denote this minimum cost
by (1, ). , _

Y The principle of optimality, which is the basis of a class of computational algorithms
for the above optimization problem is, according to Bellman [21],

An optimal policy has the property that, whatever the initial state and decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision.

To put Bellman’s principle of optimality into a functional equation suitable for comp.utat
tional algorithms, consider first moving from the initial point 1 to an intermediate pom.t j
in one or more steps. The minimum cost, as defined, is (1, ). Since moving from pqxnt
J to point i in one step incurs a cost {(j, ), the optimal policy, which determines “.rhlch
intermediate point (j) to pass through, (should one exist)‘satisﬁes the following equation

(1, = mjiﬂ[lp(l,D + <G, Dl (4.126)

Generalizing Eq. (4.126) to the case in which we are interested in obtaining the opt.ima‘l
sequence of moves and the associated minimum cost from any point i to any other point j,
we have

(i, )) = minle(i, ) + @&, 4.127)

where (i, ) is the minimum cost from i to j in as many steps as necessary. Equation (4. 1?7)
implies that any partial, consecutive sequence of moves of the optimal sequence frqm ito
J must also be optimal, and that any intermediate point must be the optimal point linking




206 Chap. 4 Pattern-Comparison Techniques

the optimal partial sequences before and after that point.
To actually determine the minimum cost path between points i and j, in any number
of steps, the following simple dynamic program would be used:

01,0 = (G, ) £=1,2,...,N
p2(i, ) = fnkm(ﬂol(l, k) + C(kv e))y k= L2,... N
£=1,2,...,N
‘p3(i1[) = rnkln(WZ(hk) + C(ky e))y k= 1127' -,N
£=1,2,...,N
‘PS(iy[) = rnkin((PS—l(i’ k) + C(ky l))’ k= 1,2y . 1N
£=1,2 N

wli,j) = Din, @s(i, ),
where (7, £) is the s-step best path from point i to point ¢, and § is the maximum number
of steps allowed in the path.

A second dynamic programming problem is the synchronous sequential decision
problem, which differs from the asynchronous one in the regularity of the decision process.
In terms of the optimal path problem, the objective now is to find the optimal sequence
of a fixed number, say M, of moves, starting from point / and ending at point j, and the
associated minimum cost, @y (i,/). (Note that if M is large enough, the sequence could
become periodic.) The regularity of the problem can best be explained with the trellis
structure shown in Figure 4.39. The N points are plotted vertically and the M transitions
progress horizontally to the right in the figure. Since there are N possible moves for each
point, at every moment, the total number of one-step moves is thus N2. Furthermore, the
total number of sequences of moves, which will be called “paths” in the rest of the chapter,
connecting point i at the beginning of the move and point j at the end of the M™ move, is
NM~1)

The principle of optimality is equally applicable in this case. After the m™ move,
m < M, the path can end up at any point £, £ = 1,2, ... ,N, with the associated minimum
cost pm(i, £). Suppose the (m + 1) move is to £0 to point n. Then, similar to Eq. (4.126),
Ym+1(i, n) satisfies

Omt1(i,n) = rnlin[cpm(i, £+ ¢(€, ny). (4.128)

Equation (4.128) describes a recursion that allows the optimal path search to be conducted
incrementally, in a progressive manner. Although there are N possible moves that end
at point ¢, the optimality principle indicates that only the best move is necessary to be
considered according to Eq. (4.128). The algorithm can be summarized as follows.
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Yim(1,2) = m‘in [Vm.1 (1, 0 + (¢, 2)]

Figure 4.39 A trellis structure that illustrates the prob-
lem of finding the optimal path from point i to point j in
M steps.
1. Initialization
(pl(iy n) = ((’1 n)
&m =i
forn=1,2,...,N.

2. Recursion
Pms1(i,n) = lrsntig)v[tp».(t, O+ (L, m)]
Emy1(n) = arg @gNlcpm(t, 6+ ¢, m)]
forn=1,2,...,Nandm=1,2,... M -2
3. Termination
ou(,)) = | rsnligN[w-l(t, 0+ (L, N
Eu() = arg min [py—1(i, &) + ((£, )]

1<LSN

4. Path Backtracking
optimal path = (i, i, f2,. .. ,iy—1,/),

where
im =Eny1limy1), m=M-1M-2,...,1

with iM =j
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(4.129)
(4.130)

(4.131)
(4.132)

(4.133)
(4.134)

(4.135)
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The algorithm, as a result of the optimality principle, keeps track of only N paths,
ending at each of the N points, at the end of every potential move. When the destination
is reached, the optimal path and the associated minimum cost are the natural results of the
algorithm as indicated by Eqgs. (4.133) and (4.134) without having to reexamine any of the
previously incurred partial costs. The low algorithmic complexity (i.e., computation on the
order of NM calculations) is particularly worth noting. :

For time normalization and alignment, where the pattern dissimilarity requires finding
the best match according to Eq. (4.125), the above dynamic programming algorithm is

an almost-indispensable tool. Applications of asynchronous and synchronous sequential

decision processes can be found in different aspects of the speech-recognition problem and

will be discussed extensively in this and in subsequent chapters. We now return to the
problem of finding the best constrained time-alignment path for comparing a pair of speech

patterns.

Time-Normalization Constraints

Forthe alignment process to be meaningful in terms of time normalization for different
renditions of an utterance, some constraints on the warping functions are necessary. Un-
constrained minimization in Eq. (4.125) can conceivably result in a near-perfect match
between two linguistically different utterances, thus making the comparison meaningless
for recognition purposes. For example, consider the words “we” and “you,” utterances
that have almost time-reversed spectral sequences with respect to each other. If there is no
constraint imposed on ¢, and ¢, so that time reversal is allowed, the resultant dissimilarity
measure of Eq. (4.125) could be extremely small for utterances of these two words, making
speech-pattern comparison virtually meaningless.

Typical warping constraints that are considered necessary and reasonable for time
alignment between utterances include the following:

o endpoint constraints

e monotonicity conditions

o local continuity constraints
o global path constraints

e slope weighting.

In the remainder of this section, we discuss the nature of each of these constraints and their
effects on the time-alignment procedure.

4.7.2.1 Endpoint Constraints

When the speech patterns being compared are isolated tokens of the utterances to be
recognized, they usually have well-defined endpoints that mark the beginning and the
ending frames of the pattern. The endpoint information is usually derived as a result of
the speech-detection operation as discussed in Section 4.2. In this sense, the endpoints of
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a speech pattern are considered given a priori, and the temporal variations occur within
the range defined by the endpoints. For time normalization, therefore, the endpoints are
the fixed temporal limits of the utterances, leading to a set of constraints for the warping
functions of the form

beginning point o(l) =1, () =1 (4.136a)
ending point o) =T,, (T =Ty, (4.136b)

(We assume the first frame of the utterance is labeled as frame 1.) In cases where endpoints
cannot be reliably determined (e.g., utterances in noisy environments), the above endpoint
constraints need to be modified to take the uncertainty into consideration. We will discuss
this situation later in this chapter.

4.7.2.2 Monotonicity Conditions

As discussed previously, the temporal order of the spectral sequence in a speech pattern is of
crucial importance to linguistic meaning. To maintain the temporal order while performing
time normalization, it is therefore reasonable to impose a monotonicity constraint of the
form

Belk + 1) 2> ¢u(k) (4.137a)
dy(k + 1) 2 ¢y(k). (4.137b)

The monotonicity constraint, as shown in Figure 4.37, implies that any path along which
dy(X,)) is evaluated will not have a negative slope. The constraint eliminates the
possibility of (time) reverse warping, along the time axis, even within a short time interval.

4.7.2.3 Local Continuity Constraints

In speech utterances, the presence of a particular sound (phoneme) sometimes is the only
discerning factor that facilitates correct recognition. Time normalization by way of finding
the best temporal match, as defined in Eq. (4.125), therefore should not result in the omission
of any important information-bearing sound segment. To ensure proper time alignment
while keeping any potential loss of information to a minimum, we generally incorporate a
set of local continuity constraints on the warping function. The local continuity constraints
can take many forms. One example, proposed by Sakoe and Chiba [20], is

Px(k+ 1) — k) < 1 (4.138a)

Bk +1) = $y(0) < 1. (4.138b)
Such constraint specifications are often quite complicated and it is therefore convenient to
express them in terms of incremental path changes.

We therefore define a path P as a sequence (concatenation) of moves, each specified
by a pair of coordinate increments,

P = @1,91)P2,92) ... (o1, 97) (4.139)
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p1_’(1-1)(1:0)

2y (1,1)

. p3—0 (1,1){0,1)
Figure 440 An example of local continuity con-
straints expressed in terms of coordinate increments
(after Myers et al. {23]).

where the subscript is in terms of the normal time k. Figure 4.40 illustrates three ’

paths, P;, P,, and Ps, which can be specified by P, — (1,1)(1,0), P, — (1,1), and
P3; = (1,1)(0,1). The path in the example of Figure 4.37, similarly, has the following
specification:

P = (1,142, 1)(0, 1)(1,2)(2, 1)(1,0)(0, ).

For a path that begins at (1, 1), which point we designate k = 1 according to Eq. (4.136a),
we normally set p) = g, = 1 (as if the path originates from (0, 0)) and have

4
a0 = "p (4.140)
i=1
k N
dy(k) = Zq,-, . (4.141)
R i=1
Furthermore, if the path ends at (T, Ty), then
Pt ;|
Y n=T, . (4.142a)
k=1 P
T .
Y a=T1,. (4.142b)
k=1

Any partial sequence can be similarly characterized.

Using the above notation, any simple type of local continuity constraints can be
easily specified. Table 4.5 shows a summary of the types of local constraints that have
been considered. These local constraints are expressed in terms of the allowable paths
to reach a given point in the (i, i,) plane. Type I constraints are essentially identical to
what is specified by Eq. (4.138). (Obviously, ¢,(k + 1) = ¢.(k) and Sk + 1) = ¢y(k)
cannot occur simultaneously.) Type Il and III constraints have the same originating points;
however, in Type II constraints, P; and P; both take two moves and thus two normal
time increments while P, and P; in Type III are single-move paths. We shall call these
local paths “incremental paths” to signify the local constraints. Other types of constraints
can be interpreted accordingly because the allowable paths in the table completely specify
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TABLE 4.5. Summary of sets of local constraints and the resulting path specifications

21

Type

Allowable Path Specification

I

vl

ITAKURA

Ps

P = (1,0)
P—= (LD
Py 0,1

Py = (1,1X1,0)
P2 = (1, 1)
P3 = (1,140, 1)

Pr=2,1)
P (1)
P> (1,2

P = (1, 11,0
Pz = (1,2X(1,0)
Py = (1, 1)
Py —(1,2)

P = (1,1X1,00,0)
P2 = (1,1)1,0)
Ps—+(1,1)

Py - (1,1)0,1)

Ps = (1,140, 1)0, )

Py — (1,11, 1)1,0)
P = (L1
Ps — (1, 1X1, )0, 1)

P = (1, 1X1,0)(1,0)
P2 — (1,2)(1,0)(1,0)
P — (1,3)1,0)(1,0)
Pa = (1,1)(1,0)
Ps — (1,2X(1,0)

Ps — (1,3X1,0)
Py (LD
P —+(1,2)
Py =+ (1,3)

P = (1,0), consecutive (1,0)1,0) disallowed

P2 (1, D
Ps = (1,2)
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the constraints. An exception is the type of constraint proposed by Itakura (bottom of
Table 4.5), which has an extra (nonregular) rule that prohibits consecutive (1,0X1,0)
moves [22, 23]. There is a subtle difference between Type IV constraints and the Itakura
constraints. We shall discuss this in the following section.

These local continuity constraints are clearly based on heuristics. The only com-
monality to all these sets of path specification is the linear path of a single move of the
form (1, 1). Clearly such a path is required to preserve linear time alignments. The speak-
ing rate as well as the temporal variation in speech utterances are difficult to model, and
therefore the significance of these local constraints in speech-pattern comparison cannot be
assessed analytically. Only experimental results—that is, recognition performance in real
tasks—can be used to determine their utility in various applications.

Exercise 4.5
Consider Type II local continuity constraints (see Figure 4.40 or Table 4.5).

P — (1,1¢1,0)
P = (1,1)
h P P = (1,1)0,1)

Ps

Find the sequence of path moves that match the sample path shown below:
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Solution 4.5
Beginning at the grid point (N, M) and working backward to the grid point (1, 1), the backward
path moves are P, P, P; P, P; P, P; and P; (to go to the point (0, 0)); thus the complete
path can be described by

PP PPy PsP PP P

The resulting labeled path is as shown below.
y

P

9 -

4.7.2.4 Global Path Constraints

Because of the local continuity constraints, certain portions of the (ix, iy) plane are excluded
from the region the optimal warping path can traverse. The allowable regions can be defined
using the following two parameters for each type of local constraints

T, T,
Onmax = max [Epﬁ" / ;qﬁ"] (4.143)
= /e

Ty Te

QOrmin = min [§p$° / ; q§"} ; @.144)

where £ signifies the index of the allowable path, P,, in the constraint set and T, is

the total number of moves in P,. For example, in Type II constraints, £ = 1,2,3,

and T, = 2,1,2, respectively, for P;,P> and P;. These two parameters, Quax and

Ohmin, specify the maximum and minimum possible expansion in time warping. Normally,

Qmax = 1/Qmin. Table 4.6 shows the values of Qmax and QOmin for each constraint type
listed in Table 4.5.

Using the values of maximum and minimum possible path expansion, we can define
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TABLE 4.6. Values of Qmu and Qmin for

different types of paths
TYPE Omax Q.'_.i&_

I o0 0

I 2 Y

m 2 ‘A

v 2 Uy

v 3 ‘A

VI *h )
v 3 s
ITAKURA 2 h

global path constraints as follows:

1+ &g);ﬂ < $y(0) < 1+ Oumax [x(8) — 1] (4.145)
T, + Qo (650 = Tu] < () < T, + M—Q")"J (4.146)

Eq. (4.145) specifies the range of the points in the (i, i,) plane that can be reached from the
beginning point (1, 1) via an allowable path according to the local constraints. Similarly,
Eq. (4.146) specifies the range of points that have a legal path to the ending point (T, T}).

Figure 4.41 illustrates the effects of the global path constraints of Eqs. (4.145) and
(4.146) in the (i, iy) plane for Qmax = 1/Qmin = 2. The range of valid paths form a
parallelogram defined by the lines of slope 2 and '/. As implied in Eq. (4.146) and
illustrated in Figure 4.41, the durations, T, and T}, are important factors in defining the
allowable regions. Note that if T, — 1 = Qnex(Ty — 1), the second inequality in Eq. (4.146)

becomes H-1)
&) <1+ -1 (4.147)
Cmax
which, when combined with the first inequality of Eq. (4.145), leads to the global path
constraint -1
dyk) =1+ - 11 (4.148)
Omax

This global path constraint is the straight line connecting points (1, 1) and (T, T}), and is
the only allowable path as shown in Figure 4.42; the difference in durations of the two
patterns being compared is so large that, even with a maximum expansion of 2, only a
single path is possible. A similar situation occurs when Ty — I = Qmax(T — 1). In these
cases, therefore, only linear time normalization is possible. Furthermore, no time warping
can be accomplished if T, — 1 > Qmax(Ty, — 1) or Ty —-1 > Qmax(Tx — 1). The interaction
among the pattern durations and the chosen local continuity constraints is thus of crucial
significance.
An additional global path constraint proposed by Sakoe and Chiba [20] is

{6x(k) — ¢y(k)| < To, (4.149)

Vibnarge s
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‘y(k)=2[;x(k)—1)+1

(1T
-

(1, To+1)

) y
&y (=20 (=T + T,

Qmax=2
[oc0 =8, (ST,

Figure 4.41 The effects of global path constraints and range limiting on the allowable
regions for time warping functions.

o
(1L (To+1,1 (e 1)

where T is the maximum allowable absolute time deviation between the two patterns at any
moment (frame). This additional global path constraint precludes any path that involves
excessive time stretch or compression and effectively reduces the area of the parallelogram
by cutting off the corners as shown in Figure 4.41. Constraints of the form of Eq. (4.149)
are called range-limiting constraints because they limit absolute differences in the warped
time scales.

4.7.2.5 Slope Weighting

Slope weighting along the path adds yet another dimension of control in the search for the
optimal warping path for, linguistically as well as acoustically meaningful, time normal-
ization to account for the inherent temporal variability in speech utterances. As defined
in Eq. (4.124), the weighting function m(k) controls the contribution of each short-time
distortion d(¢,(k), @y(k)). On a “global” scale (i.e., for the entire utterance duration), the
weighting function can be designed to implement an optimal discriminant analysis for
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THE ONLY
POSSIBLE PATH

Tx=1 =Qmax Ty - 1)
or

Ty_1 = Qmax (Tx - 1)

Figure 4.42 Illustration of the extreme cases, Ty ~ | = Qmax(Ty—
1)or Ty ~ 1 = Qmax(Tx — 1), where only linear time warping (single
straight path) is allowed.

improved recognition accuracy. This type of global weighting design will be discussed in
more detail in Chapter 5 when overall speech-recognition systems and generalized weight-
ing techniques are presented. On a “local” scale, it is also possible to associate the weighting
function with the prescribed path constraints so that a preference for locally allowable paths
can be applied. These locally defined weighting functions are thus called slope weight-
ing functions, because they are usually related to the slope of the local path constraints.
Although local slope weighting also appears in the same form as global weighting as in
Eq. (4.124), the difference between their purposes—a prescribed preference for local paths
versus a discriminant function design—deserves careful attention. -

As with local continuity constraints, many heuristic slope weighting functions are
possible. The following is a set of four types of slope weighting that were proposed by
Sakoe and Chiba [20]:

Type (@)  m(k) = min[$.(k) — du(k — 1), §y(k) — py(k — 1)] (4.150)
Type (b)  m(k) = max[@.(k) — sk — 1), By(k) — $y(k — 1)] 4.151)
Type (©)  m(k) = ¢u(k) — puk — 1) (4.152)
Type (d)  m(k) = ¢x(k) = dx(k — 1) + dy(k) — dy(k — 1). (4.153)
In the above, it is assumed that ¢,(0) = ¢,(0) = O for initialization purposes.
To illustrate the effects of slope weighting, Figure 4.43 shows the effect of applying
the four types of weighting functions to Type III local continuity constraints. The number

associated with each path (i.e., along the arcs) is the weighting value. Since a higher
distortion represents a less favorable or less likely match, larger weighting values are used
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(@) m(k)=min{a,(K)~#,(k=1), &, ()~ 4y (k=1)]

Figure 443  Type IHl local continuity constraints with
four types of slope weighting (after Myers et al. [23]).

for less preferable paths. (The actual warping path, of course, will be determined according
to Eq. (4.125).) As shown in Figure 4.43, for example, the Type (b) weighting attempts to
maintain a strong bias toward diagonal path movements.

The above slope weighting functions, when applied to the different types of local
constraints in Table 4.5, can sometimes lead to 0 weight situations along parts of a local
path. As an example, Type (a) slope weighting in combination with Type II local constraints
results in O-weighted moves along part of P; and P;. This situation is illustrated in
Figure 4.44. The horizontal move in P; and the vertical move in P3 each have 0 weight.
This means that only the distortions incurred during diagonal moves are considered in the
dissimilarity measure of Eqs. (4.124) and (4.125). Using weights of this type would lead
to unreasonable discontinuity in time normalization. One way to alleviate this potential
difficulty is to redistribute (or smooth) the weights when the individual values change
abruptly along any of the allowable paths. As shown in Figure 4.4, for Type II local
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(@) m(k)=min[a(k)-#(k=1), 8, (k)4 (k=1)]

12 .
[ ]
0 172 1 1"
: 172
[ ] [ ] [ ]

(b) m(K)=max[e,(k) - (k—1), 4, (k) -4y (k-1)]

Figure 444 Type II local continuity constraints with 4
types of slope weighting and their smoothed version in
which the slope weights are uniformly redistributed along
paths where abrupt weight changes exist (after Myers
et al. [23]).

constraints, the redistribution of slope weights serves to equally divide the weight along
a path where the original slope weights display abrupt changes. The smoothing scheme
applies equally to other types of local constraints. Interested readers are encouraged to
compute slope weights for several path types in Table 4.5 and for each of the types of slope
weight of Egs. (4.150)—(4.153).

The accumulated distortion also requires an overall normalization as indicated in
Eq. (4.124). The purpose of (global) normalization is to have an average path distortion
that is independent of the lengths of the two patterns being compared. The normalizing
factor for a weighted sequence is customarily the sum of the components of the weighting
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sequence, such that

T
My =Y mk). (4.154)
k=1

For Types (c) and (d) slope weighting, the normalizing factors would then become

T
MY = [6:0 = $:lk = D] = ¢ - 60 =T, .155)

k=1

and

T
M = 3 (80 - $ulk = 1) + $y6) — $yk ~ 1))
k=1

= ¢:(T) — :(0) + (1) — $y(0) =T, + T, (4.156)

respectively, independent of the warping functions and the associated constraints.

For Types (a) and (b) slope weighting, however, the normalizing factor as defined
by Eq. (4.154) is a strong function of the actual path. While it is possible to compute
the normalizing factor for a given warping path, it makes the problem unwieldy if the
minimization in Eq. (4.125) is to be solved by recursive dynamic programming algorithms.
As such, an arbitrary but reasonable normalizing factor that is independent of the warping
functions is chosen so that a standard dynamic programming algorithm can be used to find
the optimal alignment path. Typically, for Types (a) and (b) slope weighting, we arbitrarily
set

MP =MD =T,. (4.157)

Clearly, the (incorrect) normalizing factor of Eq. (4.157) leads to a bias in the time-
alignment result. For Type (a) slope weights, there is a tendency to prefer long (indirect or
fluctuating) paths (e.g., P; and P; in Type II local constraints), whereas for Type (b) slope
weights, direct, diagonal paths tend to be preferred.

Exercise 4.6

To illustrate the problems associated with using a path-independent normalizing factor for
the Types (a) and (b) slope weighting (Eqgs. (4.150) and (4.151)), consider two extreme paths
through a square grid of size N x N:

Path 1 N path segments all of slope 1

Path 2 %' path segments of slope 1, ¥ path segments of slope 2
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These two paths are shown below.

N (N.N)
. PATH 1
ly

PATH2
(1.1)
(ZNH'&)
3 '3
Y N

1. Using Type (a) slope weighting, what is the true normalizing factor for paths 1 and 2?
2. Using Type (b) slope weighting, what is the true normalizing factor for Paths 1 and 2?

3. Assume we set the path-normalizing factor arbitrarily to path length N. Assume that
every local distance along both Paths 1 and 2 is of value d. What is the average path
distance using both Types (a) and (b) slope weighting for Paths 1 and 2?

4, What type of path bias is exhibited for Types (a) and (b) slope weighting?

* Solution 4.6

1. Using Type (a) slope weighting, the true normalizing factors are

N
M, =Y 1=N

k=1

3 N

1 2N 1 N 2N

@ 2 =N iV g2
M=) 3+ 1=F 3+3:1=3

k=1 1F+|

2. Using Type (b) slope weighting, the true normalizing factors are

N
M(:.)‘,,=EI=N
k=1
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3. For Type (a) slope weights we get

Dg‘.):in:_—l;I =d
¥ L&
d[§5+§1]
= +1 2-
Dhwr=——x———=34

For Type (b) slope weights we get

Dg:)m = —k—;!——- =d
3 N
Ay 14307
k=l ¥4 4
Dg:)ch‘“ N =§d

4. It is clear that since all local distances along the path are constant (of value d), then
the average path distance along any path should be equal. However, for Type (a) slope
weights we see that the average path distance is smaller for longer paths; hence Type (a)
slope weights favor long paths over short paths. Conversely, for Type (b) slope weights
we see that the average path distance is smaller for shorter paths; hence Type (b) slope
weights favor short paths over long paths.

4.7.3 Dynamic Time-Warping Solution

We are now ready to show how we can use a dynamic programming algorithm to pro-
vide an efficient way to solve the minimization problem involved in the definition of
the pattern dissimilarity measure of Eq. (4.125) with embedded time-normalization and
alignment. Although the local path constraints and slope weighting discussed in the last
section do require adjustments to the original algorithm, the principle of optimality and
the dynamic programming equations, particularly Eq. (4.128), are essentially directly and
straightforwardly applicable to this problem.

Due to the endpoint constraints (Eq. (4.136)), we rewrite Eq. (4.125) in terms of T,
and Ty as

Md(X,Y) £ D(T,, T))

T
= mig’ Y d(guh), ¢y (kpm(k) (4.158)

ke drmst
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since X' and Y terminate at T, and T,, respectively. Similarly, the minimum partial
accumulated distortion along a path connecting (1, 1) and (iy, iy) is

TI
..y A .
Dliz, i) = min_ gd(dz‘(k), Sy k)m(k), 4.159)
where
$(T)=i; and (T =i (4.160)

are implied. The dynamic programming recursion with constraints thus becomes
Dy, iy) = (r'_pilg)[D(i,'u ) + (i, §), Gy D], (4.161)
2y -

where ( is the weighted accumulated distortion (local distance) between point (i}, i}) and
point (i, i)

L
(i, 5), (s, i) = Zd(¢x(T’ ~0,$(T" — Om(T’' ~ &) 4.162)

=0

with L, being the number of moves in the path from (i, i}) to (i, iy) according to ¢, and
¢y. Again, Eq. (4.160) is implied as well as

&I’ —L)=i, and ¢TI —L,)= i;,. (4.163)

The incremental distortion ¢ is evaluated only along the allowable paths as defined by
the chosen local continuity constraints for efficient implementation of the dynamic pro-
gramming algorithm—that is, only along the paths defined by the various sets of local
constraints. In other words, the range of (i, #,) for minimization in Eq. (4.161) is limited to
those points that qualify as the legal originating points of the incremental paths as specified
by the chosen set of local constraints. Table 4.7 summarizes the key recursion formula
for several types of local continuity constraints with typical slope weighting. (The table is
not exhaustive and the reader is encouraged to work out a couple of specific examples not
covered here.) '

As mentioned earlier, the distinction between Type IV local constraints and the
Itakura constraints is subtle and worth noting at this point. For the Itakura constraints, a
function g(k) is introduced to prevent paths that traverse horizontally for more than one
move. Note that when the best path to reach (i; — 1, ) is from (i — 2, i), the algorithm
essentially discards all other allowable connections to (i, — 1, iy) except that from (i, — 2, iy).
When this occurs, the best path to reach (ix, i,) can come only from either (i, — Li-1)
or (iy — 1,iy, — 2) because two consecutive horizontal moves are not allowed. Itakura’s
implementation therefore does not consider the path from (ix — 2,iy — 1) to (i, iy) via
(ix — 1,iy) even if the accumulated distortion at (i, 'iy) via this particular path is smaller
than other paths that go through (i, — 1, iy — 1) or (i — 1, iy — 2) and ranked only second to
the path (iy — 2,iy) = (ix — 1,iy) = (iy, iy), which is disallowed because of the constraint.
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TABLE 4.7. Summary of sets of local constraints, slope weights, and DP recursion formuias
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Local Constraints & Slope Weights DP Recursion Formula

1

Dlix — 1,iy = 1) + 2d(ix, iy),

Diix — 1,iy) + d(ix, iy),
Dix, iy — 1) + d(ix, iy)

Dliy — 1,iy = 1) + d(ix, iy),

DGix = 2,iy = 1) + }[dlx — 1,iy) + dGix, iy)),
Dlix = 1yiy = 2 + §ldlix, iy ~ 1) + dix, iy)]

D(ix - lyiy -+ Zd(iniy)x

Dlix = 2,iy = 1) + 3d(ix, iy),
Dlix — 1,iy = 2) + 3d(ix, iy),

D(ix — 2,iy = 1) + d(ix — 1,iy) + d(ix, iy),
D(ix - 2y iy - 2) + d(ix - 1, iy) + d(ix, iy)y
D(ix — 1,iy — 1) + d(ix, iy),
Dlix = 1,iy — 2) + d(ix, iy),

Dix — 3,iy — 1) + 2d(ix — 2,iy) + d(ix — 1,iy) + d(ix, iy),
D(ix - l; iy - 1) + u(ix - 1; iy) + d(iniy)»

D(ix - ly iy - 1) + Zd(ixy iy),

D(ix — 1viy -2)+ Zd(ix,‘iy — 1) + d(iy, iy)s

Dix = 1,iy = 2) + 2d(ix, iy ~ 1) + d(ix, iy),

D(ix - lyiy - 3) + M(ix.iy - 2) +d(ix,iy - l) + d(ix,iy)v

D(ix - 1, iy)g(k) + d(iXyiy)s
min{ Dl — 1,iy ~ 1) + dix, iy),
Dix — 1,iy = 2) + d(ix, iy),

Bk — 1) # ¢k —2)

. 1
vith g = {oo S~ 1) = )k —2)
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In Type IV constraints, the algorithm maintains the partial accumulated distortion at two
consecutive frame levels, instead of one, as in the case of Itakura’s constraints, and thus
the optimal path that satisfies the constraints of no two consecutive horizontal moves can
be found.

We have removed the normalizing factor My out of the dynamic programming
recursion above because it is assumed to be independent of the warping path. It can be
reinstated once the optimal path is found as indicated in Eq. (4.158). At this point, let us
summarize the dynamic programming implementation for finding the best path through a
T, by T, grid, beginning at (1, 1) and ending at (T, T}), as follows: ’

1. Initialization

D4(1,1) = d(1, Dym(1).

2. Recursion
For 1 < iy £ T,, 1 < iy < T, such that i, and i, stay within the allowable grid,
compute

Dplix, iy) = (?,u.i‘,'l)[DA(i,’n AR S (AN (7))
0y

where (((i, &), (ix,§y)) is defined by Eq. (4.162).
3. Termination

ax,y) = 20T,

The key idea of the algorithm is that the recursion step is done for all local paths that
reach (iy, iy) in exactly one step (from (i, i})) using the local path constraints chosen for
the implementation. Only values of (iy, iy) that can be reached from (1,1) and can end
ultimately at (T, T) are evaluated in the recursion step. Figure 4.45 shows the set of grid
points on a 40 x 40 grid that are used in the recursion when a set of local path constraints
that allow a 2-to-1 time scale expansion and a 2-to-1 time scale contraction are used. It can
be seen that about (T,.Ty)/3 grid points fall within the discrete parallelogram of Figure 4.45.
(In this case there are 560 out of 1600 possible grid points.)

The number of grid points falling within the parallelogram is also the number of local
distance calculations, {((i, i,), (ix, iy)), required for implementing the DTW procedure. In
general, this constitutes about 80% of the total DTW computational requirements, with
the rest being that of the combinatorics for optimal path search. Proper use of the global
constraint of Eq. (4.149), i.e. proper choice of Ty to limit the number of grid points, would
also have an effect on the computational load.

It can be shown (see Exercise 4.8) that when using a set of local path constraints that
allows a k-to-1 time scale expansion and a k-to-1 time scale contraction, the ratio of grid
points within the parallelogram of allowable grid points to grid points within the T, x T,
rectangle is
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Figure 4.45 Set of allowable grid points for dynamic programming implementation
of local path expansion and contraction by 2 to 1.

g oB) (- F)

Ty (4.164)

Thusfor the case of k& = 2, with T, = T, we get R = 1/3. When k = 3, again with
T. =T, we getR = 1/2, about half the grid points are allowable with a 3:1 scale expansion
and contraction.

While the definition of the dissimilarity measure of Eq. (4.125) involves a minimiza-
tion process that can be effectively solved with mathematical precision by the dynamic
programming algorithm described above, the heuristic nature of the dissimilarity measure
should not be overlooked. The constraints for local continuity and the slope weighting
are mostly based upon intuition and are not motivated by analytical results. As such, the
optimal warping path that provides the best match under the given constraints and is used
for time alignment and normalization is subject to various interpretations. In comparing
utterances of the same word, for example, this best match may truly represent the best time
alignment. For utterances of linguistically different words, however, the optimal path is
not really meaningful, except as the solution of the dynamic programming process, because
“correct” time alignment between two utterances of different words is not a well-defined
linguistic concept. Furthermore, time alignment in the current context is performed on a
short-time basis (using spectral slices on the order of 10 msec) with short-time constraints.
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Since speech is a slowly varying signal in which the linguistic sound codes are produced
at a rate of approximately 5-10 per second, the dynamic time-warping procedure and the
associated constraints are thus more than likely to be unduly restrictive, particularly for
those speech segments that represent steady-state sounds. In fact, a close examination of
the accumulated distortion resulting from various warping paths leads to the finding that
a large number of warping paths produces an accumulated distortion that is very close to
the minimum attainable value, especially for utterances of the same word. The convenient
definition of Eq. (4.125) for two arbitrary speech patterns has been demonstrated to be
practically effective in speech-recognition applications, but as discussed, may be subject to
further interpretation. One important consideration is in terms of the consistency in speech
sequence representation. We shall cover this point in more detail in Chapter 5.

Exercise 4.7

1. Consider the problem of finding the best path through the 6 x 6 grid of local distances
shown below:

e3 02 o3 o2 @2 o2
3 o2 o3 o1 o1 @1
2 82 02 o1 @2 @2

2 o1 o2 .2. o1 o3

N W a0 O

o1 o1 o1 o1 o2 o3

1 @1 o1 o3 o3 o3 e3
1 2 3 4 5 6 i

Assume that the path must begin at (1, 1) and end at (6, 6). Assume local path constraints
and slope weights of the form

‘What is the best path through the grid?
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2. Now assume the path can begin at any of the points (1, 1), (1,2) or (1,3) and end at any
of the points (6,4), (6, 5) or (6, 6). Now what is the best path through the grid?

Solution 4.7

1. Using the dynamic programming algorithm, we can solve for the accumulated distance
at each (allowed path) grid point giving

1 2 3 4 5 6 i

The best path is shown as the dashed path with total accumulated path distance of 7,
and average path distance of 7/6.

2. Beginning the total accumulated path at either (1,2) or (1, 3) only increases the total
accumulated path distance, so (1, 1) is the best initial path point. Ending the same path
as above at (6, 5) rather than at (6, 6) gives a smaller total accumulated path distance (6
versus 7); hence this is now the best path through the grid.

Exercise 4.8

In implementing the time-alignment procedure via dynamic time warping, we are generally
considering a discrete grid of dimension 7, x T,. Show that for any set of local path constraints
such that the global path has a maximum slope constraint of Emsx = £, and a minimum slope
constraint of Emin = 1/k, k > 1, the ratio of grid points within the parallelogram of allowable
path grid points to grid points within the T, x T, rectangle is

o B[ -7
B * -1
Solution 4.8

We will solve this exercise geometrically by referring to the points defined in the figure below.
The following areas, angles, and lengths can be defined:
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. Rectangle ABCD (the entire grid) has area Sascp = T X T,

2. {GAE=LICF =«

LHCE = LJAF = 3
. In parallelogram AECF we have AE = CF, AF = CE and

AAGE = ACIF = AELA
ACKE = AAJF

. By recognizing that

AALE =S5 +S7=ACIF =8, + 83
ACKE =S6+ 83 = AAJF =S + 57

we get
S5+ 86 =81 + 83
so that
Saecr = Stexp — Sirip + S5 + 86 — S1 — S3
= Srexp — SiFip
=AG x CH — EG x EH
EG 1 EH 1

1
. SAmr=AGxCH(1-—k—2)

AG+GB =T, =AG+CTH
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BH+CH=T,=‘%+CH

Solve for AG,CH as

L=T/k
1-1/k2
LT/
1-1/k2

AG =
CH=
giving

Sagcr _ (Te = T, [kXTy —~ T, /k)
Sasco (1-%)TT,

(e-%) k- B)

-1

R=

4.7.4 Other Considerations in Dynamic Time Warping

We mentioned in the last section that the appearance of mathematical rigorousness of
Eq. (4.125) does not alter its heuristic nature in terms of time normalization. Since the
“correct” time alignment between utterances of different words does not exist linguistically,
the minimization result in Eq. (4.125) cannot be meaningfully interpreted. Even for
utterances of the same word, the dynamic time warping scheme to accomplish Eq. (4.125)
is predicated on the given endpoint information, which is considered part of the definition
of the speech patterns. This endpoint information is often treated as a set of independent
parameters and appears in the form of the endpoint constraints in Eq. (4.136) for dynamic
time warping. As discussed in Section 4.2, however, the determination of the beginning and
ending points of a speech utterance is, at best, an imprecise calculation. This is especially
a problem for words that begin or end with weak fricatives whose power level and spectral
characteristics are not significantly different from the acoustic background. Also, in the
presence of substantial acoustic noise, reliable detection of the endpoints is even more
difficult to accomplish in a manner independent of the speech-recognition operation that
follows.

Another potential problem in dynamic time-warping implementation is the restriction
on the range of possible warping paths due to the interaction between continuity constraints
and the utterance duration ratio (T — 1)/(Ty — 1). When T, — 1 > Qumax Ty—1Dor
Ty = 1 > Qmax (T — 1), the global constraints of Eq. (4.145) and (4.146) make time
warping impossible. There is thus a desire to allow additional flexibility to exist in the path
constraints such that these extreme cases are not precluded in the distortion minimization
process while at the same time maintaining the local continuity constraints.

Another potential problem occurs when the durations, T, and Ty, are large. In this
case it is obvious that a large number of grid points within the allowable warping region
in the (iy, ;) plane have to be considered in the dynamic time-warping process, thereby
incurring a high computational load. Since one would expect the optimal warping path
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Figure 446 The allowable path region for dynamic time alignment with

P

to be reasonably close to a linear path, much of the computation at the extremities of the
allowable region may be unnecessary. Thus, possibly a suboptimal procedure could be
capable of substantially reducing the computational requirements with little increase in the
minimized accumulated distortion.

Consideration of the above problems has led to several proposed modifications to the
standard dynamic time-warping algorithm. We now discuss two such proposals that have
been extensively studied.

The first modification is to relax the endpoint constraints of (4.136). Specifically, the
following new set of boundary conditions is used.

1< (D) <1+QOmuxd (4.165a)
1<4(D<1+A (4.165b)

Tx - anx A < ¢x(T) < Tx (4.1650)
T,-A<$M<T, (4.165d)

Figure 4.46 shows the allowable path region in the (iy, iy) plane as a result of the above
relaxed endpoint constraints. The expanded range A represents the maximum anticipated
mismaich or uncertainty in the endpoints of the patterns. The warping path, with this
embedded endpoint uncertainty, can start at a grid point other than (1, 1) and end at a grid
point other than (T, T,). Typically, Qmax = 2 and A is the number of frames corresponding
to approximately a 75-ms region. (For a frame shift of 15 ms, A = 5.)

To illustrate the computational effect of expanding the beginning path range by five
frames and the ending path range by nine frames, Figure 4.47 shows the revised set of
allowable grid points on a 40 x 40 grid. We see that now there are 844 grid points to be
evaluated, or about 50% more grid points than the grid of Figure 4.45, where there was a
unique initial and final path point.
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Figure 447 Set of allowable grid points when opening up the initial point range to 5
frames and the final point range to 9 frames.

Since the endpoint constraints of Eq. (4.165) allow the warping function to reach
the boundary prior to the last frame of either of the two patterns, the competing warping
paths may not end at the same point and the accumulated distortion d(X,)) as defined
in Eq. (4.158) includes an uncertainty in the normalized duration T for different paths,
giving rise to the need for scaling on the accumulated distortion. The scaling factor for the
accumulated distortion along a path that undergoes 7/ moves from the beginning to the end
usually takes the form T/T’, where T is the nominal (or maximum) number of moves in
terms of the normal time scale.

Another possible modification to the time-warping algorithm is to include an extra
constraint that requires the dynamic path search to be limited to lie within a range of the
locally optimal path. The beginning point satisfies the constraints of Eq. (4.165a) and
(4.165b), but no explicit constraint is imposed a priori on the ending point. This can
be conveniently introduced by considering a simple warping function ¢,(k) = k, which
implies that i, is treated as the normal time axis. The dynamic programming recursion of
Eq. (4.161) for i, = k is now performed only for a range of i,, which satisfies

B-e<iy < +e, (4.166)
where
iy = argn}yinD(k ~1,i), (4.167)

and € is a prespecified range. The purpose of this additional constraint is to significantly re-
duce the computation by limiting the allowable path region to a close
vicinity of an instantaneously determined, locally optimal path according to Eq. (4.167).




232 . Chap. 4 Pattern-Comparison Techniques

Tx

Figure 448 The allowable path region for dynamic time alignment
with localized range constraints.

Figure 4.48 illustrates the limited search region, resulting from the above constraints. The
dynamic search range e is typically four frames, corresponding to a 60-ms interval around
the local minimum point.

4.7.5 Multiple Time-Alignment Paths

The dissimilarity definition of Eq. (4.125) relies solely on the minimum accumulated
distortion. The warping path that leads to the minimum accumulated distortion is considered
the “correct” time alignment to normalize the temporal variability in the utterances. As
explained in Section 4.7.3, this “optimal time alignment” may be unduly restrictive, and
decision processing based on a single matching path is often too sensitive and not robust
enough to cope with situations that may be just minor deviations from the normal conditions.
In many applications, therefore, it is desirable to consider not only the best matching path
but a multiplicity of reasonable candidate paths so that reliable decision processing can be
performed. In the current context, the focus is on spectral matching (decoding); however,
similar situations can arise in phoneme sequence matching (decoding), word as well as
phrase sequence matching (decoding), and so forth. Such cases will be discussed in later
chapters when speech-recognition algorithms and systems are presented.

The fundamental tool of dynamic programming and the principle of optimality can
be applied to solve the problem of finding the K-best paths, instead of just the one best path,
requiring only minor modifications. We shall use the synchronous sequential decoding
problem as the vehicle for our presentation here and for simplicity, search constraints like
those discussed in Section 4.7.2 are not explicitly considered as they are not essential to
the basic methodology and formulation.

Referring to Figure 4.39, we use the fact that the best m™ move to point n is
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accomplished if it continues from point j at the end of the (m — 1) move where j satisfies

j=arg min [on-10, ) +¢(E,m)]. (4.168)
(Recall that @, (i, f) is the minimum accumulated cost moving from i to j in m steps.) The
best path after the m™ move, starting out (i.e., m = 0) from an arbitrary initial point, i, is
the one that ends at n,
n=arg ll<_ntl£N wm(i, £). (4.169)
To find the single best path, the recursion of (4.168) indicates that all we need to keep track
of is the N best paths, and the associated accumulated cost, that end at each of the N points,
respectively, at any moment or move. (We shall again assume that moves occur at regular
unit time intervals.) This is obvious because any path that connects i and £ but results in
an accumulated cost greater than ¢,(i, £) cannot be the best path overall.
To find the second-best path at the end of the m® move is slightly more complicated.
To facilitate our presentation, let us denote a path that connects i and 7 in m steps by (i, 1)
where the additional subscript & is used to indicate the rank of the path in terms of the
associated accumulated cost. When m or k is omitted, it is assumed to be 1. Therefore,
with ¢ denoting the accumulated cost,

((i’ n) = Cl (iy n)h (4.170)
‘pm(iv n) = Cm(tv n)ly (4171)

and
Cnliy 1)1 < Cu(i,m)2 < Guliym)3 < ---. 4.172)

4.7.5.1 Parallet Algorithm

The second-best path after the m™ move could reach the same point as the best path.
Therefore, the accumulated costs that must be considered to find the second-best path after
m moves are {Cu(i, O, k = 1,2})_,. Using min™® to signify “the k™ smallest value of,”
we can thus determine 7, and n,

— in ¢ (i 4.173

m =arg ming Cni, O1 ( )

- in @c (i 4.174

m =arg min, Cmi, O ( )
k=1,2

to be the ending (the m™) points of the best and the second-best paths, originating from
point i at m = 0. Note that n; may or may not be identical to n; and the best ending point
after m moves also satisfies

= in V(i > 4.
m = arg min Gy O k>1, (4.175)
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Figure 449 Dynamic programming for finding K-best
paths impiemented in a parallel manner.

which is obvious because of Eq. (4.172). As the paths move forward, the recursive
relationship becomes

CmtrGsm = lgllig:‘)[Cm(i,f)l + (¢, n)] (4.176)
and
Cnt1(iym)2 = 1g}iglvm[c”'(i’ i + (¢, m)]. 4.177)
k=1,2

Therefore, to find the second-best path, we need to store and examine the two smallest
accumulated costs for every point at every possible move.

The same principle can be extended to the case where £ > 2. In particular, the
following recursion holds

. = . (K) .

1l me = | o, [Cnléy D + (L, m)]. (4.178)

12K

The K™ best path after m + 1 moves ends at
nx = arg min ®Cn (i, O (4.179)

124N

Figure 4.49 illustrates the implication of Eq. (4.178), which indicates that for every point
n, NK accumulated costs are pooled together and K-smallest accumulated cost figures are
augmented and retained after each move. The algorithm requires maintaining an array of
NK accumulated costs and an array of NK point indices to store the path history at every
move. When the total number of moves, M, is large, tlie complexity can be exorbitant, not
just because of the storage involved but also because of the necessary sorting operation.
One advantage of this approach, however, is that the K-best paths are found essentially

simultaneously for any number of moves. This method is often referred to as the parallel
algorithm.
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4.7.5.2 Serial Algorithm

Another way to find the K-best paths without requiring large data storage arrays is to search
for these paths one at a time in a serial manner, starting from the very best. This procedure
is thus called the serial algorithm for convenience. Consider the synchronous sequential
decision problem, of Section 4.7.1, in which we are interested in finding a path of M moves,
starting from point / and ending at point n. Note that if we have obtained the best path
m{i,n); which passes through point n; at the (M — 1)® move, we can be sure that the
second-best path (i, n), must have one of the following partial paths for the first (M — 1)
moves: M-](i,nl)z OTM_l(i,[)l, {= 1,2, e ,N, £ # n.

It is not necessary to consider y—) (i, £)2, £ 3 ni, because this partial path cannot be
part of the second-best path. For paths p—i(i, 1, £ = 1,2,...,N, £ # n, the recursion of
Eq. (4.168) applies and it is only necessary to maintain a single (the best) path history for
each point along »—1(i, £);. For each point along »_1(i, n1)1, however, we need to maintain
two path records because y—;(i, n)2 could be part of the second-best path. In this way,
we are no longer required to keep track of 2N accumulated costs and 2N path records for
every trellis point in the second-best path search case. The same idea extends to K-best
path cases. We summarize the serial algorithm implementation in the following.

1. Initialization

(a) Set the number of ranked paths that have been found, %, to zero.

(b) Set up a path array of size K x M where K is the maximum number of best
paths to be found and M is the designated path length (number of moves). This
array is used to store the K-best path records (indices) to be found.

(c) Form a “visit count” array of size N x M where N is the number of points in
consideration. The jm™ element c;» of this array is the number of paths among
the k globally best that pass through point j at the m™ move. Initially, ¢j» = 0
for all j and m.

2. Recursion

(a) Among all the paths entering point j at the m™ move, find and retain ¢jm + 1
paths with the minimum accumulated costs up to that point. That is, similar
to Eq. (4.178), find and retain (n(i,)w, K = 1,2,...,(Cim + 1), by rank
ordering all the accumulated costs to that point. The set of accumulated
costs under consideration is {Cn—10, Ok, + ((¢,)} where £ = 1,2,...,N
and k, = 1,2,...,c¢m—1). Progress forward fromm = 1tom = M. (By
definition, j = natm = M.)
Find the (k + 1) best path p(i, n)e4+1 after M moves by

Culiymesr = min Y (GG, O, + e, )] (4.180)

1SES<N
k=127 000 u—1)

Note that (i, n)1, Cu(i, )2, - - . , (u (i, n)y are already known at this point and
can be used to simplify the min®*+") operation in Eq. (4.180).
(c) Increment the “visit count” array entries ¢;» by 1 for those points on path

(b

—-—
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Figure 4.50 The serial dynamic programming algorithm for finding the K -best
paths.

ms Wiy
(d) Incrementk — k+ 1.
(e) Iterate 2a through 2d until k = K.

Figure 4.50 illustrates the serial algorithm for K = 2. In the figure the shaded path is 4 (i, n);
which passes through 1 at m = M — 1. The search for y(i, n); relies on the knowledge
of (i, n); which is embedded in {c;}. It can be easily verified that the algorithm does
not require one to simultaneously maintain arrays of size K x N x M as does the parallel
algorithm. Particular attention should be placed, however, on the one-way, forward search
nature of the algorithm; the search starts from the beginning at m = 1 till theend atm = M
for each and every k* optimal path. Many rank-ordering (sorting) operations are thus
unnecessarily repeated, showing room for further simplification of the algorithm.

4,7.5.3 Tree-Trellis Search

The serial algorithm, although in a limited sense more efficient than the parallel algorithm
by making use of the knowledge of y(i, n)¢, does not take advantage of the fact that when the
globally best path is found, we already have at hand all the partial minimum accumulated
COSts (i, £)), for all m and £. The search in the serial algorithm is always forward and at the
m™ move, none of the information beyond the m™ move is being used to facilitate a more
efficient search. The Tree-Trellis algorithm combines the forward (trellis) search and the
backward (tree) search in an intelligent way that produces the desired results much faster
and easier than either the parallel or the serial algorithm,

Let us consider partial paths of (i, ). We define

K‘,“(i ,n) = {a partial path consisting of the least (M — m) . (4.181)
points of the sequence (i, n);}
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. . PP .. . +1,. —
For example, if y(i,mk = (i, 82, yimydmits s i=1.1 3 (M = (met1s -
is~1,n). With = denoting concatenation of paths, we further define

mi, ) * 5'(i,n); = {the path that traverses through point £ at the (4.182)
m® move with minimum cost and merges with
m(i, n) at the (m + 1)* move.}

The accumulated cost of (i, £) * T+'(i, n)y is simply
¢ [l O % TG ) = Gl £ + G fimi) + Gt G )y (4.183)

where j is the beginning point of 75*'(i, ). The representation of (i, £)x 55" (i, n)y is
unique because both ,,(i, £) and y(i, n); are uniquely determined. Note that the essential
parameters in this representation are m, £ and k. This representation is particularly useful
in the sequential search for the X-best paths.

Let us assume k < k and m; is the smallest such that

"Gy = G ke (4.184)

In other words, paths (i, #); and (i, n); have the longest overlap in the last part of each
path, among all k < k. Then, the set

A {mG, O 5" (i,m); £=1,2,...,N, and m < m; with (i, n) excluded} (4.185)

where my, satisfies Eq. (4.184), and has certain properties that allow us to conduct the path
search in an intelligent manner. (Note for k = 1, m; X M.) It can be easily shown that

M@, M+ € {ek:,k’ =12,... ,k}. (4.186)
In fact,
(k4:1)
i = 9), 4,187
MU, My = arg P ¢ (4.187)

where 6 is a path in {©p,k’ = 1,2,...,k}. Equation (4.187) implies a recursion that
permits a sequential search for the K-best paths, starting from k = 1. Since © is defined
after (i, )i has been obtained, the min*+1 operation in Eq. (4.187) need not be performed
exhaustively. We can accomplish this by devising a cost stack £ of K entries, each of which
has a corresponding path specified by the three parameters £, m and k. The cost stack is
sorted and filled as ©, is searched one after another.

Consider when y(i, n); is being found according to Eq. (4.187). At that time, the
cost stack £ already contains a ranked list of K minimum path costs among all {(§) where
0 € {Op,k =1,2,...,k—1}. Once y(i, n) is determined, © is defined accordingly and
the cost for each path in @ is evaluated and compared against the lower (K — k) entries
in L. The existing lower (K — k) entries of £ are adjusted, if necessary, because of the
new values of ((6), & € ©;. When the search in ©; is complete, »(i, n)¢+ is found as
the one with cost ranked k + 1 in £. The recursion then continues. The algorithm can be
summarized as follows.
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1. Startfrom k = 1. The best path can be found by the dynamic programming algorithms
described previously. The results produced include m(i, £) and the associated partial
accumulated cost {,(/, £) forallm = 1,2, ... yM—1land?¢=1,2,...,N. Theresults
are stored for later use. Also, fill £ with scores M1, )+ (), £=1,2,... N
according to theirrank. If N > K, keep only the top K scores. The best score (y (i, n)
is of course ranked first.

2. The k™ best path (i, n); is expressed in terms of the concatenated path . (i, £) *;:‘“

(i, n); where k < k and my is the smallest such that Eq. (4.184) holds. (m; = M for
k = 1). The expression can be defined by the three essential parameters, £, m; and
k. Define the set ©; according to Eq. (4.185). Evaluate the path cost for every path
6 € ©; according to Eq. (4.183). These scores are compared and merged with the
lower K — k entries of £ according to their relative values. (New path costs may
enter the stack, pushing existing path costs out of the stack.)

3. Find p(i, n)g4; which has a corresponding cost at the (k + 1)® position in the score
stack £ according to Eq. (4.187).

4. Increment k — k + 1 and repeat steps 2 and 3 until & = X.

A key innovation in the above search algorithm is the extensive use of the known paths,
grown l?ackward from m = M like a tree. The algorithm economically defines the search
range via the path set ©; and circumvents the suboptimality issue by making use of the
e)ltat.:tly known partial path costs without requiring cost prediction. The latter point is
distinct from other efficient one-way search algorithms that rely on cost prediction (before
the search propagates) to reduce the search range.

4.7.5.4 Remarks

The multiple path search procedure provides a result that enhances the robustness of
the pattern-comparison process. It has many applications in speech recognition, ranging
from time alignment to word sequence decoding. The generic description of the K-best -
search algorithms in this chapter serves as a foundation for other applications where some
tailoring of the algorithms (e.g., incorporation of higher-level knowledge or constraints on

the ;;OSSible decoding results) is required for specific implementations to suit individual
problems.

4.8 SUMMARY

In this chapter we have discussed the three basic problems in pattern comparison, namely,
(1) how to detect the speech signal in a recording interval (i.e., scparate speech from
b?ckgr.ound), (2) how to locally compare spectra from two speech utterances (local spectral
distortion measure), and (3) how to globally align and normalize the distance between
two sp‘eech' p.attems (sequences of spectral vectors) which may or may not represent the
same linguistic sequence of sounds (word, phrase, sentence, etc.). We have shown that a
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Figure 4.51 Example illustrating the need for nonlinear time alignment of two versions of
a spoken word.-

variety of methods exist to either explicitly or implicitly detect locations of speech within
recording intervals, a wealth of interesting and useful spectral distortion measures exist
for comparing spectral representations, and a well-defined, easily implemented dynamic
programming procedure (often called dynamic time warping) exists for time-aligning and
normalizing highly variable pairs of speech utterance patterns.

Figure 4.51 illustrates the utility of the methods discussed in this chapter. On the left
side of this figure are shown the log energy contours of two versions of a spoken word (the
word “seven”). Speech detection has already taken place so that frame 1 corresponds to the
first speech frame and frames 30 (for the upper utterance) and 35 (for the lower utterance)
correspond to the last speech frame. It can be seen that not only are the durations of these
two utterances different, but so are the temporal locations of the vowel peaks (as shown by
the misalignment from the dashed lines), even after linearly compensating for the duration
differences. The need for time alignment is clear. The right-hand side of the figure shows
the dynamic time warping alignment path that best aligns the two versions of the word.

Figure 4.52 shows overlay plots of the log energy contours of the two utterances on
a linear scale (top panel curves without time alignment) and after time alignment (bottom
panel curves). The middle panel shows the optimal warping or alignment path. It should
be clear that after time alignment the log energy contours line up very well in all parts of
the contour. This example clearly illustrates the power of the dynamic programming time
alignment procedure.

In the next chapter we will see how we can put together the spectral analysis methods
of Chapter 3 along with the pattern-comparison methods of this chapter so as to implement
a complete speech-recognition system.
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Figure 4.52 Illustration of the effectiveness of dynamic time warping alignment
of two versions of a spoken word.
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Chapter 5

SPEECH RECOGNITION
SYSTEM DESIGN
AND IMPLEMENTATION

ISSUES

INTRODUCTION

The last two chapters dealt with several key aspects of the pattern recognition approach’

to speech recognition—namely, the signal-processing front-end parameter measurement
system (Chapter 3) and the issues involved with detecting and comparing speech patterns
(Chapter 4).

) In particular, it was shown in Chapter 3 that speech parameters are most often obtained
using some type of spectral analysis that concentrates on the short-time characteristics of
t!1e speech signal. Because of the nonstationary nature of speech utterances, the short-
time spectral measurements are performed sequentially over time, producing a sequence of
spectral feature vectors, or, as it is usually called, a speech pattern.

Using the basic pattern-recognition approach, the input (unknown class or word)
speech pattern is next compared with each class (or word) reference pattern and a measure
(score) of similarity between the unknown pattern and each reference pattern is calculated.
In Chapter 4 we discussed the three key issues associated with such pattern comparisons—
na{nely, speech detection, a local definition of spectral distortion (dissimilarity) between a
pair of short-time spectral representations, and a global definition of pattern similarity that
accounts for temporal variations in the rate of speaking through the use of an appropriate
dynamic programming technique for time normalization and alignment.

Two key aspects of the pattern-recognition model must still be described to complete
the processing: (1) how to create appropriate reference patterns (the “training” problem)
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and (2) how to use the resulting set of pattern dissimilarity or distortion scores so as to make
the best overall recognition decision for the unknown utterance. This chapter discusses
both these topics, along with several related system-design and implementation issues.

The problem of how the set of reference patterns is to be obtained is generally referred
10 as the training problem. The objective of training is to create, for each utterance class to
be recognized, a succinct, consistent pattern representation based on one or more known
patterns of each individual class. The representation could be in the form of a pattern
itself, which generally is called a “template,” or a rich signal model that characterizes the
statistical variations of the utterance class. In a strict sense, we discuss only template
training in this chapter. For techniques that are considered statistical mode] based, we will
discuss appropriate training methods in Chapter 6.

Traditionally, the notion of a speech “template” pattern has a rather strong connota-
tion of an inflexible temporal structure that requires rigorous time-alignment procedures to
obtain a meaningful pattern-comparison result. In the last chapter we cautioned that this
rigid temporal structure is only artificially imposed and can be relaxed if the reference rep-
resentation is constructed in a particular way. The subject of utterance class representation
and comparison that does not require explicit, strict time alignment thus deserves special
treatment. We begin our presentation in this chapter with a discussion of this subject.

The problem of how to make the best recognition-class decision can also be addressed
in several different ways. One very popular approach is the use of the nearest-neighbor
rule, which implements a nonparametric solution to the pattern-recognition problem and
is applicable in many design cases. A speech recognizer using a multiplicity of reference
templates to represent one utterance class often relies on the well-known k-nearest-neighbor
(kNN) rule to.make the recognition decision. The problem here is that the definition of
“nearest neighbor,” is far from unique, particularly for speech utterances that do not have
uniform duration and thus cannot be straightforwardly analyzed in the traditional vector
space framework. The interpretation of the kNN rule in template-based speech-recognizer
designs is therefore different from the usual a posteriori probability estimate. Therefore,
in this chapter, we discuss several innovative ideas which, based on our understanding
of the classical pattern-recognition problem, attempt to combine the decision process and
the optimization of reference-pattern parameters, leading to 2 new approach to speech
recognizer training. The approach is categorized as “discriminative training” because its
primary objective is to maximize the discriminability of the reference representations for
minimum recognition error performance.

The deployment of automatic speech recognizers often requires that the machine
have the capability to adapt to new application environments. A topic of particular sig-
nificance is the adaptation of the reference-pattern parameters to different users (talkers),
speaking styles, and acoustic backgrounds. The purpose of reference adaptation is for the
recognizer to maintain or improve its performance without requiring a complete redesign
of the system. Furthermore, since acoustic as well as electric noises are inevitable inter-
ferences in speech processing, the problem of robust recognition system designs that resist
signal contamination and undesirable interference is not only analytically interesting but
practically important. We shall discuss these two topics separately in the last two sections
of the chapter.
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5.2 APPLICATION OF SOURCE-CODING TECHNIQUES TO RECOGNITION

In communication and information theory, source coding refers to techniques that convert
the output signal of an information source into a sequence of binary digits (bits) that are
usually transmitted over a communications channel and then used to reproduce the original
signal at a different time or location, with an acceptable level of distortion, Specifically,
the goal of source coding is to achieve the minimum possible distortion for a prescribed
bit rate in the binary digit sequence or, equivalently, to achieve a preset level of distortion
at the lowest possible bit rate. To accomplish these goals, complete or nearly complete
knowledge of the characteristics of the information source is essential.

Vector quantization is one very efficient source-coding technique. As discussed in
Chapter 3, vector quantization is a procedure that encodes a vector of input (e.g., a segment
of waveform or a parameter vector that represents the segment spectrum) into an integer
(index) that is associated with an entry of a collection (codebook) of reproduction vectors.
The reproduction vector chosen is the one that is closest to the input vector in a specified
distortion sense. The coding efficiency is obviously achieved in the process of converting
the (continuously valued) vector into a compact integer representation, which ranges from,
for example, 1 to N, with N being the size of (number of entries in) the codebook. The
performance of the vector quantizer, however, depends on whether the set of reproduction
vectors, which are often called code words, is properly chosen such that the incurred
distortion is minimum on average. The block diagram of Figure 3.42 shows a binary split
codebook generation algorithm that produces a good codebook based on a given training
data set. Characteristics of the information source that produced the given training data are
embedded in the codebook.

_ Source-coding techniques, like vector quantization, can also lead to good classifier
designs, besides offering such advantages as reduced storage, reduced computation, and
efficient representation of speech sounds. The key idea is that if a source coder is “opti-
mally” designed for a particular source, then it will achieve a lower average distortion for
signals generated by the source than any other coder not designed for the particular source.
This implies that a certain degree of discriminability is present in the coder design itself.
We discuss in detail how source coding techniques can be applied to speech-recognition
problems.

5.2.1 Vector Quantization and Pattern Comparison Without Time Alignment

For convenience we review the vector quantizer design problem ([1, 2]). Consider a signal
source whose output is observed at regularly spaced intervals in time, t. We denote the
observation sequence at time ¢ by x,. (As in Chapter 4, x, is usually a parameter vector
that defines a short time spectrum.) Let C = {y;}* 1 be a set of reproduction vectors (code
words) and d(x,, y:) be a prescribed distortion measure between the input x, and the code
word y;. A vector quantizer encodes X, by the index ¢ of the code word y; € C, which
minimizes d(x;, y;). The design objective of a vector quantizer is to find the best set of code
words C to achieve the minimum expected distortion £ {d(x,y:)} where x is considered to
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be a random vector.

Practical vector quantizer designs often rely on a large training set {x,}_,, since
the source distribution is usually unknown. The expected distortion of the source is then
replaced by an empirical average distortion over the training set. The generalized Lloyd
algorithm (as described in Section 3.4.4} is an effective codebook design procedure that
guarantees a good (at least locally optimal) set of code words.

Many vector quantizers are memoryless in the sense that the encoding of the current
vector, X,, is independent of other observations xy, ' # t. The codebook C is designed to
minimize

T
D=2 dix, %) 5.0
t=1

where
X, = argmind(x,, y:). 5.2)
y:€C

We write D as a function of C, D(C), to indicate the dependency of D upon C. The
minimized average distortion
Dyin = ngnD(C) 5.3

is an estimate of the best attainable distortion performance for the information source,
conditioned on the dimension of x, and the size of the codebook C,N. If Dy, = D(C°),
one expects that

E{d(x,, %)} < E{d(x,, %)} (5.4)

where X7 and %; are the closest code words for x, chosen from the optimal codebook C°
and an arbitrary codebook C', C° # C', respectively. If the source is ergodic and the size
of the training set T — oo, Eq. (5.4) can be shown to be always valid.

The concept of vector quantization can be easily applied to speech-recognizer designs.
Suppose there are M utterance classes (e.g., words, phrases) to be recognized. Each
utterance class can be considered an information source. We thus collect M sets of training
data {xf')} where i = 1,2,...,M is the class index. Each training set should contain a
number of utterances of the same class. M codebooks {C? }, are then designed using the
minimum average distortion objective for the M information sources, respectively. Each
codebook represents a characterization of the information source (class).

During the recognition operation, the M codebooks are used to implement M distinct
vector quantizers as shown in Figure 5.1. Anunknown utterance {x,}z';l is vector-quantized
by all M quantizers, resulting in M average distortion scores D(C?),i = 1,2, ..., M, where

1 & :
DC?) = =3 " d(x, %) (5.5)

u

=1

-

with X € C¥ satisfying '
%" =arg min d(x,,y?). (5.6)
yPeqw
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C(M) D (c(M))
VECTOR
QUANTIZER
pu— INDEX
MIN
D(C@) ‘
cth
VECTOR [—
QUANTIZER D(C(”)
Figure 5.1 A vector-quantizer-based speech-recognition system.
The utterance is recognized as class k if
D(C®) = min DC?). X))

Referring to the block diagram of the pattern recognition based approach to speech
recognition (Figure 2.37), we see that the M codebooks are analogous to M (sets of)
reference patterns (or templates) and the dissimilarity measure is defined according to
Eg. (5.5) and Eq. (5.6), where no explicit time alignment is required. This is distinct from the
sequence-matching approach discussed in Chapter 4 that relies on dynamic programming
techniques to calculate an accumulated distortion score over an optimized alignment path.
The ability to discriminate M utterance classes, with the present source coding technique, is
based upon Eq. (5.4), where the expected value of the distortion is replaced by an average
distortion over the utterance length. For a recognition vocabulary with words that can only
be distinguished by their temporal sequential characteristics, such as “car” and “rack,” or
for complex speech classes that encompass long utterances with rich phonetic contents, the
above simple memoryless vector quantizer method is generally not adequate and does not
provide satisfactory recognition performance. However, for simple vocabularies of highly

distinct words, such as the English digits, this simple method of recognition has proven
quite effective.

5.2.2 Centroid Computation for VQ Codebook Design

The vector quantization approach to speech recognition requires that the codebook for a
particular utterance class be properly designed to minimize the average distortion. The
design algorithm of Lloyd for codebook generation, based on a training set, can be

briefly summarized as an iterative procedure consisting of the following two steps (see
Section 3.4.4): :

a. Minimum distortion labeling: For each input vector x,, find X, = y;, where y; is an

entry of the given codebook C, satisfying Eq. (5.2); group training vectors according
to their associated code word indices.
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b. Centroid computation: For each group of vectors with the same index label, compute
the new centroid which minimizes the average distortion for the members of the
group (when they are reproduced by the centroid vector).

The above two steps iterate until some convergence criterion is met. The first step is
straightforward as it involves only evaluation of the distortions. The second step, centroid
computation, which is, in itself, an optimization problem is the focus of this section.

Consider a set of vectors {X;}-., and a distortion measure, d(x,y). Without loss
of generality, we assume that these vectors are assigned to the same group label (or code
word) in the context of vector quantization. The centroid of {x; }-., is defined as the vector
¥ that minimizes the average distortion; that is,

. L
A L1
¥y= - iy ¥)- 5.8
y = agmin 7 ;=l d(x;,y) (5.8)

The solution to the centroid problem, obviously, is highly dependent on the choice of
the distortion measure. When x; and y are vectors, X; = (x;i1,X2,...,%ix) and y =
(Y1,Y2, - - - » Yx), measured in a K-dimensional space with the L, norm (Euclidean distance),
the centroid obviously is the mean of the vector set,

o~

1 L
=73 % - (59
i=1

The centroid solution of Eq. (5.9) also applies to the case of weighted Euclidean dis-
tances (i.e., Mahalanobis distances). Another well-known result related to the L, distance
(sometimes called the city block distance)

K

dx;,y) = Z Jeie — yel (5.10)
k=1

is that the centroid ¥ is the median vector of {x;}-;. (In this case, each dimension is
customarily treated independently, meaning that each y; is the median value of {xu},
respectively.) .

As discussed in Chapter 4, x and y often represent speech spectra and d(x,y) is a
spectral-distortion measure. Many spectral-distortion measures introduced in Chapter 4
are not as straightforward as the L, norm, and the solution to the centroid problem may be
more involved than the previous cases. We elaborate in the following the centroid solutions
for several popular spectral-distortion measures.

5.2.2.1 Likelihood Distortions

The family of likelihood distortions includes the Itakura-Saito distortion (Eq. (4.39)), the
Itakura distortion (Eq. (4.52)), and the likelihood ratio distortion (Eq. (4.53)). '
Let {Si(w)}=, be the set of spectra, for which the centroid, or mean spectrum, 15 to be
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found. The average Itakura-Saito distortion from each of the given spectra to an arbitrary
p™ order all-pole mode! spectrum o2/ |A(e""")|2 is

1o o 1 "1 (2 dw
DB=ZZdls(s.~, W) == / [Z Zsf(w)] A 52
i=1

i=1 -r
i L
-Zng ok, +log a? ~ 1 (5.11)
i=1 B
where o2, ; is the one-step prediction error of Si(w). Note that
1 [ 1« wqzde (1 ) '
= /_ ] [1—_ ;S,-(w)] A" 5= =a [Z ; R,-] a/o 5.12)

where R; is a (p + 1) x (p + 1) autocorrelation matrix associated with S;(w), a is the
coefficient vector of A(z), and ¢ denotes the matrix transpose. It is easily shown that the
centroid model spectrum has a filter coefficient vector @ obtained as

(e
a= argm.m(a [l_. Z;Ri]a) (5.13)

that is, the solution for @ is equivalent to solving the LPC normal equations defined by the
average autocorrelation ZR; /L. (Computationally, constant scaling of the autocorrelations
does not alter the optimal predictor coefficient solution, and therefore the division by L
is not essential for finding &.) Similar to Eq. (4.41), the gain term of the centroid model

spectrum is
1 &
7 = min (a’ [— R,] a)
a L
i=1
1 &
= al- i|a. ' .
a[L;R,]a (5.14)
The average distortion is minimized by the centroid model spectrum 72/ IZ |2 with
1o 2
= 5%/ |4l
Oa = 1 s (s19%/ [AF°)

L
1
= —ZZlog ago‘,i+log 7. (5.15)
i=1
The average likelihood ratio distortion from a set of p™ order unity gain model spectra
{1/ |Aie~ )|2}{~'=l to an arbitrary unity gain all-pole model spectrum 1/ |A(e-"“’)l2 is defined
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by

-1 (5.16)

where R, and a are defined as before and o7 is the minimum p® order residual energy
associated with R;. The model spectrum 1/ |Ai? corresponds to the normalized autocor-
relation matrix R;/0?. The evaluation of the centroid model spectrum 1/ |74'|2 becomes
that of finding the LPC solution to the set of normal equations defined by the average
residual-normalized autocorrelations. Specifically,

L

(1 a’Ria
i= argm.m(z ; —_a,? ) .17
and
1= R
Di)dmin =T [Zg a—?:li— 1 (5.18)

The centroid solution for the Itakura distortion is difficult to find, nevertheless. (Recall
that the Itakura distortion is the gain optimized version of the Itakura-Saito distortion (see
Egs. (4.51) and (4.52)).) The average distortion, in this case, is defined by

L
1 2
Dy = i E ai(S:, aif 1Al

i=1

L x
1 1 iy |2 AW
= z;mg [}—2 /_ Siw)[ae)| 27]

L
=1 G 5.19
= L;log (a,»z) (5.19)
where . 4
i 2 dw
o= —”Si(w) |A)| o (5.20)

and o7 is again the minimum p* order prediction residual energy of Si(w). Because of the
logarithm in Eq. (5.19), we now need to minimize a geometric mean instead of an arithmetic
mean, a difficult problem that cannot be as straightforwardly solved as the previous cases.
Since an arithmetic mean is an upper bound of the geometric mean, however, it is possible
to use the centroid model spectrum as obtained in Eq. (5.17) (from minimizing an arithmetic
mean) to approximate the desired centroid without causing gross deviations in distortion
evaluation. If the individual spectra in the set are close to each other, as in clustering,
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such an approximation is quite reasonable because the two distortion measures are almost
identical when they are small (see Eq. (4.54)).

5.2.2.2 COSH Distortion
The COSH distortion is defined by Eq. (4.61) as

_1 T [Siw) Sw)]adw
dcosu(Si, §) = 2/-: [S(w) + Si(w)] 5 1. (5:21)
The average distortion is thus
L&
Dcosu = zzdcosu(sns)
i=1
1 AT Siw) | 1 Sw) | dw
=3 /_ 155 YIS0 2 1. 6.22)
Taking the derivative of Dcosn With respect to S(w) and setting it to zero, we obtain
dDosu _ 1 [* [ ITiS@)  1g~ 1 |de _
BEwW 2/_,, @ L;S,-(w) = 623)

which has a solution at S(w)

Sw) = {[%gs.-(w] / [%isr'(u)]}m. (5.24)

i=1

(Since S(w) is a power spectrum, we retain only the positive solution.) This is the centroid
solution for the COSH distortion case with

= ([1& 1< 2
(Dcost)min = /_ ) {[z‘_;s.-(u)] [Z§sr‘(w)]} w62
5.2.2.3 Cepstral Distance

The centroid problem for the truncated cepstral distance, as defined by Eq. (4.24), Eq. (4.26),
or Eq. (4.37), has a straightforward solution, which is simply the mean of the cepstral
vectors. This is obvious because the truncated cepstral distances are Euclidean distances.
The centroid spectrum for the untruncated cepstral distance case, however, has a particular
frequency domain interpretation that is worth noting. The cepstral distance is defined by

d¥s:,5) = / log Si(w) — log S(w)? ‘;—:. (5.26)
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The average cepstral distance is then

L
1 2
D; = ngz(sn S)

L
- d
= / %2 flog Si(w) - log S@)i* 3= 5.27)

=1

which is minimized by S(w)

L 1/L
Sw) = [Hsi(u)} (5.28)
1

i=

the geometric mean spectrum.
5.2.2.4 Other Distortions

The centroid problem for many other popular distortion measures cannot be as easily
solved for as in the previous cases. This is particularly true for likelihood-based distortion
measures with nonuniform frequency weighting. However, the centroid computation
remains tractable by convex programming techniques for a wide range of general distortion
measures. The treatment of this problem is beyond the scope of this book.

Exercise 5.1
1. Consider using a Euclidean distance of the form: -
4 d(x,y) = (x —Y'(x — ).
Show that the centroid, ¥, of {x;}/=; satisfies Eq. (5.9).
2. If we now consider a weighted distance of the form:
d(xi, y) = (x = YW — y)

where W is a fixed, positive definite matrix, how does the centroid § of {x:}5, change?

Solution 5.1
1. The centroid is defined as the vector that minimizes the average distortion

L
1
D=7 3 di,y).

i=1

Using a Euclidean distance, we have

L
1 .
D=7 G-y

i=1

Differentiating D with respect to y, we obtain the following set of equations for the
centroid
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which gives

-

L
=15
i=q
2. Using a weighted distance, we have
1<
- pRp— * ; ——
D=7 ;(x. VW~ y).

Again, the equation for the centroid is

-w((£5)-) -

Since W is positive definite, the solution to the above equation is thus

i.c., the mean vector of {x;}%,,. The weight matrix does not change the centroid
’

solution.
Exercise 5.2 .
Considenhecentmidproblaninaone—dimensionalspaoeusingnnh distance; i.e., if xand y
_ are two points on the real line,

d(x,y) = x—yi.

Given a set of points {x;}%,, find the centroid, 7, that minimizes the average L, distance
1 L

D= ZZ;""""‘

Solution 5.2

We reorderx;, i = 1,2,...,L such that

Xy <X < -0 < xgy

where the parenthesized index refers to the rank of the given sample pbint. Suppose y lies
between x;p, and x4y, i.e.

X0 <Y < Xi41).
Then,

1 L
D= %{20“'&0)+ o —y)}.

i=1 i=I+1
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The derivative of D, with respect to y, is a piecewise constant function,

D 1 1

—_—= = - = - - y fi

3y L(l L+D L(Zl L) orxn < ¥y < Xy41)
which is zero at / = L/2. That is, the centroid, ¥, is a value that is greater than half of the
sample points and less than the other half of the sample points. Thus, the centroid solution,
using an L, distance, is the median value.
More specifically, the centroid, ¥, has the value

4+ % (x(s) +x(9+|)) , whenLiseven

y =x(£¥1) when L is odd.

Exercise 5.3

Show that when a cepstral distortion measure is used to measure spectral dissimilarity, the
centroid spectrum for a set of spectra {Si(w)}L, is the geometric mean spectrum as shown in
Eq. (5.28).

Solution 5.3 .
The cepstral distortion is an L; norm measured on the log spectra; i.e.

5.9 = [ log 511~ tog St 22

Therefore .the average cepstral distortion is

"o C o dw
Dz=/_'zz|108 Si(w) —log S(w)lzg-

i=1

Note that S;(w) and S(w) are power spectra and thus nonnegative, and that the log spectra are
real valued and uniquely defined. Then, to minimize D5, in order to find the centroid spectrum,
we can differentiate D, with respect to log S(w), obtaining

x L
3Dz —_ _ 3 ’ _ dw
Blog 5@ = /_ - D _llog Siw) — log Sw)I5>

which is zero at

’ 1 L L 1L
log 3w) = 7 > " log Siw) =log [Hs.-(w)] .

i=1

Therefore,
L
Sw) = Hsi(u).
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5.2.3 Vector Quantizers with Memory

For utterances of limited duration (e.g., words), the phonetic content of each utterance class
is usually quite different from that of any other utterance class. For such cases, memoryless
vector quantizers, as described in Section 5.2.1, provide effective discriminability as well
as computational simplicity. When the utterances are long enough to cause significant
overlap in phonetic content among different utterance classes, or the sequential (temporal)
characteristics of the utterance are the only distinguishing factor in recognition, simple
memoryless vector quantizers are generally not adequate for acceptable recognition per-
formance. One remedy to this problem is to use vector quantizers with memory so as to
capture the temporal characteristics of the utterances in a particular manner.

A matrix quantizer that encodes several vectors simultaneously is a straightforward
extension of the memoryless vector quantizer. Matrix quantizers, in their very simplest
form, can be designed using the same Lloyd algorithm as for vector quantizers. If 1 spectra
are encoded at the same time, the codebook C = {Y,}) , is then designed to minimize

1 T-n+1
— 4 %
= ; 4'(X,, X)) (529)
where
Xo = (X, Xr415 -+ v s Xepnmt1) (5.30)
which is a sequence of spectral vectors (and thus a “matrix”) and
o oy '
X, =arg [nin d(X,, Y. (5.3

Each code word Y; € C accordingly has nK dimensions (where K is the dimensionality of
each x,), Y; = (yi,¥2, . . -, ¥in), and the distortion d’ is often defined for simplicity by

1 n
a0 YD = -3 d(xijo1,¥y)- (.32
Jj=1

Simultaneous encoding of a sequence of spectral vectors, as defined by Eq. (5.31), implies
that the code words Y; have certain embedded block memory constraints. The iterative
procedure of Lloyd is readily applicable to the matrix quantizer design since the above
equations are essentially the same as those in the memoryless case. The only differences
are that minimum distortion labeling applies to a sequence of spectra and that the centroid
computation (a matrix of n spectral vectors) now involves finding n separate spectral
centroids for each code word.

Another important vector quantizer with memory is the class of trellis vector quan-
tizers in which the interdependence in the sequence of input spectra is formulated in a
transition structure represented by a trellis. More precisely, a trellis vector quantizer is a
finite state vector quantizer, specified by a finite state space Q, an initial state gg, and three
functions: (1) an encoder a: A x Q — N where A denotes the space of spectral observa-
tions and AV is the index set; (2) a next state function or transition functionf : @ x N — Q:
and (3) a decoder 8 : @ x N — A where A is the space of reproduction spectral vectors
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Figure 5.2 A trellis quantizer as a finite state machine.

(i.e., code words). During encoding, the encoder o assigns the input x, € A to a code word
with index u, € N based on the current state q; i.e. u, = a(x;,q,). The state advances
according to ¢,+1 = f(qr, 4). The decoder (3, upon receiving u,, reconstructs X, by X, based
on the function &, = 3(q,,%,). A trellis structure is shown in Figure 5.2 to illustrate the
trellis transition mechanism. In the particular example, there is a-direct correspondence
between the code words and the states, and the transition follows a first-order Markov
chain, meaning that encoding of the current spectrum depends only on the last state. For
each given state (code word), there is a specification describing which code words are
allowed to follow the particular state. For example, in Figure 5.2, only code words 1 and
2 can follow code word 1. The encoder always has a copy of the decoder so as to achieve
the minimum distortion requirement:

Uy = a(x,, q,) = arg :Iéw, d(x, 5(g:, ). (5.33)

The codebook and the next state function are designed to minimize

T
D = 23 dx, B, o @), (5.34)
=1

Note that for a given next state function f, Eq. (5.34) is similar to Eq. (5.1) and Eq. (5.29)
and the code words can be designed using the Lioyd algorithm based on the optimal labeling
and centroid computation principle. For the design of the next state function, a transition
pruning procedure can be employed. The pruning method starts with a regular memoryless
VQ codebook design. It then constructs the trellis, which defines the next state function
in terms of allowable search range of the code words, by pruning nonessential transitions.
Nonessential transitions are defined as those transitions that can be replaced by an alternate
transition with a minimum degradation in distortion performance. For detailed description
of the design algorithm, the reader should consult Reference [3]. The memory structure of
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Figure 5.3 Codebook traini g for I vector quantization.

the information source is embedded in the way the trellis constraints are constructed. This
is considerably different from the block constraints in the matrix quantizer case.

There are other source coder designs that allow incorporation of memory constraints.
Use of these coders in a speech recognizer can lead to improved recognition performance,
because of the addition of the temporal characterization of the source.

5.2.4 Segmental Vector Quantization

The standard (memoryless) vector-quantization approach that uses a single vector quantizer
for the entire duration of the utterance for each class is not designed to preserve the
sequential characteristics of the utterance class. This lack of explicit characterization of the
sequential behavior can be remedied by treating each utterance class as a concatenation of
several, say Ny, information subsources, each of which is represented by a VQ codebook.
We call this segment-specific VQ approach “segmental vector quantization.” For an
utterance {x, }._,, the simplest (but not necessarily the most meaningful) way to decompose
itinto a concatenation of N, information subsources is to equally divide the utterance into N,
segments {x,},r=/'lv’, {x,}Z@'& +10+ -+ and so on. This simple (linear) segmentation scheme
is illustrated in Figure 5.3. Other, more sophisticated, segmentation schemes obviously are
possible. Given a set of training utterances of the known class, N; sets of training data are
formed and used to design N, codebooks. These N;-codebooks have an implicit temporal
order because they correspond to different portions of the utterances. Similar to the single
codebook case, each set of N, successive codebooks represents one class, and the average
distortion incurred in encoding an unknown utterance with the corresponding successive
vector quantizers is the discriminant score for the recognition decision.
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Segmental vector quantization requires virtually the same computational complexity
as the previous utterance-based VQ as long as the codebook size is the same. The only
complexity increase is in the codebook storage; segmental VQ has N, codebooks while
utterance-based VQ has only one for each utterance class. The preserved sequential
relationship in the form of codebook concatenation, however, often proves remarkably
beneficial in speech-recognition tasks. (We will return to this problem of how to exploit
the ideas of sequential VQ in Chapter 6 in our discussion of the hidden Markov model
approach to speech recognition.)

5.2.5 Use of a Vector Quantizer as a Recognition Preprocessor

Vector quantization, as discussed above, offers computational simplicity in speech-
recognition applications. In some restricted cases, good recognition performance can be
obtained with straightforward use of VQ as a recognizer. For example, a word-recognition
accuracy of 99% was reported [1] with word-based vector quantization for speaker-trained
isolated word recognition of a highly nonconfusable 20-word vocabulary. For speaker-
independent word recognition, however, the same implementation achieved only 88%
accuracy for the same vocabulary. Although one can further improve the performance
of VQ-based recognizers by incorporating temporal information in the VQ design (e.g.,
segmental VQ as introduced in Section 5.2.4), the advantage of low computational com-
plexity that the VQ-based approach is able to offer may be better applied in alternative
recognition configurations. One such case is to use VQ as a preprocessor to screen out word
candidates that are obviously unlikely to match the unknown utterance, thereby reducing
the computational requirements of a dynamic time alignment-based processor in the latter
stage of the recognition process.

Ablock diagram that shows how a VQ-based recognizer can be used as a preprocessor
in an isolated word recognition system is given in Figure 5.4. The system consists of three
major blocks. The signal processing block that analyzes the incoming speech signal and
produces a sequence of spectral vectors is common in virtually every recognition system.
The preprocessor block is a VQ-based speech recognizer, with a decision logic that provides
a list of tentative word candidates for further processing. In the preprocessor, a set of word-
based (utterance-based) VQ codebooks is used to characterize individual vocabulary words
(utterance classes). The unknown spectral sequence is vector-quantized, frame by frame,
by each individual codebook, and the resultant set of average distortions is then sent to the
decision logic. When the decision logic chooses only one single word candidate for further
processing, the decision is adopted as the final recognition result. (This happens when
the minimum average distortion is significantly smaller than all other average distortion
scores.) When several candidate words are considered likely by the preprocessor, they are
then passed to the postprocessor block where a DTW processor performs a rigorous time-
alignment procedure, aiming at critical discrimination among these potential candidates.
The postprocessor can be further simplified by vector quantizing the reference patterns
(see Section 5.2.6) with the same corresponding VQ codebooks stored in the Preprocessor.
Since the unknown spectral sequence has been vector quantized in the preprocessor and all
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Figure 54 Block diagram of isolated word recognizer incorporating a word-based VQ preprocessor and a
DTW-based postprocessor (after Pan et al. [4]).

the frame distortions have been computed, the DTW process thus requires only a simple
table lookup.

To understand how the preprocessor works, consider the following. We denote the
average distortion, resulting from encoding the unknown utterance with the codebook
for the  word (utterance class), by D(C'?). We define words iy and i, as the words
whose average distortions are the two smallest among D(C?), i = 1,2,... M. (M is the
vocabulary size.) That is

;o . i)
i=arg g}glMD(c ) (5.35)
and
s . i)
iy = arg lg}égxM D(C9), (5.36)
I#iQ)

The decision logic of the preprocessor consists of two decision rules:
Rule 1 (Final Word Candidate Rule)
Choose word i, iff D(C%)) < D’ (5.37)
and D(C@) - D(C¥)) > D" (5.38)

where D' and D" are two distortion thresholds, empirically chosen to test the minimum
average distortion value and the separation between the best and the second best candidates,
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respectively. Rule 1 indicates that if the minimum average distortion for the best candidate
is sufficiently small and there is no other obvious competing candidate, the decision made
by the preprocessor is adopted as the final word-recognition result and no subsequent
DTW processing is required. If Rule 1 is not satisfied, the decision logic passes to the
postprocessor a list of valid candidates according to Rule 2:

Rule 2 (Valid Candidate Rule) Word i, i = 1,2,...,M, is considered a valid
candidate and is passed to the postprocessor for further processing if

D(C?) - D) < D° (5.39)

where D° is an appropriate distortion threshold.

Obviously, the performance of such a system depends on the values of the distortion
thresholds which have to be empirically determined for the best results. The performance
of the system can be parametrized by the following parameters:

Py . average fraction of correct final decisions made by the preprocessor (i.e.,
when the preprocessor chooses only one possible, and correct, candidate
which satisfies Rule 1).

Ey:  average fraction of incorrect final decisions made by the preprocessor.

B:  average fraction of vocabulary words that are passed on to the postpro-

cessor when the preprocessor does not produce a final decision.

E;:  average fraction of errors made by the preprocessor when the correct
word is not in the candidate list passed to the DTW postprocessor.

(The fraction is with respect to the entire test set.) The sum v = Py + E| is the average
fraction of trials in which the final decision is made by the preprocessor alone. The average
fraction of trials that rely on the postprocessor decision is obviously 1 — 7.

These performance parameters were studied in [4] by systematically varying the
distortion thresholds. (The study was based on the likelihood ratio distortion measure
augmented by an energy parameter (see Section 5.4.3). Average VQ distortions for digit
utterances range typically between 0.2 and 0.7 for codebook sizes from 32 to 4.) For
convenience, D° was set to be equal to D" in the study. Figures 5.5 and 5.6 show typical
plots of the variations of these parameters as a function of D', with D° and D” fixed at
0.05, and for codebook sizes varying from 4 to 32. In Figure 5.5, as expected, when
D’ is small, both P; and E; are small, indicating that very few final decisions are made
by the preprocessor alone. Also plotted in the figure is the value of (1 — ) which is
the fraction of trial decisions that are made by the postprocessor. As D’ increases, more
decisions are made by the preprocessor and the values of (1 — ) drop and approach a
steady-state value of approximately 0.1, corresponding to about 90% of the word decisions
being made by the preprocessor. At the steady state, P, and E are, respectively, about
0.9 and 0.0 which are consistent with the previously discussed result of 88% correct for
speaker-independent isolated digit recognition [1]. Note that as the codebook size increases,
the average distortion decreases and the transition points in the P; and (1 — v) curves are
shifted to smaller values accordingly.
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Figure 5.5  Plots of the variation of preprocessor performance parameters
Py, Ey, and (1 — «) as a function of the distortion threshold D’ for several
codebook sizes for the digits vocabulary (after Pan et al. [4]).
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Figure 5.6 Plots of the variation of preprocessor performance parameters E;
and 3 as a function of the distortion threshold D' for several codebook sizes for
the digits vocabulary (after Pan et al. [4]).
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The curves for the 3 and E, parameters as a function of D’ are shown in Figure 5.6.
The number of trials in which the preprocessor fails to include the correct word in the
candidate list for the postprocessor drops rapidly as D’ increases. Also, when the codebook
size is 8 or larger, very rarely does the preprocessor fail to pass on a candidate list without
the correct word. The behavior of the 3 parameter is somewhat more complicated. This
is because it is affected by both D’ and D”. The steady-state value of 3 is 0.22 which, in
the 10-digit vocabulary case, corresponds to 2.2 words. The DTW postprocessor thus, on
average, performs dynamic time alignment on 2.2 word candidates per trial, and the correct
word is essentially always one of the candidate words passed on.

These curves suggest that a good strategy to take advantage of the strength of the
particular system is to choose the smallest D' for which all the parameters are at their
steady-state values. This is particularly true when the codebook size is very small, e.g., 4.

The effect of D" is primarily on the ~ parameter, which is the average fraction of final
decisions made by the preprocessor alone. Figure 5.7 shows the  parameter as a function
of D" for several codebook sizes. Recall that D” corresponds to the amount of separation
required between the best and the second-best candidate. As D” increases, fewer trials
meet the requirement of Rule 1; « value thus drops and the preprocessor is deferring more
trial decisions to the DTW postprocessor. The number of candidate words passed on to the
postprocessor, 3, however, does not vary drastically with D" (D’ fixed at 2.4) as shown in
Figure 5.8. It increases only slightly from 0.22 to less than 0.3 for various codebook sizes
as D" increases from 0.05 to 0.15. Therefore, a reasonable value for D" is approximately
0.1 ~0.15.

The overall system that uses VQ as a preprocessor was found to have a recognition
performance equivalent to that of the full-blown DTW system. With VQ as a preprocessor,
the system requirements on computation nevertheless are greatly reduced to about 10%
of what is needed in the original DTW system. The VQ preprocessor therefore warrants
strong consideration for many practical systems.

Exercise 5.4
We wish to compare the computational complexities of a standard isolated word, DTW based
recognizer, with a recognizer with a front end VQ-based preprocessor for eliminating words.
Assume a vocabulary of M words, with each word having a codebook with L vectors. Assume
each word is N frames long, and that the DTW recognizer uses Q reference patterns per word.
Further assume that the preprocessor makes a final decision on a fraction, ¥ = P; + E, of
the input words, and passes on the fraction, 3 = 1 — -, of the words to the DTW processor
whenever a final decision is not made by the preprocessor.
1. In terms of distance calculations, give an expression for the computation, Cpre, of the
Preprocessor.
2. Assuming the cost of a combinatorics calculation is about 1/5 the cost of a distance
calculation, give an expression for the computation, Cprw, of a full DTW system (with
IO preprocessor).
3. Give an expression for the computation, CaLL, of the combined preprocessor and DTW
processor based on the fractions « and 3 defined above.
4. Give an expression for the ratio, R, between the computation of the DTW system alone,
and that of the combined system.
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several codebook sizes for the digits vocabulary (after Pan et al. [4]).
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5. Evaluate R for the case
M=10,0=12, N=40, L=16v=09, §=02.

6. If Q were 1 instead of 12 (i.., a speaker-trained case rather than a speaker-independent
case), what would R become? What does this imply about the effectiveness of the
preprocessor for speaker-trained systems?

Solution 5.4
1. Cere = M - N - L (distance calculations)
2. Assuming a grid of N x N points, there are approximately N? /3 active grid points within
the parallelogram defined by the usual path constraints. Thus the total computation is
Cotw = gM Q- N? /3 (distance calculations)

where the g is the sum of a full-distance calculation and % a distance for the combina-
torics.

3. The overall computation of the combined recognizer is
CaL = Cere + (1 = 7)8Corw
6
=N-M(L+a —~ B3 ON)

4. TheratioR is N
o Cow _ 50
Caw L+(-7BION
5. R10

6. R =~ 1 = method is ineffective.

5.2.6 Vector Quantization for Efficient Pattern Matching

Another use of vector quantization in template-based speech-recognition systems is to en-
code the speech patterns, particularly the reference templates, for efficient pattern matching.
When the reference templates are vector quantized and replaced by the corresponding code-
word sequences, their representations are regularized. The enhanced regularity significantly
reduces the computational as well as the storage requirements.

The VQ codebooks for this application can be trained in two ways. One is based on
the entire training set of all the vocabulary words to produce a global codebook, denoted
by C. The other is to use the individual training set to generate one codebook for each
word, resulting in M (the vocabulary size) codebooks c?,i=1,2,...,M. To achieve a
similar level of average distortion, the single global codebook T, so generated, usually has
significantly more entries than each individual C. Of course. one can also group all the
C’s together to form a single codebook C® = {C?}£, which is different from C. Use
of these different codebooks leads to different performance results.
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The unknown pattern X’ can be vector quantized first before being compared to the
reference templates. By vector quantizing both the reference and test patterns with the same
codebook in a corresponding manner, we can replace the distance computations in the DTW
process for pattern matching by simple table-lookup because the distortion between each
code-word pair can be computed and stored a priori. This simplification, however, comes
at a price of performance degradation due to VQ distortions.

It is interesting to note that the performance degradation due to vector quantizing the
unknown test pattern is unnecessary. In vector quantizing the test pattern, the distortions
between each code word and each spectral frame of the unknown test pattern has to be
calculated. These distortion figures, nevertheless, are the same distortions needed in the
DTW process if only the reference patterns are vector quantized and represented by VQ
code-word sequences. Therefore, there is no increase in computation if one chooses not
to vector quantize the unknown test pattern so long as the reference patterns are properly
vector quantized. (In fact, quantizing the test pattern may even result in more computation
because it requires comparison of each frame to all the code words, while in the case where
only the reference patterns are vector quantized, the frame distortion calculation only needs
to be performed for those code words that appear within the allowable DTW region of
the corresponding reference frames.) For the above reason, only the reference patterns are
vector quantized in normal practice to avoid the unnecessary performance degradation.

The representation regularity is gained from the simple fact that when the reference
patterns are vector quantized, each spectral frame in the reference patterns is represented
by one of the code words in the finite codebook. Let N, denote the size of either the
global codebook C that is used to encode the entire reference set, or the size of {C9}%,
if individual codebooks are used for the corresponding utterance classes. (In the following
analysis, the two situations essentially make no difference in complexity considerations.)
Thus, each spectrum in the unknown pattern X needs to be compared with these N, code
words in the DTW process. This computational requirement compares favorably with the
case in which the reference patterns are not vector quantized, necessitating a cumbersome
frame-to-frame distance calculation of N,,M, comparisons where N,, is the nominal width
of the allowable DTW window and M, is the total number of reference patterns. For
isolated word test utterances, such as the digits, we typically use values of N, = 256 and
N, = 15. Computational savings become significant when M, (the vocabulary size x
number of templates per word) becomes greater than 20. A similar analysis shows that a
reduction in storage can also be easily obtained in this manner.

5.3 TEMPLATE TRAINING METHODS

One of the most fundamental modules in the pattern-matching approach to automatic speech
recognition is the method for construction of the reference pattemns. This is the so-called
training problem. In this section, we discuss how reference patterns are created so that
the pattern-matching techniques discussed in Chapter 4 can be properly applied for the
best results. We use the terminology template and reference pattern interchangeably in the
present context.
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Figure 5.9 Accumulated DTW distortion scores versus test frame based on casual
training with two reference patterns per word (after Rabiner et al. [5]).

5.3.1 Casual Training

When the number of utterance classes in the vocabulary is not too large, and the system is
designed for a specific speaker (i.c.,ina speaker-trained system), a simple template training
procedure that is used often is to use each token, spoken during the training session, as a
reference pattern. Usually, each utterance class is represented by a multiplicity of spoken
tokens, hence a multiplicity of reference patterns. This is often called casual training.

For a simple vocabulary, a speaker must be able to produce a consistent set of
reference patterns for the system to be useful. However, since the method makes no
attempt to estimate or predict the pattern variability, it could easily fail in systems in
which the words in the vocabulary are sometimes confusable. Furthermore, because of the
desire to maintain its inherent simplicity, etrors committed in training, such as improper
articulation, mispronunciation, mishandling of handset or microphone, acoustic noise, or
other problems are often accepted as valid reference patterns without any possibility of
correction. This obviously leads to poor performance under some conditions.

As an example of the use of casual training ina recognition system, Figure 5.9 shows
a plot of accumulated DTW distortion scores versus test frame for a recognition system
with a 39-word vocabulary (26 letters of the alphabet, 10 digits, 3 command words) based
on using two casually trained templates per word [5]. The actual spoken word (the test
utterance) was the word “Q.” For speed of implementation, a rejection threshold curve on
accumulated DTW distortion score was used to eliminate grossly bad matches before the
entire DTW path was calculated. Both casual templates of the spoken word “Q” provided
the two lowest accumnulated scores as anticipated. However, it can also be seen that the
reference templates for the word “U,” which is phonetically (and acoustically) quite similar
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to the word “Q,” accumulated DTW scores that were the closest of all other words to the
spoken “Q.” For the last two-thirds of the frames of the DTW match, the slope of the
accumulated distance curves for both the “Q” templates and the “U” templates are quite
similar, indicating that the region of difference is at the beginning of the word. We discuss
how recognizers can exploit regions of difference in phonetically similar words later in this
chapter when we describe the use of discriminative training ideas in speech-recognition
systems.

5.3.2 Robust Training

Robust training is a sequential training method in which each utterance class is spoken
multiply often until a consistent pair of tokens is obtained. The resulting reference pattern
is calculated as the average (along the DTW path) of the pair of consistent tokens. The
averaging of tokens is normally performed in the spectral domain.

The training procedure works as follows. We consider only training for a particular
utterance class. Let &} = (x1),X12,X13,...,X;1,) be the first spoken token. When another
token A2 = (X21,X22,...,X2r,) is recorded, the two patterns are compared via a DTW
process, resulting in a DTW distortion score d(A}, &3). If d(&X), &2) is smaller than a
prescribed threshold, say e, the pair of tokens are considered to be consistent. The reference
pattem) = (y1,y2, . . ., ¥r,) is then computed as a warped average of X) and &,. Following
the development in Chapter 4, the dynamic time-warping problem is formulated for a pair of
speech patterns, X} = (xq1,X12,...,X1iy, ..., Xiry) and X = (X21,X22, .+ ., X255, - . . , X2T3)s
as minimization of the accumulated distortion (see Eq. (4.122)—(4.125)).

d(X, X) £ do(X), 2) = mindy (X, %) (5.40)
where
Ty
do (X, 20) £ 3 d(81(K), B500)m(k) My (5.41)

k=1
is based on a spectral distortion measure d(i},i2) = d(x;;,,X2,) and a set of warping
functions
i =¢i(k) and i = ¢5k). (5.42)

The pair ¢ = (¢;, ¢7) is the optimal warping function for A, and X>. The index k is the
“normal” time. Based on the optimal path ¢,

1
V= 3®ipn +Xopw)  k=1,2,...T (5.43)

(T, is the maximum of the normal time & for the optimal warping path ¢.) The vectors x
and y in the above are, as usual, the short time spectra or spectral models.

If d(X,, &2) > e, the talker is asked to provide (speak) another training token Aj3.
Similarly, the distortion scores d(.X}, A3) and d(X;, X3) are evaluated and compared against
the threshold e. If the smaller of the two scores falls within the ¢ threshold, a consistent
token pair is declared and the reference pattern ) is calculated using Eq. (5.43). Otherwise,

Whphen v
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the procedure repeats with another new training token until a consistent pair of tokens is
obtained.

For a speaker-trained system (using a tight consistency threshold, ¢), usually about
60% of the vocabulary words require two tokens, 35% of the words require three or four
tokens, and only 5% of the words would need more than five tokens for a consistent pair of
tokens to be obtained. The procedure is quite simple and efficient in terms of computation
and storage. The reference pattern so generated is usually robust and relatively insensitive
to botched tokens. However, if each vocabulary word is represented by a single robust
pattern, it may still be inadequate for words that have more than one mode, such as words
with released stops such as “eight.” The inadequacy becomes even more serious when
dealing with speaker-independent tasks.

5.3.3 Clustering

For speaker-independent speech recognition, template training by clustering is required
to achieve high word recognition accuracy for practical tasks. The problem of pattern
clustering is straightforward. We are given a set of L utterances (speech patterns), each of
which is a realization of a particular utterance (perhaps word) class to be recognized. The
task is to cluster the L patterns into N clusters such that within each cluster, the patterns are
highly similar under the specific pattern dissimilarity measure chosen for the recognizer
design, and hence can be efficiently represented by a typical template. In this way, we
create N representative templates from a set of L training patterns for each utterance class.
The main advantages of pattern clustering are the statistical consistency of the generated
templates and their ability to cope with a wide range of individual speech variations in a
speaker-independent environment.
. Early clustering algorithms [5, 6] for isolated word recognition used some fairly
sophisticated pattern classification techniques such as ISODATA and chainmap. but relied
on manual intervention to guide the clustering. Typically, the goal was to maximize the
ratio of average intercluster distance to average intracluster distance. The total number of
clusters per utterance class was a variable that was determined interactively by examining
the aforementioned distance ratio. These semiautomatic procedures, although providing
acceptable performance, were not amenable to widespread use, because of their lack of
repeatability of the results and their need of inordinate time to complete the clustering
task. To alleviate this probiem, a class of automatic clustering procedures that require no
human intervention was developed. In the remainder of this section we discuss these fully
automatic clustering techniques.

Let © be a set of L training patterns, Q = {&), Xa,..., X.} where each pattern &;
is a realization of one specific utterance class. Following the development in Chapter 4,
we define a dissimilarity measure between a pair of speech patterns as d(X;, X)). (The
recognition decision will be made based on the same dissimilarity measure.) AnL x L
dissimilarity or distance matrix D can be defined with i/ entry, dj;, calculated as

dy = 51, &) +d%, X)) = 8, X). (5.44)




268 Chap. 5 Speech Recognition System Design and Implementation Issues

This symmetrized distance avoids potential difficulties in clustering that one may encounter
in asymmetric distance measures. Because of the symmetry, we therefore need to save only
L(L - 1)/2 terms of ;. This distance matrix is the basis of several clustering algorithms
that will be discussed here.

As stated previously, the objective of the algorithm is to cluster the training set Q
into N disjoint clusters {w;, i = 1,2,... ,N} such that

N
Q:Uq (5.45)
i=l1

and such that speech patterns in the same cluster are “close” to each other. The total
number of clusters, N, need not be specified a priori. Each cluster w; will be represented
by a typical pattern Y(w;) £ J:. However, J; need not be a member of w;. We now discuss
two approaches for solving for {w;}¥_,, the N cluster solutions to Eq. (5.45).

5.3.3.1 Unsupervised Clustering Without Averaging (UWA)

The idea of unsupervised clustering is rather straightforward: Hone in on the largest cluster,
find all training patterns close to the “center” of this cluster, exclude these patterns from
the training set, and recluster the remaining patterns [7].

A flow diagram of the UWA algorithm is given in Figure 5.10. Let us denote
the partial coverage set by €; which includes all training patterns in the first j clusters
(sequentially obtained); that is,

J
Q= Jwi = Q-1 + ;. (5.46)

i=1
The complement set {J;
g=0-q (5.47)

is thus the set of all remaining training patterns after the J* cluster is formed.

The clustering procedure is iterative and we use & to designate the iteration index.
We define wf as the set of training patterns in the /* cluster at the & iteration. For each
cluster w, we have a minimax “center” J(w),

Yw) =X, ew (5.48)
such that

maxd; ., = minmax d; », (5.49)
m l m

for all X; € w. In other words, the minimax center of a set is the pattern in the set whose
maximum distance to any other pattern in the set is the smallest.
The UWA clustering algorithm, as shown in Figure 5.10, can be stated as follows.

1. Initialization: j = 0, k = 0, Q =0, wy l=Q.
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Figure 5.10 A flow diagram of the UWA clustering procedure
(after Wilpon and Rabiner [7]).
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2. Determine Y(w};) according to Eq. (5.48) and Eq. (5.49) by making use of D, the
distortion matrix.

3. Form uf, | by

Wy = X (5.50)
where
X €0y (5.51)
and
6 (y(wfl.‘), x,,,) < ém, (5.52)

including within wf, ; all patterns in Q4 that are within a distance threshold 5 of
the minimax center Y(wf; ).
4. ‘?;;emine V(wf,)), the new minimax center of cluster wk, according to Egs. (5.48—
5. If wf,) = wj7'—that is, the cluster composition is unchanged after one iteration—

. - A .
convergence is obtained and w;y| = wf +1» Increment j, j = j + 1, and form the new
partial training set Oy

Q1 =0 - w; (5.53)

If §;,; is not an empty set and j is smaller than the maximum number of clusters
allowed, go back to step 2 and iterate; otherwise, stop.

.In su?p 5 above, when the iteration index k reaches the maximum allowable number of
iterations, it is treated as if convergence were obtained.

Itcan be shown that prominent, distinct clusters will be readily found by this procedure
because the cluster sets at successive iterations are identical. For highly overlapping data
where the clusters are ambiguous, however, it often needs several iterations for the cluster
composition to become stable.

Some inherent problems associated with the above unsupervised clustering algorithm
are worth noting. First, as required in step 3, a distance threshold O has to be prescribed
by the user to define the compactness or closeness of a cluster. The proper way in
which the distance threshold is defined is not readily defined analytically for performance
optimization. Different words or utterance classes, as spoken by different talkers, generally
require different thresholds. Second, the procedure does not automatically guarantee
coverage of the entire training set. Depending on the distance threshold, a typical case of
12 clusters generated from 100 training patterns (word utterances) will cover only 85 to 90
of the training patterns. Those training patterns not included in the generated clusters are
called “outliers,” and they have the property that their distance to the closest cluster center
exceeds the distance threshold. Such outlier patterns have been shown to contain useful
class information that is lost in the UWA procedure.
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5.3.3.2 Modified K-means Algorithms (MKM)

The modified K-means algorithm [7] for speech-pattern clustering is reminiscent of the
standard vector quantization codebook design algorithm of Lloyd, as described earlier.
The key idea shared by the two algorithms is that of iteratively refining the clusters and
cluster centers (or centroids) such that some optimality criterion is met. The main difference
is that the MKM algorithm deals with a temporal sequence of spectral vectors rather than
a single vector.

In Figure 5.11 we show a flow diagram of the MKM algorithm. We denote the i
cluster of a j-cluster set at the k™ iteration as wf, where i = 1,2,... jandk = 1,.. . knmu
with knax being the maximum allowable iteration count. Again, Y(w) is the representative
pattern for cluster w. Y(w) can be defined as the centroid or the minimax center of w as will
be explained shortly. The algorithm finds j clusters incrementally from j = 1 10 j = jmax»
where jmax is the maximum number of clusters to be obtained. The MKM algorithm as
shown in Figure 5.11 with a precomputed distance matrix D can be stated as follows.

1. Initialization: Setj =1,k = 1,i = 1; setw] ; = Q and compute the cluster center
J(Q) of Q, the entire training set.

2. Optimal (minimum distance) classification: Label each pattern Xy, £ = 1,2,..., L,
in Q by index i according to the minimum distance principle:

X € wj; Iff 8(X, Viw))) = min6(Xy, Vi) )- (5.54)
Accumulate the total intracluster distance for each cluster uj’f ; defined by
Al =" 6%, V() (5.55)

where the summation is over all X; € wj"’ i

3. Revision of clusters and cluster centers: Form wfy}“ by grouping all X,’s with label
i as a result of the optimal classification step above; find the new cluster centers for
Wi i=1,2,0)

4. Convergence check: Go to step 5 when one of the following conditions is met:

a Wt =l foralli=1,2,...,j.
b. k = kpax, a preset maximum allowable number of iterations.
c. The change in average (or the total accumulated) distance is below a preset

threshold A; i.e.

J J j
(ZAﬁ‘ - ZAf")/ZA,’-‘“‘ < Am. (5.56)
i=l1 i=1 i=1

Otherwise, increment k — k + 1 and repeat steps 2 through 4.
5. Record the j-cluster solution: When the convergence condition is met, the resultant
clusters and cluster centers, w*+! and y(wﬁ‘), i=1,2,...,jarethej-cluster solution

i
for the training set Q. Ifj = jmax, jmax being the maximum number of clusters specified
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Figure 5.11 A flow diagram of the MKM clustering procedure (after Wilpon and
Rabiner [7]).

a priori, the entire clustering process is complete; otherwise, continue on to step 6.

6. Cluster splitting: Split the cluster that has the largest intracluster distance into two.
There are two possibilities here, one based on the largest total intracluster dis-
tance max;(Af*!), and the other based on the largest average intracluster distance

max; (A,’~‘+l it II) where ||-|| denotes the number of patterns in the cluster. The
splitting is accomplished by finding the pair of patterns, X, and Aj,, in the cluster
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designated to undergo splitting such that 6(Xy,, Xy,) > (X, , A,) for any other pair
Xy, Ay, in the cluster. The two patterns Xy, and &), are used as the new cluster
centers to replace the original single center of the designated cluster. Increment
J—j+ 1,reset k = 1, and repeat steps 2—5 above.

The above procedure is essentially identical to the vector quantizer design algorithm
discussed previously. The procedure guarantees a 100% coverage of the training set €, and
a set of reference templates ranging from 1 to jmax can be easily created for an utterance
class.

‘We complete the description of the MKM algorithm with a discussion on the computa-
tion of acluster center. Let us assume that the cluster w consists of the set { X}, A2, ..., AL }
where the pattern index (without ambiguity) is designated only for the patterns in w (not the
entire training set Q) and L,,-is the number of patterns in w. One definition of the cluster
center is the minimax center defined by Eqs. (5.48-5.49) used in the UWA algorithm. The
minimax center, by this definition, is a member pattern of the cluster set. Since the distance
matrix, whose elements are the distances between every pair of patterns in the cluster,
exists, the minimax center can be easily computed by looking up the distance values in the
matrix directly.

Another way of defining a cluster center is to find the particular pattern in the cluster
that has the largest population of patterns (subset of the cluster) whose distance to the
particular pattern fails within a threshold. If § and o5 are the mean and standard deviation
of the distances 8(X;, Aj), respectively; that is, -

L L,
- l ol w
S= Loy DD (X, X (557

£=1m=1

m#L

L, L
1 “ 22
e o 82Xy, Xm) — 6 .
%D ;; (Xe, Xom) (5.58)

L#£m
the threshold is often empirically chosen as
8 =6+0.505. (5.59

If several patterns have the same largest count of patterns with distances below the threshold,
then the pattern that has the smallest average distance to all patterns in the subcluster is
chosen as the cluster center. The pattern so chosen is called a pseudoaverage center. Note
that a pseudoaverage center is again a member pattern of the cluster set. The computation
again involves only table lookups.

Yet another possibility for computing the cluster center is to perform certain averaging
on the patterns in the cluster. This is often done after either the minimax center or the
pseudoaverage center has been computed. Since the patterns have temporal variations,
the averaging process generally involves time alignment as discussed in Section 5.3.2 for
robust training. In the present case, the patterns A} in the cluster are warped to a “typical”
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pattern ), which is either the minimax center or the pseudoaverage center of the cluster.
The optimal warping path ¢ that satisfies dy (X, Y) = ming dy (X, Y) thus establishes a
correspondence between X¢q) and yi. (We let ¢y(i) = i, so the duration of the “typical”
pattern ) is the normalized duration without loss of generality.) We then group the L,
pattems (including )) according to their individual warping paths with respect to ). Those
vectors that are aligned to the same index i are then averaged to produce an average
spectrum. The resultant pattern sequence with vectors indexed from 1 to T, (duration of
Y) is then the desired “average’ cluster center.

It is important to note that the average spectrum for each time index i of the typical
pattern is the centroid of all the spectral vectors that are warped to y;. It is therefore a
function of the particular spectral distortion measure chosen in the design. The centroid
computation problem has been discussed in Section 5.2.2. In brief, when the distortion
measure is of the Euclidean type (such as the cepstral distortion), the averaging can be
performed directly on the parameters. If the distortion is likelihood based, it is necessary to
average the autocorrelation (which may require residual energy normalization depending
on the specific distortion measure).

It is important to note that the above three types of cluster centers are not specifically
designed to minimize the average intracluster distance. Because of the temporal variations
inherent in the patterns, it is not straightforward to find a pattern that minimizes the
intracluster distance. The MKM algorithm is thus not guaranteed to converge in the sense
of minimum average intracluster distance. This is another distinction between the MKM
algorithm and the Lloyd algorithm for vector quantizer designs.

5.4 PERFORMANCE ANALYSIS AND RECOGNITION ENHANCEMENTS

We have discussed a set of techniques that allow us to compare speech patterns and the
methods used to create reference pattems for the utterance classes. Using such methods, the
modular architecture of Figure 2.37 for a speech recognizer, particularly for the recognition
of isolated utterances, can be straightforwardly implemented. The performance of the
system, however, depends on several factors, such as the choice of spectrai-distortion
measures, the exact way the reference patterns are created, the analysis conditions, and
so forth. In this section, we analyze the performance of several recognition systems, so
that the reader can gain insights on how these system parameters affect the recognition
performance in practice.

5.4.1 Choice of Distortion Measures

In investigating the choice of spectral distortion measures, one must be cautious about the
potential interactions between the distortion measure and other aspects of the processing,
particularly the dynamic time-warping processing. One way to isolate these factors is to
use a recognizer based on single frame distortion scores for a simple vocabulary such as
the set of continuant vowels.

Rabiner and Soong [8] established a range of performance scores on a vocabulary
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TABLE 5.1. Comparison of single-frame vowel-recognition error rates with
various distortion measures (after Rabiner and Soong [8]).

Training Set Testing Set
VQ Codebook Size VQ Codebook Size

Distortion 1 2 4 8 1 2 4 8

Measure
dip 17.6 12.2 70 34 21.6 169 14.1 12.9
dwir 188 13.6 7.2 38 24 18.9 142 125
df(lﬁ) 18.6 118 7.1 35 216 174 13.7 134
dzw 16.5 110 6.7 38 200 165 142 133
&y 167 105 64 32 194 155 134 124

of 10 vowels, using 5 typical spectral distortion measures in a speaker-trained VQ-based
recognition experiment. The 10 vowels were: /i/ embedded in the carrier word “beet,” /I/
in “bit,” e/ in “bet,” // in “bat,” /a/ in “father,” /A/ in “butt,” /o/ in “bought,” /u/ in “boot,”
/=/ in “Bert,” and /U in “foot.” Five utterances each of the 10 carrier words were recorded
from each of seven talkers (four male and three female) and used to train the VQ-based
vowel recognizer. An independently recorded test utterance set of five tokens each per word
per talker were then employed to evaluate the performance of the VQ-based recognizers,
based on various distortion measures. The spectral distortion measures compared were the
likelihood ratio measure dig of Eq. (4.53), the weighted likelihood ratio measure dwir
of Eq. (4.81) and (4.83) truncated to 16 terms, the truncated cepstral distance dX(L) of
Eq. (4.24) with L = 16, the weighted cepstral distance d%, of Eq. (4.37) with the weights
w(n) defined as the inverse of the variance of the n™ cepstral coefficients, and the same
weighted cepstral distance of Eq. (4.37) but with the weight w(n) defined according to
Eq. (4.36). We denote the last case, the bandpass liftered cepstral distance, by d%y, to
distinguish it from d2; with inverse variance weighting. The order of LPC analysis in the
signal processing stage was 8 with a data window width of 45 ms (= 300 samples at a
6.67 kHz sampling rate). Table 5.1 shows the recognition performances based on these
distortion measures. The data in the table are the vowel error rates (%), averaged over the
10 vowels and the 7 talkers, as a function of the VQ codebook size, for both the training
and the testing sets (~ 4000 trial frames per set).

Several observations can be made from the results of Table 5.1. First, there are
significant degradations in performance between the training and testing data sets for a
VQ-based recognizer. The degradation is particularly severe when the codebook size is
large, indicating the situation where the amount of training data is insufficient for a reliable
calculation of the code words. The performance differences among various distortion mea-
sures for the speaker-trained VQ-based vowel recognition task are not dramatic. However,
the weighted cepstral distance with a raised sine weighting according to Eq. (4.36) consis-
tently outperformed other distortion measures. (Itis interesting to note that the design of the
weighting function of Eq. (4.36) was largely motivated to deal with speaker-independent
cases.)

In another study of distortion measures, Nocerino et al. [9] again compared the
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TABLE 5.2. Comparison of recognition error rates for a 39 alphadigit-word
vocabulary with various distortion measures (after Nocerino et al.

[9)).

Distortion Error Rate (%)

Measure Talker | Talker 2 Talker 3 Talker 4 Average
d . 5.6 4.4 10.5 133 8.45
dwsm 5.6 44 11.5 12.3 8.45
dir 5.1 5.6 10.5 133 8.63
d?(32) 5.1 5.6 9.7 15.1 8.88
dwir 8.2 6.9 7.4 14.1 9.15
dis 1.7 59 11.3 20.5 11.35

recognition performance using a 39-word alpha-digit vocabulary (26 English letters plus
10 digits and 3 command words). These are whole-word utterances recorded over dialed-
up telephone lines from four talkers (two male and two female). The distortion measures
compared were dig, dg(L) with L = 32, dyg with 16 terms, d; of Eq. (4.52), dis of
Eq. (4.45), and dwgpm of Eq. (4.97). The signal-processing front end of the system included
a first-order preemphasis filter (1 — 0.95z~1), and an eighth order LPC analysis on a 45 ms
(300 samples) Hamming windowed data frame with an overlap of 30 ms between adjacent
data frames. The DTW procedure had a local slope constraint of 1/2 and 2 on the warping
path. The recognition was performed on a speaker-trained basis. The reference pattern for
each word was chosen as the token in the training set (5 ~ 7 tokens per word) which had
the smallest average DTW distortion score to all other training tokens.

Table 5.2 shows the error rates for the recognition trials with various distortion
measures. Results for different talkers as well as the average are listed in separate columns.
Itisinteresting to observe that the performance variation across different distortion measures
is not as great as that across the four talkers. The average error rates of five of the six
distortion measures were within 0.65%. The Itakura-Saito distortion, which includes
matching of the spectral level as well as the spectral shape simultaneously, appeared to
have the highest average error rate among the six distortion measures compared. Also,
the weighted likelihood ratio measure, which attempts to emphasize the spectral peak
regions, did not achieve a significantly better performance than most of the other distortion
measures.

The results for dwsy in Table 5.2 were obtained after a series of experiments designed
to determine the optimal values of ug, uzy and ugy required in the definition of dwsm
according to Eqs. (4.97-4.99). The best recognition performance (which is reported in
Table 5.2) was achieved with uz = 0, Uy = Ugy = oo. Note that with ug = 0, the
loudness difference between the two speech spectra being compared is ignored. Also with
Um = UGy = 0o, the weighting for the spectral slope becomes uniform. Therefore, it is
equivalent to a unweighted slope metric.

Another interesting result in the study of Nocerino et al. is that Bark-scale warp-
ing, as introduced in [i% of Eq. (4.85), led to performance degradation. Such a result is
somewhat different from that of Davis and Mermelstein [10] in which the mel-frequency
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cepstral measure was reported to outperform several other distortion measures in a limited
experiment. It should be noted, however, that the Bark-scale warping in Eq. (4.85) does
not have the same spectral averaging effect of the mel-frequency cepstral measure derived
from the filterbank output as proposed by Davis and Mermelstein (see Section 4.5.6).

These comparative studies point out several important issues in defining distortion
measures for speech recognition. First, the incorporation of energy (or power) in pattern
comparison requires careful design as seen from the inferior performance of the Itakura-
Saito distortion measure. The treatment of energy information as part of the distortion
measure will be discussed in Section 5.4.3. Second, it is vitally important to design
a distortion measure that takes into account the inherent speaker variation and works
consistently well for different speakers, particularly for a speaker-independent task. The
uneven performances of the six distortion measures shown in Table 5.2 indicate that further
enhancements in terms of robustness to speaker variations are necessary. Third, it is not
always easy to incorporate our empirical knowledge of sound perception in the distortion
measure. The two perceptually based distortion measures, namely the weighted slope
measure and the weighted likelihood ratio measure, both failed to improve performance
scores. In fact, the slope measure worked best when unweighted. '

While more research is taking place in pursuit of the “ideal” distortion measure, we
should note that the bandpass-liftered cepstral distortion of Eq. (4.37) with a raised sine
weighting function of Eq. (4.36) was shown [11] to give consistently good recognition
performance in speaker-independent recognition tasks. As discussed in Section 453,
such a distortion measure was designed with the intention of reducing the variability due to
different speakers and to suppress the spurious artifacts of the signal processing mechanism.
The experimental results show that these goals were well met in practice.

5.4.2 Choice of Clustering Methods and kNN Decision Rule

Template training by clustering is of essential importance in speaker-independent recogni-
tion systems because of the acoustic variability of word utterances across different talkers
that require multiple representations for an utterance class. Because of the use of multiple
reference templates, we can consider the use of a kNN decision rule to provide both a
robust class decision and improved recognition performance [12]. If we use N reference
patterns to represent each word, then for every unknown input pattern, N distortion scores
are calculated for these N reference patterns. We denote these N distortion scores by d,
J=1,2,...,N, where i indicates the word index, ranging from 1 to M, the vocabulary
size. The distortion scores for a particular word i can be reordered such that

dD <d? <. < g® (5.60)
where the parentheses are used to indicate ordered indices. For the KNN rule, we compute

the average of the & smallest distortions, resulting in

k
d= % Zd'@. (5.61)
j=1
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Figure 5.12 Recognition Y (p correct) as a function
of the number of templates per word based on template clustering
with kNN decisions (k = 1,2,3,4); (a) the top candidate is the
correct word, (b) the correct word is among the top 5 candidates (after
Rabiner et al. [S]).

The index of the “recognized” word using the kNN rule above is determined as
i* = argmind'. (5.62)

To study the interaction of the kNN decision rule with the number of templates used to
characterize each word in the vocabulary, a speaker-independent isolated word-recognition
task was run using a 39-word vocabulary (26 English letters, 10 digits and 3 command
words), [5]. Figure 5.12 shows plots of recognition accuracy as a function of the number
of reference patterns per word used in the recognizer, the value of k for the kNN rule, the
method for obtaining the reference patterns, and the word candidate position in the decision
outcome. Parts (a) and (b) of the figure are results based on use of a clustering algorithm
and parts (c) and (d) are similar plots for templates obtained by random selection from the
training tokens. Parts (a) and (c) are the results for the top recognition candidate and parts
(b) and (d) are those for the top five candidates (meaning the correct word falls in the list
of the top five word candidates).
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For this particular vocabulary, it is observed that the recognition accuracy improves
as the number of templates per word increases, particularly from two to about eight. For
a small number of templates per word, the kNN rule performs best at k = 1. Fora large
number of templates per word, £k = 2 produces the best results. The recognition rates for
the top five candidates approaches 98% with 12 templates per word. Also, the recognition
performance obtained from using the clustered templates is significantly better than that
obtained from randomly chosen

A more detailed comparison on the effects of various clustering algorithms was
provided by Wilpon and Rabiner [7]. The UWA algorithm (unsupervised clustering without
averaging, Section 5.3.3) was found to perform worse than the MKM algorithm (modified
k-means, also Section 5.3.3). Figure 5.13 plots the average digit error rate as a function of
the number of reference templates per word for a 100-talker database of 1000 digits with
clusters generated by both the UWA and the MKM procedures. (The recognition was based
on isolated utterances.) It is particularly interesting to observe that for one template per
word, the MKM template (which has a full “coverage” of the entire training tokens) yielded
2 10% lower error rate than the UWA template. Even when more templates per word were
used, the MKM templates provided about 2% reduction in error rate over that obtained

tokens.
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Figure 5.13  Average digit crror rate as a function of the number of templates per
word for a database of 1000 digits with clusters generated by the UWA and the
MKM clustering procedures respectively (after Wilpon and Rabiner [7]).

using the UWA templates. As we have discussed previously, MKM is more analytically
consistent than UWA and indeed the experimental results verify the performance gain due
to the increased consistency.

5.4.3 Incorporation of Energy Information

Itis generally agreed that the energy contour of an utterance contains important information
about the phonetic identity of the sounds within the utterance. For example, fricatives are
much lower in energy than vowels. Proper use of such energy information (over time) can
therefore be helpful in (grossly) distinguishing one word utterance from another. The resulis
of Table 5.2, based on using the Itakura-Saito distortion measure, however, indicate that
incorporation of energy information in pattern-comparison measures may in fact degrade
the recognition performance if not properly handled.

The energy information appears in two forms in the speech spectral representation.
One is the absolute power of the power spectrum S(w) (of a frame of speech signal), defined
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by
E= / sy (5.63)
_ 27

m

and the other is the gain o when S(w) is modeled by an all-pole spectrum g2/ ,A(e"")[z,
"
i d.
o? = min / la@)* s (5.64)
A J_, 27

The gain term o is identical to the minimum residual energy (of a speech frame) resulting
from optimal inverse filtering of S(w). The Itakura-Saito distortion measure includes the
gain term in a fixed and inflexible manner.

The most straightforward and flexible way to incorporate the energy information,
either the absolute power or the gain, is to add an energy distance term to any of the spectral
distortions discussed previously. As an example, in the truncated cepstral distance based
on LPC cepstra, ¢ = log 02, ¢}, = log o' thus the energy (or gain) distance

dg(S,5") = (log 0® — log 0" = (co — c}? (5.65)

is just an additional term to d2(L) of Eq. (4.24).
A particular form of energy distance that has been extensively studied is

dg(S,5") = v - g(|log E, — log E.|) (5.66)

where 7 is a constant that determines the weight of the energy distance relative to the
spectral distortion, g is a nonlinear function, and E, and E; are the relative power (or
gain) with respect to the maximum power Ey,, and E . of the test and reference patterns,
respectively; that is,

E =E[Eny and E,=E'[E .. (5.67)
The absolute loudness effects are thus removed from the energy distance, with the maximum

set at 0 dB for both the test and the reference pattern. The nonlinear function g(-) is defined
as

0 |E| < Epo
8E)=4 E—E;p+Eor Epo <E<Ey+Eo-Eor (5.68)
Eyy Eyi+Ep —Eor <E.

A plot of g(E) as a function of £ is shown in Figure 5.14. The shape of this nonlinear
function reflects certain prior observations of loudness perception by human listeners. The
values of E;¢, Egr and Ey; are empirically set at E;p = Eor = 6 dB and Ey =20dB.
The weight v was experimentally determined to be in the range of 0.025 to 0.25, with a
typical value of 0.1.

In an experiment by Nocerino et al. [9], similar to the one that produced the results of
Table 5.2, use of energy information in various distortion measures was studied. Table 5.3
shows the recognition error rates of several common distortion measures with and without
the energy information. The truncated cepstral distance d2(16) in the table is based on the
LPC cepstrum, and the incorporation of gain information is achieved by adding dg(S, S’) of
Egq. (5.65) to the original distance. The Itakura-Saito distortion measure dis of Eq. (4.45)
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Figure 5.14 The nonlinearity function, g, applied to the
log energy difference between two frames for the energy
distance calculation.

TABLE 5.3. Comparison of recognition error rate pertaining to several distortion measures with
and without energy information (after Nocerino et al. [9]).

Distortion Measure Error Percentage
Gain Normalized Talker Talker Talker Talker Average
Energy 1 2 3 4
d2 (16) yes no 6.2 8.2 10.0 18.5 10.73
no no 6.4 6.4 10.0 16.2 9.75
dis yes no 7.7 59 11.3 20.5 11.35
yes yes 5.6 5.1 11.0 15.6 9.33
dir no no 5.1 5.6 10.5 133 8.63
no no 4.1 4.1 6.7 14.4 7.36

includes the matching of gain terms. As discussed in Section 5.4.2, such use of energy
information appears to degrade the system performance as compared to the likelihood ratio
distortion where ¢ = o’ = 1. One possible modification to the Itakura-Saito distortion,
recognition results of which are also included in Table 5.3, is to normalize the gain terms
by the maximum energy (of a frame of speech) in the utterance, similar to Eq. (5.67),

o =0 Emx and o =0/E.,. (5.69)

The gain terms, o2 and o’ 2 inthe original Itakura-Saito distortion are then replaced by 52
and 5'2, respectively. The likelihood ratio distortion dir with normalized energy, as listed
in the table, takes the form of di g + dr where df is defined by Egs. (5.66)(5.68).

The results of Table 5.3 indicate that the energy information in the temporal pattern
sequence can be useful for improving the recognition accuracy if it is properly normalized.
Direct use of the absolute loudness level or gain term, however, leads to degradation in
recognition accuracy.

5.4.4 Effects of Signal Analysis Parameters

In a typical template-based system using LPC analysis as the signal-processing front end,
one has to first determine the values of several key analysis parameters—that is, the LPC
analysis order, the length of the analysis window (frame) and the frame rate (often expressed
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Figure 5.15 Plots of word-recognition error rate versus the anal-
ysis frame size (in samples) with various frame shift intervals (33,
67, 100 and 200 samples) (after Rabiner and Wilpon (13]).

in terms of shift interval). These parameters are denoted by p (order), N,, (window length
in number of samples), and N; (shift interval in number of samples), respectively. An
experiment with a 4-talker, 39-word vocabulary database was conducted in a speaker-
trained recognition mode to study the effects of these parameters upon the recognition
performance. The database was the same one used in the study of Nocerino et al. {9]
discussed in Section 5.4.1. Five tokens per word were used in training, and 10 tokens per
word were used for testing. The speech material was recorded over a dialed-up telephone
line and sampled at 6.67 kHz.

The values of p, N,, and N, tested were p = 6, 8, 10, 12, N,, = 33, 67, 100, 133,
200, 300, and N, = 33, 67, 100, 200, 300, respectively. Figure 5.15 shows plots of
recognition error rate (%) as a function of the LPC analysis order for three LPC-related
distortion measures: the likelihood ratio measure (LR), the bandpass-liftered LPC cepstral
distance (with the raised sine lifter of Eq. (4.36), denoted by BPCEP), and the delta LPC
cepstral distance (Eq. (4.114) with only two terms, d7 and d2,, denoted by DCEP). For
this plot, N,, = 300 and N; = 100. The reference templates were generated by a clustering
method. It is seen that both the liftered cepstral distance and the combined distance
& + déﬁ(., performed significantly better than the likelihood ratio measure. Increasing
the LPC analysis order did not, however, lead to higher recognition accuracy. The best
result was found to be p = 8 with the delta cepstral measure. Figure 5.16 [10] shows
the word error rate (%) as a function of N,, for several values of N;. In general, the
performance at N,, = 3N, was found to be the best for a fixed N;. Since larger N; means
less computation, we often try to find the largest N; possible before the system seriously
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Figure 5.16  Plots of word recognition error rate versus LPC anal-
ysis order for three LPC-related distortion measures, the likelihood
ratio measure (LR), the bandpass liftered cepstral measure (BPCEP),
and the cepstral measure with additional delta cepstrum (DCEP)
(after Rabiner and Wilpon [13]).

degrades in performance. When N, goes beyond 300, that is an analysis window longer
than 45 ms, the analysis window often encompasses nonstationary segments of the speech,
reducing the precision of signal representation. A reasonable choice is N, = 300 and
N; = 100. For a 6.67-kHz sampling rate, these are equivalent to 45-ms analysis windows
and 15-ms window shifts, respectively.

5.4.5 Performance of Isolated Word-Recognition Systems

With proper choice of system parameters, the distortion measure, and the method to
generate the reference patterns, an isolated word-recognition system usually is expected to
perform well. Depending on the degree of difficulty inherent in the vocabulary, however,
we observe some variation in the recognition accuracy. We summarize the laboratory
performance (in terms of error rate) of a number of state-of-the-art isolated word systems
evaluated on different vocabularies in different modes in Table 5.4. In the table, SI denotes
speaker-independent mode, SD is speaker-trained or speaker-dependent, and MS is the
“multispeaker” case in which the training data and the testing data are from the same
(perhaps large) set of talkers. The 37 dialer words include the 10 digits, 7 command words,
and 20 names as might be typical for a user repertory of names. The number of talkers
involved in the recognition trial is listed in the comment column. The size of the vocabulary
does not appear to strongly affect the recognition performance. These performance scores
show that isolated word-recognition technologies are mature enough to be of practical use
for many applications. (We will come back to this issue of practical applications of speech
recognizers in Chapter 9.)
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TABLE 5.4. Performance of Isolated Word-Recognition Systems

Error
Vocabulary Mode Rate (%) Comments
10 Digits SI 0 400 Talkers
37  Dialer Words sD 0 10 Talkers
39 Alphadigits SD 45 4 Talkers
MS 7.0 100 Talkers
54 Computer Terms SI 3.5 20 Talkers
129 Airline Words SI 29 20 Talkers
200  Japanese Cities SD 2.7 1 Talker
1109 Basic English SD 4.3 3 Talkers

5.5 TEMPLATE ADAPTATION TO NEW TALKERS

Template adaptation refers to a class of techniques that adapt the values of parameters of
the reference patterns to changes in the input signal (e.g., a new speaking environment) so
that the recognizer can properly deal with input signals that are somewhat different from
those seen during the training phase, thereby avoiding a severe performance degradation.
Among the effects that cause changes to the input signal are varying channel characteristics,
ambient background noise, differences in transducers and, particularly, new talkers with
accents different from those used in the training set. We focus our attention on template
adaptation to new talkers in this section.

For a given speech-recognition task, a speaker-dependent (SD) system normally
performs better than a speaker-independent (SI) system, so long as a sufficient amount of
data is available to adequately train the speaker-dependent templates. When the amount
of speaker-specific training data is limited, however, superiority of the SD system over the
SI system is not guaranteed, because of the lack of reliability in the calculated reference
parameters. One way to improve the performance of the recognizer under these conditions
is to make use of existing knowledge, as represented in a speaker-independent template set
or another well-trained speaker-specific template set. This technique is often referred to as
speaker adaptation (SA) although, as we shall see, it may have a more general interpretation.

Speaker adaptation of reference patterns can be formulated in a number of ways, as
illustrated in Figure 5.17. “Adaptive clustering” attempts to modify the existing speaker-
independent reference set, based on a new set of speaker-independent training data, so that
the new talker’s characteristics (as seen in the SD data set) are properly captured in the
adapted template set. In “speaker transformation” or “speaker conversion,” a well-trained
template set for one particular talker is converted to another template set for a new talker
based on a limited amount of training data from the new talker. “Speaker adaptation”
techniques attempt to modify a speaker-independent (or multispeaker) template set, using
new training data from a single talker, and provide a good set of speaker-adapted templates,
even when the amount of training data from the new talker is limited. Finally, in “sequential
adaptation,” the training data, from a given talker (or talkers), are acquired over time, and
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Figure 5.17 Four different speaker adaptation scenar-
ios.

the reference patterns are sequentially adjusted every time new training data is available,
The basic adaptation techniques for these different implementations of speaker adaptation
are usually very similar and we discuss in the following section the generic processing
procedure rather than provide specific discussions of each of the individual adaptation
techniques.

5.5.1 Spectral Transformation

Adaptation of the reference set of templates to a new talker’s speech involves transformation
of one spectrum to another that better matches the new tatker’s spectral characteristics.
Suppose S4(w) is a speech spectrum produced by talker A. Spectral transformation is a
mapping, f, that converts S, (w) into Sg(w) = Sf(Sa(w)) which is more likely to be produced
by talker B. One classical approach to spectral transformation is to estimate the vocal cord
(excitation) spectrum and the vocal tract dimensions (mainly the length) for individual
talkers, and then perform the spectral transformation based on a physical vocal tract model
defined by the estimated articulatory parameters. The transformation is parameterized by
A4p and we write it in the form Sg(w) = f(Sa(w), Axp).

Another popular approach to spectral transformation is to establish a correspondence
between pairs of “typical” spectra from two talkers based on their occurrence in the same
context speech (e.g., vowels embedded in carrier words). The context could simply be a
word, as represented by a sequence of vector-quantization codebook entries (recall the VQ-
based word recognizer introduced in Section 35.2.6). (It could also be a specified phoneme
sequence.) Instead of using a single, universal transformation, parameterized by ays, that
maps one arbitrary spectrum to another, use of VQ code words permits nonparametric
mapping for a finite set of “typical” spectra. It offers a more flexible, more effective
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mapping than the universal, parametric transformation f(-, a) because it does not postulate
or rely on the existence of such a function for arbitrary spectra.

Let the set of “typical” spectra of talker A, as represented by VQ codebook entries,
be Sﬂ)(w), i=12,...,N. The VQ-based spectral mapping is a set of transformations
{fs i=1,2,...,N} that define

SPw) =fiSPwy, i=1,2,...,N, (5.70)

or simply ng(w) « Sf;)(w). The function f; need not be parametrized; it simply represents
a correspondence between S and 5.

The procedure to determine the appropriate set of transformations is as follows. As
usual, we use vector notation; x4 and xz are spectral vectors obtained from utterances of
talker A and talker B respectively. Based on a set of training vectors {xz} collected from
talker B’s utterances, we employ the generalized Lloyd algorithm to generate a codebook
Cs = {xg), i =1,2,...,N} of size N. This codebook is then used to vector quantize
the spectral sequences of certain known word utterances. Without loss of generality, let
us assume Ap = (Xp1, X2, ..., Xpr) is a spectral sequence for an utterance of a particular
word. Vector quantizing Xz with Cg results in

X = Xp = (g1, %2, .. ., Ror)
with the corresponding VQ index sequence J = (1,2, - .- ,Jjr) where
o, =x32 €Cp, ip=1,2,...,T. - .71

The codebook C, = {xf:), i=1,2,...,N} is produced in a different way. Utterances of
the same word are collected from talker A. Again, we denote a spectral sequence of such

an utterance by Ay = (Xa1,Xa2,...,X4). A dynamic time-warping procedure is used to
align Xy and Aj. The optimal alignment path ¢ = (¢4, ¢g) defines
in = ¢ga(k) and i = ¢p(k) 5.72)

where £ is the “normal” time index. Since each ip has a corresponding VQ index j;,, the
index label is thus transferred to X, via the normal time k,

Jia =t is = (k) = iy = da(k) = x4, (5.73)

The code word entry xX."’ )in Ca with index j;, is then calculated as the centroid of all the
VECIOrS Xg;, that are labeled with this index. Other code words are produced in a similar
manner. Since the index labels are kept identical through the conversion, the mapping is
simply

xp = f(x]) o xP. (5.74)

Note that the codebook C, = {x(A')} is not optimal in the sense of minimum average
distortion (Eq. (5.3)). However, if X, and X are reasonably close, the distortion perfor-
mance of C4 may be nearly optimal and encoding X, with C4 would result in an index
sequence highly correlated with Jg except for the time alignment.

To transform an arbitrary spectral vector x4 of talker A into that of talker B, we
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vector-quantize x, into %, which satisfies

% =x{ =arg min d(x4,xJ) (5.75)
X, €Cy

and then use the index i to point to x?; i.e.,

xs =+ X = xP = fi(xa). (5.76)
Therefore, the VQ-based spectral transformation maps an arbitrary spectrum of one talker
to another spectrum that is a member of a finite collection of typical spectra of another
talker. This type of transformation has proven effective in speech recognition.

5.5.2 Hierarchical Spectral Clustering

Hierarchical spectral clustering [14] is an adaptive clustering technique that performs
speaker adaptation in an automatic, self-organizing manner. Again, in a VQ-based word-
recognition system, each word or utterance class is represented by a set of VQ index
sequences we shall refer to as a “word dictionary.” The word dictionary represents all
possible pronunciation variations of the word (by different talkers). Speaker adaptation is
achieved by adapting the codebook entries (spectral vectors) to a particular talker while
keeping the index sequence set intact.

The key idea of this adaptation method is to hierarchically cluster the spectra in the
new training set in correspondence with those in the original VQ codebook. The corre-
spondence between the centroid of a new cluster and the original code word is established
by way of a deviation vector. The method works as follows.

First, a universal codebook is produced by clustering the spectral vectors collected
from a set of talkers. VQ-based template clustering is then used to create the word
dictionary based on the training utterances and the universal codebook. We assume the
universal codebook C* has N code word entries, C* = {¥:}L,. Another training set from
a new talker (the target of adaptation) is given. The procedure starts by calculating the
centroid of all the training spectra from the new talker and the centroid of the N code
word spectra in the universal codebook. We denote these two centroids by uyy and vy,,
respectively. A deviation vector can be calculated by

Zip =uy — vy .77

such that the new centroid of the shifted code-word vectors {y: + zu}?f__l coincides with
uy;. This can be easily verified for the case of an L,-norm vector space where the norm is
measured using a Euclidean distance.

We next split the new training set into two clusters and calculate the centroid of
each cluster. Using the above notation, we denote these two centroids byuy, i=1,2,
respectively. Each of the shifted code-word vectors y; + 2y, i = 1,2,...,N, is then
assigned to one of the two centroids, uy; and uy,, according to the nearest-neighbor
principle, generating two new code-word clusters and the corresponding centroids, which
we denote by vy, i = 1,2. Based on the two corresponding pairs of centroids, we define

Sec. 5.5 Template Adaptation to New Talkers 289

two deviation vectors
Zy=Uy—Vy, i=1,2 (5.78)

and use them to further shift the already shifted code-word vectors according to the proce-
dure described below. (The procedure aims at maintaining the continuity between adjacent
clusters.) The above procedure repeats until the number of new code-word vectors reaches
the preset goal or, at most N, the size of the original universal codebook.

The shift procedure for the code-word vectors takes into account the relative distances
from the particular shifted code-word vector to all the new centroids. Let us assume that
at a certain stage of hierarchical clustering, y; has been shifted to ¥y; and as a result of
further clustering, m pairs of centroids, (Upmi, Vm), i = 1, 2,...,m, are created. Note that
calculation of v, is based on y/ with the corresponding nearest-neighbor label. The m
deviation vectors are calculated as

i = Wi = Ve, I=1,2,...,m. 5.79)

For each code word vector yl’-, the shift vector s; is calculated as a weighted sum of these

deviation vectors z,;, m
m
§ = (Z Wi z,,.,-) / (Z Wﬁ) (5-80)
i=1

i=l
where
wii = 1/[d(y], um)]*. (5.81)

InEq. (5.81), a is a constant, typically between 0.5 and 1, and d(-, -) is a Euclidean distance.
The shift vector s; is then used to adjust y/,

Y ¥ +s; (5.82)

Figure 5.18 illustrates the hierarchical clustering procedure going from one cluster to four
clusters. Note that the constant o plays a smoothing role in combining the effects of all the
clusters.

The above hierarchical clustering procedure is progressive in that the number of
clusters grows from one to the desired limit. The procedure of calculating the deviation
vectors, Eq. (5.79), and the shift vectors, Eq. (5.80), is equally applicable in the situation
in which all (say m) clusters are adapted at once, without cluster splitting and recursion.
Figure 5.19 shows the VQ average spectral distortion (cepstral distance) as a result of
hierarchical adaptation of the codebook to the new tatker’s training set, relative to the case
in which no adaptation is performed (denoted NA), as a function of the codebook size.
The solid curve shows the results obtained with the progressive hierarchical adaptation
procedure, while the dashed curve shows the results of the direct adaptation procedure.
When the number of clusters is small, the direct adaptation method appears to perform
better than the progressive method. However, beyond eight clusters, the direct method
does not show further reduction in the average distortion while the progressive method
continues to give decreasing average spectral distortions. It was suggested [14] that the
adaptation procedure start with the direct method, then follow with the progressive method
when the desired number of clusters is large. Compared to the result using no adaptation,
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Figure 5.18 Hierarchical codebook adaptation algorithm
(after Furui [14]).
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Figure 5.19 Cepstral distortion between input speech pattern and
reference templates resulted from hierarchical code-word adapta-
tion (NA=no adaptation); — progressive adaptation, --- direct
adaptation (after Furui [14]). .

the reduction in spectral distortion due to adaptation is observed to be about 10-15%. The
average VQ spectral distortion is highly correlated with the recognition error rate.
It is interesting to note that the hierarchical VQ clustering method relies on the
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spectral similarity between the code words and the new cluster centers, and hence is
essentially independent of the contextual environment in which the particular spectrum
or code word appears. The spectral transformation algorithm discussed in Section 5.5.1,
however, emphasizes the contextual correspondence and constraints more than the spectral
similarity alone.

Template adaptation, as introduced earlier, can be viewed from a strictly statistical
perspective. We will address statistical adaptation in Chapter 6 in our discussion of
statistical modeling of speech signals.

Exercise 5.5

In hierarchical spectral adaptation using a Euclidean distance measure, a deviation vector z is

calculated as

ZI=u-Vv

where u is the centroid vector of the training data from a new talker and v is the centroid vector
of the existing code words in the codebook C = {y;}.,. If the deviation vector is used to
shift the code words according to y! = y; + 2, show that the centroid of {y/}, is equal to u.
Solution 5.5
By definition
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5.6 DISCRIMINATIVE METHODS IN SPEECH RECOGNITION

Speech-recognition tasks sometimes involve complex vocabularies in which phonetically
similar words are the dominant source of recognition errors. For example, recognition of
“spell mode” utterances, with vocabulary consisting of the letters of the English alphabet,
would have problems with the following confusable sets:

{A 1K}, {B,C.D,E,G,PT,V,Z},
{QU}, {LY}, {LLM,N}, and {F,S,X}.
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The problem is due to the acoustic similarity inherent in the spoken versions of the letters
in each confusable set. This type of problem is essentially unrelated to the vocabulary size,
because a large vocabulary could conceivably contain no phonetically confusing words,
whereas a small vocabulary could contain many similar words.

Many phonetically confusable words can only be discriminated based on a small,
critical portion of the utierances. For these cases, the traditional recognition approach,
which relies on a simple accumulated distortion score over the entire utterance duration,
generally does not place sufficient emphasis on the critical parts of the utterance. Let
us consider a vocabulary in which each word is represented by a reference pattern Y,
i=1,2,...,M. The sequence dissimilarity (distortion score) between an unknown pattern
& and a reference pattern ), is defined in Eq. (4.158) by

1 &
dX,¥) = 7, min gd(tﬁx(k), by (K))m(k) (5.83)

where ¢, and ¢, are the time warping paths, d(¢,(k), ¢y,(k)) is the local frame-to-frame
distortion, m(k) is the local slope weighting and M is a normalizing constant. Without
loss of generality, we assume ¢ = (¢, ®y,) is the optimal warping path pair, m(k) is unity
and My = T such that

1 T
dX, ) == ) d(exk), by, (k) (5.84)
T k=1

which is simply the average distortion along the optimal warping path.

We can examine the typical behavior of the distortion sequence d(@.(k), ¢y,(k)), as a
function of k, for the cases where X and Y, are from the same word class and where they
are from different word classes. In Figure 5.20, we plot several typical distortion sequences
resulting from the dynamic time warping procedure. When X and Y; are tokens of the same
word, d(¢(k), ¢y,(k)) varies around some expected value d, = d(X,))) (Figure 5.20a).
(The subscript ¢ stands for correct.) When X and Y are from acoustically very different
words, d(¢x(k), ¢y,(k)) is generally large, compared to d,, for all values of k and the average
distortion d,, (the subscript w is for “wrong”) is accordingly large. This case is illustrated
in Figure 5.20b. However, when X and ), are from acoustically similar but linguistically
different words, the distortions are, in general, quite close to those in the case of same
word, except for the critical regions (i.e., when the words differ) where larger distortions
are observed. Figure 5.20c clearly demonstrates an example of this type of situation. In
the example, the acoustically dissimilar region occurs only at the beginning of the word
(i.e., from frames 1 to IV)

It is obvious that if the critical region (where the words being compared differ) is
short compared to the length of the entire utterance, the recognition decision based on
the average distortion of Eq. (5.84) can be unreliable. The key question then is how the
dissimilarity measure between two speech patterns can be modified so that the critical

Sec. 5.6 Discriminative Methods in Speech Recognition 293

d (809, 4(K)

a

T
[}
|
i
1
i
:
i
|
1
1
i
)
1
]
i
i
i
1
i
i
]
i
1
)
i
i

k, NORMAL TIME INDEX

Figure 520 Frame-distortion sequences between pairs of
speech utterances: (a) utterances of the same word, (b) utterances
of acoustically different words, and (c) utterances of acoustically
confusing words (after Rabiner and Wilpon {15]).

regions of the utterance (which discriminate the words being compared) receive proper
emphasis for optimal recognition results. One possible solution is to include a global,
discriminative weighting in the calculation of the pattern dissimilarity measure; that is, we
consider

T
> wilk) d($:(k), by, (k)
d(x,¥) = = (5.85)

T
> with)
k=1

where w;(k) is a weighting function to be determined. This is equivalent to the classical
linear discriminant analysis and design for pattern recognition [15]. It is important to note
that the local slope weighting, m(k), normally used in the global dissimilarity measure is
defined according to a general local constraint which is equally applied to all the vocabulary
words. The goal of slope weighting is essentiaily to achieve reasonable time alignment
and normalization. The discriminative weights w;(k) of Eq. (5.85), however, are template
specific and are designed to provide a better recognition decision.

An alternative to the use of discriminant analysis is to design the reference tem-
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plate so that the parameter values in the template are essentially preweighted so as to be
able to discriminate differences with all other words in the vocabulary. This procedure
requires a methodology that allows us to optimize the template parameter values for best
discrimination among acoustically similar words. Both discriminative weighting and dis-
criminative template optimization are essential components of a method generally called
“discriminative training.”

In this section, we discuss several key aspects of discriminative training. These
are determination of word equivalence classes in a given vocabulary, choice of weighting
functions for discrimination among confusing words, and a general discriminative training
framework that offers an analytic perspective on how an “optimal” speech recognizer can
be potentially designed to achieve a minimum error rate performance.

5.6.1 Determination of Word Equivalence Classes

Given a vocabulary of M words, we would like to form a set of equivalence classes, @5,
J=12,...,J where J < M such that the words belonging to the same class are similar
to each other acoustically and phonetically. There are two reasonable approaches to this
problem; one is phonetically based and the other acoustically based.

To form equivalence classes for words, it is necessary to define a “word-by-word”
dissimilarity measure first. For the phonetically based approach, such a word-by-word
dissimilarity can be derived on the basis of the phonetic description of the vocabulary
words. To do this, we define a “phoneme distance” matrix, the elements of which are the
distances for various phoneme pairs. We denote the phoneme distance by d,(-, -). There are
several ways to obtain the set of phoneme distances. They could be defined by the count
of the number of phonetic features that have to be changed to convert one phoneme into
another. Altematively, one could manually segment the words according to their phonetic
descriptions and calculate the distortions directly from the phoneme segments. In addition,
we need to define a distance cost for inserting a phoneme, d;, and a distance cost for
deleting a phoneme, dpp. A total word-by-word dissimilarity is then defined by a dynamic
time-warp match between the words, with a vertical step in the warping path representing
an insertion and a horizontal step representing a deletion (and vice versa, depending on the
chosen warping direction).

Figure 5.21a illustrates this phonetically based procedure for the digit word “eight”
and letter “J” and Figure 5.21b for the words “one” and “nine.” For the words “eight”
(/€’t/)and “J” (/je’ /), the alignment path encompasses an insertion (of j), a match between
the /¢’ / in “eight” and the /e’/ in “J,” and a deletion of /t/, giving a distance

. di +dp(e, ) + d,
dfer/, o)) = LERE Dt D
- di+dp

3 (5.86)
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Figure 5.21 Examples illustrating “word” alignment based on fiynamic
“phone” warping for word equivalence class clustering (after Rabiner and
Wilpon [15]).

where we assume d,(¢’, ) = 0. For the words “one” (/w a n/) and “nine”(/n @’ n/), the
alignment path is a straight line giving

dp(a, @) + dp(n,
d(/wan/, [n@nf) = dp(w,n) + p(‘; ) + dp(n, n)

_ dp(w,n) +dp(a, @)
=

(5.87)

where, again, d,(n,n) = O is assumed. This phonetically based approach, in theory,
provides a simple method of generating equivalence classes directly from the phonetic
descriptions of the words, without requiring actual acoustic realizations of the 1.1tte.ran<.:es.

The acoustically based approach to obtaining the word-by-word dissimxlanFy is to
use real tokens (utterances) of the vocabulary words and perform actual dynamic time
warping on the spectral patterns to calculate the word distances. If several tokens have
been recorded, averaging of distances increases the reliability of the final results. .

From the word-by-word distance matrices, equivalence classes can be obtained using
the clustering procedures described in Section 5.3. The basic concept is that the vocabulary
words are grouped into clusters based on pairwise (word pairs) distances. An example
of the results of the clustering technique is illustrated below for the 39-word vocabulary
consisting of the 26 letters of the English alphabet, the 10 digits, and the 3 command words
“STOP,” “ERROR,” and “REPEAT”:
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Tokens
é1 = {B,C,D,E,G,P, T, V,Z, 3, REPEAT} 11

¢2={A,H,J,K.8} 5
¢3 = {F.5.X, 6} 3
¢ =1{LY,4,5) 4
¢s ={Q.U,2} 3
¢6 = {L9 Mv N} 3
¢7 = {0} 1
#s = {R} 1
¢ = {W} 1
é10 = {STOP} 1
¢11 = {ERROR} 1
é12 = {0} 1
i3 = {1} 1
é1a = {7} 1
#15 = {9} 1

Having obtained the equivalence classes, one can further define a pattern-to-class
distance for an unknown utterance pattern in order to provide an efficient first-pass decision
that determines the equivalence set of the unknown pattern before a final recognition result
is computed. The pattern-to-class distance can be determined in several ways. One simple
form of a pattern-to-class distance is the minimum of the pattern-to-word distances for all
the words in the equivalence class—that is, for an unknown pattern X',

d(X,¢) = )r,nelg, a(x,y) (5.88)

where J; € ¢; means the word which ), represents is in the equivalence class ¢;. Alterna-
tively, one can apply the k-nearest-neighbor rule to all the reference templates representing
the words in the equivalence class and use a k-nearest-neighbor average distance (Eq. (5.60-
5.61)) as the pattern-to-class distance. This simple form of pattern-to-class distance does
not necessarily lead to computational savings because pattern comparison is performed
over the entire set of reference templates.

Another method of obtaining the pattern-to-class distances is by explicitly defining
“class-reference” templates (apart from the word-reference templates) and calculating the
distances from the unknown pattern directly using the class-reference templates. Class-
reference templates can also be obtained using clustering methods. In the case of multiple
templates per class, again a k-nearest-neighbor rule can be used effectively. A ranking
based on d(X, ¢;) j = 1,2,...,M for each unknown pattern X can be created for further
discriminative processing.

Since the number of word classes is generally smaller than the number of words, the
number of distance calculations required to establish pattern-to-class distances is smaller
for class templates than for word templates. For example, for the 39-word vocabulary
described above, there are 15 word equivalence classes. Hence, there is almost a 3-to-1
reduction from words to word classes in terms of template comparison. It should be noted,
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however, that the computational savings come with the risk that errors could occur in the
fast, first-pass decision stage. Such errors are generally irreversible. This situation is
similar to the VQ preprocessor case discussed in Section 5.2.5.

5.6.2 Discriminative Weighting Functions

Once a speech utterance is determined to be a member of an equivalence class of confusing
words, discriminative weighting as defined in Eq. (5.85) can be applied to maximize the
likelihood of correct recognition. The key question is how we choose the weighting
function w;(k) to accomplish this goal.

We have already mentioned that methods for the design of the “optimal” weighting
function, based on a set of training data, have been proposed based on classical linear
discriminant analysis [12]. - We discuss, in this section, an approach to the design of
discriminative weights using the concept of Fisher’s linear discriminant.

Assume we are given a training set, which we divide into two subsets {A’}“")} and
{AC}‘")} with N+ and NC-? utterances, respectively. Speech utterances with superscript
(+1) are those that correspond to (are labeled as being closest to) template };, which in turn
represents a certain word. The superscript (—i) denotes those that are not assigned to ).
We use vector notation

w; = (wi(1), wi(2),...,wi(D)) (5.89)
and . B
& = (dfj‘)(l),dfj‘)(Z), .. ,df,?’m) , %= i (5.90)
where ¢, as usual, indicates matrix (vector) transpose and
Py =d (¢§;>(k),¢,,(k)) , k=1,2,...,T, + =%i 591

with ¢{"(k) denoting the warping path (together with ¢,,) for aligning X{*) and Y. Note
that dfj*") is a distance vector with elements obtained from matching two utterances of the
same word represented by J); while dfl-'n is a distance vector resulted from comparing a

nonmatch utterance X'~ with the reference template ;. We further assume that w; has
been properly normalized so that the modified discriminative measure of Eq. (5.85) can be
written as

A0, Yy = wid" (5.92)

with a similar expression for d(k}"’", ¥)). This is equivalent to projection of T-dimensional
vectors onto a line in the direction of w;. Note that the recognition decision is based on the
principle of minimum weighted distance.

Let us consider the following sample means of the distance vectors

N+
i i a1
D & (1), y @), M) £ DA (593
j=1

and
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N
=D A ((~D(1y 4~ - 1 -
B0 = (W), 40@), L u D) = e B (5.93b)
j=1
After projection, we have two mean values (scalar) for the two subsets of training data

NHD

1
B = w0 = 5 Z ! dl(j+o (5.94a)
j=1
and
1 NCD
#(—i) = w:“(-i) = Nﬂ‘ Z w:d‘(-j—i)- (5.94b)
j=1

We define the “scatter” for the projected distance vectors by

N
s = Z (p,(‘) - w,fd,(:’.‘))2 , * = i, (5.95a)

=1

The quantity s**? + =9 s called the total within-class scatter and (D 4 50y (N 4

N9) is an estimate of the variance of the pooled, projected data. A measure of separation
can be defined as

(#(+t) - “(—0)2

B(Wi) = W . (5.95)

In Eq. (5.95), the separation measure is expressed as a function of w; and can be maximized
by choosing

w; = ST (—p™*D 4 p-Dy (5.96)
where § is the total scatter matrix,

+

s4 ) (d'(:’fl) - #(+o) (d§,.+° - ”(+a),]
j=1

=
+ [é‘r (457 - u=0) (a2 - u“")l}. (5.97)

T.he linear discriminant based on the optimal w; of Eq. (5.96) is called the Fisher linear
discriminant. Note that the resuit of Eq. (5.96) also implies that ™) < u(= for the weight
vector to be consistent with the minimum distance decision rule.
If'we assume dy(k), k = 1,2,...,T are independent (or uncorrelated in the case of
a Gaussian distribution model), S has only nonzero elements on the diagonal and w;(k)
k=1,2,...,T can be calculated separately according to Eq. (5.96). ’
_ By way of example, Figure 5.22 shows several plots of u*? and ™ for some
typical classes; the horizontal axis represents the frame number in terms of the “normal”
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Figure 522 Plots of average distortion sequences (—) and se-
quences of standard deviations of the frame distortion (- - - -) for
various word pairs (after Rabiner and Wilpon [15]).

time index k = 1,2,...,T and the vertical axis is the distance value. Also shown in the
plots as dashed lines are the standard deviations

N n1/2
oMk = [Z (@m0 - 9m) ]

j=1

k=1,2,...,T, *==i. (5.98)

In Figure 5.22a where the class of {Y,/} is represented, we can see that u+9(k) is approx-
imately constant whereas u~?(k) differs from p‘t?(k) only at the beginning of the word.
We also see that the curves of o* (k) are comparable for cases * = +i and * = —i with
only small differences occurring in the first few frames. In Figure 5.22b, we show the cases
where the letter “A” has been contrasted with the letters “J” and “K” and the digit word “8.”
Behavior similar to that of Figure 5.22a is seen, in that pu(~?(k) is larger than xt2(k) at the
beginning of the word for letters “J” and “K,” and at the end of the word for word “8.” For
the word “8,” the curve of o~?(k) is also fairly large at the end of the word, indicating the
high degree of variability in the plosive release of the word “8.”
A variation of the weighting function of Eq. (5.96) has the form

Wil = [ = W] / [HB + ] (5:99)

where a*)(k), * = i, are defined in Eq. (5.98). This weighting function, studied in [15],
has the same motivation as Fisher’s discriminant, in that the normalized separation is the
primary focus. Figure 5.23 shows a set of weighting curves according to Eq. (5.99) for the
letters “I” and “Y.” Several interesting properties of the curves can be noted. A large pulse is
present at the beginning of the curves, followed by a residual tail. Clearly, the tail represents




300 Chap.5  Speech Recognition System Design and Implementation Issues
|.°|| IIIIllllllllllflllllllllllllflllllll
(a) -
TEST:Y
WEIGHT |- -
° HNEENESEREEM llllllllllllllllll 11
! FRAME NUMBER (k) 40

lllllllllllllllllllIllllllllllllllll

REFERENCE : Y (b) .
TEST: I

AN EE NN

o 1117

1 FRAME NUMBER (k) 40
Figure 523 Weighﬁngcurvesfordiscﬁmimﬁvelyeompnﬁngwmds“?md“Y“(aﬁuRabim
and Wilpon [15]).

the inherent statistical variation between d,fj'"') and d,fj"') in the acoustically similar region.
The pulse indicates clearly the place to be emphasized for maximal discrimination between
the two words. The weighting function of Eq. (5.96) shows similar behavior except that
the range of w;(k) is no longer limited to w;(k) > 0.

Exercise 5.6

Show that the separation measure of Eq. (5.95) is maximized by choosing the solution of

Eq. (5.96).
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Solution 5.6 .
‘We express 6(w;) as a function of w;. Note that according to Eq. (5.94),
“(+0 - W: "(+D
and
P = wip?
which leads to
P = pC0 = (W — w2
= Wi — g _ iy
= wMw;
where

M = (¢ = Dy _ =y,
The denominator of 8 is s+ + s with

N
S = Z('; u* _w d};’"’)’
j=1

N+
= Z "g(pw) - d§/+°X “(+i) - d}f")'w.-
j=1

and

N

§0 = Z wi( “(—o - d},"’)(p“" _ df,-’"’)‘m.

j=t

Thus,
s+ + §0 = wﬁSw,
= wiM
_. wiMiw;
O(w;) = _w}Sw,- .

The separation measure & is in a form known as the generalized Rayleigh quotient and is
maximized by a solution w; which satisfies

Mw,- = ASw,-.

Since M projects any vector onto the direction of u~? — ™+ (or u™*? — =), the above
equation becomes
AT — ) = ASw,

and thus
wo= 87 - .
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5.6.3 Discriminative Training for Minimum Recognition Error

The classical pattern classifier or recognizer architecture is based on two fundamental steps:
definition of an appropriate discriminant function g;(x; A) parametrized on  for each class
Li=1,2,..., M, and use of the discriminant function in implementing the decision rule,
which is often generically stated as

Cx) = C' iff g(x; ) = max g;(x; a), (5.100)
J

where C(x) denotes the recognition decision on x and ¢ denotes class i. In speech-
recognition applications, where the decision is based on the principle of minimum distance,
Wwe can view g;(X; A) as the distance between X and a vector (part of the parameter set A)
representing class i. In this case, the maximum in the decision rule of Eq. (5.100) is replaced
by aminimum. Furthermore, since a speech pattern is represented by a sequence of vectors,
the discriminant function is defined for a sequence of vectors rather than a single vector;
i.e. gi(X;4) instead of 8i(x; a) with a being the template parameter set. The parameter
set includes the template spectral vectors and the discriminative weighting functions. The
goal of discriminative training is to obtain the values in A for the “best” recognition result,

Given a set of labeled samples {(XOW L i=1,2,....M training is usually ac-
complished by optimizing a prescribed criterion defined on the given labeled set. Since
speech recognizers are generally evaluated by their recognition error rate, it is therefore
desirable to use recognition error as the minimization criterion. For a finjte training set, i.e.
N < 00, unfortunately, the recognition error count (or the error rate) is a piecewise constant
function of the recognizer parameter set and cannot easily be minimized with traditional
optimization methods. The following three-step procedure presents a reasonable way to
define a parametrically smoothed recognition error function, capable of being minimized
by straightforward gradient descent algorithms.

L. Define a set of discriminant functions 8{X,A)i=1,2,... M.
2. Define a misrecognition/misclassification measure

1/n
hi(X;a) = —8i(X,A)+ {M;—l Zgj(X; A)’l} (5.101)
JJ#i
where 7 is the smoothing parameter. (Note that here we use the generic decision
rule of Eq. (5.100). When the maximum in Eq. (5.100) is replaced by 2 minimum,
modification of Egq. (5.101)is necessary. See Eq. (5.115).)
3. Define a smooth 0-1 loss function £(X; 1) based on the misrecognition measure, i.e.

65 8) = Gi(h(X; ). (5.102)

Examples of smooth 0-1 functions include
a. sigmoid function
1

i = 1 Fe-thra’

£>0 (5.103)
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b. hypertangent function
#(h) = tanh (h). (5.104)

The misrecognition measure h; enumerates the recognition operation of Eq. (5.100). The
smooth 0-1 loss function then converts the enumerated recognition operation into a
smoothed error count. During training, when a labeled sample is presented, a smooth
error count is thus

M
UX;8) = D LY )IX € T (5.105)

i=1
where 1(-) is the indicator function
1, ifevent £ is true

. (5.106)
0, otherwise

10={
and C' denotes the pattern set for class /. (We interchange freely the notations for the
pattern set and the class identity without ambiguity.)
The recognizer performance can be defined as the expected value of the above loss
function
L(a) = E{4(X; )} (5.107)

This performance criterion can be minimized by an adaptive, gradient descent scheme in
which the parameter set a is sequentially adjusted by a small amount each time a labeled
training sample is evaluated. Let Aj+1 be the parameter set after X; is applied. The
adjustment rule for obtaining a;4 is

Ajr1 = A+ AAj (5.108)

where
Ar=-0y X5 a)). (5.109)

In Eq. (5.109), ¢; is a small positive number satisfying certain stochastic convergence
constraints [16], U is a positive definite matrix and V¥ is the gradient operator with respect
to the parameter set . It can be shown [16] that the adjustment rule of Eq. (5.108) leads to
the following results:

L E[L(Aj41) — L] €0 (5.110)
2. a; converges with probability one to A* which results in a local minimum of £(a).

For discriminative training of DTW templates as well as the accompanying weighting
functions, we need to make explicit the definitions involved in the above three-step pro-
cedure. Suppose each vocabulary word C' is to be represented by N; reference templafes,
each being a pair (V,, w;,),n=1,2, ... ,Ni. The recognizer parameter set A then consists
of all the template sets {[(Vn, Win), n = 1,2, ... yNil, i=1,2,...,M}. We define a word
(class) distance, to be used as the discriminant function for word-based templates, between
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an utterance X and a word C" as
N; =1/
1
(X,A) =1 — —f;
8i(X,a) = log { N, ,.E=: exp(~fin nw)} (5.111)

where f;, is the template distance, as defined below, and 7, is the smoothing factor for
combining the template distances into a word distance. Note that if n,, — 0o, g(X, a) is
equivalent to the minimum template distance and the factor 1/N; becomes inconsequential.
The template distance is obtained from path distances as -

1 @ =/m
ﬁn =f;'n(Xv (;vimwin)) = lOg {6 ZCXP(-dint 771)} (5112) ‘

=1

where @ is the total number of warping paths between pattern X’ and reference template
ins Tt is, similar to 7, the smoothing factor for combining path distances dj,;. The path
distance dy is defined in the same way as Eq. (5.92)

T
dint = dye(X, Vi) = Y d($L(k), $L)Win(k) /M g (5.113)
k=1

where d(¢(k), ¢L(k)) is the frame-to-frame (local) spectral distance measure and wi (k) is
the discriminative weighting function. Again, the value of 7, can be varied to adjust the
relative significance of path distances in calculating the template distance of Eq. (5.112).
In the extreme case, 7, — oo and fin becomes identical to the minimum distance along the
optimal time warping path :

Jinl X, Vin, Win)) = n;i[n dge(X, V). (5.114)

Therefore, the traditional dynamic time warping distance defined between two speech
patterns is a special case of the parametrically smoothed template distance of Eq. (5.112).

Having defined the discriminant functions 8i(X, A), we proceed to define the mis-
recognition measure

1 —1/9
hi(X, 8) = gi(X, 4) — log { =T 2 ol —gj(X,A)n}} (5.115)
JyJ#i
which differs from Eq. (5.101) due to the fact that g,(X, a) is a form of distance and the
decision is based on a minimum distance rule; i.e.

CX)=C', iff g(X,a) = rr}in gi(X, A). (5.116)

The difference is only in form rather than substance. Finally, the smooth 01 loss function
can be any of the above mentioned functions of Eq. (5.103), (5.104).

The above formulation enables us to implement adaptive discriminative training
according to the scheme of Eq. (5.108-109). We do not provide explicit derivations of
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VA(X; a) here. For implementational details, Ref. [16] should be consulted. We conclude
this section by giving an interpretation of the adaptation scheme. Note that £(X}; A)
evaluates the “error probability” achieved by the recognizer with parameter a, when a
labeled token pattern Y is presented for training. The gradient 74(X}; o) determines the
direction in which the recognizer parameters should be changed to increase or decrease
this (approximate) error probability. The adaptation amount Aa of Eq. (5.109) ensures
that the (approximate) error probability will decrease in a probabilistic sense for the next
token Xj.1. As more training data is presented, the recognizer parameter set eventually
converges to a solution which is at least a local optimum.

Adaptive discriminative training is a topic that is currently undergoing intensive
research. This section was intended to present several of the key ideas behind the new
training method, which in several interesting cases has proven effective and powerful.

5.7 SPEECH RECOGNITION IN ADVERSE ENVIRONMENTS

The performance of most speech-recognition systems, whose designs are predicated on
assumptions about the ambient conditions, such as low noise background, degrades rapidly
in the presence of noise and distortion. It is therefore important to consider the problem of
speech recognition in adverse environments that are inevitable in real-world applications.

By way of example, Dautrich et al. [17] demonstrated that an isolated word recognizer
trained in clean (virtually noise-free) conditions and capable of achieving a recognition
accuracy of 95% had an order of magnitude increase in error rate when tested with noise-
contaminated utterances at an SNR (signal-to-noise ratio) of 18 dB. Figure 5.24 summarizes
the results of [17] and illustrates several key considerations in noisy speech recognition.
First, as the curve (labeled MATCHING S/N) shows, a recognizer can provide good
performance even in very noisy background conditions if the exact same testing condition
(noise level) is used to provide the training material from which the reference patterns
of the vocabulary are obtained. Second, the degradation in recognition performance due
to noise can be significantly reduced if the stored reference patterns are trained under
conditions that approximate the noisy test conditions (see curve labeled MISMATCHED
S/N — TEST S/N = 18 dB where the abscissa represents the level of noise added to
the reference patterns). Although these results indicate certain ways to get around noise
problems, the inadequacy comes from the fact that training reference patterns under the
exact matched noise condition of test utterances is seldom realistic and that the training
of reference patterns based on noisy input leads to unacceptable performance when the
test condition in fact involves no noise. Thus, the use of the term “adverse environments”
implies unknown, mismatched, and often severe differences in environment and other
variables between training and testing. Obviously, in considering speech recognition in
adverse environments, the goal is to have an automatic recognizer with robust performance
approaching that of matched conditions (as if the recognizer were trained and tested under
the same conditions).
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Figure 524 Speech-recognition performance in noisy conditions; e:
training and testing have matched S/N as indicated by the abscissa; 4
only clean training reference is used and the abscissa indicates that the test
S/N; O: training and testing S/N’s are mismatched with test S/N fixed at 18
dB and the abscissa indi the traini g S/N (after Dautrich et al. [17]).

5.7.1 Adverse Conditions in Speech Recognition

A. speech recognizer often encounters three main causes of adverse conditions: noise,
distortion, and (human) articulation effects.

5.7.1.1 Noise

Acoustic ambient noise is usually considered additive, meaning that the recorded signal is
a sum of the speech signal and the ambient noise. High levels of ambient noise are one
of the primary concerns for a speech recognizer. Sources of acoustic ambient noise are
abundant. For example, in an office environment, sources of noise include office machinery
such as a typewriter or printer, personal computers (PC), or workstations, which are usually
equipped with moving components like disks and fans, telephone ringing and background
conversation of other people. These noise sources often provide enough acoustic noise to
cause severe performance degradation of a speech recognizer. The sound pressure level
(SPL) in a normal personal office is around 45 ~ 50 dBA (noise criterion NC 40 ~ 45).
Figure 5.25 shows a typical spectrum, fitted with a 16th-order all-pole smoothed model
spectrum, of ambient noise recorded in a personal office with a SUN 3/110 on and operating.
In a business office where secretarial duties are performed, the SPL could be 15-20 dB
higher than that of the personal office. Inside an automobile, the acoustic noise level from
the engine, cooling fan, wind, tire and road is usually considerably higher, particularly
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Figure 525 Noise spectrum in a typical personal office with a SUN 3/110.

when the automobile is moving at high speeds. It is not unusual [18, 19] that the signal-
to-noise ratio of speech signals recorded in a passenger car with a microphone mounted on
the dashboard in front of the speaker/driver drops below 5 dB when the car is cruising at a
highway speed of 90 km/h with the window closed and the fan turned off. In the cockpit
of a modern jet fighter aircraft, SPLs of 90 dB or more across the speech frequency band
have been reported. At this noise level, the speech signal is barely intelligible even to a
human listener, not to mention an automatic speech-recognition machine.

The spectrum of acoustic ambient noise is usually not flat. In the case of car noise, the
measurements of [18] indicate that while low-frequency noises generated by mechanical
sources such as the engine, tire, and fan show a decaying trend in the power spectrum as
a function of frequency, high-frequency noise due to aerodynamic phenomena essentially
have a flat spectrum beyond 1 kHz.

Other types of noise such as electrical noise and quantization noise, which of course
are present in any electronic speech-recognition system, are in general at a level below the
threshold of concern. Nevertheless, noise due to transmission and switching equipment in
a telephone network can sometimes be a factor affecting recognizer performance,

5.7.1.2 Distortion

Aside from the additive contamination due to noiselike signals, the uttered signal inevitably
undergoes a series of spectral distortions before being recorded and processed for speech
recognition. (There are two kinds of distortions—linear and nonlinear—although most
of our discussion will concentrate on linear distortions.) The room in which the speech
recognizer unit is deployed almost certainly has a varying degree of reverberation that
can alter the signal spectrum. The microphone transducer, depending on its type and
mounting position, also can significantly distort the speech spectrum. When the transducer
configuration used in testing is different from the one used during training of the reference
patterns, the mismatch in spectral distortion becomes one of the major problems. For
example, it was reported [20] that a large-vocabulary speech-recognition system with a
baseline performance of 85% word accuracy in a matched transducer condition (Sennheiser
HMD224 close-talking microphone for both training and testing) could only achieve less
than 19% word accuracy when a different microphone (Crown PZM6fs desktop mounted)
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premises attenuation distortion relative to 1004 Hz in
a telephone channel (after Carey et al. [21 D.

TABLE 5.5. Attenuation distortion relative to 1004 Hz: short connections.

Freq. Mean Standard . Quantile
(Hz) Dev. 1% 10% 50% 90% 99%
204 5.1£29 2.9 20 25 33 100 132
604 0401 0.3 -06 00 04 09 13
1104  —0.1+0.1 0.4 -23  -03 —01 01 13
1604 —0.1+0.1 04 -12 =05 -01 02 10
214 02407 0.7 ~14 —04 -0 10 25
2804  17+27 2.6 -06 -01 03 58 100
3204 4.1+49 46 02 05 15 115 182

was used during testing. (Note that in this case, noise and SNR are not characteristically
matched either.)

When an automatic speech recognizer is deployed in a telephone network, the tele-
phone channel through which the speech signal travels can cause further distortion of
the signal spectrum. To illustrate typical spectral characteristics of a telephone channel,
Figure 5.26 shows the mean customer-premises-to-customer-premises (end-office concate-
nated with loop) attenuation distortion relative to 1004 Hz, obtained in an end-office
connection study and loop survey by a telephone carrier [21]. It is seen that the signal
bandwidth is critically limited by the appropriate transmission system to approximately
200-3200 Hz. Within this frequency band, there is stili a difference of 10 dB in spectral
attenuation. Table 5.5 gives the statistics of attenuation distortion relative to 1004 Hz for
short end-office connections (0-180 airline miles) alone, excluding the loop portion. At
204 Hz, the mean attenuation is 5.1 dB, but at the 10% and 90% quantile, the attenuation
is 2.5 dB and 10 dB respectively. Similarly, at 3204 Hz, the mean attenuation is 4.1 dB,
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with 0.5 dB and 11.5 dB attenuation at the 10% and 90% quantile, respectively. This wide
range of variation in attenuation can obviously cause spectral mismatch distortion unless
the telephone channel is measured/learned before every recognition trial.

5.7.1.3 Articulation Effects

Many factors affect the manner of speaking of each individual talker. Even the psychologi-
cal act of communicating with a speech-recognition machine could make the talker produce
a noticeable difference in his or her sound formants and rhythmic pattern. Characteristic
changes in articulation due to environmental influence, known as the Lombard effect, can
also be dramatic. When a talker speaks in an environment with a masking noise of 90 dB
SPL, Pisoni et al. reported [22] that the first formant of a vowel often increases while the
second formant decreases, resulting in a potential shift in the vowel space. In a separate
study [23], Junqua et al. estimated the increase in the first formant frequency due to an 85 dB
SPL masking noise to be between 42 and 113 Hz. Furthermore, a significant change in
spectral tilt was also observed [23]; spectral tilt in the high-band decreases, while that in the
low-band increases for most of the vowels and liquids. These characteristic changes dra-
matically affect the performance of an automatic speech recognizer. A speaker-dependent
isolated word recognizer that had an accuracy of better than 92% when the training and the
testing were conducted under the same clean (virtually free from noise and the Lombard
effect) condition could only achieve an accuracy of 61% when the test utterances contained
the Lombard effect, even though the test tokens were free from masking noise {24]. (This
result was obtained using an artificial experimental setup, which investigated the Lombard
effect independent of all other effects.)

A major difficulty in dealing with articulation effects on speech is a lack of under-
standing as to how to quantify them. With acoustic noise or channel distortion, which
usually does not vary as rapidly as the speech itself in terms of spectral characteristics,
we can, to some extent, measure or model the effects so as to improve the recognizer
design. For example, a white noise is usually specified by its power level, and a channel is
often represented by its frequency response. Articulation effects, however, are an inherent
product of the speech-production process and have been shown to be context dependent
[23]. A qualitative characterization of the Lombard effect is not specific enough to provide
an adequate guideline for enhancing the speech recognizer. As will be discussed later, most
of the proposed solutions therefore do not have a firm theoretical foundation.

5.7.2 Dealing with Adverse Conditions

As pointed out previously, if the characteristics of the corrupting noise are approximately
known, a speech recognizer that uses reference patterns trained from speech with the same
corrupting noise components, in general, performs more robustly than one that uses clean
reference patterns. This result can be extended to other cases in which the talker, because
of his or her psychological reaction to environmental stress, produces speech in unusual
talking styles (slow, fast, soft, loud, angry, and Lombard). The idea is simply to train
the recognizer with a multi-style training procedure in which speech signals of different
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Figure 527 Schematic of the two-input noise cancelling approach.

talking styles are used as the training data. In an isolated word-recognition experiment using
hidden Markov models (sce Chapter 6), Lippmann et al. [24] reported that the error rate
of a recognizer, when tested with speech materials of various talking styles, was reduced
by more than a factor of 2, from 17.5% using only normally-spoken reference patterns to
6.9% with multistyle training. Multistyle training seemed to be most effective with speech
exhibiting the Lombard effect and with speech produced under highly emotional (angry)
conditions.

We have argued that the use of training material reflecting actual deployment condi-
tions usually is not practical. Therefore, straightforward solutions like noisy or multistyle
training often do not solve the problem of robust speech recognition in adverse conditions.
In the following, we discuss a number of methods and algorithms that have been proposed
to combat the unknown environment in which a speech recognizer must operate.

5.7.2.1 Signal-Enhancement Preprocessing

When the adverse condition is due to additive noise alone, one can use well-established
speech-enhancement methods to suppress the noise before applying the recognition al-
gorithm. One of the most widely studied signal-enhancement methods is adaptive noise
canceliation using two signal sources [25]. Figure 5.27 illustrates the principle of the two-
input noise cancelling approach. The technique adaptively adjusts a set of filter coefficients
so that subtracting the filtered noise input from the primary (speech plus noise} input leads
to an output signal with minimum energy. This technique, however, requires that the noise
component in the corrupted signal and the noise reference have high coherence. Inside a
passenger car, it was found [26] that if the two microphones are located at a distance greater
than 50 cm, the only coherent noise component is that of the engine. To cancel 90% of the
noise energy, the two microphones cannot be more than 5 cm apart, which makes it almost
impossible to prevent speech from being included in the noise reference. Therefore, one
can only expect cancellation of noise related to the fundamental frequency of the engine
revolution rate if the two microphones are spaced at a reasonable distance. This lack of
noise coherence was also observed in the sound field of a fighter aircraft cockpit.

Other speech-enhancement techniques that do not rely on the existence of a simul-
taneous, separate noise reference have also been proposed. These techniques use some
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estimate of the noise characteristics, such as noise power and/or SNR, to obtain improved
spectral models of speech from noise-corrupted signals. (Many of these techniques are for
general speech-enhancement purposes, not specifically for improving recognition perfor-
mance.) The work of Porter and Boll [27] and that of Ephraim et al. [28] are worth noting
as they have been directly applied to speech recognition.

The least-squares estimator of short-time independent spectral components of {27)]
differs from a traditional estimator in that the conditional mean of the spectral component
is obtained from the sample average estimator of clean speech rather than from an assumed
parametric distribution. The method uses a clean speech database and a noisy version of it
by artificially adding noise to the clean set to construct a function that maps a noisy spectral
component (at each single frequency) to a noise-suppressed value. For a specialized
Gaussian noise model, the function can be calculated using just the clean speech database
and an estimate of the SNR. (A similar technique was developed in [29] for simultaneously
restoring an entire spectrum without assuming that spectral components are independent.)
Under the condition that the signal and the noise levels were fixed and known (SNR=10dB),
the technique was shown to be able to reduce the recognition errors due to noise by about
75% (from ~40% to ~10%) for a speaker-dependent digit-recognition task.

The method of [28] is interesting in that the short-time noise level as well as the
short-time all-pole spectral model of the clean speech are iteratively estimated to minimize
the Itakura-Saito distortion between the noisy spectrum and a composite model spectrum,
which is a sum of the estimated clean all-pole spectrum and the estimated noise spectrum.
That is, if |2%, o2/ JA|%, and X represent the noisy power spectral density, the all-pole
model spectral density, and the noise power level respectively, the algorithm iteratively
finds o/A and A such that

2 2 2
aizl o +n = [ Ly 2
o |02/ |Ae)|" + A o2/ |A(@)|“ + A 2w
(5.117)

is minimized. The resultant ¢/A is then used in the recognizer as the spectral measurement
of speech. The method can be applied to the test utterances as well as the training utterances
without explicit knowledge of the noise level. The main limitation appears to be the assump-
tion of composite model spectrum for the noise-corrupted signal. In a speaker-dependent
isolated word (alphabet plus digits) recognition experiment, the technique significantly
improved the recognition accuracy, from 42% when unprocessed clean reference templates
were used for 10 dB SNR test tokens to almost 70% when both the reference and the
noisy test tokens were processed to produce the enhanced spectral measurement. Increased
computational complexity is, however, one drawback of this method.

5.7.2.2 Special Transducer Arrangements

If the talker position is allowed to be held fixed, a noise-cancelling microphone can be
effective in suppressing low-frequency noise in an automobile or aircraft cockpit envi-
ronment. A noise-cancelling microphone is a specially designed dynamic microphone in
which both sides of the diaphragm are exposed to the sound field such that sounds coming
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from a relatively large distance (far field) are cancelled because the sound pressure causes
virtually no net force on the diaphragm. For sound sources close to the microphone (near
field), the back of the diaphragm is effectively shaded from the sound field and the sound
pressure is received only by the front of the diaphragm. In a passenger car using a pressure-
gradient noise-cancelling microphone (CONFIDENCER by Roanwell), Dal Degan and
Prati [26] showed that the signal picked up is essentially noise free if the microphone is
kept very close to the talker’s mouth and parallel to the wavefront. But with a mere 10-cm
shift and 30-degree rotation, the speech power drops by 15 dB, resulting in a performance
degradation.

Other types of gradient microphones (first-order as well as second-order) were shown
by Viswanathan and Henry [30] to be effective in a moderately noisy environment (95 dB
SPL broadband acoustic noise) if the sensor location was optimized and fixed. When the
noise is severe, as in a fighter aircraft cockpit at 105 dB SPL, Viswanathan and Henry (30}
reported that the noise-cancelling microphone alone did not lead to satisfactory recognition
results and suggested the use of a two-sensor input that combines an accelerometer output
for low frequencies (up to ~1.5K Hz) and gradient microphone output for high frequencies
(above ~1.5K Hz). The accelerometer is attached to the skin (often near the throat) of the
talker to measure the skin vibration and is insensitive to acoustic noise. Another possibility,
also suggested in [30], is to use the two sensor outputs in parallel to facilitate composite
feature extraction, such as concatenated spectral coefficient vectors, for speech recogni-
tion. Although performance improvements were demonstrated with various multisensor
arrangements, as compared to each single constituent transducer, the test was limited to
matched training and testing conditions and thus cannot be extrapolated to the mismatched
situation where the characteristics of the ambient noise may be varying due to changing
flying speed and altitude, and adaptive training is not permitted.

5.7.2.3 Noise Masking and Adaptive Models

In the presence of broadband noise, certain regions of the speech spectrum that are of a
lower level will be more affected by the noise. This makes the calculation of spectral
distortion (as a measure of spectral dissimilarity) difficult because those more corrupted
regions represent less reliable spectral measurements. Recognizing this difficulty, Klatt
[31] advocated use of noise masking in conjunction with a filter-bank analyzer. The key
idea was to first choose, for each channel of the filter-bank output, the masking noise level
as the greater of the noise level in the reference signal and that in the testing signal, and
then replace that channel output by the mask value if it is below the corresponding mask
level. This helps prevent spurious distortion accumulation because those channels that are
determined to have been seriously corrupted by noise will have the same spectral value in
both the training and the testing tokens. Many noise-compensation schemes are based on
this principle. ’

Klatt’s masking scheme, however, has practical limitations, particularly when the
two patterns being compared have very different noise levels. When the test token is
contaminated by a high level of noise, all the reference patterns that are of lower level than
the noise would result in equally small distances, making the comparison meaningless.
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Subsequent improvements to Klatt’s technique were proposed by Bridle et al. [32] and
Holmes and Sedgwick [33]. These revisions incorporated the following measures 1o
overcome the above limitation: (1) maintain a running estimate of the noise spectrum,
both during training and testing; (2) separately mark, rather than mask, the channel spectral
values of the training and the testing tokens as speech or noise according to respective noise
estimates; (3) devise individual distance-calculation rules for different marking situations
(i.e., speech-speech, speech-noise, noise-speech, and noise-noise); and (4) in case of
multiple reference patterns, use the maximum of the noise estimates for the particular
channel during training,

A separate technique of noise compensation was employed by Roe [19] to adapt the
spectral prototypes to the noise condition in the autocorrelation domain, The technique is
reminiscent of the spectral transformation ideas for VQ code words discussed in Section
5.5.1and is elaborated below. The underlying assumption, unlike the above masking model,
was that the power spectra of speech and noise are additive and so are the autocorrelations.
Roe obtained improvements in recognition accuracy with this simple method. Roe’s method
included other features that applied to stress compensation as discussed in the next section.

5.7.2.4 Stress Compensation

The purpose of stress compensation is to provide offset for the spectral distortion caused
by extraordinary speaking effort due to the talker’s reaction to ambient conditions. Be-
cause of the difficulties in modeling such characteristic changes, no analytical result is
available. However, several proposed heuristic techniques are noteworthy because of their
effectiveness. .

The recognizer of Roe [19] is a traditional template-based system that incorporated
both vector quantization and dynamic time warping. In the system, the spectral pattern was
first vector quantized and replaced by the closest spectral prototype (code word) in the vQ
codebook for subsequent distortion calculation. To adapt the “stress-free” clean spectral
prototypes to the stressed speech, each (known) stressed speech utterance was time-aligned,
without spectral quantization, to the correct reférence template. The autocorrelation vectors
of the stressed speech frames were then grouped according to the corresponding VQ indices
in the reference templates and averaged to yield the stress-compensated prototypes. In a
speaker-trained isolated digit recognition trial, the stress-compensation scheme reduced the
number of recognition errors by two-thirds, from 29.9% to 9.6%, when the extra speaking
effort was caused by the noise in a car cruising at 60 mph with ventilation fan on.

Another stress-compensation technique, operating in the cepstral domain, was pro-
posed by Chen [34]. The basic assumption of the technique was that spectral distortion
induced by unusual speaking efforts could be compensated by simple linear transformation
of the cepstrum. Although this assumption may be unduly optimistic, it was observed [34]
that the statistics of cepstral vectors did display some systematic modification in various
speaking styles. The possibility of spectral compensation in the cepstral domain thus be-
came viable. Incorporation of cepstral compensation in a stochastic model based recognizer
(see again Chapter 6) was found to be effective [34] in dealing with various articulation
effects.
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5.7.2.5 Robust Distortion Measures

The idea of robust distortion measures is to selectively and automatically emphasize the
distortion pertaining to certain regions of the spectrum that are less corrupted by noise.
A noise-compensation scheme can be interpreted as implicitly defining a robust distortion
measure. Clearly, noise-masking attempts to deemphasize the measured distortion in
those regions contaminated by noise. For independent spectral components, such as those
obtained by filter-bank methods, the practice of noise compensation and the interpretation
of distortion measures are straightforward. For other spectral representations, selective
emphasis of certain spectral regions to account for the noise effects can be realized in
various ways.

Spectral weighting for improving speech-recognition accuracy has long been consid-
ered a viable approach. The work of Matsumoto and Imai [35] represents an early effort
to investigate the sensitivity of various weighted distortion measures to noise contamina-
tion in recognition tasks. As discussed in Chapter 4, weighted spectral measures such as
the weighted likelihood distortion attempt to emphasize the spectral peak regions that have
more power concentration to resist noise corruption. It was reported [36] that at 18 dB SNR
(white noise) using only clean reference templates, weighted measures greatly improved
the recognition performance (from 60% to 90% word accuracy) in a speaker-dependent
isolated word (28 Japanese city names) recognition trial. Soong and Sondhi [37] also pro-
posed a weighted measure, similar to the above asymmetrically weighted likelihood ratio
distortion, with a noise-adaptive bandwidth expansion factor in the weighting spectrum.

When proper weighting functions are used, weighted cepstral measures (Eq. (4.37))
have been found to be advantageous for speech recognition in clean as well as noisy
conditions. Indeed, one can argue that additive white noise affects the cepstrum of an
all-pole system mostly in the low-frequency terms and thus applying a cepstral lifter to
de-emphasize these terms will be beneficial. The work of Itakura and Umezaki [38] on
smoothed group delay spectra is a comprehensive study of weighted cepstral measures in
noisy and distorted conditions. The cepstral lifter w(n) considered in [38] has a general
form of -

w(n) = nfexp(—n?/27%)  s>0. (5.118)

Several test conditions were considered for a set of confusing Japanese city name pairs:
high-quality microphone recording, distortion due to first-order frequency transfer char-
acteristics deviation (1 — az~!)/(1 + az~'), signal-dependent multiplicative noise and
telephone speech recorded with carbon microphones. The cepstral liftering led to various
degrees of performance improvements; for example, at 10 dB SNR (multiplicative noise),
the recognition accuracy was enhanced from ~62% without cepstral liftering to ~82%
with cepstral liftering for s = 1.5 or 2. Overall performance for various conditions was
found to be best with parameters s = 1 ~ 2 and 7 = 5. It is interesting to note that with
these parameters the smoothed group delay weighting function is very close to the raised
sine lifter of [39].

The pursuit of a robust distortion measure can be more effective if we havean
analytical understanding of the effects of noise upon spectral parameters. Mansour and

Sec. 5.7 Speech Recognition in Adverse Environments 315

Juang [40] reported that analytical as well as experimental evidence indicates that additive
white noise causes the cepstral vector norm (length of the cepstral vector, with the zeroth
term excluded) to shrink but leaves the cepstral vector orientation more or less intact.
The vector norm shrinkage is detrimental in the traditional distortion calculation where a
Euclidean distance is employed. Furthermore, since the norm shrinkage was found to be
a function of the noise level, the vector norm itself can be used to facilitate nonuniform
weighting for each speech frame in the accumulative distance during dynamic sequence
comparison. The result suggests the use of a projection operation to formulate several
distortion measures to cope with the mismatched noisy condition where the reference
patterns are noise-free and the test conditions are unknown. In [40], the following cepstral
projection measure was found to be a good choice overall for clean as well as noisy speech:

. - X7 X,
d(x,,x,) =[x (1 | lxll) (5.119)
where x, and x, are the reference and the test cepstral vector respectively and * denotes
matrix transpose. In a speaker-dependent isolated word recognition trial (using the 39-
word vocabulary referred to several times in this chapter), the projection measure was
shown to be superior to many other well known distortion measures. Figure 5.28 shows
the recognition rate as a function of SNR for several distortion measures; the iterative
enhancement method in the figure refers to the preprocessing enhancement of Ephraim et al.
[28] discussed previously. The effectiveness of the new distortion measure is clearly seen.
The robust distortion measures were also found to lead to better recognition performance
for Lombard speech.

5.7.2.6 Novel Representations of Speech

Apart from the above robust distortion measures, noise adaptation schemes, and speech en-
hancement algorithms that rely on traditional spectral measurements, there have been made
many other attempts to combat the noise problem by finding characteristic representations
of speech that are invariant or resistant to noise corruption. The approach, here, is to find
a robust “front-end” that produces reliable measurements of speech even in the presence
of noise. Two classes of such systems are noteworthy; one is from a signal-processing
viewpoint and the other tries to duplicate the human auditory capability.

The short-time modified coherence (SMC) of speech proposed by Mansour and Juang
[41] takes advantage of the inherent coherence in adjacent segments of the speech signal
to enhance the SNR. It can be shown that an unwindowed autocorrelation operation on the
impulse response of an all-pole system does not alter its pole structure and estimation of the
system parameters may be more reliably accomplished from the autocorrelation function
when the signal has been corrupted by noise. The autocorrelation sequence is defined by

N-1

1 N )
pi=Nj=Zox([)x(/+l), i=0,1,...,N (5.120)

which for quasistationary signals like speech represents the coherence of adjacent signal
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Figure 5.28 Noisy speech-recognition performance of several dis-
tortion and methods (after M: and Juang [41]).

segments.  All-pole modeling of the autocorrelation sequence (rather than the speech
waveform x(i)) results in a more robust signal representation than that of the signal itself.
The SNR improvement is data dependent (a function of the speech impulse response) and
was found to be around 10~12 dB for typical SNR’s between 0 and 20 dB. For noisy
speech recognition at 10 dB SNR, the SMC maintains an accuracy of 98.3% for a speaker-
dependent digit test, while the traditional all-pole spectrum representation suffers a severe
degradation with accuracy dropping to 39.8%, from 99.2% in clean conditions.

The human auditory system seems to perceive speech better than any machine pro-
cessor when noise interference is present. As previously described in Section 3.5.1, based
on this premise, Ghitza [42] proposed a computational model, called the Ensemble Inter-
val Histogram (EIH), to represent the auditory-nerve firing pattern which is assumed to
be robust to noise corruption. Figure 3.53 showed a comparison of the traditional FFT
spectrum and the EIH representation with their corresponding all-pole (linear prediction,
LPC) spectral fit in clean as well as 0 dB SNR conditions for the vowel /¢/. The robustness
of the EIH to noise corruption was demonstrated by the results shown. When applied to
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noisy speech recognition in conjunction with a traditional dynamic time warping scheme,
the EIH was reported to yield significant accuracy improvements for male speech [42].
Other aspects of the representation, particularly how the “brain” makes best use of the
“auditory-nerve firing pattern,” are not yet well understood.

5.8 SUMMARY

In this chapter we have discussed how a speech recognition system can be built to perform
a given task. We showed that a VQ-based system has the advantage of computational
simplicity although its performance is generally not adequate for many standard speech
recognition tasks. An alternative idea was to use the VQ system as a preprocessor which
produces preliminary recognition decisions in order to reduce the computational load of a
recognition system. In this implementation, vector quantizers have proven effective and
are easy to implement.

In speech-recognition systems based on template matching, one critical component
is the set of reference patterns that are used to represent the vocabulary words to facilitate
pattern comparison and recognition. The reference template set can be “trained” in a number
of ways. It was shown that classical clustering methods generally lead to better and more
reliable (robust) recognition performance then alternative template training procedures.
Although one has to be cautious about the fact that speech patterns are sequences of
variable duration, many of the traditional clustering techniques that have been proposed
for fixed dimensional vectors require only minor modifications in order to be applicable
for speech template clustering. ’

Results of experimental studies of different task-oriented speech recognizers show
that the performance of a speech-recognition system can be optimized by choosing the
“right” distortion measure and using a reasonable template clustering method. The recog-
nition rate can be often improved somewhat by incorporating energy information into the
spectral distortion measure.

We also discussed several other important topics related to training and implemen-
tation of systems. Template adaptation, which attempts to adjust the reference patterns
to match a new talker based on a limited amount of training data from the new talker, is
often critical in many applications. Discriminative training, unlike clustering, is intended
to train the reference templates so as to be able to distinguish acoustically confusing word
classes. Finally, adverse noise and environmental issues that often seriously affect the
performance of a speech recognizer during actual deployment, were discussed. Several
promising methods to deal with various adverse conditions were presented.
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Chapter 6

THEORY

AND IMPLEMENTATION
OF HIDDEN

MARKOV MODELS

6.1 INTRODUCTION

In Chapters 4 and ¢ presented one major pattern-recognition approach to speech reco
tion, namely the t i‘:éx’lhte method. One key idea in the template method is to dﬁ"gé typi
se’&héﬁces of speech frames for a pattern (e.g., a word) via some averaging pra:édure, and
to rely on the use of local spectral distance mbastres % Egar%y terns. Another key
idea'is to use some form of@ynamic programmingto te; % y 1g;ﬁnems to account
for differences in speaking rates across talkers as well as across repetitions of the word by
the same talker. The methodology of the template approach is well developed and provides
good recognition performance for a variety of practical applications.

The template approach, however, is not based on the ideas of statistical signal model-
ing in a strict sense. Even though statistical techniques have been widely used in clistefing
to create reference patterns, the template approach is best classified as a simplified, non-
parametric method in which a multiplicity of reference tokens (sequences) are used to
characterize the variation among different utterances. As such, statistical signal charac-
terization inherent in the template representation is only implicit and often inadequate.
Consider, for example, the use of a truncated cepstral distortion measure as the local dis-
tance for template matching. The Euclidean distance form of the cepstral distance measure
suggests that the reference vector can be viewed as the mean of some assumed distribution.
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Obviously, this simple form of the sufficient statistic! (use of only the mean reference
vector) neglects the second-order statistics—i.e., covariances, which, as will be seen later,
are of particular significance in statistical modeling. (Note that this distribution is used
to account for variations of the cepstral coefficients at the frame level since time align-
ment is performed so as to match appropriate frames of the patterns being compared.)
There is clearly a need to use a more elaborate and analytical statistical method for speech
recognition. 63

In this chapter we will study one well-known and widely used statistical method
of characterizin%e spectral properties of the frames)of aﬁ:ﬁnﬂ namely the hidden
Miikoy model (HMM) approach. (These models are also refbi 0
prog’abiﬁstic functions of Markov chains in the communications litérﬁﬁ'?e.) The underlyin

assumption of the HMM (or an)g._ﬁothel;\ type of statistical model) is that the speech signal

Cﬁﬁswfu( o%éq;cterized asa Qﬁ}ﬁetric random process, and, that the parameters of the
st C p‘g s can be determined (estimated) in a p"rgc‘i’sé,’well-deﬁned manner. We

will show that the HMM method provides a natural and highly reliable way of recognizing

,%f,ech for.a wide range of applications and mjégg" tes well into systems _im:p[mrating both
Q R syntax)and|sémantics. oo
eory o

P

The basic hidden Markov models was pu"t‘)libs(hed in a series of classic
papers by Baum and his colleagues ([1]-[5]) in the late 1960s and early 1970s and was
implemented for speech-processing applications by Baker [6] at CMU, and by Jelinek and
his colleagues at IBM ([7]-{13]) in the 1970s.

‘We begin this chapter with a review of the theory of Markov chains and then extend the
ideas to HMMs using several simple examples. Based on the now-classical approach of Jack
Ferguson of IDA (Tiistiflite for Defense Analyses), as introduced in Iéctlires and in writing
[14], we will fgcus;our attention on the three t?,la(iﬂ:,nental problems for HMM design,
namely: ‘the eviluation of the _robability (or likelihGod) of a sequence of observations
given rqlspeciﬁc HMM; the detérmination of a best sequence of model states; and’the
adjuistment of model parameters so as to best account for the observed signal. We will
show that once these three fundamental problems are solved, we can readily apply HMMs
to selected problems in speech recognition.

6.2 DISCRETE-TIME MARKOV PROCESSES

7T
Consider a system that may be described at any time as being in one of a set of N distfngt
states indexed by {1,2,...,N} as illustrated in Figure 6.1 (where N = 5 for simplicity).
Atrég ﬁlﬁfz spaced, discrete times, the system uidefgoes a change of state (possibly back
to the same state) according to a set of probabilities associated with the state. We denote
the time instants associated with state changes as ¢ = 1,2,..., and we denote the actual

'Sufficient statistics are a set of measurements from a process which contain all the relevant
information for estimating the parameters of that process. -

as Markov sources or =+

~

T
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Figure 6.1 A Markov chain with five states

Figure 6.2 Markov model of the weather.

(labeled 1 to 5) with selected state itions.

state at time ¢ as .. A full probabilistic description of the above system would, in general,
require specification of the current state (at time #), as well as all the predecéssor states. For
the special case of a discrete-time, first order, Markov chain, the probabilistic dependence

]

is truncated to just the pl;ecﬁefiing state—that i;s {a( essor $ fqt,_
Plq, ‘@t—l =Qq:-2 k,)..1=Plg; = jlgi—1 = il.
f'unlr\t STile ’'d

i 6.1)
olediv Z{eJe tvde-ne | Iyt oder , Mpy ko hoin
Furthermore, we consider onlyY{hose r‘ocesses in cwl%ic;;”tehe sr}g‘f:t-el;andb\side <;f (6.1) is

independent of time, thereby leading to the set of state-transition probabilities a;; of the
form

aij = Plg: = jlgi-1 = i, 1<ij<N (6.2)
. 0
with the following properties ot
Q.
a;j >0 Vj,i o - (6.3a)
N , '
Yay=1 i Q- —==C N (63b)
1330  J=1 Qg Ul C\(
. Ao d e
since they obey standard Stg’ChBL\tAlJC constr:ﬁms. :

The above stochastic process could be called an 93/ ble Markoy model because
the output of the process is the set of states at each in:f?n?Wh state
corresponds to an observable event. To set ideas, consider a simple three-state Markov

model of the weather as shown in Figure 6.2. We assume that once a day (e.g., at noon),
the weather is observed as being one of the following:

State 1: precipitation (rain or snow)
State 2: cloudy
State 3: sunny.
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fZ A

We ;;)?tuléte that the weather on day 1 is characterized by a single one of the three states
above, and that the matrix A of state-transition probabilities is

04 03 03
02 06 02
0.1 0.1 038

Given the model of Figure 6.2 we can now ask (and answer) several interesting
questions about weather patterns over time. For example, we can pose the following
simple problem:

A={a}=

Problem

» :’% A
What is the probability (according to the model) that the weather for eight consecutive days is
“sun-sun-sun-rain-rain-sun-cloudy-sun”?

Solution
We define the observation sequence, O, as
O = (sunny, sunny, sunny, rain, rain, sunny, cloudy, sunny )
= ( 3 3, 3, 1, 1, 3, 2, 3 )
day 1 2 3 4 5 6 7 8

corresponding to the postulated set of weather conditions over the eight-day period and we
want to calculate P(O[Model), the probability of the observation sequence O, given the model
of Figure 6.2. We can directly determine P(O[Model) as:
T NN T s Y
P(O|Model) = P(3, 3, 3, 1,1, ¥, 2, 3Model]
= P[3] P[3|31*P(1{3] P[1]1}
P[3]11P[2{31P13]2]
=m-(@n) an auananan
~=<(1.0 (0.8)%(0. 1)(0.4)(0.3)(0.1)0.2)

=1536x 10~

where we use the notation;

m =Pl =1, 1<i<N (6.4)
to denote the initial state probabilities.

Another interesting question we can ask (and answer using the model) is:

Problem

Given that the system is in a known state, what is the probability that it stays in that state for

exactly 4 N&S 9

Solution .

This probability can be evaluated as the probability of the observation sequence .. -
O =(i, 4 i ,..., i j#iy 07N
day 1 2 3 d d+1 -
PUD sl s PURY B0 00 T

n——
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given the model, which is
RYTP s 300 ~
=P e

A P(O|Model, g, = )= P(0,q: = i[Model)/Plgr = i) _
vy : = @)~ (1 - a)/m;

= (@)1 — ap)

= pi( 6.5
The quantity pi(d) is the prot ion_furiction of duration d in state i. This
exponential distribution is characteristic of the state-duration in a Markov chain. Based on

——

7

(SR

L= - A
4

pi(d), we can readily calculate theéxpected num er-of observations (duration) in a state,
conditioned on starting in that state as - ta-Y'e 9
Al 2
oo
Y ) . | -
‘.,-ET(;‘E 2 il %]7 Az = dei(d) (6.6a)
, . i d=1
B e¥erad  wwawmdey o I
=D _d@*"' 1 —ap = —. (6.65)

d=
o
Thus the expected number of cogsegu(t'l)ve days of sunny weather, according to the model, is
1/(0.2) = 5; for cloudy it is 2.5; for rain it is 1.67.

Problem
Derive the expression for the mean of p;(d), i.c. Eq. (6.6b).

Solution
4= dpid)
d=1
had sl . At - o
= d@*'(1 - aw) LA -2 1o,
pra A= Il o

a2 [S
=(1 _au)% [Z ai.]
— Ll

.8 i
=(l—a,<,»)\‘?(lz )‘ =
ST

1 P

1—a;

6.3 EXTENSIONS TO HIDDEN MARKOV MODELS

. NI
So far we have considered Markov models in which each state corrésponded to a deter-

e e . . N RS cAe
ministically observable event. ?Thus, the output.of such sources in any given state is not -, o

random. This model is too resfrictive to be applicable to many problems of interest. In
this section we extend the concept of Markov models to include the case in which
/o seryation is a abilistic function of the state—that is, the resuiting model (which is

SEy g
A

o LS )
= s*.c}\z AR 5 5 AT

N
L LR SN
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s

’ . B EG 13 T A
q . called a hidden Markov model) is a doubly eﬁé(edgea stochastic process with an underlying

/ ‘stochastic prgcess ,leat is 7riq{7<ii;eftly observable (it is hidden) but can be observed only
\ through @&Ws&e} that produce the sequence of observations.
To illustrate the basic concepts of the hidden Markov model, we will use several

simple examples including simple_coin-tossing experiments. We begin with a review of
some basic ideas of probability in the following exercise.

Exercise 6.1 :
Given a single fair coin, i.e., P(Heads) = P(Tails) = 0.5, which you toss once and observe
Tails,
1. What is the probability that the next 10 tosses will provide the sequence
(HHTHTTHTTH)?
2. What is the probability that the next 10 tosses will produce the sequence
(HHHHHHHHHH)?

3. What is the probability that 5 of the next 10 tosses will be tails? What is the expected
number of tails over the next 10 tosses?

Solution 6.1

1. For a fair coin, with independent coin tosses, the probability of any specific observation
sequence of length 10 (10 tosses) is (1/2)'° since there are 2'° such sequences and all
are equally probable. This:

10
PHHTHTTHTTH) = (%) .

10
PHHHHHHHHHH) = (%) X

" Thus a specified run of length 10 is as likely as a specified run of interlaced H and 7.

3. The probability of 5 tails in the next 10 tosses is just the number of observation sequences
with 5 tails and 5 heads (in any order) and this is

1 10\ /1\° 252

. P(SH, =( )(_) =22~
o CH,SD={5 )3 1024 = 0%
NI

AN
. 10\#202 .
since there are ( 5 ) ways of getting 5H and 5T in 10 tosses, and each sequence has
probability of (%)  The expected number of tails in 10 tosses is

10 0
E(T in 10tosses)=Zd(1;) (-21-) =5,
d=0

Thus, on average, there will be SH and 5T in 10 tosses, but the probability of exactly
SH and ST is only 0.25.

6.3.1 Coin-Toss Models

T pESIL P
Assume the following scenario. You are in a room with a barrier (e.g., a curtain) through

I g‘? d@‘/«‘;&m:‘?

>..\‘rm W ';’ALL

\

e MMM e
Pae ‘(‘;(% 1  HMM to that of Figure 6.3a would be a defenerate one-stat in which the st‘a@
= gheiose Ma'a wlet corresponds to the single biased coin, and the unknowrn(parametst is the bias of the coin

700
e
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which you cannot see what is happening. On the other side of the barrier is another person
who is performing a coin-tossing experiment (using one or more coins). The person will not
tell you which coin he selects at any time; he will only tell you the result of each coin flip.
Thus a sequence of hidden coin-tossing experiments is performed, with the observation
sequence consisting of a series of heads and tails. A typical observation sequence would
be

0 =(0,0703...07)
=(HHTTTHTTH ...H)

where H stands for heads and T stands for tails.
Given the above scenario, the question is, How do we build an HMM to explain

Z \(,model) th served sequence of heads and tails? The first problem we face is deciding
“®hat the(state in the model correspond to, and then deciding how many states should be
od

in the model” One possible choice would be to assume that only a single biased coin was

" being tossed. In this case, we could model the situation with a two-state model in which
each state corresponds to the outcome of the previous toss (i.e., heads or tails). This model
is depicted in Figure 6.3a. In this case, the Markov model is observable, and the only issue
for complete speé)‘ﬁca‘ﬁon of the model would be to decide on the best value for the single

parameter of the model (i.e., the probability of, say, heads). Interestingly, an equivalent

A second HMM for explaining the observed sequence f coin toss outcomes is given
in Figure 6.3b. In this case there are two states in the model, and each state corresponds to a
different, biased coin being tossed. Each state is characterized by a probability distribution
of heads and tails, and_transitions between states are characterized by a state-transition -
matrix. The physical mechanism that accoiints for how state transitions are selected could
itself be a set of independent coin tosses or some other probabilistic event.

A third form of HMM for explaining the observed sequence of coin toss outcomes
is given in Figure 6.3c. This model corresponds to using three biased coins, and choosing
from among the three, based on some probabilistic event.

Given the choice among the three models shown in Figure 6.3 for explaining the
observed sequence of heads and tails, a natural question would be which model best matches
the actual observations. It shoul;%'bjl clear that the simple one-coin model of Figure 6.3a
has only one unknown paramete: ,UA e two-coin model of Figure 6.3b has four unknown i
parameters; and the three-coin model of Figure 6.3¢ has nine unknown pa@@qteﬁg\;"l:hu‘s, Luhe
with the greater degrees of freedom, the larger HMMs would seem to be ﬁ"lhéfgﬁti; More A
capable of modeling a series of coin-tossing experiments than would equivalently smaller " - )
models. Although this is theoretically true, we will see later in this chapter that practical a\” G
considerations impose some strong limitations on the size of models that we can consider. “:. 2.
A fundamental question here is ed head-tail se is long and rich 1+
enough to be able to 2\1?)%%; eﬁa complex model. Also, it might just be the case that only
a single coin is being tossed. Then using the three-coin model of Figure 6.3¢c would be
inappropriate because we would be using an underspecified system.
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@ P 1=PH) 1-COIN MODEL
. 1-P(H) (OBSERVABLE MARKOV MODEL)
P 1 2 O=HHTTHTHHTTH ..
g P(H) §=11221211221 ..
| HEADS TAILS
2N
® gy 022 2-COINS MODEL
1-ay, (HIDDEN MARKOV MODEL)
; O=HHTTHTHHTTH ..
—ozg 2 $§ =21122212212..
/ z Tt e

P(H) = P, P(H) = P,
P(I) =1-P, P(T) =1-P;

O]

d33
STATE
P(H) P, P2 P3

P(D 1-P, 1-P; 1-P,

3-COINS MODEL
(HIDDEN MARKOV MODEL)

O=HHITHFHHTIH ..
S=a12331123L1L3.

Figure 6.3 Three possible Markov models that can account for the results of hidden coin-tossing
experiments. (a) one-coin model, (b) two-coins model, (c) three-coins model.

Gt

6.3.2 The Urn-and-Ball Model

Né

To extend the ideas of the HMM to a somewhat more complicated situation, consider the
urn-and-ball system of Figure 6.4. We assume that there aré N (large) glass urns in a room.
Within each urn is a large quantity of colored balls. We assume there are M distinct colors
of the balls. The physical process for obtaining observations is as follows, A u%é 1‘1% is in
the room, and, according to some random procedure, it chooses an initial urn. From this
um, a ball is chosen at random, and its color is recorded as the observation. The ball is
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; T N——— /
R T DN -— -
— ~ - < oY > see
(‘ "‘ &v —— “—
' el URN 1 URN 2 URN N
| P(né/‘b) = by(1) P(RED) = ba(1) P(RED} = by(1)
,  P{BLUE) =by2) P(BLUE) = bj(2) P{BLUE) =by(2)

\_ PIGREEN} =by(3)

; P(GREEN) = by(3)
, PIYELLOW) = by(4)

P(YELLOW) = by(4)

P(GREEN) = by(3)
P(YELLOW) = byf4)

/\/\ P(ORVA‘;OGE) = by(M) P(ORANGE) = ba(M) P(ORANGE) = by(M)
0= {GREEN, GREEN, BLUE, RED, YELLOW, RED, ....... . BLUE}
Figure 6.4 An N-state urn-and-ball model ill ing the g ! case of a di

symbol HMM.

then r'é'phlzigd in the um from which it was selected. A new urn is then selected according
to the random selection procedure associated with the current urn, and the ball selection
process is repeated. This entire process generates a finite observation sequence of colors,
which we would like to model as the observable output of an HMM.

‘w‘my"e""' VMM 2 It should be obvious that the simplest HMM that cotresponds to the urn-and-ball

= ke process is one in which te co specific urn, and for which a (ball) color

W= 6 probability is defined for each state. The choice of ums is djctated by the state-transition
matrix of the HMM. SRR

e It should be noted that the ball colors in each urn may be the same, and the distinction

57 pn 6T £ 8 cdor among various urns is in the way the collection of colored balls is composed. Therefore,

A

2 ~°v1%{_ e WK\ an isolated observation of a particular color ball does not immediately tell which um it is
3 el SV %H drawn from,

v 6.3.3 Elements of an HMM

The above examples give us some idea of what an HMM is and how it can be applied to
some simple scenarios. We now formally define the elements of an HMM.

An HMM for discrete symbol observations such as the above urn-and-ball model is
characterized by the following:

o\

1@,) the number of states in the model. Although the states are higden, for many
Practical applications there is often some physical sigi‘ﬁﬁcﬁnce attactied 16 the states
or to sets of states of the model. Thus, in the coin-tossing experiments, each state
corresponded to a distinct biase(E&ir’j,r In the um:-and-ball model, the states cor-
responded to th@.) Generally the states are intérconfiected in such a way that
any state can be reached from any other state (i.e., an ergodic model); however, we
will see later in this chapter that other possible interconn\éctions of states are often

s
TRLh R 5
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of interest and may better suit speech applications. We label the individual states as
AL2,...,N}, and denote the state at time ¢ as g,.

2.{M the number of distinct observation symbols per state—i.e., the discrete alphabet
size. The observation symbols correspond to the physical output of the system being
modeled. For the coin-toss experiments the observation symbols were simply heads
or tails; for the ball-and-urn model they were thc/colog of the balls selected from the
ums. We denote the individual symbols as V = {vi;v,,..., u}

3. The state-transition probability distribution 1A = {a;} where

a;=Plgsi =jlgg =i, 1<ij<N. (i)
For the special case in which any state can reach any other state in a single step, we
have a;; > 0 for all /, j. For other types of HMMs, we would have a;; = 0 for one or
more (i, ) pairs.

4. The observation symbol probability distribution, B = bi(k)}, in which

bi(k) = Plo, = wi]q, = j], I1<k<M, 6.8)
defines the symbol distribution in state Hi=12,...,N.

5. The initial state distribution x = {m;} in which

m = Plq =, I<i<N. - 6.9)

It can be seen from the above discussion that a complete specification of an HMM

requires specification of two model parameters, N:and M, specification of obseryation.

v -symbols, and the specification of the three sets of probability measures A,B, and 7. For
convenience, we use the compact notation '

A=(A,B,7) 6.10)

to indicate the complete parameter set of the model. This parameter set, of course, defines
a probability measure for O, i.e. P(O|)), which we discuss in the next section. We use the
terminology HMM to indicate the parameter set A and the sociated probability measure
interchangeably without ambiguity. al L ,.\wf
Ay 2 o 1
A
6.3.4 HMM Generator of Observations JL T t\<\x\ (RIS

Given appropriate values of N, M| @, B\,‘ and/\'éf‘,‘ the HMM can be used as a generator to give
an observation sequence i <o & vew Gt

0 = (0;0,...07) 6.11)

(in which each observation o, is one of the symbols from V, and T is the number of
observations in the sequence) as follows:

L. Choose an initial state ¢, = i according to the initial state distribution 7.
2, Setr=1.

3. Choose o, = v; according to the symbol probability distribution in state i, i.e., b;(k).
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4. Transittoanew state g4+ = jaccording to the state-transition probability distribution
for state /, i.e., a;. Bt )
5. Sett =1+ 1; return to step 3 if ¢ < T; otherwise, términate the procedure.

The following table shows the sequence of states and observations generated by the above
procedure:

time, ¢ 1 2 3 4 S 6 .. T
state e o P ar
observation 1.0 0 o3 04 s (3 or

The above procedure can be used as both_a generator of observations and as a model to
simulate how a given observation sequefice was generated by an appropriate HMM.

Exercise 6.2
Consider an HMM representation (parametrized by A) of a coin-tossing experiment. Assume
a three-state model (corresponding to three different coins) with probabilities

State 1 State 2 State 3
P(H) 0.5 0.75 0.25
P 0.5 0.25 0.75

and with all state-transition probabilities equal to 1/3. (Assume initial state probabilities of
1/3)

1. You observe the sequence ) NN

What state sequence is most likely? What is the probability of the observation sequence
and this most likely state sequence?
2. What is the probability that the observation sequence came entirely from state 1?
3. Consider the observation sequence ~ Ny
. 2333333 33y
O=HTTHTHHTTH).
How would your answers to parts a and b change?
4. If the state-transition probabilities were

+an = 09 y adn = 045 , A= 0.45
N a2 =005 , an=01 , a3 =045
a3 =005 , a3=045 , a3 =0.1

that is, a new model A, how would your answers to parts 1-3 change? What does this
suggest about the type of sequences generated by the models?

Solution 6.2 Jen R
- TSR
1. Given O = (HHHHTHTTTT) and that all state transitions are equiprobable, the most
likely state sequence is the one for which the probability of each individual observation
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is maximum. Thus for each H, the most likely state is 2 and for each T the most likely
state is 3. Thus the most likely state sequence is

q=(2222323333). )
A
The probability of O and q (given the model) is l 3

10
P(0,q]) = (0.75)" { %) .
2. The probability of O given that q is

g=1111111111)

P(0, ) = (0.50)"° (%) e,
The ratio of P(O, q|A) to P(0, §]\) is:
r=P0aN _ (E
P04 \2
which shows, as expected, that q is more likely than q.

3. Given O which has the same number of Hs and T, the answers taparts 1 and 2 would
remain the same, as the most likely states occur the same number of times in both cases.

4. The new probability of O and q becomes

10
) =57.67

PO, q|\) = (0.75)° (%) (0.1)80.45).

The new probability of O and G becomes

PO,d1X) = 050" (3) 057

3\ £1N\6 /183 .
SONONOREES
3 3 3 1.36 x 107,
In other words, because of the nonuniform transition probabilities, q is more likely than q. (The

reader is encouraged to find the most likely state sequence in this case.) Now, the probability
of O and q is not the same as the probability of O and q. We have

The ratio is

P0,q])) = % (0.1° (0.45)° (0.25)* (0.75)°

P(©,§|)) = (0.50)° (%) 0.9

=)' () @) Q) 10w

Clearly, because a;; = 0.9, § is more likely.

with ratio
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6.4 THE THREE BASIC PROBLEMS FOR HMMS

Given the form of HMM of the previous section, three basic problems of interest must
be solved for the model to be useful in real-world applications. These problems are the
following: :

Problem 1

Given the observation sequence O = (01 0...0r), and a model A = (4, B, 7), how do we
efficiently compute P(O|A); the probability of the observation sequence, given the model?
Problem 2

Given the observation sequence O (610...07), and the model A, how do we choose
a corresponding state sequence q =:&q|qz ...qr) that is optimal in some sense (i.e., best
“explains” the observations)?

Problem 3 . éﬁ’
How do we :;’dauft the rsotiel parameters A = (A, B, 7) to maximize P(O|\)?
(ow -f+€ n JAe Problem 1 is the _ev! i oblem: namely, given a model and a sequence of
g IN’ observations, how do ompute the probability that the observed sequence was produced
? ) ba b\‘hf” by the model? We can also view the problem as one ofscoring how well a given model
jv i The latter viewpoint is extremely useful. For

eﬂl‘ olxgevi &l example, if we consider the case in which we are trying to choose among several competing
42 ‘émeh ce models, the solution to Problem 1 allows us to choose the model that best matches the

observations. P ndw
ovd’" Problem 2 is the one in which we atfempt to Lgféoﬁr the hidden part of the model—
i \ ; %Qb that is, to find the “correct” state sequence. It should be clear that{for all but the case of
Tt N degenerate modelSythere is no “correct” state sequence to be found, Hence for practical
524 el situations, we usually use an optimality criterion to solve this problem as best as possible.
° As we will see, several reasonable optimality criteria can be i nee-the choice

tion of the I e Typical
uses might be to learn about the structure of the model, to find optimal state sequences for
continuous speech recognition, or to get average statistics of individual states, etc.

o &\ s Problem 3 is the one in which we attempt to optimize th e] te]
m\ \\\\5 describe how a given observation sequence comes about. The observation sequence used

¢ % 1o adjust the model parameters is called a ning sequence because it is used to “train” the
L LU HMM. The training problem is the (%Eiﬂ one for most applications of HMMs, because -
it allows us to optimally ﬁéa‘&model parameters to observed training data—i.e., to create .,_41'” W
best models for real phenomena. P PRI B Ja - 2 spectind vecrrg (4TINS -

4 ‘; e To fix ideas, consider the following s’x/mple is ﬁg)-wbrd speech recogniqu gQLe.aCh ‘—l\l wor:
WO oy ord ij@gﬂvqg@,ggy, we wan/ofo design a séparate N-state HMM. We represent the_3 j._ Joret
Jee su?w}\ 3. speechsignal of agiven wordasa  time of.coded s; vectors. We assume that gLt
K e-CodT vectors; hence each = — ~

! he-EoUIME g done using a spectral codebook with M unique § \

15 the index of the spectral vector closest (in some spectral distqrtion sense) to N~ Sta?
al speech signal. Thus, for each vocabulary word, we have a training sequence |y MM
| . st SRS LYV
VR A > / 2 3 N ST are
ch/’ pectoa D N
codeo. (pecton . -
f 2 ; \
L etoy 4

H

! o
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consisting of a number of repetitions of| sequences of (codebook indices of the word)(by
one or more talkers). The first task is to_build individual wo models. This task is done
by using the solution to I;E)blem 3 to optimally estimate model parameters for each word
model. To develop an un eé’ggdgng of the physical meaning of the model states, we use
the solution to Problem 2 to segment each of the word training sequences into states, and
themStudy the properties of the spec@f % tors that lead to the observations occurring in
each state. The goal here is to make refirements of the model (e.g., more states, different
codebook size) to improve its capability of modeling the spoken word sequences. Finally,

once the set of W HMMs has been designed and optimized, recognition of SRiERGH
ek

—word js performed using the solution to Problem ! to score word model based upon
the given test ohservation sequence, and select the word whose model score is highest (i.e.,
the highest likelihood).

"In the next sections we present formal mathematical solutions to each fundamental
problem for HMMs. We shall see that the three problems are tightly linked together under
the probabilistic framework.

i

6.4.1 Solution to Problem 1—Probability Evaluation

We wish to calculate the probability of the observation sequence, O = (0, 0.. .07), given

the model A, i.e., P(O|A). The most straightforward way of doing this is through enumer- 3‘\3?

ating every possible state sequence of length T (the number of observations).. There are N7
such state sequences. Consider one such fixed-state sequence

9={(q192--.971) 6.12)

where ¢, is the initial state. The probability of the observation sequence O given the state
sequence of Eq. (6.12) is

T
P(0lq, ) = [T Pcorlgr, 3 (6.13a)
=1
where we have assumed statistical independence of observations. Thus we get
P(Olq, ) = b, (01) - by, (07) . .. by, (7). (6.13b)

The probability of such a state sequence g can be written as

P@|\) = 74,800,044, . . -Ggr_iqr- { 6.14)

e . . . LB ez .
The jO;;t probability of O and gq, i.e., the probability that O and q occur sxmult?me)ously, is
simply the product of the above two terms, i.e.,

_.P©O.9) = POlg, HYP(q)). 6.15)

The probability of O (given the model) is obtained by sumi'ning this joint probability over
all possible state sequences q, giving '

POIY) = 3" P(0lq, MP(g|)) 6.16)
BCT y

R

N 4 A
S hAWLEr o S

il

i e

——— e
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S T A N
= Z ”qllbiil (ol)a{nqz.qu(oz) een a‘h_;""bqr(o]:) 6.17)
e 7(51 Qs Q2 e gr e ST B L

3 I

The interpretation of the computation in the above equation is the following. Initially (at
time ¢ = 1) we are in state ¢, with probability 74 »and generate the symbol o; (in this state)
with probability by, (0;). The clock changes from time ¢ to ¢ + 1 (time = 2) and we ma.ke
a transition to state ¢, from state ¢, with probability a,,,,, and generate symbol o, .V\{lth
probability by, (0,). This process continues in this manner until we make the last transmpn
(at time T') from state gr_, to state gr with probability a4 _ g and generate symbol o7 with
bability b,.(or). 2% o

P A l&leq:}fought should cgﬁeiﬁce the reader that the calculation of /P(OI/\), according
to its direct definition (Eq. (6.17)) involves on the order oﬁ/\zw calculations, since
atevery t = 1,2,...,T, there are N possible states that can be reached (i.e., tl.lere are
NT possible state sequences), and for each such state sequexﬁeggout 2T calculations arg
required for each term in the sum of l;;\(6.17). (To be pretise, we ne%q_'((g?_'%:v HN
multiplications, and N7 — 1 additions.) This calculation is computationally ihfedsibld, even
for small values of N and T; e.g., for N = § (states), T = 100 (observations), there are
on the order of 2 - 100 - 5' ~ 10" computations! Clearly a more efficient procedure is
required to solve problem 1. Fortunately such a procedure (called the forward procedure)
exists.

6.4.1.1 The Forward Procedure

Consider the forward variable o,(/) defined as

Slake

() = P(0102...0,, g = i|A) . (6.18)

that is, the probability of the%g;’tial observation sequence, ‘ol 03 ...0,, {until time ¢) and
state / at time ¢, given the model A. We can solve for o,(i) inguigvely, as follows:

1. Initialization

ay(i) = mbi(e,), 1<i<N. (6.19)
2. Induction
N
. 1<t<T-1
a1 () = [Z a!(')alj] b‘(&;ﬁ;}\_‘, 1<jEN . (6.20)
A i=1 —J = ,
A LTI ot A NS TRV. T IV e
3. Téﬁnlﬁ;ﬂoﬂ = L«)\'«‘_U\.al?}*u’\&{\;){/\:l“r 4 Ol J""t"_,[ u\;\
POI) =" or(i). 6:21)

i=1

) - e / A .
Step 1 initializes the forward probabilities as the joint_probability of 'state _ xlagd( Initial

.observation o) The induction step, which is the heart of the forward calculation, is

illustrated in Figure 6.5(a). This figure shows how state j can be reached at time  + 1
from the N possible states, i, 1 < i < N, at time 1. Since (i) is the probability f’f t§e
Jjoint event that 0; 0, . . . 0, are observed, and the state at time ¢ is i, the product a;(i)a;; is
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(g}

' t+1
a, (i) @y 44t}

STATE
1

D

AR s
‘ \J
At
S ———
OBSERVATION, t

X5/ N7

>
> . (b)
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Figure 6.5 .(a) Tlustration of the sequence of operations required for
the computation of the forward variable a,41(j). (b) Implementation

of the computation of a(#) in terms of a lattice of observations r, and
states i,

thel.l the probat?ility of the joint event that 0, 0, .. . o, are observed, and state j is reached
at time ¢ + 1 via state i at time ¢. Summing this product over all the N possible states, i

Previm.xs partial observations. Once this is done and j is known, it is easy to see that o 1(f)
is obtfnned by accounting for observation o, in state j, i.c., by multiplying the summed
quantity by the probability bi(0,41). The computation of Eq.,(6.20) is performed for all
st.atesj, 1 £j £ N, for a given t; the computation is then itStdfed for = 1,2,.... T — 1
Finally, step 3 gives the desired calculation of P(O|)) as the sum of the ter}ni,nal f,orwarci
variables ar(i). This is the case since, by definition,

ar(i) = P(010; ...0r,qr = i|)) 6.22)
and hence P(O|)) is just the sum of the ar(i)’s.
If we examine the computation involved in the calculation of a(N, 1 <t<T,

1< 1 <N, we see that it requires on the order of N?T calculations, rather than 27N7 as
mgumd by the direct calculation. (Again, to be precise, we need NV + 1)(T — 1) + N.'

e

AT (T-1+1]

,

1 < i< N at time ¢ results in the probability of j at time ¢ + 1 with all the accompanying % %
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TR RN

multiplications and N(N — 1)(T — 1) additions.) For N = 5, T = 100, we need about 3000
computations for the forward method, versus 107> computations for the direct calculation,
a savings of about 69 orders of magnitude. A4

The forward probability calculation is, in effect, based upon the lattice (or trellis)
structure shown in Figure 6.5(b). The key is that, because there are onl g states (nodes
at each time slot in the lattice), all the possible state sequences will relne ‘ge into these N
nodes, no matter how long the observation sequence. At time ¢ = 1 (the first time slot in
the lattice), we need to calculate values of a;(i), 1 < i < N. Attimest =2, 3,...,T,we
need only calculate values of a,(j), 1 < j < N, where each calculation involves only the N
previous values of o, (i) because each of the N fnd points can be reached from only the
N grid points at the previous time slot. B

6.4.1.2 The Backward Procedure
In a similar manner, we can consider a backward variable 3,(i) defined as
Bi(D) = P(0410142 - . - OT|qs = i, A) (6.23)
that is, the probability of the partial observation sequence from ¢ + 1 to the end, given state
i at time ¢ and the model . Again we can solve for G;(i) inductively, as follows:
1. Initialization
Bri) =1, 1<i<N. (6.29)

2. Induction

N
B =Y agh (041810,
=1 =
t=T-1,T-2,...,1, 1<i<N. (6.25)

L &
The initialization step 1 aérxbz‘eﬁ';%ly defines 3r(i) to be 1 for all i. Step 2, which js illustrated
in Figure 6.6, shows that in order to have been in state / at time 1, and to acéo’%ntvé)r the
observation sequence from time ¢ + 1 on, you have to consider all possible states j at time
t + 1, accounting for the transition from i to j (the a;; term), as well as the observation
0,41 in state j (the b;(0,.) term), and then account for the remaining partial observation
sequence from state j (the G, 1(/) term). We will see later how the backward as well as the
forward calculations are used to help solve fundamental Problems 2 and 3 of HMMs.

Again, the computation of 5,(§), 1 <t <T,1<i < N, requires on the order of N?T
calculations, and can be computed in a lattice structure similar to that of Figure 6.5(b).

6.4.2 Solution to Problem 2—*Optimal” State Sequence

Unlike Problem 1, for which an exact solution can be given, there are several possible
ways of solving Problem 2—namely, finding the “optimal” state sequence associated with

the given observation sequence. The difficulty lies with the definition of the optimal state
sequence—that is, there are several possible optimality cn:rigeria. For example, one possible
"y

wE
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Figure 6.6 Scq of op quired for the comp
tion of the backward variable Bi(i).
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o QR e LRt vy stafe
opt'lmahfy cr}tenon isto chooseahe states g, that are individually most likely at each time 1.
This optimality criterion maximizes the expecied number of correct individual states. To

implement this solution to Problem 2, we can define the a jori bility variable
TR

(i) = P(g; = i|0, )) (6.26)

that is, the probability of being in state i at time 1, given the observatibn sequence O, and
the model A\. We can express (i) in several forms, including

r(’, A .
PRAVIAVESEN o 0. - -O\t o 77:(1')=P(q,=i|0,/\)

‘ /gJ T A = P‘(O,q, =ilX) L
PO} X
__PO.g=i[Y

N
D PO,q=i|)

i=1

{ = -t .
(6.27)

Since P(0,q; = i | A) is equal to a(i)5,(i), we can write (i) as
Y :{\7(0‘ 0y Oy , %{=/} >\) () at(i)ﬂl(i)
. N Ll
' /\\‘ = P(C’ul CN‘ ) CT i (E{:A ’ K) I ia (i),B (l)
1! (4

i=}

(6.28)

fvhere we see that ,(i) accounts for the partial observation sequence 0; 0; . .. 0; and state
i at t, while 8,(i) accounts for the remainder of the observation sequence 0,410, ;. . .07,

givenstate ¢, = i at . TR

[

W
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Using (i), we can solve for the individually most likely state g;" at time ¢, as
DAL AT o g ar JJ -
Rt %}( Aol 8E A (Aale q = arglmg%;[‘n(l)], 1<t<T. (6.29)
- . ] Lo h = <ig
% )H e covence # P RSy

¥.Although Eq. (6.29) maxinizes the expected number of correct states (by choosing the most
likely state for each 1), there could be some problems with the resulting state sequence.
For example, when the HMM has sta sitions whi \Z rohability (a; = O for
some i and j), the “optimal” state sequence may, in fact, not even be a valid state sequence.
This is because the.solution of Eq. (6.29) simply determines the most likely state at every

instant, without regard to the probability of acc f sequences of states.
One possible solution to the above problem is to méodify the optimality criterion.

For example, one could solve for the state sequence that maximizes the expected number
of correct pairs of; states (g, g.+1), or triples of states (Ges Gr+1,Gr42), etc. Although these
criteria might be reasonable for some applicatiens, the most widely used criterion is to find
the single best state sequence (path)—that is, tomaximize P(q|O, ), which is equivalentto _
maximizing P(q, O|)). A formal technique for finding this single best state sequence exists,

based on gﬁggigwmmm@, and is called the Viterbi algorithm (15, 16).
/7 l_

\/
6.4.2.1 The Viterbi Algorithm
ERin

DL e bie
iRt

To find the single best state sequence, q¢= (9192 ..qr), for the given observation sequence
O = (0, 0;...07), we need to define the quantity

max  Plqiqz...qi-1, @ =i, 002 .. 0|A] (6.30)

9159250 qr—1

OES

that is, &,(i) is the best score (highest probability) along a single path, at time ¢, which
acgountsat_;(or the first ¢ observations and ends in state i. By induction we have :
3h |
i ég\s‘% b1 = (max Dyl bilow): 4o (631)
W3 ohd R - 1]
To actually retrieve the state sequence, we need to k&p’%ﬁck of the ar?ur%:em that maximized
Eq. (6.31), for each({\ant@ We do this via the array 1)(j). The complete procedure for

finding the best state sequence can now be stated as follows:

1. Initialization

61()) = mibi(oy), 1<i<N (6.32a)
- Yi() =0. ' (6.32b)
. 2. Recursion i
l&\ . [ \,Vav““‘“"“““ <T
Nt < . « - X 14
g | rde (ImNY%TE -1 Stcdu 8(j) = e (610} az1bi(0y), 1<j<N (6.33a)
i e T 2<i<T
v 'fpf,(f) = arg max (6,-1(7) ay], 1<j<N. (6.33b)
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3. Termination

4,)/

Pt = ll;l‘,ast[ér(t)] (6.34a)
qr =arg lrggxs;(m[asr(x')]. (6.34b)

£ 5enn
4. Path (state sequence) ba::fm':?c"li%ﬁ‘g

@ =Ygl t=T-1,T-2,...,1. (6.35)
It should be noted that the Viterbi algorithm is similar (except for the backtracking step) in
implementation to the forward calculation of Egs. (6.19)~(6.21). The major difference is
the maximization in Eq. (6.33a) over previous states, which is used in place of the summing

procedure in Eq. (6.20). It also should be clear that a lattice (or trellis) structure efficiently
implements the computation of the Viterbi procedure.

- bt

oty — .
6.4.2.2 Alternative Viterbi Implementation

By taking logarithms of the model parameters, the Viterbi algorithm of the preceding
section can be implemented without the need for any multiplications. Thus:
0. Preprocessing

. 7 =log (m), I1<i<N
bi(o)=log[bife)], 1<i<N,1<t<T
@y = log (ay), 1<i j<N
1. Initialization . :
‘ 61() = log (51()) = % + bi(oy), 1<i<N

() =0, 1<i<N
2. Recursion

b = og (6 = g, [6-1 +] + 00
Y = arg max (6D + 3],  2S¢<T, 1<jSN

3. Termination

P* = l?%war(m

qr = arg lrg‘;a_gNlér(Ol
4. Backtracking

q;=¢1+l(4f+1), t=T—ly T_21~"1l
The calculation required for this alternative implementation is on the order of N27T additions
(plus the calculation for preprocessing). Because the preprocessing needs to be performed
once and saved, its cost is negligible for most systems.

NL9%-

ViAVeT
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Exercise 6.3
Given the model of the coin-toss experiment used in Exercise 6.2 (i.e., three different coins)
with probabilities

State 1 State 2 State 3

PloN) —wn o5 "o om
‘ P(T) 0.5 0.25 0.75

' . o Ciiz /3
and with all state transition probab‘nl_ities/ équal to 1/3, and with initial probabilities equal to

1/3, for the observation sequence

o )
W= 5 O=HHHHTHTTTT)

State

find the most likely path with the Viterbi algorithm.

Solution 6.3 — o

Since all a;; terms are equal to 1/3, we can ‘omit these terms (as well as the initial state
probability term), giving <1 }e.
’

.2 S =05, 6(2)=075, 6(3)=0.25.
i) 5

The recursion for §,( ) gives (2 < ¢ < 10)
neldn ] bse,)

2 S =(0T503), &2 =(0.757 62(3) = (0.75)(0.25)
2 &) =(0.75%0.5), 6&(2)=0.75)", 53(3) = (0.75)%(0.25)
2 8(1)=(0.75%(0.5), 64(2) = (0.75)*, 54(3) = (0.75)(0.25)
3 &) =(0.75%0.5), &Q2) = 0.75)%0.25),  65(3) = (0.75)°
2 &)= (0.75°0.5), &s(2) = (0.75)°, 8(3) = (0.75)°(0.25)
3 &M =(0759%035), &2)=0.75°025, &3)=(©.75)
3 &(1) = (0.75)(0.5), 8(2) = (0.75)(0.25),  6(3) = (0.75)¢
S &)= 0.75%0.5), &) = (0.75%0.25), &(3) = (0.75)°
3 S = 0.75°(0.5), 810(2) = (0.75°(0.25), 61o(3) = (0.75)"°
This leads to a diagram (trellis) of the form:
3 —
2
1
1 2 3 4 5 6 7 9 10

Observation Time

Hence, the most likely state sequence is {2,2,2,2,3,2,3,3,3,3}).
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Figure 6.7 Illustration of the seqy of operations required for the p

of the joint event that the system is in state i at time ¢ and state jattimer+ 1.

6.4.3 Solution to Problem 3-—Parameter Estimation

Lol

The third, and by far the most difficult, problem of HMMs is to determine a method to
adjust the model parameters (A4, B, 7) to satisfy a certain optirpizaﬁon criterion. There is no
known way to analytically solve for the model parameter set that maximizes the probability
of the obseryation sequence in g ¢losed form. We can, however, choose A = (A, B, ) such
that 1tshl{\e§%ﬁ§xl, P(O)N), is {&%y maximized}ug‘%'n an ité %Ve procedure such as the
Baum,-‘w %%%:g (also known as the EM (e)%my n-maximization) method [17]), or
using‘géle t'echmiques [18]. In this section we discuss one iterative procedure, based
primarily on the classic work of Baum and his colleagues, for choosing the maximum
likelihood (ML) model parameters. . . 3 s‘e%

To describe the procedure for ﬁﬁ_ﬁxi&ﬂ (iterative update and improvement) of
HMM parameters, we first define &(i, /), the probability of being in state i at time ¢, and

state j at time ¢ + 1, given the model and the observation sequence, i.e.

&G0 = P(gr =i, g1 = O, N). (6.36)
The paths that satisfy the conditions required by Eq. (6.36) are illustrated in Figure 6.7.
From the definitions of the > forward and backward variables, we can write £,(/, j) in the form
o _Pl@r=1, g1 =j, 0[N
gt(lvj) - P(O , A)

- a,(i) a;jbj(0141)Br1())
P(O|N)

- (i) ajjbj(014-1) Br41 () . 637)

N N
3 aldaybi (0B ()

i=} j=1

We have previously defined -,(i) as the probability of being in state i at time f, given

¢
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the entire observation sequence and the model; hence, we can relate (@) to &3, /) by
summing over j, giving

N
o e b B e i) =) &) (6.38)
;‘:L\‘;L' B v 4 j=1
213 2% & e Lo g bt
If we sum (i) over the time index r, Wwe get a quantity that can be inferpreted as the expected
(over time) ‘npmber of Wor equivalently, the expected number
of /ms@gns\m{d/ m state i (if we exclude the time slot ¢ = T from the summation).
Similarly, summation of £(i,}) over ¢ (fromt = 1 tot =T — l)/can be interpreted as the
expected number offransitions fram-state £ 10 sate . Thatis., &£ sile + £1457 e ) %3
T-1 ’
Z 4:(i) = expected number of transitions from state i in QO (6.39a)
=1,
-1 —
Z &(i, /) = expected number of transitions from state i to state jinO. (6.39b)
=1
Using the above formulas (and the concept of counting event occurrences), we
can give a method for reestimation of the parameters of an HMM. A set of reasonable
reestimation formulas for 7, A, and B is

Ta= expected frequency (number of times) in state ; (6.40a)
4 attime(t=1)= 1) :

_ expected number of transitions from state i to state j

" expected number of transitions from state i

T—-1
PR
=1

= = (6.40b)
IR0
=1
- expected number of times in state j and observing symbol v,
bi(k) = — -
expected number of times in state j
T .
*(J) : ,/’_\\‘ N
'Zl: \ > { Y ®
=l - (6.40c)

== .
Z %(J)
=1

If we define the current model as A = (A, B, w) and use that to compute the right-hand
sides of Egs. (6.40a)~(6.40c), and we define the reestimated model as A = (A,B,T), as
determined from the left-hand sides of Eqgs. (6.40a)—(6.40c), then it has been proven by
Baum and his colleagues that either (1) the initial model A defines a critical point of the
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likelihood function, in which case X = X; or (2) model X is more likely than model X in
the sense that P(O|X) > P(O|)); that is, we have found a new model X from which the
observation sequence is more likely to have been produced.

Based on the above procedure, if ye iteratively use X in place of A and repeat the
reestimation calculation, we then can u’hprove the probability of O being observed from the

model until some limiting point is reached. The final result of this-reestimation procedure is
ML esti M. It should be pointed out that the forward-backward algorithm

leadsto local maxima only, and that in most problems of interest, the likelihood function
is very complex and has many local maxima.

The reestimation fogpulas of Egs. (6.40a)—(6.40c) can be derived directly by maxi-
mizing (using standard cons ined optimization techniques) Baum’s auxl‘lglary function

20, ) = P(0,q]X)log P(O,q]) (6.41)
N TN A
over A. Because
V Q(N', ) 2 Q(X', X) = P(O|A) 2 P(O|X) (6:42)

we can maximize the! function (), A) over X to improve X’ in the sense of increasing the
likelihood P(O}X). Eventually the likelihood function converges to a critical point if we

iterate the procedure. N wo\)( [QUV?\\} > P(ol 7\) 7’)L0[/\>

6.4.3.1 Derivation of Reestlmatlon Formulas from the Q Function
The auxiliary function Q(A’, ) was defined in Eq. (6.41) as

OV, %) = P(0,q|\)log P(O,q}))
Q
in which we can express P and log P (in terms of the HMM parameters) as '

T
P(0,q|}) =7, Haql—uq,bq.(ol)

=1 .
T T )
log P(O,q])) = log g + Z log ag,_,q + Zlog bg (o))

=1 =1

(There is a slight difference between the above equations and the expression of Eq. (6.17)
in which the first observation is associated with the initial state before any state transition
is made. This difference is inconsequential and should not impede our understanding of
the method.) Thus we can write Q(\’, ) as

N ) N
OV, ) = Q- (N, m) + 3 Qa(V,8) + 3 On(X,by)

i=1 i=1

where

= [7!'1,7|’2,...,7|'N],
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a; = [ai,an,-..,aw], b;is the parameter vector that defines b;(-)
and
N
0N, ®) =Y _P(0,q0 = i|\)log m;
i=1

N T

Qa(XN,8) =YY P(0,gi-1 =i,q, = jl\)log ay

j=1 =1

T
05 (N,b) =Y _P(O,q, = i|\)log bi{o))

=1

Because of the separability of Q(\’, A) into Three independent terms, we can maximize
Q(X, A) over X by maximizing the individual terms separately, subject to the stochastic
constraints

N

Zﬂ'j = 1

j=1

N
doai=1,
i=1

and (for discrete densities where b;(0, = vi) = b;(k))
K
S bty=1, Vi

Because the individual auxiliary functions all have the form

N
E w;log y;
=1

which, as a function of {y;}L,, subject to the constraints .y =1,y >0, atains a
global maximum at the single point

w;
—_ ]
Yi= N

»
2w
i=1

then the maximization leads to the model reestimate A = [7, A, B] where

P P(quo = ll’\)
) P(O|))

j=1,2,....N
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T
Y PO, =g =j1)

= =1

a; = T
Y P©,q-1 =il
=1
T
> P©,q, =) b0, vi)
bik) = =—
S PO, g =iln
=1

where we have defined
6(0,, Vk) =1 ifo, =V;
=0 otherwise.

Using the definitions of the forward variable, a(i) = P(0;,0;,... 06 Gr = i|,\)'and the
backward variable, 8i(i) = P(0.41,...,0r|g, = i, A), the reestimation transformations can
be easily calculated as

PO, g, = i|A) = a,(DB(D)
N N
PO =3 aBd =3 arli)
i=1 . i=1
PO,qi-1 =i, g = j|A) = a1 (D) a;bj(0)B:(j)
giving '
4 — 20D
N

E ar(j)
Jj=1

T T
Y emiDabo)B) S &)

= 7(0)

a; = = _ =l
a,~j = 7 - !
Z a1 (@Dfe—1() Z Y1—1(0)
=1 e
T T
3 a®BiE0r, i) ; 0
bi(k) = =1 stop=v

T

- T
> @B IR0
=1 =1

which are the formulas given in Eqgs. (6.40a)—(6.40c).
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6.4.4 Notes on the Reestimation Procedure

243
The reestimation formulas can be readily in%r%feted as an implementation of the EM .
algorithm of statistics [17] in which the E (expectation) step is the calculation of the auxiliary ¥
function Q(X', M), (which is the expectation of log P(O, q|A)), and the M (maximization)
step is the maximization of Q(\’, A) over A to obtain X. Thus the Baum-Welch reestimation
equations are esefifially identical to the EM steps for this particular problem.
An important property of the reestimation procedure is that the stochastic co}rausuaints

of the HMM parameters, namely & =
7w
\ m=1 (6.43a)
@
Ma;=1, 1<i<N (6.43b)
i=1
M
YhW=1, 1<j<N (6.43¢)

=1

4 A
are automaticafy iné&’rp%rated at each iteration. By ],gg‘lfmg at the parameter estimation
problem as a : H‘gﬁined optimization of P(O]\) (?u‘b}ect to the constraints of Eq. (6.43)),
we can forihlate the solution procedure by use of the techniques of variational calculus
to maximize P (we use the notation P = P(O|)) as shorthand in this section). Based on a
standard Lagrange optimization setup using Lagrange multipliers, it can readily be shown
that P is maximized when the following conditions are met;
opP
Y. ap
LY S

O

T =

(6.44a)

k=1

(6.44b)

(6.44¢)

cate ik BR . . .
By appropriate manipulation of Eq. (6.44), the right-hand sides of each equation can be
readily shown to be identical to the right-hand sides of each part of Egs. (6.40a)—(6.40c),
thereby showing that the reestimation formulas are indeed exactly correct at critical points
of P. In fact, the form of Eq. (6.44) is essentially that of a reestimation formula in which
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the left-hand side is the reestimate and the right-hand side is computed using the current
values of the variables.

Finally, we note that since the entire problem can be set up as an optimization N 4 2
problem, standard gradient techniques-can be used to solve for “optimal” .values of the 0 Mof - ,Oly
model parameters. Such procedures have been tried and have been shown to ?ieId solutions -/f‘,\&b\ - (omn €0 !
comparable to those of the standard reestimation procedures [18]. One critical shortcoming y
of standard gradient technique, as applied to the maximization of P(0|)), is that the descent-t %
algorithms, which are critical _ggp’t\endent on taking a small step in the direction of the
gradient, often do not produce mofiotonic improvement in the likelihood as the Baum-Welch
reestimation is guaranteed by Eq. (6.42) to do.

6.5 TYPES OF HMMS - Lg{{, ‘ ’,ULc i J&

%ald S W\'oJe Q
One way to classify types of HMMs is by the structure of the transition m; [%3@ of the |

(a)

Markov chain. Until now, we have only considered the special case of *Erg ¢ or fully
connected HMMs in which every state of the model could be reached (in a single step)
from every other state of the model. (Strictly speaking, an ergodic mo@(cl% the property
that every state can be reached from every other state in a finite but apert ic number of
steps.) As shown in Figure 6.8(a), for an N = 4 state model, this type of model has the
property that every a;; coefficient is positive. Hence for the example of Figure 6.8(a) we
. have

an a2 a3 aun
A= | % 92 au | : N
a3 axn 63 au ,( wo QofC—Y\J L\t HMM

dq G472 ds3 G

For some applications, particularly those to be discussed later in this chapter, other
types of HMMs have been found to account for observed properties of the signal being
modeled better than the standard ergodic model. One such model is shown in Figure 6.8(b).
This model is called a left-right model or a Bakis model ({11], [10]) because the underlying
state sequence associated with the model has the property that, as time increases, the state
index increases (or stays the same)—that is, the system states proceed from left to right.

crossS '@uHeJ 1711 getion

Figure 6.8 Ilustration of three distinct types of HMMs. (a) A
4-state ergodic model. (b) A 4-state left-right model. (c) A 6-state
parallel path left-right model.

Clearly the left-right type of HMM has the desirgble rty that it can readily model
signals whose properties change over time in augﬁégé‘s%?% manner—e.g., speech. The
fundamental property of all left-right HMMs is that the state-transition coefficients have
the property

a; =0, j<i (6.45)
that is, no transitions are allowed to states whose indices are lower than that of the current
state. Furthermore, the initial state probabilities have the property

0, i#1
;= 46
B {1, i=1 6.48)

because the state sequence must begin in state 1 (and end in state N). Often, with left-right

sde —a&s%*e T Vs srate N

models, additional constraints are placed on the state-transition coefficients to make sure
that large changes in state indices do not occur; hence a constraint of the fo:
1810 5 0 stale
a; =0, ~ j>i+Ai (i-=0 6.47)
ar =

is often used. In particular, for the example of Figure 6.8(b), the value of Ai is 2; that is, no

jumps of more than two states are allowed. The form of the state-transition matrix for the
example of Figure 6.8(b) is thus

an ap a3 0
A= 0 ayp axn aza

0 0 asy axw

0 0 0 au
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It should be clear that, for the last state in a left-right model, the state-transition coefficients
are specified as

any = 1 (6.483)
ani =0, i<N. (6.48b)

Besides the above fully connected and left-right models, there are many other possible
variations and combinations. By way of example, Figure 6.8(c) shows a cross-coupled
connection of two parallel left-right HMMs. Strictly speaking, this model is a left-right
model (it obeys all the a;; constraints); however, it has certain ﬂ%iyility not present in a
strict left-right model (i.e., one without parallel paths).

It should be clear that the irr?Sogﬁion of the constraints of the left-right model, or those
of the constrained jump model, essentially have no effect on the reestimation procedure.
This is the case because any HMM parameter set to zero initially will remain at zero
throughout the reestimation procedure (see Eq. (6.44)).

6.6 CONTINUOUS OBSERVATION DENSITIES IN HMMS

All of our discussion to this point has considered only when the observations were char-
acterized as discrete symbols chosen from a finite alphabet, and therefore we could use a
Wwimm each state of this model ([19]-{21]). The problem with
this approach, at least for some applications, is that the observations are often continuous
signals (or vectors). Although it is possible to convert such continuous signal represen-
tations into a sequence of discreg %oggvié vector quantization codebooks’and other
methods, there might be serious d gg:ll} associated with such discretization of the con-
tinuous signal. Hence it would be advantageous to be able to use HMMs with ;ng
ohservation depsities to model continuous signal representations directly.

To use a continuous observation density, some restrictions must be placed on the
form of the model @obability nsity@unction (pdf) to ensure that the parameters of the

pdf can be reestimated in a consistént way. The most general @on of the pdf, for
mix

which a reestimation procedure has been formulated, is a fini ture of the form
Mt :
b0) =Y ¢IN@,mi, Up), 1<j<N (6.49)
k=1 :. \ae

where o is the observation vector being eled, ¢y, is the mixture coefficient for the kth
mixture in state j and N is any log-concave or elléﬁic’ally symmetric density [18] (e.g.,
Gaussian). Without loss of generality, we assume that A is Gaussian in Eq. (6.49) with

mean vector mdwng%g; Uj, for the kth mixture component in state j. The

_mixture gains cj satisfy the stochastic constraint

B _
=1, 1<j<N (6.502)
k=1

k>0, 1<j<N, 1<k<M (6.50b)

Sec. 6.6 Continuous Observation Depsities in HMMs 351
néfalle

AN > :
M hovt SRS ain

/ [\ MTmy, a0
iy ani e

Figure 6.9 Equivalence of a state with a mixture density toa
multistate single-density distribution (after Juang et al. [211).

" 5o that the pdf is properly normalized, i.e.,

00
/ bj(0)do =1, 1<j<N. (6.51)
-0

. &1
The pdf of Eq. (6.49) can be used to approximate, arB!tra}Qﬂy closely, any finite, continuous-
density function. Hence it can be applied to a wide range of problems.

It has been shown that an HMM state with a mixture density is equivalent to a
multistate single-mixture density model in the following way [21]. Consider a state i with
an M-mixture Gaussian density. Becaysg the mixture gain coefficients sum up to lféfh%?' %)
define a set of transition coefficients to gsmms i1 (with transition probability c;;), i, (with
transition probability ¢;y) through iy, (with transition pro bability c;»). Within each substate
iy, there is a single mixture wi : see Figure 6.9 for a graphical
interpretation). Each substate makes a fransition to a wait state ip with probability 1. The
distribution of the cbMposite set ;f%gpmm(each with a single density) is mathematically
equivalent to the composite mix density within a single state.

It can be shown that the reestimation formulas for the coefficients of the mixture
density, i.e., Ci, pjt, and Uy, are of the form )

T.
S Wik
r=1

Cix = N 7 (6.52)
PIDIEIN)
=1 k=1
T
> Wik -o
A = =4 (6.53)

T
PRTA)
=1
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T - TR pote
DGR - (0 = )0 — )
Uy = = (6.54)

T
3wk
=1

where prime denotes vector transpose and where v,(j, k) is the probability of being in state
J at time ¢ with the kth mixture component accounting for o,, i.c.,

Y k) = Na:(j)ﬂs(]) . N (0, v, Up)
Y DB || Y cim N0, tjm, Uim)
J m=1

=1 "
>’4§§¢ : “;_, NT ;*{I’Q l#@ ey wicture M \f; “" T MiFuve "F‘”-\:fi/:
(The term ~,(j, k) gen zes to () of Eq. )6 in the case of a simple mixture, or a
discrete density.) The reestimation formula for 4;; 1S identical to the one used for discrete
observation densities (i.e., Eq. (6.40(b))). The interpretation of Egs. (6.52)~(6.54) is fairly
straightforward. The reestimation formula fo the ratio betw e expected number

of times the system is in state j using the kth mixXture component] and(the number
of times the is in state j) Siinilarly, the reestimation formula forafﬁ::nﬁd@
weights e r 6.52) by the observation, thereby giving the expec!
value of the portion of the observation vector accounted for by the kth mixture component.

A similar interpretation can be given for the reestimation term for the covariance matrix
Ui..

. -] -
g 18
6.7 AIJTO}!%GRESIVE HMMS

Another very interesting class of HMMs that is particularly applicable to speech processing
is the class of autoregressive HMMs ({22, 23]). For this class, the observation vectors
are drawn from an autoregression process. (The autoregre qude sity is, of course,
just another continuous-probability density. However, we e}sa;bb {E‘gh the subject here
separately from Section 6.6 because of its importance in speech analysis as will be shown
later.)

To be more specific, consider the observation vector 0 = (xp,x),x2,...,xx—1). The

elements, x;, could be simply the speech waveform samples. The components of o are

assumed to be from an auteregrassive Gaussian source, satisfying the relationship
r/“ p
B Z aixp—; + € . 6.55)
A i=1

where e, k =0, 1,2, ..., K — 1 are Gaussian, independent, identically distributed random
variables with zero mean and ygl;ia/n&aiand ai,i=1,2,...,p, are the autoregression or
predictor coefficients. It can be shown that for large K [22, 23], the density function for o
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is approximately

- 1
f@) = 2ma?y*exp { ~7290 a)} (6.56)
where
»
8(0,3) = rO)r(0) +2 Y _ ra(ir(i) 6.57a)
i=1
a=[l,a,a,...,a), @=1 (6.57b)
p—i
=) Gy,  1<i<p (6.57c)
n=0
K—i—1
i) = Z Xari  0<i<p. (6.57d)
n=0
In the above equations (i) is the @aﬁo@nt the obseryation samples, and r,(i) is the
<aitocarrelafionnf the autoregressive cosfficients. Furthermore, 6(0, a) is a form of residual

energy resulting from inverse filtering the data x; with an all-zero filter defined by a. (See
Egs. 4.40-44.)

As discussed in Chapter 4, the signal level in the observation o is often treated
in a different fashion from the general spectral shape when it comes to speech-pattern
comparison. One way to separate the signal level from the spectral shape is to use gain
normalization; that is, we use  instead of o as the observation, where

6=0/0, 6.58)

and w_here o2, is the minimum linear prediction residual energy per sample. (Itis shown in
E{(emlse 6.5 that o2, = (02)wmy for the given observation 0.) The elements of 0,3 = Xt/ O o,
still satisfy the autoregressive relationship

4
Be==) @b+ & (6.59)
i=1
However, the variance of 2, is now unity. Therefore, we can write the probability density

function for the output of an all-pole system defined by a, driven by a zero mean, unit
variance Gaussian i.i.d. sequence, as

(8 = 2m) ¥ ?exp {— %5(6, a)} (6.60)

if the data dimension K is sufficiently large. (Note that the normalization factor o,
depends on the original data observation 0.) This type of pdf is often referred to as a
“gain-independent” pdf.

The way in which we use a Gaussian autoregressive density in HMMs is straightfor-
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ward. We assume a mixture density of the form
M
b(o) = > ciebu(0) (6.61)
k=1
where each b;(0) is the density defined by Eq. (6.60) with autoregression vector ay (or

equivalently by autocorrelation vector r,, ); that is,

(o) = 2m) ¥ 2exp {— %5(0, a,-k)} . (6.62)

A reestimation formula for the sequence autocorrelation for the jth state, kth mixture
component has been derived [22, 23}, and is of the form

T
Z'Yl(ja k-r
r=|

T
PIRTIR )
=1

where r; = [7,(0),7,(1),...,r(p)] is the autocorrelation vector as defined by Eq. (6.57d)
for the £t frame, and v,(j, k) is defined as the probability of being in state j at time ¢ and
using mixture component k, i.e.,

Na:(nﬂ:(ﬁ citbie(or)
A ]
WIO= 1S 0D | |3 cubuton |- (6.63b)

=1 k=1

(6.63a)

l_'jl, =

It can be seen that T is a weighted sum (by probability of occurrence) of the normalized
autocorrelations of the frames in the observation sequence. From T, one can solve a set of
normal equations to obtain the corresponding autoregressive coefficient vector &, for the
kth mixture of state j. The new autocorrection vectors of the autoregression coefficients as
needed in the density function can then be calculated using Eq. (6.57c), thereby closing the
reestimation loop.

Exercise 6.4
The probability density function (pdf) [22, 23] of Eq. (6.56) is defined by parameters ¢? and
a. Given a data observation vector @ = (xg, X1, . . . , Xx—1), determine the maximum likelihood

estimate of o2 and a that best characterizes the observed o.

Solution 6.4 .
We write the likelihood function of o as a function of ¢ and a as
flola?,a) = 2ma}) ¥ exp {——156(0, a)}
207

and the log likelihood function as

&(0,a)
202

log f(o}o?,a) = —§ log 2702y -
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Therefore, the maximum likelihood (ML) estimate is
(@) = argmax|og f(o|o;, a) = arg min §(0, a)
= arg m.in(a'Ra)
where R = [r;] with r;; = r(}i — j]) as defined by Eq. (6.57d). This establishes the relationship
between maximum likelihood estimation and the classical method of autocorrelation matching

(also called the method of minimization of prediction residuals) for LPC analysis (see Eq.
(4.8)(4.10)). Furthermore, it is easy to show that

(eDmL = min §(0, 3)/K

which leads to
max log f(o[zr2 a) = —Elo [2 (0} K
ot e @) = 2 g (T, ML] - 5
Exercise 6.5
The pdf of Eq. (6.56) is related to the Itakura-Saito distortion measure of Eq. (4.45). Establish
this relationship.
Solution 6.5

Consider the following likelihood difference

Li= [mzax log f(0|of,a)] ~ log f(o}o?,a)

6(0,a)
202

K K
=—>log2rom] - X + K log 270?2) +
2 272
- [Lé(o a) + log o7 — log (o2
= 2 KO'Z y 0og o, — og(ae)ML_l]-

For distortion measures, we denote the all-pole (power) spectra by o2, / ,A.,(d“"),2 and o2/

o |2 .
|A(e‘ )I » corresponding to parameter sets {(o2)mr, (@)m} and {a2, a}, respectively. (o7, =
(92)mL.) Then, the bracketed term in the log likelihood difference, La, is simply dis(o2, / |4o|* ,
2/ 1A[*) according to Eq. (4.45) because

2 / A aw 1

* ) lAdef2r T K

6(0,a)

due to autocorrelation matching and Eq. (6.57a). (Note that we have defined o2 (and ol) as
the sample variance. The factor K would disappear from the above equation if we use the total
frame prediction residual variance instead of the sample variance.) Therefore,

2 2
0l0?,2) = (2ra?)* 2 exp d _K O Oc 2 log o
flolo7,a) = 27al) Py -7 dis TR +log o, —log o7 + 1

K a7 a?
=G.(a},af)exp{——dls (—"’ = )}
’ 277\ |42 JaP
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where G, (0/2,, a,z) encompasses only the gain terms.

Exercise 6.6
The pdf of Eq. (6.60) is related to the likelihood ratio distortion measure of Eq. (4.53).
Establish this relationship.

Solution 6.6
Similar to the case of Eq. (6.56),

O Al L Gl ™
Eé(o,a) = /:* IA,(e""‘)IZE"—"

-4 () +

N - K 1
ol = @ ”p{" ["”‘ (m” |A|’> * 1]}
K 1 1
= Gz exp {—Edm (EF’ IA—P) } R

Note that when the pdf is expressed in terms of the distortion measures (djs or dir), the
exponential term includes a factor X that represents the data dimension. In practice, this
factor K is replaced by an effective frame length K, which is the net shift of consecutive
data frames. Thus, if consecutive data frames (vectors) have 2/3 overlap, then an effective
frame length K = K /3 is appropriate, so that the rate of characteristic change in terms of
the spectral parameters a is kept at the original waveform sampling rate.

Therefore,

6.8 VARIANTS ON HMM STRUCTURES—NULL TRANSITIONS AND TIED STATES

Throughout this chapter we have considered HMMs in which the observations were as-
sociated with states of the model. It is also possible to consider models in which the
observations are associated with the ﬁ;pf the model. This type of HMM has been used
extensively in the IBM continuous speech recognizer [13]. It has been found useful, for
this type of model, to allow transitions that produce no output; that is, jumps from one state
to ano;her that produce no observation [13]. Such transitions are called nu] tions and
are des1gn’ated by a dashed line, with the symbol ¢ used to denote the rﬁl%a%
Figure 6.10 illustrat z s three examples (from speech-processing tasks) where null arcs
have been successfully utili zed. The example of part (a) corresponds to an HMM (a left-
right model) with a large number of states in which it is possible to omit transitions between
any pair of states. Hence it is possible to generate observation sequences with as few as

Faro«me tev

)c»dfvg
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~r -

(b)

(c)

Figure 6.10 Examples of networks incorporating null transi-
tions. (a) Left-right model. (b) Finite state network. (c) Grammar
network.

one observation and still act%unt fe)r a path that begins in state one and ends in state N.

The example of Flgurc 6.10(b) is al mte@ate(}twork (FSN) representation of a
word in terms of h?lgmsuc unit model. the sound on each arc is itself an HMM). For
this model the null transition gives ;&pact and efficient way of describing alternative
word pronunciations (i.e., symbol de eno s)

E\,rball%%g:: FSN of Figure 6.10(c) shows how the ability to i rt a nyll transition into

ork allows a relatively simple network to generate arbi ily long word

(diiit) sequences. In the example shown in Figure 6.10(c), the null transition allows the
network to generate arbitrary sequences of digits of arbitrary length by retuming to the
initial state after each individual digit is produced. 52

Another interesting variation in the HMM structure is the concept of parameter tymg
[13]. Basically, the idea is to set up an equivalence relation between HMM parameters
in different states. In this manner the number of independent parameters in the model is
reduced and the parameter estimation becomes somewhat simpler and in some cases more
reliable. Parameter tieing is used when the observation densi fo; ample, is known to
be the same in two or more states. Such cases occur often j cﬁ:nzmg speech sounds.
The technique is especially appropriate when there is mézugilmem training data to estimate,
reliably, a large number of model parameters. For cases such as these, it is appropriate to
tie model parameters so as to reduce the number of parameters (i.e., size of the model),
thereby making the parameter estimation problem somewhat simpler. We will discuss this
method later in this chapter.
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9j; 9j;

(a)

Figure 6.11 Illustration of general interstate connections of (a) a normal HMM with
exponential state duration density, and (b) a variable duration HMM with specified state
densities and no self-transitions from a state back to itself.

6.9 INCLUSION OF E‘_)zP CIT STATE DURATION DENSITY IN HMMS

N P LGRS i, :
Earlier we showed via Eq. (6.5) that the inherent duration probability density pi{(d)
associated with state i, with self-transition coefficient a;;, was of the form

pild) = (@)*'(1 - aw)
= probability of d consecutive observations in state i. (6.64)

For most physical signals, this exponential state duration density is inappropriate. Instead
we would prefer to explicitly model duration density in some analytic form. (An extensive
treatment of state duration modeling can be found in the work of Ferguson of IDA [14],
which is the basis of the material presented here. Other valuable references include [24]
and [25].) Figure 6.11 illustrates, for a pair of model states i and j, the differences between
HMMs without and with explicit duration density. In part (a) the states have exponentiat
duration densities based on self-transition coefficients a; and ay;, respectively. In part (b),
the self-transition coefficients are set to zero, and an explicit duration density is specified.
For this case, a transition is made only after the appropriate number of observations have
occurred in the state (as specified by the duration density). Such a model is called a
i ov.model.

Based on the simple model of Figure 6.11(b), the sequence of events of the variable

duration HMM is as follows:

1. Aninitial state, g; = i, is chosen according to the initial state distribution ;.
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2. A dyration d, is chosen according to the state duration density Pq.{d1). (For ex-
p%diéﬁce and ease of implementation, the duration density p,(d) is truncated at a
maximum duration value D.)

3. Observations 0,0 ...04 are chosen according to the joint observation density,
by, (0107...04). Generally we assume that in each state observations are inde-
pendent so that by, (0103 ...04) = Hf;lb,,, (0,).

4. The next sfate, g2 = j, is chosen according to the state transition probabilities, a,,,,,
with the conétraint that dgq = 0, ie., no transition back to the same state can
occur. (Clearly this is a requirement, because we assume that, in state gy, exactly d,
observations occur.)

A little thought should convince the reader that the variable duration HMM can be
made equivalent to the standard HMM by setting p;(d) to be the exponential density of
(6.64).

Using the above formulation, we must make several changes to the formulas of
Section 6.4.3 to allow calculation of P(O|A) and for reestimation of all model parameters.
In particular we assume that the first state begins at t = 1 and the last state ends at t = T.
‘We then define the forward variable ¢, (i) as

(i) = P(0; 07....0,, the stay in state i ends at 7| )). (6.65)

We assume that a total of r states have been visited during the first ¢ observations, and we
denote the states as gy, g2, . . . , g, with durations associated with each state of d,, d5, . . . , d,.
Thus the constraints of Eq. (6.65) are

g =i (6.66a)
Y do=t (6.66b)
s=1
Eq. (6.65) can then be written as
(@) =Y g, - pg(dr) - P(010; .04 1q1)

9 d
“Bqg:Per(@)P(O4 41 - 0a 4 arlq2) -
-a,,,_,q,pq,(d,)P(od, tdyteotdo_ 1 oo O,Iqr) (667)

where the sum is over all states g and all possible state durations d. By induction we can
write () as

N D t
aN=3 or_aapid) ] bitos) (6.68)
i=1 d=1 s=t—d+1

where D is the maximum duration within any state. To initialize the computation of o,(j)
we use

ai{i) = mpi(1) - b{oy) (6.69a)
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2 N
a2 = 71pi [ [ bilod) + 3~ en(Daipi( Dbitor) (6.69b)
=
3 2 N
o) = mpi3) [ [ bito) + 3 3 es_a(apitd) (6.69c)
s=1 d=1 Il::
3
. H bi(o,) (6.69d)
s=4~d

and so on, until ap(i) is computed; then Eq. (6.68) can be used for all ¢ > D. It should be
clear that the desired probability of O given the model A can be written in terms of the as
as

N
PO =) "or(d (6.70)

i=]

as was previously used for ordinary HMMs.
To give reestimation formulas for all the variables of the variable duration HMM, we
must define three more forward-backward variables, namely

a; (i) = P(0,0;...0, stay in state i starts at f + 11BY) (6.71)
Bi(®) = P(0r1 ... 07| stay in state i ends at 1, \) 6.72)
B; (D) = P(0.41 .. .or| stay in state i starts at ¢ + 1, \). (6.73)

The relationships between , a*, 3, and 3* are as follows:

N
AOED PO (6.74)
i=1
D t
a®=3 ol [] b0y 6.75)
d=1 s=t—~d+1
N
B =" a8 () (6.76)
j=1
D t+d
B =" Bratpid [] bitoy). 6.77)
d=1 s=t+41

Based on the above relationships and definitions, the reestimation formulas for the variable
duration HMM, with discrete observations, are

_ )

"= (6.78)
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T
Y aldayBl ()
a; = —N’=IT———_ 6.79)
3 atvaysr (i
j=1 =1
T
Z [z a;(l) - ﬂ:(’) - Z ar(i)ﬂr(i)}
N . I’:,:lv <t <1
bitk) = (6.80)
>3 [Z CORHOES Y a,(oaf(i)]
k=1 “"::l“' <t <t
T t+d
Y- OpidBiad T biton)
P = 5= = ) (6.81)
D ot pdBea® [] icos)
d=1 =1 s=t+1

The interpretation of the reestimation formulas is the following: The formula for 7; is the
probability that state i was the first state, given O. The formula for @j; is almost the same as
for the usual HMM, except it uses the condition that the alpha terms in which a state ends at
#, join with the beta terms in which a new state begins at ¢ + 1. The formula for bi(k) is the
expected number of times that observation o, = v; occurred in state i, normalized by the
expected number of times that any observation occurred in state /. Finally, the reestimation
formula for 5,(d) is the ratio of the expected number of times state i occurred with any
duration.

The importance of incorporating state duration densities is reflected in the observation
that, for some problems, the quality of the modeling is significantly improved when explicit
state duration densities are used. However, there are drawbacks to the use of the variable
duration model discussed in this section. One is the greatly increased computational load
associated with using variable durations. It can be seen from the definition and initialization
conditions on the forward variable a(i), from Eqgs. (6.68)—(6.69), that about D times the
storage and D?/2 times the computation is required. For D on the order of 25 (as is
reasonable for many speech-processing problems), computation is increased by a factor of
300. Another problem with the variable duration models is the large number of parameters
(D), associated with each state, that must be estimated, in addition to the usual HMM
parameters. Furthermore, for a fixed number of observations 7, in the training set, there
are, on average, fewer state transitions and much less data to estimate pi(d) than would
be used in a standard HMM. Thus the reestimation problem is more difficult for variable
duration HMMs than for the standard HMM.

One proposal to alleviate some of these problems is to use a parametric state duration
density instead of the nonparametric p;(d) used above [23-24]. In particular, proposals
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include the Gaussian family with

pildy = N(d, i, 0% (6.82)
with parameters y; and 17,»2, or the Gamma family with
A _ n}"d"’_le"”d
pid) = To) (6.83)

with parameters v; and 7; and with mean vin;~! and variance vm,-‘z. Reestimation formulas
for 7; and v; have been derived and used with good results. Another possibility, which
has been used with good success, is to assume a uniform duration distribution over an
appropriate range of durations and use a path-constrained Viterbi decoding procedure.

6.10 OPTIMIZATION CRITERION—ML, MMI, AND MDI

The standard ML design criterion is to use a training sequence of observations O to derive
the set of model parameters A, yielding

AmL = arg max P(O)N). (6.84)

Any of the reestimation algorithms discussed previously provides a solution to this opti-
mization problem.

The need to consider alternative design criteria, however, comes from several con-
cerns ([26-28]). The basic philosophy in statistical modeling methods, such as HMM, is
that the signal or observation sequence can be well modeled if the parameters of the model
are carefully and correctly chosen. The problem with this philosophy is that the assumed
model—HMM in the present case—is sometimes inadequate to model the observed signal
so that no matter how carefully the parameters are chosen, the modeling accuracy is limited.
Often, this situation is described as a “model mismatch.” The first alternative optimization
criterion we discuss here is one that tries to overcome the problem of model mismatch in
order to achieve a more accurate modeling of the observation signal.

The observed signal O = (0,,0;, ..., 0r) is associated with a sequence of constraints
R = (R,Ry,...,Ry). For example, R; may be the autocorrelation matrix that charac-
terizes the observation o,. Then, obviously, O is only one of possibly uncountably many
observation sequences that satisfy the constraint sequence R. Furthermore, in terms of the
probability distributions of the observation sequences, there exists a set of such distribu-
tions that would also satisfy R. We denote this set Q(R). The minimum discrimination
information (MDI) is a measure of closeness between two probability measures (one of
which bears the HMM form here) under the given constraint R and is defined by

UR,P)E inf KQ:Py) (6.85)
QER)
where ©)
q
KQ:Py) = ! d 6.86
(@:Py) /q(O) og p(0|A)O (6.836)
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is the discrimination information between distributions @ and P), [27,28). (The functions
q(-)and p(-| A) are the probability density functions corresponding to Q and P, respectively.)
The discrimination information is calculated based on the given training set of observations.

The MDI criterion tries to choose a model parameter set A such that (R, P,) is
minimized. An interpretation of MDI is that the model parameter set X is chosen so
that the model p(0|)) is as close as it can be to a member of the set Q(R). Since
the closeness is always measured in terms of the discrimination information evaluated
on the given observation, the intrinsic characteristics of the training sequences would
then have substantial influence on the parameter selection. By emphasizing the measure
discrimination, the model estimation is no longer solely dictated by the assumed model
form. The MDI optimization problem is, however, not as straightforward as the ML
optimization problem and no simple robust implementation of the procedure is known.

Another concern about the HMM optimization criterion arises when we attempt to use
it to solve a class of speech-recognition problems. Consider recognition of a vocabulary of
V words, each of which is represented by an HMM, with parameter set A,,v=1,2,...,V.
We assume P(v) to be the a priori probability for word v, v = 1,2,...,V. The set of HMMs
A = {)\,} together with the a priori probabilities thus defines a probability measure for an
arbitrary observation sequence O

v
PA(0) = > P(O|\,, vP(). (6.87)
vl

(The notation P(O|A,, v) indicates that it is a probability conditioned on the word v. We
include the model parameter \,, sometimes, because of the necessity of treating A, as
random variables for estimation purposes. Obviously, when ), is fixed, P(OfX,,v) is the
conditional probability, parameterized by A,.) To train these models (i.e., to estimate the
optimum parameters of the associated models), utterances of known (labeled) words are
used. We denote the labeled training sequence by O” where superscript v reflects the fact
that O is a rendition of word v. The standard ML criterion of Eq. (6.84) is to use O" to

estimate model parameters ), yielding

(AWML = arg min P(O”)).

Each model is estimated separately using the correspondingly labeled training observa-
tion sequence(s). The resultant models, however, need not be the optimal solution for
minimizing the probability of recognition error.

An alternative design criterion that aims at maximizing the “discrimination” of each
model (i.e., the ability to distinguish between observation sequences generated by the
correct word model and those generated by alternative models) is the maximum mutual in-
formation (MMI) criterion [26]. The mutual information between an observation sequence
0" and the word v, parameterized by A = {)\,},v=1,2,...,V, is

P(OY,v{A)

—_— 6.88
PAGIPG) ©88)

IA(0",v) =log

Since
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P(O",v|A)/P() = P(O"|),),
14

INO",v) = log P(O"|A) = log 3 P(O"| A, W)P(W). (6.89)
w=l]
The MMI criterion is to find the entire model set A such that the mutual information is
maximized,
v
(Awwr = m;\tx{ 2_‘1 INCS v)}. (6.90)

The MMI criterion is obviously different from the ML criterion. Both are minimum
cross-entropy approaches. In the ML approach, an HMM for the distribution of the data
given the word is matched to the empirical distribution. In the MMI approach, a model
for the distribution of the word given the data is matched to the empirical distribution.
This explains the merit of the MMI approach. The optimization procedure for the MMI
approach involves the entire model parameter set A even if only one labeled training
sequence O is used. The ML criterion addresses the likelihood P(0”|),) alone, while
the MMI criterion compares the likelihood P(O"|),) against the “probability background”
P4 (0”) and attempts to maximize the difference. However, (A)mm is not as straightforward
to obtain as (A)mr. One often has to use general optimization procedures like the descent
algorithms to solve Eq. (6.90). Such optimization procedures often lead to numerical
problems in implementation.

6.11 COMPARISONS OF HMMS

An interesting question associated with HMMs is the following: Given two HMMs, ), and
A2, what is a reasonable measure of the similarity of the two models ([291)? Consider the
case of two models

At =(A1,B1,m) A= (Az,By,m)
with

1- 1-
A1=[’1’_p ’ p] B,=[‘l’_q ‘ "] m=[1/2 1/2]

and

A2=[;_r :"J Bz=[';_s ;‘s] m =[1/2 1/2.

For A; to be equivalent to ), in the sense of having the same statistical properties for the
observation symbols, i.e., E{o, = Vil \i] = Efo, = vi|Ap), for ail vy, we require

g+ -pl-g@=rs+(1-nN1-13
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or, by solving for s, we get
s=Pta-2mq
1-2r °

By choosing (arbitrarily) p = 0.6,¢ = 0.7,r = 0.2, we gets = 13/30 ~ 0.433. Thus, even
when the two models, A; and A;, look ostensibly very different (i.e., Ay is very different
from A; and B, is very different from By), statistical equivalence of the models can occur.

We can generalize {29] the concept of model distance (dissimilarity) by defining a
distance measure D(A;, A;), between two Markov models, A; and A,, as

D(\, M) = % [log P(OP|2)) ~ log P(OP|2y)] (6.91)

where O? = (0 0,03...0r) is a sequence of observations generated by model Az. Ba-
sically, Eq. (6.91) is a measure of how well model A, matches observations generated by
model A, relative to how well model A, matches observations generated by itself. Several
interpretations of Eq. (6.91) exist in terms of cross-entropy, or divergence, or discrimination
information [29].

Ore of the problems with the distance measure of Eq. (6.91) is that it is nonsymmetric.
Hence a natural expression of this measure is the symmetrized version, namely

D, X = .

(6.92)

6.12 IMPLEMENTATION ISSUES FOR HMMS

The discussion in rhe previous sections has dealt primarily with the theory of HMMs
and several variations on the form of the model. In this section we déal With several
practical implementation issues, including\ ‘scaling,zmultiple observation sequences, initial
parameter estimates, rissing data, and’choice of model size and type. For some of these
implementation issues we can cAbe exact analytical solutions; for other issues we can
provide only some seat-of-the-pants experience gained from working with HMM:s.

~ ~
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-
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’ - AoondCostnle 4 ot time £, ATsen Ma/;/z A
: To understand why scaling ([18,23]) is required for implementing the Teestimgtion pro-

‘ cedure of HMMes, consider the definition of ¢/(i) of Eq. (6.18). It can be seen that c,(i)

~ consists of the sum of a large number of terms, each of the form

ki
\

P o N 9
] /‘_“i,\ \’,{\/.’“ib-/ A ol ¢
Xeagtiyz) &AL tO Y
FRMR dat Q(Ha,,,q,+.[Ilb,,,<o,>)
s=1 s=

with g; = i and b is a discrete probability as defined by Eq. (6.8). Since each @ and b term is
less than 1 (generally significantly less than 1), it can be seen that as ¢ starts to get big (e.g.,
10 or more), each term of o, (i) starts to head exponentially to zero. For sufficiently large
? (e.g., 100 or more) the dynamic range of the a,(i) computation will exceed the precision

A <

2t
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range of essentially any machine (even,in double precision). Hence the only reasonable
way to perform the computation is to in€o te a scaling edure.

The basic scaling procedure multiplies a,(i) by a@Caling coefficient that is indepen-
fdent of i (i.e., it depends only on 1), with the goal of keeping the scaled (i) within the
\dynamic range of the computer for 1 < ¢ < T. A similar scaling is done to the G,(i)

coefficients (since these also tend to zero exponentially fast) and then, at the end of the
computation, the scaling coefficients are canceled out exactly.
. \ . To understand this scaling procedure better, consider the reestimation formula for the
state-transition coefficients a;;. If we write the reestimation formula (Eq. (6.40b)) directly
in terms of the forward and backward variables, we get

JAsY
Sedmt

T T =

T g - S o (Daybi(0111)Be41())

o %lfg (ag) > addayb;

iYe = B%ﬂﬂz 3 =3 Tml/v : 693
) & 4'1;\ Celny) %Za,(na.-jb,-(o.ﬂ)ﬂm(ﬂ

=1 j=1

Consider the computation of O"Q» We use the notation o (i) to denote the unscaled
as, &(i) to denote the scaled (and iterafed) as, and é,(i) to denote the local version of
a before scaling. Initially, for t = 1, we compute o (i) according to Eq. (6.19) and set

&) = (D), with ¢; = vl and &) = cren(d. Foreach £, 2 < 1 < T, we first
— imt 1 N\
compute &,(i) according to the induction formula (Eq. (6.20)), in terms of the previously
scaled &,(?); that is,
N
&) =Y du_i(Naubi(oy). (6.94a)

j=1

We determine the scaling coefficient ¢, as

a=-3 1 (6.94b)
> adi
i=1
giving
&) = ciéu(i) (6.94c)
From Eq. (6.94a—) we can write the scaled a,(i) as c,a,(:) or
Z@ajibi(or)
(i) = —= (6.95)

< .
E ;(-1(\]\ :bi(0;)

1= =

M=

i

A TR

et Byt o
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By induction we can write &,_, () as

CiCye = Lo
—~1
& 1() = (H Cf) o 1(). (6.96a)
=1
Thus we can write &,(i) as
u = P Low"/ apY 0)
Z at-l(j)(H Cr) ajibi(o;) | ; SRR
Gt = = - =20 (6.96b)
>3 al—l(j)( cr) aibi0) |3 i) |
i=1 j=1 r=1 i=] “

X\ ‘x)
that is, ective]

Next we compute the 3,(i) terms from the backward recursion. The only difference
here is that we use the same scale factors for each time ¢ for the betas as was used for the
alphas. Hence the scaled s are of the form

B = c:BiG). (6.97)

Because each scaleC Ector effectively ri:g“s}:‘é'lwe‘g‘the magnitude of the o terms to 1, and
because the magnitudes of the a and 3 terms are comparable, using the same scaling
factors on the Bs as was used on the as is an effective way to keep the computation
within reasonable bounds. Furthermore, in terms of the scaled variables, we see that the
reestimation Eq. (6.93) becomes

T—1
Z (D)abj(0+ )i 1(j)
;= = (6.98)
D aldaghion)Bii()
t=1 j=|
but each &,(i) can be written as
. fc (6&b o
&(i) = [H L‘,} a(i) = Gy (i) (6.99)
s=1
and each BH_l( J) can be written as
i T
B = [ H C.r] Bi() = D1 Brr (D). (6.100)
s=t+1

Thus Eq. (6.98) can be written as
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T—1
> Ciaulaibi(041)Di11 B ()
3 = = . (6.101)

Z Z Cia(Da;ibj(0441)D 141 Best ()

=] j=1

Finally the term C,D,; can be seen to be of the form

4 T T
CDwi=[le: [] ee=[e=c¢r (6.102)

s=1  s=t+1 =1

independentof t. Hence the terms C,D, cancel out of both the numerator and denominator
of Eq. (6.101) and the exact reestimation equation is therefore realized.

It should be obvious that the above scaling procedure applies equally well to rees-
timation of the@“or@)coefﬁciems. It should also be obvious that the scaling procedure
of Eq. (6.95) need not be applied at every time instant ¢, but can be performed whenever
desired, or whenever necessary (e.g., to prevent u?faerﬂow). If scaling is not performed
at some instant ¢, the scaling coefficients ¢, are set to 1 at that time, and all the conditions
discussed above are then met.

(o \f‘\ The only real change to the HMM procedure because of scaling is the procedure for
L computing P(O|)). We cannot merely sum up the G7(i) terms, because these are scaled
already. However, we can use the property that

T N N
H &Y ard=Cr > ery=1. (6.103)
T =1 i=1 ) i=1
Thus we have
T
IIe-PoOIM=1 (6.104)
=1
or
PO|N) = ——Tl (6.105)
I«
t=1
or

T
log [POO[N)] = " log c.. (6.106)
=1
Thus the log of P can be computed, but not P, since it would be out of the dynamic range
of the machine anyway.
SN Finally we note that when using the Viterbi algorithm to give the maximum likelihood
" state sequence, no scaling is required if we use logarithms as discussed in the alternate
Viterbi implementation.

6.12.2
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Multiple Observation Sequences

In Section 6.5 we discussed a form of HMM called the left-right or Bakis model, in which
the state proceeds from state 1 att = 1 tostate Nat¢z = T ina sequential manner_(recall
the model of Figure 6.8(b)). We have already discussed how a left-right model impgges
constraints on the state-transition matrix, and the initial state probabilities Egs. (6.45)-
(6.48). However, the major problem wi left-right models is that one cannot use a single -
observation sequence tc* train the model tw)‘ This
is because the transient nature of the stafes within the model allows only a small number of
observations for any state (until a transition is made to a successor state). Hence, to have
sufficient data to make reliable estimates of all model parameters, one has to use multiple
observation sequences ([18]).

The modificafion of the reestimation procedure is straightforward and is as follows.
We denote the set of K observation sequences as

0 =[0V,0?, .. 0% (6.107)

where O® = (0ol ... o) is the : kth observation sequence. We assume each observation
sequence is independent of every other observation sequence, and our goal is to adjust the
parameters of the model A to maximize

K
PO = [] POy (6.108)
k=1
k)
x R=? (3%
=11~ (6.109)
k=1

Since the reestimation formulas are based on frequencies of occurrence of various events,
the reestimation formulas for multiple observation sequences are modified by adding to-

gether the individual frequencies of occurrence for each sequence. Thu: the modified
reestimation formulas for a; and by(£) are 1849 S%M"*ce LI 2‘] 9 -%l 4 3&&‘{ 7fﬂ ﬂ 2
K | Tl
25 2 A Dab o8 ()
a; ==l ’;=11 e (6.110)
PP ILACAC!
k=1 ko
and
K Ti—1
ke gk
= O atOB®
R
— s =vg
B0 = ——22 (6.111)

1
IRACLAC)
=1

k=1




6.12.3

370 Chap. 6  Theory and Implementation of Hidden Markov Models
and 7; is not reestimated since m; = 1, m; = 0,i # 1.

The proper scaling of Eqgs. (6.110)—(6.111) is now straightforward since each obser-
vation sequence has its own scaling factor. The key idea is to remove the scaling factor
from each term before summing. This can be accomplished by writing the reestimation
equations in terms of the scaled variables, i.e.,

X Ti—1
1 -
PR B ACTY I M)
gy ===l : (6.112)
1 . Ny
= akbt

In this manner, for each sequence O, the same scale factors will appear in each term of
the sum over ¢ as appears in the P, term, and hence will cancel exactly. Thus using the
scaled values of the as and §s results in an unscaled a;. A similar result is obtained for the
B;(&) term.

Initial Estimates of HMM Parameters

In theory, the reestimation equations should give values of the HMM parameters that
correspond to a local maximum of the likelihood function. A key question is, therefore,
How do we choose initial estimates of the HMM parameters so that the local maximum is
equal to or as close as possible to the global maximum of the likelihood function?
Basically there is no simple or straightforward answer. Instead, experience has shown
that either random (subject to the stochastic Q%d ﬂ}e\ n& nzero value constraints) or uniform
initial estimates of the = and A parameters are i« %ﬂc‘l‘da e for giving useful reestimates of these

3 parameters in almost all cases. However, for the B parameters, experignce has shown that

%

* good initial estimates are helpful in the discrete symbol case and are esséhtial (when dealing
with multiple mixtures) in the continuous-distribl:éion case. §y§ initial estimates can be
obtained in a number of ways; these include (a) anial segnienitation of the observation
sequence(s) into states and averaging of observations within states, ) maximum likelihood
segmentation of observations and averaging, and (c) segmental k-means segmentation with
c&gsgr%ng, etc. We discuss such segmentation techniques later in this chapter.

7 = .

6.12.4 Effects of Insufficient Training Data

Another problem associated with training HMM parameters via reestimation methods is
that the observation sequence used for training is, of necessity, finite ({30]). Thus there
is always an if_l',éfféalﬂte number of occurrences of low-probability events (e.g,,,symbol
occurrences within states) to give good estimates of the model parameters. Bi;:Wa)\// of
example, consider the case of a discrete observation HMM. Recall that the reestimation
transformation of Ej(k), Eq. (6.40c), requires a count of the expected number of times in
state j and observing symbol v, simultaneously. If the training sequence is so small that
it does not have any occurrences of this event (i.e., g, = j and o, = vi), bj(k) = 0 and
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will stay O after reestimation. The resultant model would produce a zero probability result
for any observation sequence that actually includes (o, = v, and ¢, = j). Sucha singular
outcome is obviously a consequence of the unreliable estimate that b;(k) = 0 due to the
insufficiency of the training set.

One solution to this problem is to increase the size of the training observation set.
Often this is impractical. A second possible solution is to reduce the size of the model
(e.g., number of states, number of symbols per state). Although this is always possible,
often there are physical reasons why a given model is used, and therefore the model
size cannot be changed. A third possible solution is to seek unconventional statistical
estimation algorithms that can somehow enhance the reliability of the parameter estimates
even based on limited training data. Deleted interpolation and parameter thresholding
are two such alternatives. Since deleted interpolation is considered more an enhanced
parameter estimation method, we discuss that subject in the next section.

The simplest way to handie the effects of insufficient training data is to add extra
threshold constraints to the model parameters to ensure that no model parameter estimate
falls below a specified level [18]. Thus, for example, we might specify the numeric floor,
for a discrete symbol model, that

bk, if bi(k) > 6,
by =4 % k) =
i(K) {6,,, otherwise (6.1132)
or, for a continuous distribution model, that
Up(r,r), if Uplr,r) >4,
Ui(r, r) = {61"( wrr) 2 8 (6.113b)
s otherwise

When the numeric floor is invoked in the reestimation equations, all remaining parameters
need to be rescaled so that the densities obey the required stochastic constraints. Such
postprocessor techniques are thus considered implementational measures to combat the
insufficient data problem and have been applied with good success to several problems in
speech processing. The method of parameter thresholding has a justification from a Bayes
statistics point of view. It can be shown that Eg. (6.113b) is, in fact, a maximum a posteriori
(MAP) estimate of the variance under the assumption that the parameter prior P(Upu(r, 1))
i65 a;)informative one with uniform distribution and Ua(r, Mmin = 8, [31]. (See Section
.13,

Choice of Model

The remaining issues in implementing HMMs are the choice oﬁ/_\%g of model (ergodic
or left-right or some other form), choice of size) (number of states), and choice of

servation s (discrete or continuous, single or multimixture, choice of observation
parameters). Unfortunately, there is no simple, theoretically correct way of making such
choices. These choices must be made depending on the signal being modeled. With these
comments, we end our discussion of the theoretical aspects of hidden Markov models
and proceed to a discussion of how such models have been applied to the isolated word-
recognition problem.
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IMPROVING THE EFFECTIVENESS OF MODEL ESTIMATES

We discuss three methods that have been shown to be able to enhance the effectiveness
of HMM model estimates for speech recognition. These are (1) deleted interpolation, (2)
Bayesian adaptation, and (3) corrective training. The first two methods are motivated by
the problem of insufficient data, while the last method has the unique objective of trying to
reduce recognition errors directly.

Deleted Interpolation

When training data are insufficient, reliable and robust determination of HMM parameters
cannot be accomplished. The HMM obtained by the Baum-Welch reestimation method,
based on the maximum likelihood criterion, may be adequate in characterizing the training
data, but for new data the match may be quite poor. One parameter estimation method that
aims to improve the model reliability is the method of “deleted interpolation.”

The concept involves combining two (or more) separately trained models, one of
which is more reliably trained than the other. A scenario in which this can happen is the
case when we use tied states which forces “different” states to share an identical statistical
characterization, effectively reducing the number of parameters in the model. A model with
tied states is often more robust than a model without tied states when trained on the same
amount of data. But a model with tied states is also less precise than a model without tied
states if the training data are sufficient. Therefore, the idea of combining the two models
is to allow us to fall back to the more reliable model when the supposedly more precise
model is, in fact, unreliable. A similar scenario occurs when context-independent (more
robust) and context-dependent (more precise) phone models are used in large vocabulary
recognition (see Chapter 8).

Let the two models be defined by the parameter sets A = (A,B,7) and ' =
(A, B', "), respectively. The interpolated model, A = (A, B, 7), is obtained as

A=ed+(1—eX (6.114)

where e represents the weighting of the parameters of the “full” model (with more detailed
characterization of the observations) and (1 — ¢) represents the weighting of the parameters
of the reduced, but more reliable, model. A key issue is the determination of the optimal
value of ¢, which is a strong function of the amount of training data. This is easy to see
because as the amount of training data gets large, A becomes more reliable and we expect €
to tend to 1.0. Similarly, for small amounts of training data, X is unreliable and we expect
€ to tend to 0.0 so as to fall back to the more reliable model X'.

The solution to the determination of an optimal value for € was provided by Jelinek
and Mercer [30], who showed how the optimal € could be estimated using the forward-
backward algorithm by interpreting Eq. (6.114) as an expanded HMM of the type shown
in Figure 6.12. Figure 6.12a shows the part of the state-transition structure related to the
state S. Using Figure 6.12b, we can interpret the interpolated model of Eq. (6.114) as an
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S1

Sz

S3

(@ (b)

Figure 6.12 Example of how the process of deleted interpolation can
be represented using a state diagram.

expanded HMM in which each state is replaced by three states. The null transitions from
the expanded state S to S and S’ have transition probabilities € and 1 — €, respectively. The
transitions out of S are characterized by those of A while those out of §' are associated with
those of X',

The expanded HMM interpretation suggests that the parameter € can be optimally
determined by the usual forward-backward algorithm. However, since the interpolation is
designed to better predict unseen (future) data, rather than to account for the training data,
determination of € must be based on data that was not used in obtaining either of the two
models, A and )\’. A key idea of deleted interpolation is thus to partition the training data
T into two disjoint sets; that is, T = 7; U 7. For example, one might consider a partition
of the training set such that 7} is 90 percent of 7 and T is the remaining 10 percent of
T. Training set 7; is first used to train A and X'. Training set T; is then used to give an
estimate of ¢, assuming A and X’ are fixed. There are obviously a large number of ways in
which such a partitioning can be accomplished, but one particularly simple one is to cycle
7 through the data. That is, the first partition uses the last 10 percent of the data as 73, the
second partition uses the next-to-last 10 percent of the data as T3, etc. An interpretation of
deleted interpolation is straightforward. If the unseen data fits the more elaborate model
A well (thus validating the reliability of A), the forward-backward algorithm would give a
value of € which is close to 1. Otherwise, the forward-backward algorithm gives a small
value of ¢, indicating that the more reliable model )\’ is a better characterization of the new
data than .

The technique of deleted interpolation has been successfully applied to a number of
problems in speech recognition, including the estimation of trigram word probabilities for
language models [13], and the estimation of HMM output probabilities for trigram phone
models (to be discussed in Chapter 8 of this book).

Bayesian Adaptation

Another insufficient data situation occurs when we attempt to estimate a speaker-dependent
model based on a limited amount of speaker-specific training data. An approach to this
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problem is through speaker adaptation, in which a speaker-independent model, obtained by
reliable training, is adapted to the particular talker using speaker-specific training data [31].

Speaker adaptation can be accomplished based on a Bayesian framework. Consider
the HMM probability measure P(O|)). If the HMM parameter X is assumed to be fixed
but unknown, the maximum likelihood (ML) estimate for A, given the training sequence
0, is obtained by solving the likelihood equation, i.e.

o
PO =0. (6.115)

(Normally, the Baum-Welch reestimation algorithm is used to obtain certain stationary
point solutions instead of directly solving for Eq. (6.115).) If A is assumed random with a
priori distribution Pg(A), then the maximum a posteriori (MAP) estimate for X is obtained
by solving

8
FUlo) =0 (6.116)
for the given training sequence Q. Using the Bayes theorem, we rewrite P(A|O) as
P(O[NPo(N)
Pi = 117
(A O) P(0) 6.117)

The influence of the parameter prior Po()) in the solution process thus becomes explicit.
Note that if the distribution is correctly chosen, the MAP solution attains minimum Bayes
risk.

The parameter prior distribution characterizes the statistics of the parameters of
interest before any measurement is made. If the prior distribution indicates no preference
as to what the parameter values are likely to be, then the prior is called a noninformative
prior (which is essentially constant for the entire parameter space). In this case, the MAP
estimate obtained by solving Eq. (6.116) is identical to the ML estimate of Eq. (6.115). If
we do have prior knowledge about the parameter values of the model, the incorporation of
such prior knowledge in the form of a prior distribution would become important in the
MAP estimate for minimum Bayes risk. This type of prior is often called an informative
prior. Intuitively, if we know what the parameter values are likely to be before observations
are made, we may be able to make good use of the data, which may be limited, to obtain
a good model estimate. If this is true, the questions remaining are how to derive the
informative prior and how to use it in obtaining the MAP estimate.

For mathematical tractability, conjugate priors are often used in Bayesian adaptation.
A conjugate prior for a random vector is defined as the prior distribution for the parameters
of the probability density function of the random vector, such that the posterior distribution
P()|0) and the prior distribution P()\) belong to the same distribution family for any sample
observations O. For example, it is well known that the conjugate prior for the mean of a
Gaussian density is also a Gaussian density. In the following, we therefore discuss only
the use of conjugate priors. We also discuss only the case of Bayesian adaptation of the
Gaussian mean as it is sufficient to demonstrate the idea of Bayesian adaptation in dealing
with small training set problems.
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Let us focus on a Gaussian mixture component V| (1, 02) in a mixture density HMM
W.e use. one-dimensional observations for simplicity. Assume the mean g is random witl;
prior distribution Pg(u) and the variance o is known and fixed. It can be shown that th
conjugate prior for u is also Gaussian; that is, if we assume Po() to be the conjugate n'oi
of 41, then Py(y) is Gaussian. Thus, let us denote the mean and variance of the prio‘: for
1 by p and 72, respectively. The MAP estimate for the mean parameter u in Bayesian
adaptation, from a set of # training observations, is given by ¢

nr? a?
i B g +nr2?
nt

HMAP = (6.118)
where 6 is the sample mean of the n training data. The interpretation of Eq. (6.118) is as
follows. If there are no training data presented, n = 0 and the best estimate of p is simpl
the mean p of the prior distribution of the u parameter. When training data are collected anz
used, the MAP estimate becomes a weighted average of the prior mean p and the sample
mean of the presented observations, o. Ultimately, n — oo and the best estimate of pis pas
expected, the sample mean &. It should also be noted that if the prior variance 72 is ml;Ch
larger than o2 /n, the MAP estimate in Eq. (6.118) is essentially the ML estimate, 6, which
corresiolr(lds to the case of using noninformative priors. T
ey question is, How do we determine p and 72? In ractice, these pri
have to be estimated from a collection of speaker—depende:t (or multispe:l::::; l:na;;:iteg

from a speaker-independent model with mixture distributions i
uttons in each state. F
p and 72 can be estimated by o example

M
P= CmPm (6.1192)
m=1
and

M
=) cnlom = o) (6.119b)

m=1

where c,, is the weight assigned to the m™ model (or the m® mixture component in the
corresponding state of a mixture density speaker-independent HMM) and Pm is the mean of
the correspo.ndmg m™ model (or mixture component). When using a speaker-independent
Gaussian mixture HMM, the weight c,, is basically the mixture gain for the m™ mixture
component, and the estimates of Eq. (6.119) are the ML estimates of the mean and variance
parameters of u before any speaker-specific training data are observed.

The concept of Bayesian adaptation based on conjugate priors can be applied to
oth'er parameters as well. The adaptation method can be shown to provide good parameter
estlmeftes even when the number of speaker-specific training tokens is extremely limited.
E{(penments have shown that large improvements in recognition accuracy are obtained
with the Bayesian adaptation method, compared to direct training, particularly when only
a small number of training tokens are available [30].
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Corrective Training

In statistical pattern recognition, the minimum Bayes’ risk is the theoretical recognizer
performance bound, conditioned on the exact knowledge of both the class prior P(v) and
the conditional distributions P(O|v). When both distributions are not known exactly, and
the classifier needs to be designed based on a finite training set, there are several ways to try
to reduce the error rate. One method is based on the theoretical link between discriminant
analysis and distribution estimation [32]. The idea is to design a classifier (discriminant
function) such that the minimum classification error rate is attained on the training set. In
particular, we wish to design a classifier that uses estimates of P(v) and P(O|v), and that
achieves a minimum error rate for the training set in the same way a discriminant function
is designed. The reason for using the HMM, P(O|),), for modeling P(O}v), as opposed
to other discriminant functions, is to exploit the strengths of the HMMs—consistency,
flexibility and computational ease.

Bahl et al. [33] were the first to propose an error-correction strategy, which they
named corrective training, to specifically deal with the misclassification problem. Their
training algorithm was motivated by analogy with an error-correction training procedure for
linear classifiers. In their proposed method, the observation distribution is of a discrete type,
B = [bi(k)], where b;(k) is the probability of observing a vector quantization code index
(acoustic label) k when the HMM source is in state i. Each b;(k) is obtained via the forward-
backward algorithm as the weighted frequency of occurrence of the code index. The
corrective training algorithm of Bahl et al. works as follows. First, use a labeled training set
to estimate the parameters of the HMMs A = {),} with the forward-backward algorithm.
For each utterance O, labeled as v, for example, evaluate P(O}),) for the correct class v and
P(O|),) for each incorrect class w. (The evaluation of likelihood for the incorrect classes
need not be exhaustive.) For every utterance where log P(O]A,) > log P(O|),)—A, where
A is a prescribed threshold, modify A, and ), according to the following mechanism:
(1) Apply the forward-backward algorithm to obtain estimates bj(k) and b'(k), using
the labeled utterance O only, for the correct class v and incorrect class w, respectively;
(2) Modify the original b;(k) in A, to b;(k) + yb}(k) and the b;(k) in A, to bi(k) — vb]' (k).
When the state labels are tied for certain models, the above procedure is equivalent to
replacing the original b;(k) by b;(k)+~(bj(k)— b}’ (k)). The prescribed adaptation parameter,
+, controls the “rate of convergence” and the threshold, A, defines the “near-miss” cases.
This corrective training algorithm therefore focuses on those parts of the model that are
most important for word discrimination, a clear difference from the maximum likelihood
principle.

Bahl et al. reported that the corrective training procedure worked better (in isolated
word-recognition tasks) than models obtained using the maximum mutual information
or the conditional maximum likelihood criterion. The method, however, is primarily
experimental.

Several other forms of discriminative training were also proposed by Katagiri et al.
[34] together with a framework for the analysis of related training/leamning ideas for
minimizing recognition errors. The discriminative training method described in Sec. 5.6.3
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can be applied to HMM training without difficulty. The corrective training algorithm of
l?ahl et al. can be shown to be just one possible choice for the minimization of a prescribed
risk function.

6.14 MODEL CLUSTERING AND SPLITTING

One of th.e basic assumptions in statistical modeling is that the variability in the observations
from an information source can be modeled by the assumed statistical distributions. For
speech recognition, the source could be a single word, a subword unit like a phoneme, or
a word sequence. Because of variability in the production (e.g., accents, speed of talking),
or‘the processing (e.g., transmission distortion, noise), it is often expedient to consider
using more than a single HMM to characterize the source. There are two motivations
Pehlnd this multiple HMM approach. First, lumping together all the variability from
1nhomf)geneous data sources leads to unnecessarily complex models, often yielding lower
modeling accuracy. Second, some of the variability, or rather the inhomogeneity in the
source data, may be known a priori, thus warranting separate modeling of the source data
sets.

' Several generalized clustering algorithms exist, such as the k-means clustering algo-
rithm, the generalized Lloyd algorithm as is widely used in vector quantizer designs [35],
and the greedy growing algorithm found in set partition or decision tree designs [36], all
o_f \.vhich are suitable for the purpose of separating inconsistent training data so that each
divided subgroup becomes more homogeneous and therefore is better modeled by a single
HMM. The nearest-neighbor rule required in these clustering algorithms is simply to assign
an observation sequence O to cluster i if

P(O}A) = max P(O| ) (6.120)

wh.ere Ajs denote the models of the clusters. Successful application of the model clus-
tering algorithms to the speech-recognition problem, using the straightforward maximum
likelihood criterion, has been reported.

) An aiternative to model clustering is to arbitrarily subdivide a given speech source
into a large number of subclasses with specialized characteristics and then consider a
generalized procedure for model merging based on source likelihood considerations. By
way of example, for large vocabulary speech recognition we often try to build specialized
units (context sensitive) for recognition. For example, we could consider building units
'that are a function of the sound immediately preceding the unit (left-context) and the sound
fmmediately following the unit (right-context). There are on the order of 10,000 such units
in Engl-ish. Many of the units are functionally almost identical. The problem is how to
determine which pairs of units should be merged (so that the number of model units is made
more manageable and the variance of the parameter estimate is reduced). To get ideas,
consider two distinct models, A, and )y, corresponding to training observation sets O, and
Oy, and the merged model A,..5, corresponding to the merged observation sets {0,,05}.
We can then compute the change in entropy (i.e., loss of information) resulting from the




378 Chap. 6 Theory and Implementation of Hidden Markov Models

merged model as

AH,, = Hy + Hp — Ha+b
= —P(0O4|A) log P(OalAq) — P(OsiAs) log P(Op|)s) (6.121)
+ P({Oav Ob}|/\a+b) log P({om ob}IAa+b)~

Whenever AH,, is small enough, it means that the change in entropy resulting from
merging the models will not affect system performance (at least on the training set) and the
models can be merged. The question of how small is acceptable is dependent on specific
applications. This model merging technique has been used successfully by Lee {37] to
create a generalized set of triphone models for large vocabulary speech recognition.

6.15 HMM SYSTEM FOR ISOLATED WORD RECOGNITION

To illustrate the techniques discussed in this chapter, consider using HMMs to build an
isolated word recognizer ([38]). Assume we have a vocabulary of V words to be recognized
and that each word is to be modeled by a distinct HMM. Further assume, for simplicity of
notation, that for each word in the vocabulary we have a training set of K utterances of the
word (spoken by one or more talkers) where each utterance constitutes an observation se-
quence, of some appropriate representation of the (spectral and/or temporal) characteristics
of the word. To do isolated word speech recognition, we must perform the following:

1. For each word v in the vocabulary, we must build an HMM \,—that is, we must
estimate the model parameters (A, B, 7) that optimize the likelihood of the training
set observation vectors for the vth word.

2. For each unknown word to be recognized, the processing shown in Figure 6.13 must
be carried out, namely, measurement of the observation sequence O = {01 02.. .07},
via a feature analysis of the speech corresponding to the word; followed by calculation
of model likelihoods for all possible models, P(O|\), 1 < v < V; followed by
selection of the word whose model likelihood is highest—that is,

v =arg 12‘35’(V[P(0|’\")]' (6.122)

The probability computation step is generally performed using the Viterbi algorithm (i.e.,
the maximum likelihood path is used) and requires on the order of V -N? . T computations.
For modest vocabulary sizes, e.g., V = 100 words, with an N = 5 state model, and T = 40
observations for the unknown word, a total of 10° computations is required for recognition
(where each computation is a multiply, and add, and a calculation of observation density,
b(0)). Clearly this amount of computation is modest compared to the capabilities of most
modern signal processor chips.
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Figure 6.13  Block diagram of an isolated word HMM recognizer (after Rabiner [38)).

6.15.1 Choice of Model Parameters

We now return to the issue that we have raised several times in this chapter—namely, How
do we select the type of model, and how do we choose the parameters of the selected
model? For isolated word recognition with a distinct HMM designed for each word in the
vocabulary, it should be clear that a left-right model is more appropriate than an ergodic
model, since we can then associate time with model states in a fairly straightforward
manner. Furthermore, we can envision the physical meaning of the model states as distinct
sounds (e.g., phonemes, syllables) of the word being modeled.

The issue of the number of states to use in each word model leads to two schools
of thought. One idea is to let the number of states correspond roughly to the number of
sounds (phonemes) within the word—hence, models with from 2 to 10 states would be
appropriate [18). The other idea is to let the number of states correspond roughly to the
average number of observations in a spoken version of the word, the so-called Bakis model
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Figure 6.14 Average word error rate (for a digits vocabulary) versus the number
of states N in the HMM (after Rabiner et al. [18]).

{11]. In this manner each state corresponds to an observation interval—i.e., about 10-15
ms for the standard methods of analysis. In the results to be described later in this section,
we use the former approach. Furthermore, we restrict each word model to have the same
number of states; this implies that the models will work best when they represent words
with the same number of sounds.

To illustrate the effect of varying the number of states in a word model, Figure 6.14
shows a plot of average word error rate versus N, for the case of recognition of isolated
digits (i.e., a 10-word vocabulary). It can be seen that the error is somewhat insensitive to
N, achieving a local minimum at N = 6; however, differences in error rate for values of N
close to 6 are small.

The next issue is the choice of observation vector and the way it is represented. As
discussed in Chapter 3, possibilities include LPC-derived weighted cepstral coefficients and
weighted cepstral derivatives or (for autoregressive HMMs) the autocorrelation coefficients
as the observation vectors for continuous models; for discrete symbol models we use a
codebook to generate the discrete symbols. For the continuous models we use as many
as M = 64 ~ 256 mixtures per state; for the discrete symbol models we use codebooks
with as many as M = 512 ~ 1024 code words. Also, for the continuous models, it has
been found that it is more convenient and sometimes preferable to use diagonal covariance
matrices with several mixtures, rather than fewer mixtures with full covariance matrices.
The reason for this is simple—namely, the difficulty in performing reliable reestimation of
the off diagonal components of the covariance matrix from the necessarily limited training
data. Figure 6.15 illustrates the need for using mixture densities for modeling observation
vectors (eighth-order cepstral vectors derived from LPC with log energy appended as the
ninth vector component). Figure 6.15 shows a comparison of marginal distributions b;(0)
against a histogram of the actual observations within a state (as determined by a maximum
likelihood segmentation of all the training observations into states). The observation vectors
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Figure 6.15 C?mparison of estimated density (jagged contour) and model density (smooth contour)
for each of the nine components of the observation vector (eight cepstral components, one log energy
component) for state 1 of the digit zero (after Rabiner et al. [38]).

are ninth order, and the model density uses M = 5 mixtures. The covariance matrices are
constrained to be diagonal for each individual mixture. The results of Figure 6.15 are for
Fhe ﬁrst. model state of the word “zero.” The need for values of M > 1 is clearly seen
in thfa histogram of the first parameter (the first cepstral component) which is inherently
multimodal; similarly, the second, fourth, and eighth cepstral parameters show the need for
more than a single Gaussian component to provide good fits to the empirical data. Many of
the other parameters appear to be well fitted by a single Gaussian; in some cases, however,
even M = 5 mixtures do not provide a sufficiently good fit.

Another experimentally verified fact about the HMM is that it is important to limit
some of the parameter estimates to prevent them from becoming too small. For example,
fo'r t.he discrete symbol models, the constraint that bj(k) be greater than or equal to some
minimum value e is necessary to ensure that even when the kth symbol never occurred
In some state j in the training observation set, there is always a finite probability of its
occurrence when scoring an unknown observation set. To illustrate this point, Figure 6.16
shows a curve of average word error rate versus the parameter € (on a log scale) for
a standard word-recognition experiment. It can be seen that over a very broad range
(107'° < € < 1073) the average error rate remains at about a constant value; however,
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Figure 6.16 Average word error rate as a function of the minimum discrete density
value ¢ (after Rabiner et al. [18]).

when e is setto 0 (i.e., 10~°°), then the error rate increases sharply. Similarly, for continuous
densities it is important to constrain the mixture gains c;» as well as the diagonal covariance
coefficients Ujn(r, r) to be greater than or equal to some minimum values (we use 10~%in
all cases) [18].

Segmental K-Means Segmentation into States

In this chapter, we have emphasized that good initial estimates of the parameters of the
bj(o;) densities are essential for rapid and proper convergence of the reestimation formulas.
Hence a procedure for providing good initial estimates of these parameters was devised and
is shown in Figure 6.17. The training procedure is a variant on the well-known K-means
iterative procedure for clustering data.

We assume that we have a training set of observations (the same as is required for
parameter reestimation), and an initial estimate of all model parameters. However, unlike
the one required for reestimation, the initial model estimate can be chosen randomly or on
the basis of any available model appropriate to the data.

Following model initialization, the set of training observation sequences is segmented
into states, based on the current model \. This segmentation is achieved by finding the
optimum state sequence, via the Viterbi algorithm, and then backtracking along the optimal
path, This procedure is illustrated in Figure 6.18, which shows a log-energy plot, an
accumulated log-likelihood plot, and a state segmentation for one occurrence of the word
“six.” The states correspond roughly to the sounds in the spoken word “six.”

The result of segmenting each of the training sequences is, for each of the N states,
a maximum likelihood estimate of the set of the observations that occur within each state j
according to the current model. In the case where we are using discrete symbol densities,
each of the observation vectors within a state is coded using the M-code-word codebook,

Sec. 6.15 HMM System for Isolated Word Recognition 383

MODEL
INITIALIZATION

STATE SEQUENCE
SEGMENTATION

ESTIMATE PARAMETERS
OF ()
TRAINING VIA SEGMENTAL
DATA K-MEANS

MODEL
REESTIMATION

ﬁgu 6.17 .The g | k-means training procedure used to estimate parameter values for the optimal
continuous mixture density fit to a finite number of observation sequences (after Rabiner et al. [38]).

and the updated estimate of the bj(k) parameters is

bj(k) = number of vectors with codebook index k in state J divided by the
number of vectors in state j.

When we are using continuous observation densities, a segmental K-means procedure is
used t(? clustey the observation vectors within each state j into a set of M clusters (using
a Euclidean distortion measure), where each cluster represents one of the M mixtures of

tf.hclzl bj(o,) density. From the clustering, an updated set of model parameters is derived as
ollows:

&m = number of vectors classified in cluster m of state Jj divided by the number
of vectors in state j

HBjm = sample mean of the vectors classified in cluster m of state

Um = sample covariance matrix of the vectors classified in cluster m of state J

Based on this state segmentation, updated estimates of the a;; coefficients can be obtained
by cqunting the number of transitions from state i to j and dividing it by the number of
transitions from state i to any state (including itself).

- An_updated model A is obtained from the new model parameters, and the formal
fcesnmauon procedure is used to reestimate all model parameters. The resulting model
is then compared to the previous model (by computing a distance score that reflects the
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Figure 6.18 Plots of (a) log energy; (b) accumulated log likelihood; and (c) state assignment for one
occurrence of the word “six” (after Rabiner et al. [38]).

statistical similarity of the HMMs). If the model distance score exceeds a threshold, then
the old model X is replaced by the new (reestimated) model X, and the overall training loop
is repeated. If the model distance score falls below the threshold, then model convergence
is assumed and the final model parameters are saved.

Incorporation of State Duration into the HMM

In Section 6.9 we discussed the theoretically correct method of incorporating state duration
information into the mechanics of the HMM ([39]). We also showed that the cost of
including duration density was rather high; namely a D?-fold increase in computation and
a D-fold increase in storage. Using a value of D = 25 (as is required for word recognition),
the cost of the increased computation tended to make the techniques not worth using.
Thus the following alternative procedure was formulated for incorporating state duration
information into the HMM.

For this alternative procedure, the state duration probability p;(d) was measured
directly from the segmented training sequences used in the segmental K-means procedure
of the previous section. Hence the estimates of p;(d) are strictly heuristic ones. A typical
set of histograms of p;(d) for a five-state model of the word “six” is shown in Figure 6.19.
(In this figure the histograms are plotted versus normalized duration (d/T), rather than
absolute duration d.) The first two states account for the initial /s/ in “six”; the third state
accounts for the transition to the vowel /i/; the fourth state accounts for the vowel; and the
fifth state accounts for the stop and the final /s/ sound.

The way in which the heuristic duration densities were used in the recognizer was
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Figure 6.19 Histograms of the normalized duration density for the five states of the digit
“six” (after Rabiner et al. [38]).

as follows. First the normal Viterbi algorithm is used to give the best segmentation of the
observation sequence of the unknown word into states via a backtracking procedure. The
duration of each state is then measured from the state segmentation. A postprocessor then
increments the log-likelihood score of the Viterbi algorithm, by the quantity

N
log P(q, O|Y) = log P(q,01)) + ay Y log [p;(d)] (6.123)

Jj=1

where. ag is a scaling multiplier on the state duration scores, and d; is the duration of
state j along the optimal path as determined by the Viterbi algorithm. The incremental
cost of the postprocessor for duration is essentially negligible, and experience has shown

that recognition performance is essentially as good as that obtained using the theoretically
correct duration model.

HMM Isolated-Digit Performance

We conclude this section on isolated word recognition using HMMs by giving a set of
Performance results (in terms of average word error rate) on the task of recognizing
isolated digits in a speaker-independent manner. For this task, a training set consisting
of 100 occurrences of each digit by 100 talkers (i.e., a single occurrence of each digit
per talker) was used. Haif the talkers were male and half were female. For testing the
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duration, continuous density models). It has been our purpose to focus on physical ex-
TABLE 6.1. Average Digit Error Rates for Several Recognizers planations of the basic mathematics; hence we have avoided long, drawn-out proofs or
and Evaluation Sets derivations of the key results, and concentrated primarily on trying to interpret the meaning

Evaluation Set of the math, and how it could be implemented in practice in real-world systems. We have
R . Oriainal also attempted to illustrate one application of the theory of HMMs to a simple problem in
ec'[‘;g;elm Tmigr:ing Ts2 183 54 speech recognition—namely, isolated word recognition.
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Chapter 7

SPEECH RECOGNITION
BASED ON CONNECTED
WORD MODELS

INTRODUCTION

Up to this point we have been discussing discrete utterance (or, as it is often called, iso-
lated word or phrase) recognition. The assumption was that the speech to be recognized
comprised a single word or phrase and was to be recognized as a complete entity with no
explicit knowledge or regard for the phonetic content of the word or phrase. Hence, for a
vocabulary of V words (or phrases), the recognition algorithm consisted of matching (via
time alignment) the measured sequence of spectral vectors of the unknown spoken input
against each of the set of spectral patterns for the V words and selecting the pattern whose
accumulated time aligned spectral distance was smallest as the recognized word. Another
implicit assumption was that each spoken utterance had a clearly defined beginning and
ending point that could be found using some type of speech endpoint detector. As a result,
pattern matching could be reliably performed without having to be concerned about uncer-
tainties in the endpoints of the patterns being compared. For many applications, notably
those referred to as “command-and-control” applications, in which the user is required
to speak the command words one at a time (i.e., with distinct pauses between command
words), this paradigm works well and is entirely appropriate. (We will discuss command-
and-control applications in Chapter 9.) However, for applications in which the speech
to be recognized consists of a sequence of words from the recognition vocabulary (e.g.,
strings of digits) such a paradigm is often unacceptable for practical reasons. Figure 7.1
illustrates this point for a three-digit sequence in which the upper panel shows the log
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Figure 7.1 Tllustration of an isolated string of digits (upper panel) and a fluently
spoken version of the same digit string (lower panel).

energy contour of a digit string spoken as a sequence of isolated digits where each digit is
followed by a discemible pause (i.e., period of no speaking), and the lower panel shows
the same digit string spoken in a fluent (continuous) manner. It should be self-evident that
speaking a sequence of isolated digits is unnatural (from the point of view of human speech
production) and grossly inefficient (it takes about 2.5 seconds to speak the isolated digit
sequence versus less than 1 second to speak the same string of digits in a fluent manner).
Hence, it is important to be able to extend the techniques described in earlier chapters of
this book so that accurate recognition of fluent speech becomes possible.

From the point of view of speech-recognition algorithms, there are two interesting
classes of fluent speech strings. One class is the set of strings derived from small-to-
moderate-size vocabularies, including digit strings, spelled letter sequences, combinations
of alphanumerics, and strings for accessing limited databases based on small-to-moderate-
size vocabularies and highly constrained word syntax. This set has the property that the
basic speech-recognition unit can be the word (or phrase), much as in the case of isolated
word- (or phrase-) recognition systems. The other class is the set of continuous speech
drawn from moderate-to-large-size vocabularies where the basic speech-recognition unit
cannot be the word because of complexity constraints. In such a case, subword speech
units are necessary for the implementation of the speech-recognition system. We defer a
discussion of the second class of speech strings to Chapter 8, where we provide a complete
description of techniques used in the recognition of large vocabulary continuous speech. In




392 Chap. 7 Speech Recognition Based on Connected Word Models
Rv| }

Ry

R,

R,

b

o
ety

it

B |
[

T

Figure 7.2 Illustration of the connected word-recognition problem.

this chapter we discuss in depth the class of speech-recognition systems commonly referred
to as connected word speech recognizers, because the basic unit of recognition is a whole

word.

We can now formulate the basic problem in connected word recognition. To do this
we refer to Figure 7.2, which gives a pictorial description of the connected word-recognition
problem. We assume that we are given the spectral vectors from a fluently spoken string of
words, 7 = {t(1),t(2),...,t(M)}, and we are also given the spectral patterns for each of
V reference pattems, (R, to Ry) corresponding to V unique words in the vocabulary. The
connected word-recognition problem can be compactly stated as follows:

Given a fluently spoken sequence of words, how can we determine the optimum match
in terms of a concatenation of word reference patterns?

To solve the connected word-recognition problem we must resolve the following problems:

1. We don’t usually know the number of words, L, in the string (although we usually
have a good bound on the range, e.g., one to seven words).

2. We don’t know word utterance boundaries within the spoken string; i.e. except for
the beginning of the first word in the string, and the end of the last word in the string,
we don’t know precisely where any word begins or ends.

3. The word boundaries are often fuzzy or nonunique. That is, it is often difficult, if not
impossible, to specify (i.e., find accurately and automatically) the word boundaries
because of sound coarticulation. Thus, for example, the boundary between the digit
3 and the digit 8 in Figure 7.1 is fuzzy because the ending sound /i/ in 3 coarticulates
strongly with the initial sound /e?/ in 8. We indicate such fuzziness of the boundaries
by the squiggly lines in Figure 7.2.

4. For a set of V word-reference patterns, and for a given value of L (the number
of words in the string), there are V- possible combinations of composite matching
patterns (possible L word sequences); for anything but extremely small values of
V and L the exponential number of composite matching patterns implies that the
connected word-recognition problem cannor be solved by exhaustive means.

The bottom line is that a nonexhaustive matching algorithm is required to solve the con-
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nected word-recognition problem. In this chapter we discuss several algorithms that have
this property and are capable of solving the connected word-recognition problem with
various degrees of efficiency.

Although we will spend a great deal of time in this chapter discussing efficient
algorithms for optimal matching of sequences of word patterns, it is also important to
address the problem of word reference pattern training using connected word sequences.
Unlike the isolated word case, for which training procedures were discussed in Chapters
5 and 6, for connected word sequence training we encounter a fundamental difficulty,
namely the uncertainty in word boundaries within the spoken word sequence. This makes
the connected word sequence training problem somewhat more difficult; therefore in this
chapter we also describe an embedded word training method based on the segmental
k-means algorithm.

7.2 GENERAL NOTATION FOR THE CONNECTED WORD-RECOGNITION PROBLEM

We denote the spectral sequence of vectors of the test pattern as
T = {t(1),t(2),...,tM)} = {tm)}¥_| 1.1

in which each t(m) is an appropriate spectral vector (e.g., filter bank, LPC, ear model,
etc.). Similarly, we denote the set of word reference patterns (either templates or statistical
models) as R;, 1 <i <V fora V word vocabulary, where each pattern is of the form

Ri = {ri),r(2),...,r:(N)} a2

where N; is the duration (in frames or states) of the ' word reference pattern. (For
convenience we will develop the algorithms on the basis of using word templates; we will
see later in this chapter that the required modifications for statistical models are essentially
trivial.)

The connected word-recognition problem can now be stated as a problem in finding
the optimum sequence of word reference patterns, R*, that best matches 7. With no
loss of generality we assume that there are L word patterns in R* (where we vary L from
the minimum to the maximum possible values and take the optimum overall values of
L). Hence the best sequence of reference patterns, R*, is a concatenation of L reference
patterns, i.e.,

R ={Re @Ry @Ry @ -+ ® Rgoy} 7.3)

in which each index, g*(¢) is in the range [1,V]. .

To determine R*—that is, to determine the sequence of word indices ¢*(£), 1 <
£ < L, that give the best matching sequence—consider constructing an arbitrary “‘super-
reference” pattern R* of the form

R =Ry ® Re2) ® Ry») @ - - ® Ry = {F(m}, 74

in which N* is the total duration of the concatenated reference pattern R°. The time aligned
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distance between R* and T is readily obtained via dynamic time warping, as illustrated in
Figure 7.3. The distance obtained is

M
DR, T) = g(l’i"l;mz::l d(t(m), F(w(m))) 5)

in which d(., -) is a local spectral distance measure, w(-) is a warping function for the time
index and the techniques of Chapter 4 can be used to evaluate D. By appropriate path
backtracking, as illustrated in Figure 7.3, the word boundary frames in the input string can
be found on the basis of the word boundary frames in the super-reference pattern. Hence
the last frame in the first reference word, ry1y(NVgq1y) maps to frame e in the test pattern;
similarly, the last frame in the second reference word ry2)(Ny2)) maps to frame e; in the
test pattern, etc.

To determine the global best match, R*, we optimize Eq. (7.5) over every possible
value of local reference patterns, ¢(1), ¢(2), . .., q(L), and over every possible value of L,
i.e., Lnin € L £ Linay, giving

D* = n;zlpD(R D

M
= min min _min Yy _ d(t(m), F(w(m))) (7.6)
Linin LS Lpax  q(1),q(2),...,q(L) wim)
1<q<V m=1

with
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For a straightforward evaluation of Eq. (7.6), the computation required is

Vvt (grid points) (7.8)

C ~ [M Tt Naw nw_MLN
L= 3 I

where the bracketed term is the dynamic time warping computation for matching a given
R?to T, the second term (V™) is the number of possible combinations in R, and N is the
average number of frames in a word reference pattern. To get a feeling for how impractical
the computation of Eq. (7.8) actually is, consider typical values of M = 300 frames, L = 7
words, N = 40 frames, and V = 10 words. With these values we get C;, & 2.8 x 10!! (grid
points). This computation (for a single test string) is already excessive for most modern
machines. Hence, as discussed previously, alternatives to exhaustive evaluation of D* are
required.

Fortunately, several algorithms have been proposed that solve Eq. (7.6) without the
exponential growth in computation. These include

e the two-level dynamic programming approach [1,2}
o the level building approach [3,4]

e the one-stage approach and subsequent generalizations [5-9).

In the next several sections we discuss these individual algorithms.

7.3 THE TWO-LEVEL DYNAMIC PROGRAMMING (TWO-LEVEL DP) ALGORITHM

The basic idea of the two-level DP algorithm is to break up the computation of Eq. (7.6)
into two stages (called levels). At the first level the algorithm matches each individual
word reference pattern, R,, against an arbitrary portion of the test string, 7. To understand
the computation involved, consider Figure 7.4.
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Figure 7.5  Use of range limiting to reduce the size of individ-
ual time warps.

For the range of beginning test frames of the match, b, 1 < b < M, and for the
range of ending test frames, e, 1 < e < M (e > b), and for word reference pattern, R,,
1 <v <V, we need to compute

D(v,b,e) = g(aim:;gd(«m), r(w(m))) 19

as illustrated in Figure 7.4. (It should be clear from our discussions in Chapter 4 that for
each beginning frame b, a single time warp provides the time aligned distance, D, for a
range, Ej, of ending frames e, b+ A < e < b + § where A and § are related to N,, the
number of frames in the reference pattern R,, and the expansion/contraction factor of the
DTW algorithm. Hence, using a 2-to-1 expansion and a '/; to 1 compression, we would
have b+N,/2 < e < b+ 2N, as the range on ending frames for beginning frame b. Clearly
if b + 2N, > M then e is truncated at M, the end of the test pattern.)

Equation (7.9) gives the minimum distance for every possible vocabulary pattern,
R, between each possible pair of beginning and ending frames (b, ). Clearly, we can
eliminate v by finding the best (smallest distance) match between b and e for any v, giving

D(b,e) = lrsnvlgv[D(v, b, )] = best score (7.10)
N(b,e) = arg lr(nigv[f)(v, b, e)] = best reference index 7.11)

thereby significantly reducing the data storage (by a factor of v) with no loss of optimality.
We can further reduce computation of Eq. (7.9) by using a range-limited DTW algorithm
as illustrated in Figure 7.5. With appropriate choice of the range variable, R, the ending
region, E,, can be made significantly smaller than for a normal 2 : 1 expansion, et
compression DTW algorithm.

Given the array of best scores, f)(b, e), of Eq. (7.10), the second level of the com-
putation pieces together the individual reference pattern scores to minimize the overall
accumulated distance over the entire test string. This can be accomplished using dynamic
programming as follows. Consider ending frame e, as illustrated in Figure 7.6. We define
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Figure 7.6 Series of paths ending at
frame e.

the distance of the best path ending at frame e using a concatenated sequence of £ reference
patterns as D,(e), which can be derived as

Dete) = 12‘22,[[’“’ €) +Dy_1(b - 1)) (7.12)

i.e., the best path ending at frame e using exactly ¢ reference patterns is the one with
minimum distance over all possible beginning frames, b, of the concatenation of the best
path ending at frame b — 1 using exactly £ ~ 1 reference patterns plus the distance of
Eq. (7.10) of the best path from frame b to frame e (of 7). The recursion of Eq. (7.12) is
identical to the dynamic programming recursion principle discussed in Chapter 4. In this
case the “local” distance used in the recursion is the word distance D(b, e) (with assumed
beginning and ending frames) which is calculated using Eq. (7.10) based on the first level
dynamic programming results. (For single-word pattern matching the local distance is
simply the beginning to ending frame distance.)

Based on the recursion of Eq. (7.12) we can formulate the following DP algorithm
for determining the overall best path:

Step 1, Initialization
Dy(0) =0, Dy(0) = oo, 1 <8< Lo
Step2, Looponeforf =1
Di(e) = D(1,e), 2<esM
Step 3, Recursion, Looponefor? = 2,3,..., Linax
Da(e) = min [D(b,e) +Di(b~ 1)), 3<e<M
_ 1<b<e . _
Ds(e) = lr<1nbir<l [Db,e)+D2b-1)], 4<e<M
-_ e - —
De(e) = min [D(b,e) +De_i(b=1)], £+1<e<M
1<b<e
Step 4, Final Solution
D* = , g?s‘i’“_.w“’")]

and use N(b, e) to backtrack to obtain actual sequence of reference patterns in R°.

To gain a better understanding of how the above recursion is carried out in practice,
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the following exercise gives an explicit example of decoding a given matrix of distances,
D(b e), into best strings.

Exercise 7.1

Assume we are given the 15 x 15 matrix of distances, D(, e), representing best accumulated
distances between frames b and e, as shown below

ending frame, e

1 2 3 45 6 7 8 9 10 11 12 13 14 15
1(—-91013 17 22 25 29 33 | 37 41 45 50 60]
2}~ -~ - 7 10 14 17 21 25 29| 32 36 40 45 53
3= = - — 9 | 1316 19 23 26 | 28 32 35 40 47

4 (- = - - -6 8 9 111214 19235 28 33

5 - = - - _ | - 6 8 10 | 12 15 19 23 30

6 - - - = = | = — 9 12 16|19 23 27 30 33
beginning 7 |- - - — ~ | - _ _ 15 18| 2 27 32 37 45
frame, 8 |- — = = -} - = - - 12(1621 25 29 B
b 9[- - = = = | - = = = — | 6 8 1013 16
0= - — — - - - _ _ |- s 7 9 12
ml- - - - | = = = - -] - 2 4 6 8
12|~ - - = - | - - - - 2|2 2 2 2 4
Bi- - = - = | = = = - 2| 2 - 2 2 4
e I
st - - - - | - - - - | 2 2 2 - -]

1. Find the best path fora 1, 2, and 3 word match.

2. What are the total distance scores for the 3 string lengths? Which string length is most
likely?

Solution 7.1

Although we can trivially determine the paths for the best one- and two-word matches, we
must use the dynamic programming solution to determine the best three-word match. Hence
it is worthwhile using the dynamic programming solution for all three matches. From the
recursion above we get

Die) =D(1,e), 2<e<15
Dy(e) = min [D(b,e) +Di(b—1)], 3<e< 15
1<b<e

Ds(e) = min [D(b,e) + D2(b - 1), 4<e<15
1€b<e

From the matrix of distances we get
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D (e) Dy(e) Di(e)

9 . .
10 - -

2 14 = (4 + 10) -

25 16 = (6 + 10) -

29 18=@+10) 30 = (Dy(6) + 15)
o 33 20=(104+10) 26 = (Dy(T) +12)
11 37 2=(12+10) 22=(Dy8)+6)
12 41 25=(154+10) 23=(D;(9)+5)
13 45 29=(19+10) 24 = (Dy(10)+4)
14 50 3B=234+100 24=0Dx(11)+2)
15 60 40=030+10) 26=(D(12)+4)

e

3

4

5 -

6 17  15=(6+9) N
7

8

9

1. For a one-word match we have D} = D(15) = 60 with path (1, 15). For a two-word
match we have D = D2(15) = 40 with path (1, 4)(5, 15); i.e., word 1 spans frames 1 to
4 and word 2 spans frames 5 to 15. For a three-word match we have D; = D;(15) =26
with path (1, 4) (5, 11) (12, 15); i.e. word 1 spans frames 1 to 4, word 2 spans frames
5to 11, and word 3 spans frames 12 to 15.

2. The distance scores for one-, two-, and three-word matches are 60, 40, and 26. Clearly,
string length 3 has the smallest total distance and is most likely. The overall path of the

3 word string is

B(1,4=10 + B(5,11) =12 + D(12,15)=4
‘ * [ ] x [ [ ] [ ] * [ ] [ ] \ ‘ [ ] [ x
1 4 S 1 12 15

7.3.1 Computation of the Two-Level DP Algorithm

The total computation of the two-level DP algorithm is essentially the computation required
to determine D(v, b, ). This computation is essentially the computation of V- M time warps
corresponding to a single time warp for each reference pattern (V) and for each starting
frame (M). The size of each time warp (which provides distance score for the range of
ending frames associated with each starting frame) is approximately N(2R + 1) for an R
frame range limited DTW search with a reference pattern of average length N frames.
Hence the total computation of the two-level DP algorithm is

Ca=V-M-NQ2R+ 1) (grid points) (1.13)

in which the computation for each grid point constitutes a distance computation and the
associated combinatorics. The storage of the two-level DP algorithm is essentially the




400 Chap. 7 Speech Recognition Based on Connected Word Models
STANDARD DTW OF RS TO T LEVEL BUILDING APPROACH

Nagu)
Ra) e=t -t
o " L iy
Ra) LMV’L m 672 :"‘21’ — ,{ﬂ“l Jﬂw’ e=2
o j ot at1) e=1
1 m M 11 " M
(@) (b)

Figure 7.7 Illustration of standard DTW alignment of super-reference and test pattems (a), and level
building alignment (b) (after Myers and Rabiner [4]).

storage of the reduced distance matrix [D(b, €)], since only temporary storage of the full
array D(v, b, e) is required. The required storage of the range reduced algorithm is

S =2MQ2R + 1) (7.14)

since for each of the M starting frames, distance scores and best word identifications are
saved for an ending range of (2R + 1) frames. N
For a typical set of values—i.e., M = 300 frames, N = 40 frames, V = 10 words,
= 5 frames—we require computation for 1,320,000 grid points and storage of 6600
locations for D(b, €).

7.4 THE LEVEL BUILDING (LB) ALGORITHM

At the beginning of this chapter we discussed an exhaustive approach to connected word
recognition in which we construct a set of super-reference patterns, R, by concatenating
every possible combination of word patterns (in sequence), and performing a global time
alignment of each R’ to the test pattern 7T. Figure 7.7aillustrates the computation associated
with time aligning R* to T, namely iterative computation of accumulated distance at each
grid point within a constrained region (the parallelogram of Figure 7.7a) of the alignment
plane. Usually the computation is performed in a frame-synchronous manner; that is, the
computation for a given test frame, m, is performed along a vertical stripe representing the
allowable range of super-reference frames. Following this the computation for test frame
m + 1 occurs, then for frame m + 2, etc., until the entire test frame sequence is used.

An alternative way of aligning R* and 7" is shown in part b of Figure 7.7. Instead of
performing the computation strictly along vertical stripes, the computation, for a given test
frame m, is truncated at a fixed horizontal level (which corresponds to the super reference
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frame at the end of the first word in R®). (The use of the word “level” here should not
be confused with its usage in the two-level DP algorithm of the previous section. In the
two-level DP algorithm the first level is the calculation of local warping distances for
tentative word candidates, and the second level is the search for the optimal concatenated
word path.) This procedure is iterated for all test frames for which we can define a range of
reference frames within the allowed alignment region. For each test frame whose vertical
stripe intersects the horizontal level corresponding 1o the end of the first word, we store
the accumulated distance so that the DTW computation can be picked up at the next level
(word in the string) by beginning the search at an appropriate test frame and iterating the
search along vertical stripes corresponding to regions of intersection with the second word
in the super-reference pattern. This procedure is iterated through all levels (words in R*)
until the complete alignment grid has been covered.

The differences between the sequence of computation of the standard DTW alignment
along complete vertical stripes (as in Figure 7.7a) and the level building alignment along
partial vertical stripes (as in Figure 7.7b) are essentially minor for a single super-reference
pattemn. The efficiency of the approach comes with the realization that the computation at
each level can be performed on all V reference patterns before proceeding to the next level.
The advantage of doing this is that after doing the V warps at a given level, we can compare
accumulated distance scores across vocabulary words, and retain only the minimum (best)
score at each path ending frame, and still pick up the computation at the next level with
no loss of optimality. The key difference between the level building algorithm and the
two-level DP algorithm is that (with no loss of information) partial word decisions are
made during the DP search, and these decisions are used to reduce the search range in later
stages of the LB algorithm, whereas the two-level DP algorithm accumulates all the word
scores until the end of the entire utterance and then decides the word string in a separate
and independent second level DP calculation. The advantage we accrue is that, at each
level, we do exactly V time warps, so that the total computation is on the order of V - L
time warps for an L-word string. Since L is always significantly smaller than the number
of test frames, M, we see that the level building approach inherently involves significantly
less computation than the two-level DP algorithm (which required V - M time warps).

With this simplified overview of the level building approach, we now formally
describe the implementation of the level building algorithm.

7.4.1 Mathematics of the Level Building Algorithm

We define D;(m) as the minimum accumnulated distance, at level £, using reference pattern
R, to frame m of the test pattern, 7. Clearly D;(m) isdefinedfor 1 < £ < Lpax, 1 < vV
and 1 < m < M. Consider the implementation of level 1 as shown in Figure 7.8.

The first reference pattern, R, is aligned with 7 beginning at frame 1 of 7 using
a standard DTW alignment procedure. The warping paths intersect the last frame in R,
(frame N) at a range of test frames, namely my (1) £ m < m(1). (For example if
we used a DTW procedure with a minimum and maximum expansion of '/» and 2 we
would have N,/2 < m < 2N;.) For each of these warp path ending frames we store



402 Chap. 7 Speech Recognition Based on Connected Word Models

m““) mgz(ﬂ)
{ ' 2=
)
REFERENCE N 5 =
[}
! 1 ! i
m
N
REFERENCE N 2
2
1
m
m,y(1)  m(1)
NV
REFERENCE n 221
v 1 1 m
[ 1
5 |
: H )
m,(1) m, (1) m

-
m
<
m
r

ENDING RANGE

Figure 78 Implementation of level 1 of the level building algorithm (after Myers and Ra-
- biner {4]).

the accumulated distances, D}(m). Similarly, for the second reference pattern, R, with
duration N; frames, we begin at frame 1 of T and obtain the best warping paths to the
range mz (1) < m < mx(1). (Clearly my (1) # my1(1) and myy(1) # myp(1), since N; and
N are generally different. If Ny = Ny, then ma2y(1) = my (1) and my(1) = m5(1).) This
procedure is iterated for all V reference patterns at level 1. Thus the output of level 1 is the
array of accumulated distances and the corresponding ranges, i.e.,

Di(m), mu(l) £ m < myx(1)
D}(m), mu(l) < m < my(l)

(7.15)
DY(m), myi(1) < m < myy(1).

We can now define the ending range of level 1, m (1) < m < my(1), as the composite range
of m over which D is defined (and is not infinity), namely,

mi(1) = mig [m,(1)] (7.16)
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my(l) = lglfévlmvz(l)] a.1m

and for each frame, m, in the composite ending range, m;(¢) < m < my(£), we need to
store

Dim) = Igligv[D;(m)] — best distance at level £ to frame m (7.18)
_V_
Nf (m) = arg IQ@V[D:(’")] — reference pattern index which gave dis- (7.19)
Vs tance at level £ to frame m
1—7? (m) = l-’llv: m) (m) — backpointer to best ending frame at pre- (7.20)

vious level that achieves D% (m)

(By definition F7(m) = 0 for all m since the ending frame of the 0™ level is 0.) By storing
only D2(m), N2(m) and FE(m), we significantly reduce the storage at each level and yet
we retain all the information required to pick up the optimal path through the entire grid as
shown below.

The second-level computation does not begin until the first-level computation is
finished. To see how the computation is picked up at level 2, consider Figure 7.9, which
shows a series of time warps that span a set of beginning frames and provide a new set of
ending frames.

For each reference pattern, R,, the range of starting frames is m;(1) < m < my(1)
because every ending point of the first level is a possible starting point in the second level.
Hence for each frame m in the beginning range, and for each frame at the beginning of the
reference pattern, we must consider paths coming from both the current reference pattern
and the previous level. Other than the broadened beginning region, each DTW at level 2 is
essentially identical to those at level 1. Thus for reference R, the range of ending frames
at level 2 is m;1(2) < m < my2(2); for reference R; the range of ending frames at level 2
is my1(2) < m < mp(2), etc. We again derive the ending range at the end of level 2 as

m(2) = ‘rsnvigvlmvl(Z)] (7.21)
my(2) = 12‘35"v['"”2(2)] (7.22)

and for each frame in m;(2) < m < my(2) we determine the best distance D’z’(m), the
reference with the best distance, N5 (m), and the backpointer F' B(m).
We can continue the level building procedure through al levels until level Lmax in
the above manner and we obtain, as the final solution, D* as
D* = lsrtnsigm [D4(m)]. (7.23)
It should be clear that by performing the computation in levels (i.e., a word at a time)
and by doing appropriate minimization within levels, we avoid much of the computation
of the two-level DP algorithm described in the previous section. However, the negative
feature of the level building algorithm is that the computation is level synchronous, not
time synchronous; that is, we can go back to a given test frame at many levels. Hence,
real-time hardware implementations of level building are difficult, if not impossible, to
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_Figure 7.9 Implementation of level 2 of the level building algorithm (after Myers and Rabiner
[4)).

implement. (We will return to these issues later in this section.)

To gain a better understanding of the basic concepts of the level building algorithm,
consider the simple example shown in Figure 7.10. Here we assume that the vocabulary
consists of two words (which we call A and B for simplicity) and that the two reference
patterns, R4 and R, are of equal length. We also assume we are only interested in an
£ = 4 level solution. (This greatly simplifies the range of the dynamic programming
search parallelogram which, as seen in Figure 7.10, is essentially identical to the case for
isolated word template matching. In the next section, where multiple level considerations
are discussed, the dynamic programming search range will be shown to be significantly
more complicated to specify.) Since both patierns are of equal length, the ending regions
for both words, at each level, are identical. Hence at each level ending region we choose
the reference pattern (A or B) that gave the smallest accumulated distance to that frame. In
this simple example, there are 6 ending frames at level 1, with the best path corresponding
to R4 for the first two frames, and R for the next 4 frames. At level 2 there are 10 ending
frames; at level 3 there are 6 ending frames, and finally at level 4 there is only one ending
frame corresponding to frame M, the end of the test utterance. By tracing back the (best)
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Figure 7.10 Simple example illustrating level building on two reference patterns of
equal length (after Myers and Rabiner [4]).

path ending at m = M we see that the sequence of reference patterns giving the best score
is

R*'=Rz@RADRADRs

with test frames ey, e, 3, and e, = M corresponding to the last frames of the 4 words in
the sequence.

7.4.2 Multiple Level Considerations

In the more realistic case in which we want the level building solutions for all feasible
levels (i.e., where there is a possible solution), there are some very simple techniques that
can be used to eliminate unnecessary computation. To understand this issue consider the
“standard” warping range of the level building algorithm as shown in Figure 7.11. (We
assume here that we use a DTW algorithm with a maximum expansion of 2 and a minimum
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Figure 7.11 Computation region of level building algorithm for a fixed-length
reference pattern (after Myers and Rabiner [4]).

expansion of '/.) If we define lower and upper constraints lines as

Lim) =(m+ 1)/2 (7.24)
Um)y=2(m—-1)+1 (7.25)

then for a fixed-length reference pattern we get the computation and ending regions shown
in Figure 7.11. (We denote the computation region at level £ as G, with ending region E,)
It should be clear that some of the computation of Figure 7.11 is unnecessary, since there
do not exist paths from some of the computed points to ends of reference patterns at any
level.

We can use the constraint that in order to do the computation at any grid point, the
path from that grid point must be capable of reaching the end of the reference pattern before
the end of the test pattern as shown in Figure 7.12. Here we have drawn lines, at each
level, of slope 2, from the last frame of the test pattern and the last frame of the reference
pattern, and used them as constraints on the grid. We have also drawn a line, at level Lyax,
of slope 1/ from the last test frame and the last reference frame to further constrain the grid
at the last level. The lower and upper constraints of the simplified grid can be described by
the equations :

L(m) = max ['"—'2*—1 2Am — M) + 6(8) (1.26)
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Figure 7.12 Reduced computation region using upper- and lower-level constraints
(after Myers and Rabiner [4]).
. 1
U(m) = min [2("! =D, E(m -M+ O(Lmu)] (7.27)

in which the reference pattern length function, 8(¢), is the accumulated number of frames
of the reference patterns used up to level £ where (m + 1) /2 = 2(m — M) + 8(£) at some
frame m < M. The resulting region of computation is somewhat reduced from that shown
in Figure 7.11.

Since the length of each reference pattern is different (in general) the actual computa-
tion regions for a level building search based on variable length reference patterns is shown
in Figure 7.13. Here we show the computation regions, at each level, for the shortest and
for the longest reference patterns. Fundamentally, the pattern of computation is similar to
that of Figure 7.11.

7.43 Computation of the Level Building Algorithm

From the above discussion it should be clear that the basic computation of the level building
algorithm is a series of V time warps at each level, where V is the size of the vocabulary.
If we assume the maximum number of levels in Lpyax, then we need V Lyax time warps. An
overbound on size of each time warp is NM/3 grid points where N is the average length of
each reference pattern and M is the number of frames in the test patten. Hence the total




408 Chap. 7 Speech Recognition Based on Connected Word Modeis

SEARCH REGION FOR LONGEST REFERENCE AT EACH LEVEL
[Z] SEARCH REGION FOR SHORTEST REFERENCE AT EACH LEVEL

I\ \\«\%} .
3] _
F S _mi) ______
fg t M -‘

Figure 7.13 Overall computation pattern of level building algorithm for variable
length reference patterns (after Myers and Rabiner [4]).

computation of the level building algorithm is
Cis=V Ly -N-M/3 grid points

with storage
Stp =3M - Liax

since we need storage for D%, NB, and F? at each value of m and for each level £.

(7.28)

(7.29)

Using the same values for M, N, and V as used in determining the computation
and storage of the two-level DP method, namely M = 300, N = 40, V = 10, and using
Lmax = 7, we get Crp = 280,000 and S;3 = 6300. The basic computation of the level
building algorithm is a factor of 4.7 less than that of the two-level DP method; the storage

of both methods is about the same.

The above calculations are based on full DTWs at each level for each reference
pattern. Because of the overlaps of regions in the (m, n) plane, at different levels, some of
the assumed computation is redundant. The following exercise illustrates this point.
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Exercise 7.2

In implementing different levels of the level building algorithm, we have assumed all levels
are independent. Thus, at each level, we have performed a full DTW, for each reference
pattern, where the size of the DTW was N - M/3 (grid points). An alternative, and, we hope,
more efficient, approach is to realize that for each reference pattern, a significant portion of the
computation at each level (namely that of distance computation) may have previously been
performed at an earlier level, and therefore only the combinatorics part of the DTW is truly
independent at each level.

L. Show that for the assumed parameters of the system (i.c., M = number of test
frames = 300, N = average number of frames per reference pattern = 40, V = size of
vocabulary = 10, Lmx = maximum number of levels = 7), the alternative implemen-
tation of storing all previously computed distances is more efficient than the standard
implementation. (Assume that the cost of the combinatorics in a DTW procedure is
negligible.)

2, What is the ratio of computation of the standard implementation to the stored distance
implementation?

3. If we assume the cost of the combinatorics at each grid point is !/s the cost of a distance
computation, how do the results to parts 1 and 2 change?

Solution 7.2

1. The simplest way of exploiting previously computed distances is to precompute the
entire grid of distances from each reference pattern frame to each test frame. (Clearly
this is not the most efficient implementation, since many of these full grid distances will
never be required in practice.) If we do this we need

Coist = V- M - N (distances) = 120,000.

The number of combinatorics is just the number of grid points used in the level building
method; hence

Ceom =V + Linax - N - % (grid points) = 280,000.
The total computation of this approach is then

CrotaL = Cpist + a - Ccoms

in which o is the weight for combinatorics. If we assume combinatorics are negligible,
o =0, we get

CrotaL = Coist = 120,000
which is significantly less than the 280,000 distances for the standard implementation
(i.e., one per grid point).
2. The ratio of computation of the two approaches is

CrotaL V-M-N

LT"'“ =233

and is independent of V, M, and N but only depends on Lmax.
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3. If we assume the cost of combinatorics is '/s the cost of a distance computation we get
Crota =V-M-N+V-LM-N.%'-§ = 176,000
with the ratio in computation being
Cis V- Loax - N-M/3 Loy
= — =T = o = 1.59
Crotak V-M-N+V -Lpx-N-53 31 +53)

7.44 Implementation Aspects of Level Building

Even though we have aiready shown that the computation for the level building approach
to connected word recognition is significantly less than that of the two-level DP approach
of Section 7.2, there are several ways of even further reducing the computational load of
the algorithm. These include the following:

1.

2.

Beginning range reduction in which we reduce the size of the initial region (range of
m) for which valid paths to a given level can begin.

Global range reduction in which we reduce the size of the region (width of the
template) that is tracked, within a level, to determine a best path to each possible
level ending frame, m.

. Test pattern ending range in which we increase the range over which the global path

can match the connected word string; this procedure provides some robustness to
ending frame errors.

. Reference pattern uncertainty ranges in which we increase the range of search at

the beginning and end of reference patterns to allow for some degree of word
coarticulation at reference word boundaries.

The way in which we implement these features is as follows.

1. Beginning range reduction—Mr

For the complete level building algorithm, at level £ — 1, we retain the best score,
Df_l(m), for each frame m in the ending region mi(f — 1) <m < mpy(f - 1). It
should be obvious that, in general, the best global path is not at either boundary but
somewhere in the middle range of m. Hence if we could eliminate some of the ending
range at level £ — 1, the search at level £ would involve less computation. (To see
this, consider the limiting case where we make the ending region, at each level, a
single frame; then the computation at each new level is a simple DTW with 2 single
initial frame, much as occurs at level 1.)

To determine how to reduce the ending range at level £ — 1 we need to normalize
the best accumulated distance scores by the number of frames. Thus we first find the
locally best (minimum) normalized accumulated distance as:

D‘l,—l(m)]

min [ (7.30)
m{t—1)<m<my(t—1) m

-1 =
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We now define a reduced-range level threshold as M7 - ¢,_; where My is a defined
parameter, and search the range m (£ — 1) < m < my(€ — 1) to find the indices S!
and S% such that ‘

DB_(m
max t=1(m)
m-D<m<me-» | m

D3_(m)

1 _
St =arg >Mr - ey Vmgsj] (7.31)

2

St= BB -1y CmEmie—1) [ m
To see what is achieved by the beginning range reduction, consider Figure 7.14,
which shows a sequence of levels and the resulting ending ranges with and without
range reduction (top graph), and the way in which the reduced range is determined
(bottom graph). For the level shown, the best normalized distance score, be—1, is
determined as the smallest value of the curve, and the threshold My - ¢4, is shown
as a level above ¢,_; (clearly M7 > 1.0). The initial reduced range point, S }, is
the last index (beginning from m = m,(¢ — 1)) where the curve is always above the
threshold; similarly the index S% is the last index (beginning from m = my(€ — 1))
where the curve is always above the threshold. The reduced range means that the
computation at the next level is smaller as seen at the top of Figure 7.14. Depending
on the value of Mr, the reduced range can get smaller (as Mr — 1) or larger (as
Mg — 00). It should be clear that too small a value of M will allow the best path to
be prematurely eliminated; hence proper choice of M7 is essential.

Global range reduction—e

The idea behind global range reduction is to reduce the search range along the
reference axis, for each test frame, by tracking the global minimum, and allowing
only a range around the global minimum. Thus for each test frame, m, at each level
£, and for each reference pattern, R,, we determine the local minimum, c(m), as

c(m) = arg [Dym — 1,n)] (7.33)

min
om=1)—eLn<c(m—1)+¢
in which Dj(m — 1, n) is defined to be the best distance at level ¢ using reference R,
at test frame m — 1 to reference frame 7 (as determined by the local alignment path)
and with c(1) defined to be 1. Figure 7.15 illustrates the global range reduction for
a typical level building search. For global range reduction to be effective we must
have the reduced range, 2¢ + 1, be smaller than the typical reference pattern width.

. Test pattern ending range—é&zvp

The idea here is to allow a range of test pattern ending frames, rather than restricting
the ending frame to m = M. This feature provides a measure of robustness to test
pattern endpoint errors. If we extend the end of the test pattern by égnp frames, the
global level building solution is modified to be

D =l$?élll-1m e 6:"11012’"5M[Df(m)]. (7.34)

———>Mr Gy Vm2> Sf] . (732
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4. Reference pattern uncertainty regions—Sg, , 6r,

To account for coarticulation of words across word boundaries, the level building
algorithm allows a range of beginning and ending frames of the reference pattern. In
this manner, at any level, the path can begin over therange 1 < n < 148g, (wherenis
the reference pattern index), and end at any frame in the range N, — &g, < n < N,. For
appropriate values of &g, and g, , it is possible to have a path which skips (6, + dr,)
frames at highly coarticulated word boundaries (e.g., the boundary between six and
seven in the string “six-seven™). Figure 7.16 illustrates the use of reference pattern

uncertainty regions in level building.

A summary of the four implementation aspects of level building, as discussed in
this section, is shown in Figure 7.17 in which all four features are combined in a single
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Figure 7.17 S y of level building implementation of computation reduction

methods (after Myers and Rabiner [4]).

level building search. It can be shown that with judicious choice of the implemeritation
parameters, Mr, €, 5enp, 0g, and &g, the overall computation can be substantiaily reduced
from that of the standard level building approach.

7.4.5 Integration of a Grammar Network

We have been implicitly assuming that, for connected word recognition, each word in the
string can be followed by any other word in the string. This implicit form of grammar
is most appropriate for things like digit strings in which any digit can follow any other
digit. However, for some connected word recognition tasks there is an explicit set of rules
(grammar) governing which words can logically follow other words to form valid sentences
in the language [10]. Although the form of such a grammar can be of several different
types (we will discuss this in more detail in Chapter 8), we will restrict ourselves here to
those tasks in which we can represent the grammar by a finite state network (FSN) or a
finite state automata (FSA) of the form

G= A(Q1 V7 61 4o, Z) (735)
where

Q = set of states
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V = set of vocabulary words
& = set of transitions
go € Q = initial state
Z C Q = set of terminal states
and the set of transitions obeys the rule

6g,v)=s (7.36)
meaning that word v drives the state fromgto s
N
I/ \\\
——— ! v —’—‘.
@ (s)
\
X J
»“ /

To integrate the FSN grammar network into the following level building algorithm we must
do the following:

1. Identify levels with states rather than word position so that word candidates at the ¢
level need not be temporally contiguous to those at the (£ + 1)* level

2. Partition the vocabulary so that only the reference patterns for words leaving the £
state are matched at the £ level

3. Retain state backtracking pointers for recovering the best matching string.

(It should be noted that for the most efficient computation, the states in Q should be
topologically sorted.)

. To illustrate how a simple grammar FSN can be integrated into the LB algorithm
consider the following example: ,

. I 5. ONE 9. BOOKS 13. OLD
2. WANT 6. A 10. COAT

3. NEED 7. AN 11. COATS

4. THREE 8. BOOK 12. NEW
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Current Words Predecessor Currect Predecessor
State Used State Level Levels
2 I 1 1 0
3 WANT 2 2 1
4 NEED 2 3 1
5 THREE 3 4 2
6 A 4 5 3
7 AN 4 6 3
8 ONE 3 7 2
8 NEW 6 8 5
8 OLD 7 9 6
9+ BOOK, COAT 8 10 789
9* BOOKS, COATS 5 11 4

If we study this simple example, we see that levels 2 and 3 both pick up from level
1; similarly both levels 4 and 7 pick up from level 2. By building up the computation
by levels (keeping track of the correct predecessor level), and by backtracking the final
result by states (according to the grammar FSN) we can essentially use all the techniques
described to efficiently find the best grammatically correct string.

7.4.6 Examples of LB Computation of Digit Strings

Figures 7.18 and 7.19 show two examples of connected digit strings matched using the LB
algorithm. Figure 7.18 is for the string “51560” and shows the computation building up
level by level. For this example, the locally best path at each level (shown by the digit to
the right of the last test frame) is actually the globally best digit. At the end of level four
the algorithm provided the four best choices with the string “5157” having the lowest score
of 0.553. At the end of level 5 there were six string choices with the correct string “51560”
having the lowest average accumulated distance of 0.333.

The example in Figure 7.19 is for the string “99211,” which did not provide a match
nearly as good as the previous example. We see here that the locally best string at each level,
namely “90111” is not globally best, and actually is incorrect in two positions. Although
the algorithm gets the correct string as the best score, the second best string is the string
“901,” which has two digit deletions, and one digit-substitution error.

7.5 THE ONE-PASS (ONE-STATE) ALGORITHM

The third general approach to the connected word recognition problem is a procedure
which was originally proposed by Vintsyuk in 1971 [5] and which has been “rediscovered”
several times in the last two decades [6-8] and generalized in scope [9]. The algorithm
has been called the one-pass procedure or the one-state algorithm, or most recently, the
frame-synchronous level building (FSLB) method. The basic idea behind the algorithm
is illustrated in Figure 7.20, which shows a grid with the test pattern, 7, mapped to
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Figure 7.18 Level building of the string “51560” (after Myers and Rabiner [4]).

the horizontal axis, and the set of reference patterns, {R1,Ra,...,Ry} mapped to the
vertical axis.

Using the standard notation of m to represent the test frame index,1 <m<M,vto
represent the reference pattern (R,) index, 1 < v < V,andnto represent the reference frame

index of pattern R,, 1 < n < N,, then for each test frame we calculate the accumulated
distance, d4(m, n, v) as:

da(m, n,v) = d(m,n,v) + ”_l'znsijn S"(dA(m - Lj,v). (7.37)

For2<n <N, 1<v<YV, where d(m,n,v) is the local distance between test frame
t(m) and reference from r,(n), and we assume a maximum path expansion of 2 to 1 (hence
we search back by 2 reference pattern frames in the combinatoric stage). The recursion of
Eq. (7.37) is carried out for all internal frames of each reference pattern (i.e.,, n > 2). At
the reference pattern boundary, i.e., n = 1, we have the simple recursion

da(m, 1,v) = d(m, 1,v) + min [lgigv[d,‘(m —1,N, ], ds(m - 1,1, v)] . (7.38)

T.hus the combinatorics for internal and boundary frames are as shown in Figure 7.21.
Figure 7.21a shows that for internal frames the combinatorics choose the best internal path
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Figure 7.21 Combinatorics for the one-pass algorithm,

within the reference pattern, whereas at boundary frames the combinatorics choose either
a straight (horizontal) path from within the reference pattern (subject to the constraint that
the path cannot remain constant for more than one frame) or the best ending frame of any
reference pattern. (Within the dynamic programming framework, of course, incorporation
of a set of local constraints that differ from those of Eq. (7.38) is possible, subject to
pragmatic considerations.)

The final solution for the best path (corresponding to the best word string) is

D' = lgivlgv[d,\(M,Nv, vl. (1.39)

Thus the one-pass algorithm computes best paths to every reference pattern frame at every
test frame and eventually is able to backtrack the best score (from Eq. (7.39)) to give the
best word sequence, as shown in Figure 7.20. '

The major problem with the one-pass algorithm is that no mechanism is provided for
controlling the resulting string length—that is, for giving a best path for a string of arbitrary
length. The algorithm inherently finds a single best path whose string length is whatever it
turns out to be. Thus there is no simple way of exploiting given constraints on string length
within the fundamental procedure.

There is, however, a simple and straightforward way of incorporating level (i.c.,
string-length) constraint in the computation. We do this by extending the accumulated
distance to include level information—that is, we extend the recursion to compute the
accumulated distance at level £ as

djm, m,v) = dGm,m,v) + | min_ [d0m ~ 1,j,9)] (7.40)

where the computationisfor 1 < £ < Ly,2<n<N,,1<v<V,1<m<M. Ateach
boundary frame the computation now becomes

di(m,1,v) = d(m, 1,v) + min [lx'(nigvdj”l(m - 1,Ny, 1), di(m — 1, 1,v)] (7.41)
-r_
with '
D*= min min [di(M,N,,V)]. (7.42)
1 <EL L gy 1S¥<V
The key difference is in Eq. (7.41), which only allows a path to an ending frame at level
(£ — 1) to become a path at a beginning frame at level £.
The main advantage of the one-pass algorithm is that the computation for a given
test frame, m, can be done frame synchronously; hence the one-pass algorithm is well
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suited to real-time implementation on processors that are capable of doing all the necessary
computations of Eqs. (7.40) and (7.41) in a single frame interval. Although at first glance
it seems as though the computation of the one-pass algorithm is significantly greater than
that of the LB approach, it is easily seen that the computation of d(m, n, v) of Eq. (7.40)
is independent of level, ¢; hence it can be computed once (e.g., at level 1) and stored, and
used in subsequent levels with no extra computation. Because of its suitability for real-time
implementation the level-based version of the one-pass algorithm is generally the one used
for connected word recognition tasks.

7.6 MULTIPLE CANDIDATE STRINGS

In the previous sections we have been discussing ways of determining the globally best
path through the extended grid, corresponding to the best match to the spoken word string.
There are many ways of obtaining multiple candidate strings from which we can determine,
at least in theory, the second-best string match, the third-best string match, etc. Multiple
string candidates are particularly useful when using grammar networks in order to provide
robust recognition decisions. The way in which we obtain multiple candidate strings is
simple; namely, we keep track of both the best distance, and the second-best distance to
each ending frame at each level (to get the second-best string match). Since we have
computed all reference pattern distances already (as needed to determine the best distance),
all that is required is additional storage (to keep track of the array of second-best distances)
and the bookkeeping to determine the second best string. (In Chapter 4 we discussed the
general problem of using dynamic programming methods to determine the N-best paths
through a grid. What is described here is essentially what was called the parallel algorithm
in Chapter 4, Section 4.7.5. The main difference is that here the path ranking is in terms of
word candidate strings instead of frame-based time warping paths. This difference gives
rise to some extra optimality considerations as discussed in this section.) We illustrate the
procedure in Figure 7.22, which shows a simple two-level LB search with tracking of the
two best strings at each grid point. At the end of level 2 there are two distinct paths to the
last frame of the test pattern—namely, the best distance (labeled 1 and shown as a solid
path) and the second best distance (labeled 2 and shown as a dashed line). The best path
from level 2 branches off to two other paths in level 1, with one being a best path and the
other being a second-best path. Similarly, the second-best path from level 2 branches off
to two other paths in level 1. Thus a total of four paths are followed—namely, the 11 path
(best from level 2, best from level 1), the 12 path (best from level 2, second best from level
1), the 21 path (second best from level 2, best from level 1 to the beginning point of the level
2 path) and the 22 path (second best from level 2, second best from level 1). The overall
best path is, by definition, the 11 path through the grid. The second-best path, according
to this method, is (with some pathological exceptions, to be explained next) either the 12
path, or the 21 path; the 22 path cannot ever be as good as the 21 path.

The procedure described above can be extended trivially to the best three candidates
ateach level, in which case a total of 3~ scores are obtained after L levels. This is illustrated
at the bottom of Figure 7.22 for a two-level match in which there are nine string candidates.
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Figure 7.22 Description of procedure for determining multiple can-
didate scores (after Myers and Rabiner [4]).

Figure 7.23 shows a case of using L = 4 levels with two best candidates. There are now
four possible choices for the second-best string, including the 1112 path, the 1121 path,
the 1211 path and the 2111 path. A sorting algorithm can be used to order the K paths
obtained when keeping track of K candidates at L levels.

It should be noted that the procedure described above, implemented using the level
building algorithm, cannot guarantee that the computed “second-best” string is actually the
true second-best string. This is because in keeping track of multiple strings to any ending
frame the procedure inherently requires that the candidate strings come from different
reference patterns. (Recall that in the LB algorithm, partial word decisions are made at
each level before reaching the end of the test pattern.) The real requirement should be
that they come from different overall strings (i.e., any word in the built-up strings can be
different, not just the immediate last word). Hence, in theory, the two best paths to a given
ending frame could indeed be from the same reference pattern. Figure 7.24 [10] illustrates
the level building flaw via an example in which the true second-best string is the sequence
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(a)

BA (i.e., reference pattern B followed by A); however, since the best string match is AA, the
1 f2a reference pattern A is not allowed as the second candidate to the last frame at level 2. This
2 situation occurs extremely infrequently; however, it can and does occur from time to time.

7.7 SUMMARY OF CONNECTED WORD RECOGNITION ALGORITHMS

We have presented three approaches to solving the “connected word recognition” problem—

namely, the two-level DP algorithm, the LB method, and the (frame synchronous) one-pass
; method. The algorithms all are fundamentally identical in that they provide the identical
: best matching string with the identical matching score. Basically the algorithms differ
in computational efficiency, storage requirements, and ease of realization in real-time
b hardware.

Although we have concentrated primarily on word template patterns, it is easy to see
that the basic procedures are virtually identical for statistical models like HMMs. To see
this, consider the case of level building using N-state HMMs instead of N,-frame reference
patterns. If we denote the test frame index as ¢, 1 < ¢ < T, (rather than n as is conventionally
done for HMMs), and we denote the test frame vector as o, (rather than t, as we have done
throughout this chapter), then the local log likelihood for state j of reference model A" is
(for an M-mixture density)

M D
Figure 7.23 Candidate strings for a four-level search (after Myers and Ra- y _ —(0(d)— pjm(d)) /2 Uim(d)
i oy =log [Y cn]]e m @ | (743)

m=1 d=1

The level building computation is therefore a calculation of Py(¢), 1 <t <T,1 <v <V,
1 £ € < Lpax, the accumulated log likelihood to frame ¢, at level ¢, for reference model A"
along the best path along with F,(¢), the backpointer indicating where the best path started
at the beginning of the level. At the end of each level we compute the “level best™ scores

w
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i Pl = Pyt 1<t<T (7.44)
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Figure 7.24 I of level building flaw
for determining the second-best candidate string : Figure 7.25 illustrates the grid for the level building computation for a set of N-state HMMs.
(after Myers and Rabiner [10)). The regularity of the grid (the trellis shape) is due to the lack of constraint about remaining

in a state for more than one or two frames for statistical models.
Finally it should be clear that all three algorithms are equally amenable to inclusion
(integration) of an FSN grammar network to constrain allowable word sequences. Consider
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Figure 7.25 Use of HMM:s in the level building procedure.

an arbitrary FSN grammar network with a typical node, g, as shown in Figure 7.26. The
input to the grammar node is a series of word arcs (corresponding to words in the vocabulary)
from predecessor grammar nodes i — 1, i and i + 1. Since all these inputs merge at grammar
node g, the basic computation at this grammar node is to determine the maximum likelihood
path over the set, P(g), (which constitutes the paths of all words coming into g), and to
propagate this path to all successor nodes, namely j — 1, j, j + 1 through the appropriate
word arcs. The grammar node computation is iterated over all nodes in the grammar in an
organized fashion (so that all computation necessary for node g is done before considering
node g).

The way in which computation for the grammar FSN is integrated into the connected
word algorithm is shown in Figure 7.27. For each test frame, ¢, the spectral vector
is computed, and then the local likelihood (or distance) scores are computed for every
reference pattern state (or frame). In parallel the local combinatorics (within reference
patterns) are performed (the local distance scores are added at the end of the computation).
The grammar network scores (corresponding to word transitions) are then computed and
the procedure is iterated until the last test frame, at which point a backtracker is used to
determine the best matching string.
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Figure 726 A typical grammar node of an FSN
grammar network (after Lee and Rabiner [9]).
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Figure 7.27 Block diagram of d word gnition computation.

7.8 GRAMMAR NETWORKS FOR CONNECTED DIGIT RECOGNITION

One of the most important applications of connected word recognition is connected digit
recognition because of its potential application to credit card entry, all-digit dialing of
telephone numbers, personal identification number (PIN) entry, catalog ordering, and so on.
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Thus in this and the next section we will concentrate on aspects of this important application,
including forms of the grammar network that are often used, and some implementation and
performance aspects of current systems.

Figure 7.28 shows three general grammar networks for connected digit strings. The
network of part (a) is the simple search of the one-pass algorithm without level information.
Thus the network will always find the best string, but cannot control the string length, and
therefore is unusable for known string length tasks (e.g., choosing the best seven-digit
string to represent a spoken telephone number).

The network of Figure 7.28, part b explicitly breaks out digit strings of length one to
seven digits, and therefore corresponds to the level building approach with Ly, = 7. As
we have seen, the local combinatorics search requires about 7 times the computation of the
simple grammar network of part a; however, local distance computation remains the same.

The network of Figure 7.28, part c represents a reasonable compromise between
the networks of parts a and b in that it breaks out three distinct levels corresponding to
string lengths of 3n, + 1, 3n + 2, and 3n3 + 3 digits where n;, n, and n3 are arbitrary
integers. The idea here is that if the input is an n-digit string, the most likely errors are
single-digit insertions or deletions, at which point one of the three outputs will most likely
not have the single insertion or deletion, and will be the correct string. The computation
is only three times the combinatorics search of part a, with again the same computation
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for local distances.

7.9 SEGMENTAL K-MEANS TRAINING PROCEDURE

The discussion in the previous sections focused primarily on efficient and optimal solutions
to the so-called decoding problem, in which the likelihood (or distance) of a given speech
pattern (the unknown test pattern) corresponding to a string of words is evalvated. Of
equal importance is the connected word training problem in which the object is to derive
appropriate word reference patterns or models from a labeled training set of many connected
word sequences. The major problem here is the lack of an exact (precise) correspondence
between speech segments and the spoken words they correspond to. One could consider
manually segmenting and labeling each spoken training utterance into the individually
spoken words of each string. However, this process is a tedious one that is well known to
be error prone because of inconsistencies in determination of the exact boundaries between
adjacent words in the string. Hence what is required for connected word training is a
fully automatic procedure for both segmentation of a connected word string into individual
words, and model (pattern) training from the segmented strings. Such an algorithm is
described in this section.

The way in which the individual digit models are derived from connected word
training strings is a procedure called the segmental k-mean training procedure, which is
a straightforward variation on the well-known k-means iteration (e.g., as used for vector
quantizer design) [11-13]. The basic idea is to have a training set of labeled connected
digit strings, and an initial set of digit models (e.g., isolated digit models). (The procedure
to be described works even without an initial set of digit models, but we will not describe
how this is accomplished here.)

The segmental k-means training procedure (as shown in Figure 7.29) works as follows
(when used for training HMMs):

1. Given the initial model (the set of word pattern files) and the (labeled) training files,
any of the connected word recognition procedures is used to segment each training
string into individual digit tokens which are stored in appropriate files according to
the identity of the digits. (This is the segmentation phase into words.)

2. Each file of word tokens (e.g., the file for all the 1s in the training set) is then
segmented into states and within each state the parameters of the mixture density
(the mixture weights, means, and covariances) are determined using a standard VQ
clustering procedure. The result of this procedure (which we call the word pattern
building algorithm) is an updated set of word models.

3. A test for convergence is made, either based on a set of testing files or based on the
likelihood scores of the training set files. If the convergence test shows continuing
improvement in performance, the procedure is iterated (i.e., steps 1 and 2 are repeated
using the updated set of word models); otherwise the procedure is terminated and the
updated set of models is the final set of models.
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Figure 7.29 The segmental k-means training algorithm for connected
word strings (after Rabiner et al. {13]).

7.10 CONNECTED DIGIT RECOGNITION IMPLEMENTATION

A block diagram of a canonic system for connected digit recognition is shown in Figure 7.30.
There are three basic steps in the recognition process, namely:

1. Spectral analysis, in which the speech signal, s(n), is converted to an appropriate
spectral representation, e.g., filter-bank vector, LPC-based vector, ear model vector.

2. Connected word pattern matching, in which the sequence of spectral vectors of the
unknown (test) connected digit string is matched against whole word (single digit)
patterns using any of the algorithms discussed in this chapter. The output of this
process is a set of candidate digit strings, generally of different lengths, ordered by
distance (likelihood, probability) score.

3. Postprocessing, in which the candidate digit strings are subjected to further process-
ing (e.g., based on digit durations, word stress, etc.) so as to eliminate unreasonable
(unlikely) candidates. The postprocessor chooses the most likely digit string from
the ordered list of candidates which passed the postprocessor tests.

7.10.1
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Figure 7.30 Block diagram of connected digit recognition method (after Rabiner et al. [13]).

In the remainder of this section we present an overview of the techniques that are currently
used to provide the best performance (highest string accuracy) on this task.

HMM-Based System for Connected Digit Recognition

The system that provides the highest reported string accuracy on a standard testing set is
one based on LPC cepstral analysis and HMMs. In particular, the spectral analysis uses an
LPC front end with the following characteristics:

sampling rate—6.67 kHz

analysis window size—300 samples (45 msec)
analysis window shift—100 samples (15 msec)
LPC order—38

cepstrum order—12

delta cepstrum order—12

delta-delta (second difference) cepstrum order—12
cepstral window—raised, sinelike window

The observation vector used was a 38-component vector consisting of 12 cepstral co-
efficients, 12 delta cepstrum coefficients, 12 delta-delta cepstral coefficients, delta log
energy, and delta-delta log energy. (The log energy was used directly in the evaluation of
model likelihoods on the basis of measured histograms, rather than as a component of the
observation vector.)

The hidden Markov models used for each digit model were left-to-right models of
the type shown in Figure 7.31. Each model had N states (N varied from 5 to 10 for
different digits), and within states a continuous mixture density was used to characterize
the observation vector, where the number of mixture components per state was as few
as 3 (for speaker-trained models) and as many as 64 (for speaker independent models).
In addition to the spectral density, an empirically derived log energy probability density
(e.g., a histogram) was used within each state (with appropriate weighting), as well as an
empirically derived state duration density. For the postprocessor a single Gaussian digit
duration density was used based on the measured mean duration and variance from the
training set.
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Figure 7.31 Connected digit HMM (aﬁcr Rabiner et al. [13]).

7.10.2 Performance Evaluation on Connected Digit Strings

To evaluate the performance of connected digit recognition algorithms ([13-15]), two
databases have been used:

1. DBS50, consisting of 50 adult talkers (25 male, 25 female), from the local, nontechnical
population of Murray Hill, New Jersey. Each talker provided from 600 to 1150 digit
strings, for a total of 47,336 strings. The digit strings were recorded off of local,
dialed-up, telephone lines (100-3200 Hz bandwidth), and were variable in length
from 1 to 7 digits. Within each string the selection of digits was random from the
set of zero to nine (oh was excluded). All digit strings were spoken fluently with no
pauses.

. TI Set, consisting of a training set of 112 talkers (55 male, 57 female) with 22
regional accents, and a testing set of 113 additional talkers (56 male, 57 female) from
the same 22 regions with no overlap between training and testing set talkers. Each
talker spoke 77 connected digit strings of length 1-5 or 7 digits. The input provided
was wideband (100-7000 Hz) but was lowpass filtered to telephone bandwidth at
Beli Labs for compatibility with the DB50 set. There was a random selection of
digits within each string from the set of 11 digits including both zero and oh. Even
though talkers were requested to speak each string fluently with no pauses, a few
strings had internal pauses.

The first data base, DB50, was used for tests in a speaker-trained and a multispeaker mode,
whereas the second database, TI Set, was used for speaker-independent tests. To contrast
the spoken material in the two sets, Figure 7.32 shows a plot of the average speaking rate
(measured in words per minute) of the two datasets as a function of the number of digits
in the string. It can be seen that the speaking rate of the TI talkers is somewhat lower than
that of the DB50 talkers (by from 10-20 wpm).
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Figure 7.32 Average speaking rate of talkers in the two connected digit
databases as a function of the number digits per string (after Rabiner et al. [13]).

The conditions used in the performance evaluations were as follows (when used for

training HMMs):

Speaker-Trained Mode (50 Talkers)—For each talker, half the strings (randomly
selected) were used for training, the other half for testing. A single HMM per digit
was used. (For this test the observation vector did not use either energy or delta-delta
cepstral components.)

Multispeaker Mode (50 Talkers)—One-fourth of the training set, as in the speaker-
trained mode, was used for training 6 models per digit (using clustering techniques);
the same testing set was used as in the speaker trained mode. (Again the delta-delta
cepstral components or energy were not used in the observation vectors.)

. Speaker-Independent Mode (225 Talkers)—The specified training and testing sets

were used to create a single HMM per digit (based on the 38 parameter observation
vectors). No silence model was created to account for pauses within digit strings.

The resulting performance of the connected digit recognizei is shown in Table 7.1.

For each of the three testing conditions, results are given for self-test (namely, testing
on the training data) and for the true testing set, in terms of average string error rates
(%) for unknown length (UL) strings (i.e., allowing insertions and deletions as well as
| substitutions), as well as for known length (KL) strings (i.., only allowing strings of the
| correct length). Performance in all three modes is comparable with string error rates around
1-3% for unknown length strings, and 0.4—1.7% for known length strings. (Performance
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TABLE 7.1. Average String Error Rates (%) for Connected
Digit Recognition Tests

Training Data Testing Data

Mode UL KL UL KL
Speaker Trained 0.4 0.16 0.8 0.35
Mutti-Speaker 1.7 1.0 2.85 1.65

Speaker Independent 0.3 0.05 1.4 0.8

scores for speaker-trained and multispeaker modes are underbounds, since the tests were
not performed with the extended observation vector used in the speaker-independent mode
tests.)

7.11  SUMMARY

In this chapter we have shown how the results presented in earlier chapters on time alignment
of single words and phrases can be extended to the problem of aligning an input consisting
of a sequence of words to a concatenation of individual word patterns. We have shown
how an optimal matching can be achieved using one of several different procedures, and
we have also shown how the basic ideas can be applied to either templates or statistical
models. By way of example, we showed how the techniques described have been applied
to the problem of recognizing a fluently spoken string of digits with high performance.
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Chapter 8

LARGE VOCABULARY
CONTINUOUS SPEECH
RECOGNITION

INTRODUCTION

Throughout this book we have developed a wide range of tools, techniques, and algorithms
for attacking several fundamental problems in speech recognition. In the previous chapter
we saw how the different techniques came together to solve the connected word recognition
problem. In this chapter we extend the concepts to include issues needed to solve the large
vocabulary, continuous speech recognition problem. We will see that the fundamental ideas
need modification because of the use of subword speech units; however, a great deal of the
formalism for recognition, based on word units, is still preserved.

The standard approach to large vocabulary continuous speech recognition is to assume
a simple probabilistic model of speech production whereby a specified word sequence, W,
produces an acoustic observation sequence Y, with probability P(W, Y). The goal is then
to decode the word string, based on the acoustic observation sequence, so that the decoded
string has the maximum a posteriori (MAP) probability, i.e.,

W 3 POV|Y) = max P(W|Y). @8.1)
Using Bayes’ Rule, Equation (8.1) can be written as

PY|W)P(W)

PWIY) = P

(8.2)
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Since P(Y) is independent of W, the MAP decoding rule of Eq. (8.1) is
W =arg max P(Y|W)P(W). 8.3)

The first term in Eq. (8.3), P(Y|W), is generally called the acoustic model, as it estimates the
probability of a sequence of acoustic observations, conditioned on the word string. The way
in which we compute P(Y |W), for large vocabulary speech recognition, is to build statistical
models for subword speech units, build up word models from these subword speech
unit models (using a lexicon to describe the composition of words), and then postulate
word sequences and evaluate the acoustic model probabilities via standard concatenation
methods. Such methods are discussed in Sections 8.2-8.4 of this chapter.

.The second term in Eq. (8.3), P(W), is generally called the language model, as it
describes the probability associated with a postulated sequence of words. Such language
models can incorporate both syntactic and semantic constraints of the language and the
recognition task. Often, when only syntactic constraints are used, the language model
is called a grammar and may be of the form of a formal parser and syntax analyzer, an
N-gram word model (N = 2,3,...), or a word pair grammar of some type. Generally
such language models are represented in a finite state network so as to be integrated into
the acoustic model in a straightforward manner. We discuss language models further in
Section 8.5 of this chapter.

We begin the chapter with a discussion of subword speech units. We formally define
subword units and discuss their relative advantages (and disadvantages) as compared to
whole-word models. We next show how we use standard statistical modeling techniques
(i.e., hidden Markov models) to model subword units based on either discrete or continuous
densities. We then show how such units can be trained automatically from continuous
speech, without the need for a bootstrap model of each of the subword units. Next we
discuss the problem of creating and implementing word lexicons (dictionaries) for use in
both training and recognition phases. To evaluate the ideas discussed in this chapter we
use a specified database access task, called the DARPA Resource Management (RM) task,
in which there is a word vocabulary of 991 words (plus a silence or background word), and
any one of several word grammars can be used. Using such a system, we show how a basic
set of subword units performs on this task. Several directions for creating subword units
which are more specialized are described, and several of these techniques are evaluated on
the RM task. Finally we conclude the chapter with a discussion of how task semantics can
be applied to further constrain the recognizer and improve overall performance.

8.2 SUBWORD SPEECH UNITS

We began Chapter 2 with a discussion of the basic phonetic units of language and discussed
the acoustic properties of the phonemes in different speech contexts. We then argued
that the acoustic variability of the phonemes due to context was sufficiently large and not
well understood, that such units would not be useful as the basis for speech models for
recognition. Instead, we have used whole-word models as the basic speech unit, both for
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isolated word recognition systems and for connected word recognition systems, because
whole words have the property that their acoustic representation is well defined, and the
acoustic variability occurs mainly in the region of the beginning and the end of the word.
Another advantage of using whole-word speech models is that it obviates the need for a
word lexicon, thereby making the recognition structure inherently simple.

The disadvantages of using whole-word speech models for continuous speech recog-
nition are twofold. First, to obtain reliable whole-word models, the number of word
utterances in the training set needs to be sufficiently large, i.e., each word in the vocab-
ulary should appear in each possible phonetic context several times in the training set.
In this way the acoustic variability at the beginning and at the end of each word can be
modeled appropriately. For word vocabularies like the digits, we know that each digit
can be preceded and followed by every other digit; hence for an 11-digit vocabulary (zero
to nine plus oh), there are exactly 121 phonetic contexts (some of which are essentially
identical). Thus with a training set of several thousand digit strings, it is both realistic
and practical to see every digit in every phonetic context several times. Now consider a
vocabulary of 1000 words with an average of 100 phonetic contexts for both the beginning
and end of each word. To see each word in each phonetic context exactly once requires
100 x 1000 x 100 = 10 million carefully designed sentences. To see each combination 10
times requires 100 million such sentences. Clearly, the recording and processing of such
homogeneous amounts of speech data is both impractical and unthinkable. Second, with
a large vocabulary the phonetic content of the individual words will inevitably overlap.
Thus storing and comparing whole-word patterns would be unduly redundant because the
constituent sounds of individual words are treated independently, regardless of their iden-
tifiable similarities. Hence some more efficient speech representation is required for such
large vocabulary systems. This is essentially the reason we use subword speech units.

There are several possible choices for subword units that can be used to model speech.
These include the following:

¢ Phonelike units (PLUs) in which we use the basic phoneme set (or some appropri-
ately modified set) of sounds but recognize that the acoustic properties of these units
could be considerably different than the acoustic properties of the “basic” phonemes
[1-7]. This is because we define the units based on linguistic similarity but model
the unit based on acoustic similarity. In cases in which the acoustic and phonetic
similarities are roughly the same (e.g., stressed vowels) then the phoneme and the
PLU will be essentially identical. In other cases there can be large differences and a
simple one-to-one correspondence may be inadequate in terms of modeling accuracy.
Typically there are about 50 PLUs for English.

o Syllable-like units in which we again use the linguistic definition of a syllable
(namely a vowel nucleus plus the optional initial and final consonants or consonant
clusters) to initially define these units, and then model the unit based on acoustic
similarity. In English there are approximately 10,000 syllables.

¢ Dyad or demisyllable-like units consisting of either the initial (optional) consonant
cluster and some part of the vowel nucleus, or the remaining part of the vowel nucleus
and the final (optional) consonant cluster [8]. For English there is something on the
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order of 2000 demisyllable-like units.

¢ Acoustic units, which are defined on the basis of clustering speech segments from
a segmentation of fluent, untabeled speech using a specified objective criterion (e.g.,
maximum likelihood) [9]. Literally a codebook of speech units is created whose
interpretation, in terms of classical linguistic units, is at best vague and at worst totally
nonexistent. It has been shown that a set of 256-512 acoustic units is appropriate for
modeling a wide range of speech vocabularies.

Consider the English word segmentation. Its representation according to each of the above
subword unit sets is

PLUs: /s/ fe/ g/ Im/ [s/ In/ It/ fe¥] /sh/ fof /nf (11 units)

syllables: /seg/ /men/ /ta/ ftion/ (4 syllables)

demisyllables: /se/ feg/ /fmo/ [on/ fte¥/ fe¥sh/ [sha/ fon/ (8 demisyllables)

e acoustic units: 17 111 37 3 241 121 99 171 37 (9 acoustic units).

We see, from the above example, that the number of subword units for this word can be as
small as 4 (from a set of 10,000 units) or as large as 11 (from a set of 50 units).

Since each of the above subword unit sets is capable of representing any word in the
English language, the issues in the choice of subword unit sets are the context sensitivity
and the ease of training the unit from fluent speech. (In addition, for acoustic units, an
issue is the creation of a word lexicon since the units themselves have no inherent linguistic
interpretation.) It should be clear that there is no ideal (perfect) set of subword units.
The PLU set is extremely context sensitive because each unit is potentially affected by its
predecessors (one or more) and its followers. However, there is only a small number of
PLUs and they are relatively easy to train. On the other extreme are the syllables which
are longest units and are the least context sensitive. However, there are so many of them
that they are almost as difficult to train as whole-word models.

For simplicity we will initially assume that we use PLUs as the basic speech units.
In particular we use the set of 47 PLUs shown in Table 8.1 (which includes an explicit
symbol for silence —h#). For each PLU we show an orthographic symbol (e.g., aa) and a
word associated with the symbol (e.g., father). (These symbols are essentially identical to
the ARPAPET alphabet of Table 2.1; lowercase symbols are used throughout this chapter
for consistency with the DARPA community.) Table 8.2 shows typical pronunciations
for several words from the DARPA RM task in terms of the PLUs in Table 8.1. A strong
advantage of using PLUs is the ease of creating word lexicons of the type shown in Table 8.2
from standard (electronic) dictionaries. We will see later in this chapter how we exploit the
advantages of PLUs, while reducing the context dependencies, by going to more specialized
PLUs which take into consideration either the left or right (or both) contexts in which the
PLU appears.

One problem with word lexicons of the type shown in Table 8.2 is that they don’t easily
account for variations in word pronunciation across different dialects and in the context of
a sentence. Hence a simple word like “a” is often pronounced as /ey/ in isolation (e.g., the
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TABLE 8.1. Set of basic PLUs for speech.
Number Symbol Word Number Symbol Word

1 h# silence 26 k kick

2 aa father 27 1 led

3 ae bat 28 m mom

4 ah butt 29 n no

5 a0 bought 30 ng sing

6 aw  bough 31 ow  boat

7 ax again 32 oy boy

8 axr  diner 33 p pop

9 ay bite 34 r red

- 10 b bob 35 s sis

11 ch church 36 sh shoe
12 d dad 37 t tot

13 dh they 38 th thief
14 ch bet 49 uh book
15 el bottle 40 uw  boot
16 en button 41 v very

17 er bird 42 w wet

18 ey bait 43 y yet

19 f fief 44 z 200
20 g gag 45 zh measure
21 hh  hag 46 dx  butter
22 ih bit 47 nx center
23 ix roses
24 iy beat
25 jh  Jjudge

TABLE 8.2. Typical word pronunciations (word lex-
icon) based on context-independent

PLUs.

Number of .
Word phones Transcription
a 1 ax
above 4 ax b ah v
bad 3 b ae d
carry 4 k ae I iy
define 5 d iy f ay n
end 3 eh n d
gone 3 g a0 n
hours 4 aw W axr z
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WORD MODEL
() () _"@_ (a)
- @ @ —_—

SUB-WORD UNIT

Figure 8.1 HMM representations of a word (a) and a subword
unit (b).

letter A), but is pronounced as /ax/ in context. Another example is a word like *data,” which
can be pronounced as /d ey t ax/ or /d ae t ax/ depending on the speaker’s dialect. Finally
words like “you” are normally pronounced as /y uw/ but in context often are pronounced as
/jh ax/ or /jh ub/. There are several ways of accounting for word pronunciation variability,
including multiple entries in the word lexicon, use of phonological rules in the recognition
grammar, and use of context dependent PLUs. We will discuss these options later in this
chapter.

8.3 SUBWORD UNIT MODELS BASED ON HMMS

As we have shown several times in this book, the most popular way in which speech is
modeled is as a left-to-right hidden Markov model. As shown in Figure 8.1a, a whole-word
model typically uses a left-to-right HMM with N states, where N can be a fixed value (e.g.,
5-10 for each word), or can be variable with the number of sounds (phonemes) in the
word, or can be set equal to the average number of frames in the word. For subword units,
typically, the number of states in the HMM is set to a fixed value, as shown in Figure 8.1b
where a three-state model is used. This means that the shortest tokens of each subword
unit must last at least three frames, a restriction that seems reasonable in practice. (Models
that use jumps to eliminate this restriction have been studied [2].)

To represent the spectral density associated with the states of each subword unit,
one of three approaches can be used. These approaches are illustrated in Figure 8.2.
Perhaps the simplest approach is to design a VQ-based codebook for all speech sounds (as
shown in part a of the figure). For this approach the probability density of the observed




Chap. 8 Large Vocabulary Continuous Speech Recognition

(o)

DISCRETE DENSITY
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ACOUSTIC SPACE
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<
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ACOUSTIC SPACE
(COVERED BY CONTINUOUS
DENSITIES)

Figure 8.2 Representations of the acoustic space of‘speech by (a) parti-
tioned VQ cells, (b) sets of inuous mi G densities, and ()
a continuous-density codebook (after Lee et al. (7).

spectral sequence within each state of each PLU is. simply a di§crett? d.ensny deﬁ_ne::l otvz;
the codebook vectors. The interpretation of the d_nscret.e density within a state 18 a\and
implicitly isolating the part of the acoustic space in which the specn*a}i ve;torsbo;c;ﬁr nd
assigning the appropriate codebook vector (over that part (.)f the sp.ac<.=) a fixed probal zin
spectral vectors within cach isolated region regardles.s of its proxu{my to the correspo Sengt
codebook vector. A second alternative, illustrated in pa'rt b of Figure §.2, is g) repre sont
the continuous probability density in each sub\yord \'xmt state by a mixture e:s:tyEaCh
explicitly defines the part of the acoustic space in Whlcl? thta spectral vectors o::h ! S. o
mixture component has a spectral mean and variance Ehat is highly depepdem on e pe i
characteristics of the subword unit (i.e., highly localized in the af:ousnc spaf:e). ence the
models for different subword units usually do not have subs.tantlal over!ap u:)d thte):::l(l) e
space. Finally, a third alternative is to design a type of continuous density code/ oK o
the entire acoustic space, as illustrated in part of Figure 8.2. Basically the entire
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space is covered by a set of independent Gaussian densities, derived in much the same
way as the discrete VQ codebook, with the resuiting set of means and covariances stored
in a codebook. This alternative is a compromise between the previous two possibilities. It
differs from the discrete density case in the way the probability of an observation vector is
computed; instead of assigning a fixed probability to any observation vector that falls within
an isolated region, it actually determines the probability according to the closeness of the
observation vector to the codebook vector (i.e., it calculates the exponents of the Gaussian
distributions). For each state of each subword unit, the density is assumed to be a mixture of
the fixed codebook densities. Hence, even though each state is characterized by a continuous
mixture density, one need only estimate the set of mixture gains to specify the continuous
density completely. Furthermore, since the codebook set of Gaussian densities is common
for all states of all subword models, one can precompute the likelihoods associated with
an input spectral vector for each of the codebook vectors, and ultimately determine state
likelihoods using only a simple dot product with the state mixture gains. This represents
a significant computational reduction over the full mixture continuous density case. This
mixed density method has been called the tied mixture approach [10, 28] as well as the
semicontinuous modeling method [11] and has been applied to the entire acoustic space
as well as to pieces of the acoustic space for detailed PLU modeling. This method can be
further extended to the case in which a set of continuous density codebooks is designed,
one for each state of each basic (context independent) speech unit. One can then estimate
sets of mixture gains appropriate to context dependent versions of each basic speech unit
and use them appropriately for recognition. We will return to this issue later in this chapter.

8.4 TRAINING OF SUBWORD UNITS

Implicitly it would seem that training of the models for subword units would be extremely
difficult, because there is no simple way to create a bootstrap model of such short, im-
precisely defined, speech sounds. Fortunately, this is not the case. The reason for this is
because of the inherent tying of subword units across words and sentences—that is, every
subword unit occurs a large number of times in any reasonable size training set. Hence
estimation algorithms like the forward-backward procedure, or the segmental k-means al-
gorithm, can start with a uniform segmentation (flat or random initial models) and rapidly
converge to the best model estimates in just a few iterations.

To illustrate how models of subword units are estimated, assume we have a labeled
training set of speech sentences, where each sentence consists of the speech waveform and
its transcription into words. (We assume that waveform segmentation into words is not
available.) We further assume a word lexicon is available that provides a transcription of
every word in the training set strings in terms of the set of subword units being trained. We
assume that silence can (but needn’t) precede or follow any word within a sentence (i.e.,
we allow pauses in speaking), with silence at the beginning and end of each sentence the
most likely situation. Based on the above assumptions, a typical sentence in the training
set can be transcribed as

Sw: Wl W2 W3 W],
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SENTENCE (Sw):
2 2 2
g “\ Wy J(/’ \\ Wy W e \‘\
- i) @ &
silence silence silence
WORD (Wy):

UyW2)  Ua(Wy) Urw,)W1)
Ot Qe 354 OO

SUB - WORD UNIT (PLU):

Figure 8.3 Rep ion of a word, and subword unit in
terms of FSNs.

in which each W;, 1 < i < I, is a word in the lexicon. Hence the sentence “show all alerts”
is a three-word sentence with Wy = show, W, = all, and W5 = alerts. Each word can
be looked up in the lexicon to find its transcription in terms of subword units. Hence the
sentence S can be written in terms of subword units as

Sy : Ul(Wl)Uz(Wl) e UL(W,)(WI) & Uy(WU2(W2) ... UL(Wz)(WZ) @
Uy (W3)Ua(W3) . ... Urony(W3) @ - «- @ Un(WpU2(W)) . .. Urwny(W),

where L(W)) is the length (in units) of word W}, etc. Finally we replace each subword unit
by its HMM (the three-state models shown in Figure 8.1) and incorporate the assumptions
about silence between words to give an extended HMM for each sentence.

The above process is illustrated (in general) in Figure 8.3. We see that a sentence
is represented as a finite-state network (FSN) where the arcs are either words or silence
or null arcs (where a null (¢) transition is required to skip the alternative silence). Each
word is represented as an FSN of subword units and each subword unit is represented as a
three-state HMM.

Figure 8.4 shows the process of creating the composite FSN for the sentence “Show all
alerts,” based on a single-word pronunciation lexicon. One feature of this implementation
is the use of a single-state HMM for the silence word. This is used (rather than the three-
state HMMs used for each PLU), since silence is generally stationary and has no temporal
structure to exploit.

When there are multiple representations of words in the lexicon (e.g., for two or more
distinct pronunciations) it is easy to modify the FSN of Figures 8.3 and 8.4 to add parallel
paths for the word arcs. (We will see that only one path is chosen in training, namely the
best representation of the actual word pronunciation in the context of the spoken sentence.)
Furthermore, multiple models of each subword unit can be used by introducing parallel
paths in the word FSNs and then choosing the best version of each subword unit in the
decoding process.
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SENTENCE (Sy): SHOW ALL ALERTS
L4 ¢ L4 L4

-
- N ’/—.\ . ,/—b‘\ ,,»~
& . bod > by AL & >
silence show  silence all silence alerts  silence

WORDS:

SHOW: o;sr—o-——a-ow—o

ALL: o;a:—o—i—o

ax
ALERTS: O—e—0~ ¢ hd . ﬁo-s——o

SILENCE: Q .....

COMPOSITE FSN:

~ ax )

er 1 s |
ending states
Figure 8.4 Creation of composite FSN for “Show all alerts.”

o Once a composite sentence FSN is created for each sentence in the training set, the
trammg problem becomes one of estimating the subword unit model parameters wilich
maximize the likelihood of the models for all the given training data. The maximum
likelihood parameters can be solved for using either the forward-backward procedure (see
Ref. [2] for example) or the segmental k-means training algorithm. The way in which
we use the segmental k-means training procedure to estimate the set of model parameters
(based on using a mixture density with M mixtures/state) is as follows:

1. Initial.ization: Linearly segment each training utterance into units and HMM states
assuming no silence between words (i.e., silence only at the beginning and end of
each sentence), a single lexical pronunciation of each word, and a single model for
each subv'vo.rd unit. Figure 8.5, iteration 0, illustrates this step for the first few units
of one training sentence. Literally we assume every unit is of equal duration initially.

2 Clustgring: All feature vectors from all segments corresponding to a given state (i)
of a given subword unit are partitioned into M clusters using the k-means algorithm
(This step is iterated for all states of all subword units.) ‘

3. Estimation: The mean vectors, g, the (diagonal) covariance matrices, Uy, and the
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Figure 8.5 Segmentations of a training utterance resulting from the segmental
k-means training for the first several iterations (after Lee et al. {7).

mixture weights, ci, are estimated for each cluster k in state i. (This step is iterated
for all states of all subword units.) o

. Segmentation: The updated set of subword unit models (based on the esmnon of
step 3) is used to resegment each training utterance into units and states (via Ynerbn
decoding). At this point multiple lexical entries can be 1'1$ed for any wor‘d in the
vocabulary. Figure 8.5 shows the result of this resegmentauon. step for iterations 1'—4
and 10 for one training utterance. It can be seen that by iteration 2 the segmentation
into subword units is remarkably stable. .

. Iteration: Steps 2—4 are iterated until convergence (i.e., until the overall likelihoods
stop increasing).

Figure 8.6 illustrates the resulting segmentation of the first few units of the utterance
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WHAT IS THE CONSTELLATION+S GROSS DISPLACEMENT IN LONG TONS

e
[ <(l‘§€ QMU

Figure 8.6 Segmentation of an utterance into PLUs (after Lee et al. 7.

“What is the constellation. ...” Shown in this figure are the power contour in dB (upper
panel), the running LPC spectral slices (the middle panel), and the likelihood scores and
delta-cepstral values (lower panel) for the first second of the sentence. The resulting
segmentations are generally remarkably consistent with those one might manually choose
based on acoustic-phonetic criteria. Since we use an acoustic criterion for choice of
segmentation points, the closeness of PLU units to true phonetic units is often remarkable,
especially in light of the phonetic variability in word pronunciation discussed previously.

In summary we have shown how one can use a training set of speech sentences
that have only word transcriptions associated with each sentence and optimally determine
the parameters of a set of subword unit HMMs. The resulting parameter estimates are
extremely robust to the training material as well as to details of word pronunciation as
obtained from the word lexicon. The reason for this is that a common word lexicon (with
associated word pronunciation errors) is used for both training and recognition; hence
errors in associating proper subword units to words are consistent throughout the process
and are less harmful than they would be in alternative methods of estimating parameters of
subword models.

The results of applying the segmental k-means training procedure to a set of 3990
training sentences from 109 different talkers, in terms of PLU counts and PLU likelihood
scores are shown in Table 8.3. A total of 155,000 PLUs occurred in the 3990 sentences
with silence (h#) having the most occurrences (10,638 or 6.9% of the total) and nx (flapped
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n) having the fewest occurrences (5 or 0.04% of the total). In terms of average likelihood

TABLE 8.3. PLU statistics on count and average likelihood score. scores, silence (h#) had the highest score (18.5) followed by f (17.7) and s (15.4), while

Average ax had the lowest score (7.1), followed by n (8.3) and r (8.4). (Note that, in this case, a

PLU Count % likelihood (Rank) higher average likelihood implies less variation among different renditions of the particular

-~ 10638 5.9 18.5 M sound.) It is interesting to note that the PLUs with the three lowest average likelihood
8997 5.8 8.4 @5) scores (ax, n, and r) were among the most frequently occurring sounds (r was second,

: 8777 5.7 9.7 (€] n sixth, and ax fourth in frequency of occurrence). Similarly, some of the sounds with

ax 8715 5.6 7.1 “n the highest likelihood scores were among the least occurring sounds (e.g., oy was fourth

s 8625 ig l: "; (:2 according to likelihood score but 21% according to frequency of occurrence).

?h 2213 42 9.9 (3%

iy 5816 37 12.0 an

d 5391 35 8.5 @4) 8.5 LANGUAGE MODELS FOR LARGE VOCABULARY SPEECH RECOGNITION

ae 4873 3.1 133 (10)

; 4857 3.1 8.9 @n Small vocabulary speech- iti te; used primarily fi d-and- 1

. 4733 30 124 (14) ll ve ary speech-recognition systems are d primarily for command-and-contro

ch 4604 3.0 1.2 @n applications where the vocabulary words are essentially acoustic control signals that the

k 4286 2.8 10.6 @n system has to respond to. (See Chapter 9 for a discussion of command-and-control appli-

P 3793 24 14.3 © cations of speech recognition.) As such, these systems generally do not rely heavily on

m 3625 23 8.5 “3 language models to accomplish their selected tasks. A large vocabulary speech-recognition

ao 3489 22 ig"; (3(2 system, however, is generally critically dependent on linguistic knowledge embedded in

f ;i;f ii 14.5 ) the input speech. Therefore, for large vocabulary speech recognition, incorporation of

:y 3188 21 10.2 34 knowledge of the language, in the form of a “language” model, is essential. In this section

ix 3079 20 8.7 (42) we discuss a statistically motivated framework for language modeling.

dh 2984 1.9 11.8 (18) The goal of the (statistical) language model is to provide an estimate of the probability

v 2979 1.9 ‘(2)'(3) gg; of a word sequence W for the given recognition task. If we assume that W is a specified

:“ fgg ::ﬁ :0:7 (25) sequence of words, i.e.,

y 2137 14 13.1 an W=ww...wp, (8.4)

:“;" ?g:: }; ig? gg; then it would seem reasonable that P(W) can be computed as

ov 1875 1.2 109 e P(W) = Pwiw ... wg) = Pwy)P(walwy)P(ws|wiws) ..

ah 1566 1.0 11.3 (20) P(wQ|w1w2 <. Wo_1). (8.5)

dx 1548 10 10.4 @n - Lo . . . -

ay 1527 1.0 139 ® Uqfo@mtely, it is essentially impossible to reliably estimate the conditional word prob-

en 1478 0.9 9.1 (40) abilities, P(wjlw, .. -wj-1) for all words and all sequence lengths in a given language.

g 1416 09 9.8 36 Hence, in practice, it is convenient to use an N-gram word model, where we approximate

hh 1276 0.8 114 a9 the term P(wj|wy ... w;_;) as

th 924 0.6 14.1 @

n: 3(8)2 gg 13; 83; P(Wj,W1W2 e Wj_l) ] P(WjIWj_N+1 . Wj—l)y (8.6)

21 863 0.6 11.0 23 i.e., based only on the preceding N — 1 words. Even N-gram probabilities are difficult to

er 852 0.5 10.6 29 estimate reliably for all but N = 2 or possibly 3. Hence, in practice, it is often convenient

i 816 0.5 10 g (z(g; to use a word pair model that specifies which word pairs are valid in the language through

:;’ gg g'; ﬁ 0 22 the use of a binary indicator function, i.e.,

zh 198 0.1 12.2 15)

oy 130 0.1

8
2
(=]
®

8.7

153 @ POwjwe) = {1 if Wi, is valid
10.4 (30) 0 otherwise
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Another simple language model, often called the no-grammar model, assumes P(wjiwe) = 1
for all j and &, so that every word is assumed capable of being followed by every other
word in the language. In the next section we show how the word pair and the no-grammar
models can be implemented as finite state networks so as to be integrated simply into a
recognition decoding algorithm.

Alternative language models inciude formal grammars (€.g., context free or context
dependent grammar), N-grams of word classes (rather than words) etc. These types of
grammars provide more realistic models for natural language input to machines than the
artificial N-grams or words, or the word pair grammars. However, they are somewhat more
difficult to integrate with the acoustic decoding and hence will not be discussed here.

8.6 STATISTICAL LANGUAGE MODELING

In large vocabulary speech recognition, in which word sequences W are uttered to convey
some message, the language model P(W) is of critical importance to the recognition
accuracy as shown in Eq. (8.3). In most cases, the language model P(W) has to be
estimated from a given (large) text corpus. In this section we discuss how to construct such
a statistical language model from a (textual) training corpus.

For practical reasons, the word sequence probability P(W) is approximated by

Q
Py(W) = HP(WiIWi—hwi—Z, Ce s WieN1)s 8.8
i=1
which is called an N-gram language model. The conditional probabilities P(wi[wi-1,
..., Wi_ns+1) can be estimated by the simple relative frequency approach,

) FWiy Wity - -, Wic
Pwiwiz1, ..., Wi-N+1) = (F(lw 11 l e 'N:_’:)l)’ @9
ey ey Win

in which F is the number of occurrences of the string in its argument in the given training cor-
pus. Obviously, in order for the estimate in Eq. (8.9) tobe reliable, F(Wi, Wi_1, - -« Wi=N+1)
has to be substantial in the given corpus. The implications of this are that the size of the
training corpus may be prohibitively large and that F(wi, Wi=1, .-, Wi-n+1) =0 for many
possible word strings, Wi, Wi—1, - -y Wi—N+1, due to the limited size of the corpus.

One way to circumvent this problem is to smooth the N-gram frequencies as suggested
by Jelinek et al. [12]. Consider N = 3, the trigram model. The smoothing is done by
interpolating trigram, bigram and unigram relative frequencies

5 F(wy, w2, W3) F(w1,w2) F(w1)

Blwsbwise) =P P Ty TP R O
in which the nonnegative weights satisfy py +p2 +p3 = 1 and ¥ F(w;) is the size of the
corpus. The weights depend on the values of F(w, ws) and F(w) and can be obtained by
applying the principle of cross-validation [12].
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8.7 PERPLEXITY OF THE LANGUAGE MODEL

flavmg constructec'i a languag.e model from a training corpus, one may ask how well the
banggage model will perform in the context of speech recognition. This can be answered
a::lse on the concept of source of information in information theory. To provide such
measure of performance, we must first discuss several concepts, including entro;
estimated entropy, and perplexity. , ’ i
Consider an info@aﬁon source that puts out sequences of words (symbols) wi, w:
- Wo, each of which is chosen from a vocabulary V with size ||, according to s’omze:
stochastic law. The entropy of the source can be defined as

— M 1
H=- lim (5) {ZP(W],Wz,...,WQ)IOg P(w,,wz,...,wQ)}, (8.11)

:;11 whlcl;lP( .) is the probability of the argument string the source will put out according to
e “sitoc astic li}W and the summation is over all string sequences wy,ws,...,wp. If the
words in the string sequence are generated by the source in an independent ma’nngr'

P(Wl,W2,...,WQ) = P(Wl)P(Wz). . .P(WQ), (8.12)
then
H=-Y"P(w)log P(w), (8.13)
wev

:;1“::, ;s) .sometimes referred to as the first-order entropy of the source (even if Eq. (8.12) is
som;l"h"; ;u?tn:;)t's iéutfaE“(}(.) 1-(::, 1) can be considered as the average information of the
much information content as a soullcfgvlll:i‘::?;?l[tlsy;)l?ts\s::z: o P i o voabala
much nfor equiprobably from a vocabulary

If the source is ergodic (meaning its statistical properties can be completely charac-

terized in a sufficiently lon
equivalent to y long sequence that the source puts out), the entropy of Eq. (8.11) is

— 1 1
H= Qan;o (a) log P(w,wa,...,wp). (8.19)

:; ;ﬂ:t; ;vgrdsth we can compute the entropy from a “typical” (long) sequence of words

B oach inf}‘;ni t; so;)x'rc:.' 'I':le length of this typical sequence (i.e., the corpus) has to
, which is of course unattainable. Wi i

e oafhently vroe oL, nable. We often compute H based on a finite

1 .
H=-{-
(Q) log P(wy,wa,...,wgp). (8.15)
‘i ﬂ?en (linterestmg ipterpretation of H from the perspective of speech recognition is that
s egree of difficulty that the recognizer encounters, on average, when it is to
detern ine ; ;Yl(?rd from the same source. This difficulty, or uncertainty, is based on the

probability P(wy,w,...,wp) which, for natural languages, is usually not known
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beforehand and thus has to be estimated. (We do not include acoustic uncertainty in the
present context of language modeling.)

One way to estimate H is to use P(W) = P(wy,w2,...,wp) from the language model.
For example, if the N-gram language model Py (W) (Eq. (8.8)) is used, an estimate of H of
Eq. (8.15) is thus

Q
1
H,= -5 Z log P(WilWi1, Wi-2, - - s Wi—N+1)- (8.16)
i=1
In general,
H, = —é log P(wy,wa,...,Wp), 3.17)
where P(wi,ws, ...,wp) is an estimate of P(wi,ws,...,wg). The quantity H, is an

estimated entropy as calculated from a sufficiently long sequence based on a language
model. If the source is ergodic and Q — oo, H, > H. Intuitively, this can be easily verified
by the fact that knowledge of the true probability P(wy, w2, . .., Wg) is the best a recognizer
can use and any other probability estimate or language model can never make the task easier
for the recognizer. Since H), is an indication of the recognition difficulty Jower-bounded
by H, a language model that achieves a lower H, (i.e., closer to H) is therefore considered
a better model than another language model which leads to a higher Hp.

Associated with H, is a quantity called perplexity (often called the average word
branching factor of the language model) defined as

B =2 =P(wl,w2,...,wQ)"l/Q. (8.18)

Note that H, is the average difficulty or uncertainty in each word based on the language
model. When the recognizer uses this language model for the task, the difficulty it faces
is equivalent to that of recognizing a text generated by a source that chooses words from a
vocabulary size of B independently of each other and with equal probability. Another way
to view perplexity is to consider it as the average number of possible words following any
string of (N — 1) words in a large corpus based on an N-gram language model. Perplexity
is an important parameter in specifying the degree of sophistication in a recognition task,
from the source uncertainty to the quality of the language model.

8.8 OVERALL RECOGNITION SYSTEM BASED ON SUBWORD UNITS

A block diagram of the overall continuous speech-recognition system based on subword
speech units is shown in Figure 8.7. The first step in the processing is spectral analysis to
derive the feature vector used to characterize the spectral properties of the speech input.
For the most part, we will consider spectral vectors with 38 components consisting of 12
cepstral components, 12 delta cepstral components, 12 delta-delta cepstral components,
delta log energy, and delta-delta log energy. (Systems with the first 12 and the first 24
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Figure 8.7 Overall block diagram of subword unit based continuous speech recognizer.

features were also studied, but results on such systems will not be presented here.)

The s'ecfond step in the recognizer is a combined word-level/sentence-level match
’I'hc? way this is accomplished is as follows. Using the set of subword HMM:s and the worti
lex'lcon, a set of word models (HMMs) is created by concatenating each of the subword
unit HMMs as specified in the word lexicon. At this point, the system is very similar to
Fhe conr}ectc.ed word recognizers of Chapter 7. The way in which the sentence-level match
is done. is via an FSN realization of the word grammar (the syntax of the system) and the
semal}ncs as expressed in a composite FSN language model. The implementation of the
f:ombmed word-level match/sentence-level match is via any of the structures described
in Chapt.er 7. In particular, most systems use structures similar to the frame synchronous
level-building method (usually with some type of beam search to restrict the range of paths)
to solve for the “best” recognition sentence. g

Consider using the recognizer of Figure 8.7 for a database management task called the
Naval Rt?source (Battleship) Management Task—as popularly defined within the DARPA
community [13]. This task, which has a 991-word vocabulary (plus a separate silence
word), can be used to query a database as to locations, attributes, constraints, history, and

other information about ships within the database. Typical ex
. amples of sent
query the database include P i sentences used 10

e what is mishawaka’s percent fuel
e total the ships that will arrive in diego-garcia by next month
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Figure 8.8 FSN for the NG syntax.

e do any vessels that are in gulf of tonkin have asw mission area of mé
o show the names of any submarines in yellow sea on twenty eight october
o list all the alerts

e what’s jason’s m-rating on mob

e give t-lam vessels that weren’t deployed in november.

The vocabulary thus includes many jargon words, such as m4, m-rating, mob, and t-lam,
and several long-content words, such as mishawaka’s, diego-garcia, submarines, november,
etc., and many short-function words, such as is, the, by, do, in, of, and on.

A wide range of sentences can be constructed from the 991-word vocabulary to
query this database. It is possible to construct a finite-state network representation of the
full grammar associated with all such sentences. The perplexity (average word branching
factor) (see Section 8.7) of the full grammar network is computed to be about 9. However,
such a network is rather large (because of the high degree of constraint among words within
the vocabulary which form syntactically valid and semantically meaningful sentences) with
upward of 50,000 arcs and 20,000 nodes, and cannot easily be implemented as a practical
system. Instead, several types of FSN approximations to the full grammar have been
constructed.

Perhaps the least constraining grammar (and the simplest to implement) is the no
grammar (NG) case, in which any word in the vocabulary is allowed to follow any word in
the vocabulary. Such an FSN has the property that, although its coverage of valid sentences
is perfect, its overcoverage of the language (i.e., the ratio of sentences generated by the
grammar to valid sentences within the task language) is extremely large. The perplexity of
the FSN for the NG case is 991, since each word can follow every word in the grammar
(assuming all words are essentially equiprobable). The FSN for the NG case is shown in
Figure 8.8. (Note that the FSN of Figure 8.8 allows arbitrary phrasing, i.e., groups of words
spoken together followed by a pause, because of the silence model and the null arcs.)

A second ESN form of the task syntax is to create a word pair (WP) grammar that
specifies explicitly which words can follow each of the 991 words in the vocabulary. The
perplexity of this grammar is about 60, and the overcoverage, while significantly below
that of the NG case, is still very high. Although the network of Figure 8.8 could be used for
the WP grammar (by explicitly including the word pair information at node 2), a somewhat
more efficient structure exploits the fact that only a subset of the vocabulary occurs as the
first word in a sentence (B or beginning words), and only a subset of the vocabulary occurs
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Figure 8.9 FSN of the WP syntax.

as the last word in a sentence (E or endin;
. g words); hence we can iti
into four nonoverlapping sets of words, namely pariion fhe vocabulary

{BE }=set of words that can either begin or end a sentence, |BE| = 117
{BE}=set of words that can begin a sentence but cannot end a sentence, |BE| = 64
{BE}=set of words that cannot begin a sentence but can end a sentence |BE| = 488
{BE}=set of words that cannot begin or end a sentence, |BE| = 322. ’

::1&, :Is(urllgggg I;SYI;I;llzsced o(;n lLgis llplanitioning scheme, is shown in Figure 8.9. This
r . S an null arcs. To account for silence between words (whi
is optional), each word arc bundle (e.g., nodes 1 to 4) is expanded to individual(::o:g;

followed by optional silence, as shown at th i
pt s e bottom of F .
allows recognition of sentences of the form mof Figure 8. Hence the overall FSN

S: (silence) — {BE, BE} — (silence) ~ ({W})...({W}) ~ (silence) — {BE,BE} — (silence).

Finally, one could construct a task syntax based on statistical word bigram (or even
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trigram) probabilities—that is, we assign a probability, py;, to each word pair (W;, W;) where ]

py is the probability that W; is followed immediately by W;. That is, if W, is the #™ word 100 Word Pair Grammar

in a string of words, then p; = P(W, = W|W,_, = W)) is the language model according e -

8

to Eq. (8.6). The advantage of the word bigram (WB) approach is that the perplexity
is reduced considerably (to 20) for the Resource Management task, with essentiaily no

increase in complexity of the implementation.

3

]

8.8.1 Control of Word Insertion/Word Deletion Rate

Word Accuracy (%)

Using a structure of the type shown in Figure 8.9, there is no control on the sentence length. ;
That is, it is possible to generate sentences that are arbitrarily long by inserting a large i ‘:_‘__':::::mg::
aumber of short-function words. To prevent this from occurring, it is a simple matter to 20 )
rbi decoding, such that a fixed negative (
a)

incorporate a word insertion penalty into the Vite
quantity is added to the likelihood score at the end of each word arc (i.e., at nodes 5-8 in
control the rate of word insertion and 1 2 4 8 16 32 64 128 256

Figure 8.9). By adjusting the word penalty, we can
word deletion; a very large word penalty will reduce the word insertion rate and increase 100
the word deletion rate, and a very small penalty will have the opposite effect. A value for
word penalty is usually experimentally determined to balance these adverse effects. .
g
8.8.2 Task Semantics & 60
‘We have discussed how task syntax can be incorporated into the overall recognition struc- g .
ture. At the end of this chapter we will briefly describe a general procedure for integrating § 40 o
a semantic component into the recognizer. H @—0 rain100-2.5wp
) é 20l 00 train109-3.0wp
8.83 System Performance on the Resource Management Task 4
®)
]

-means training algorithm, the set of 47 PLUs of Table 8.1 were trained 1 2 4 e 6 32 e o8 56

Using the segmental k
using a set of 4360 sentences from 109 talkers. The likelihood scores were essentially Numbe
unchanged after two iterations of the k-means loop. The number of mixtures per state was umber of Mixtures Per State
varied from 1 to 256 in multiples of 2 to investigate the effects of higher acoustic resolution Figure 8.10 Word and sentence accuracies versus number of mixtures
on performance. per state for the training subset using the WP syntax,
To evaluate the recognizer performance, five different sets of test data were used, .
including: and N'gi: re;?(gngr p_erfor.mancg was evaluated for each of the test sets, using both WP
train 109 A randomly selected set of 2 sentences from each of the 109 training talkers; this set using mOd):iS V\;i;lnfl’;llﬂll S;f;grg?rtli:::r:spen:l ttl:tse fFor ] coses, evaluations were made
was used to evaluate the ability of the algorithm to recognize the training material The recognition results are resente;)? §! or each PLU.
feb 89 A set of 30 sentences from each of 10 talkers, none of whom was in the training set; correct minus percentage word ins grtio :ln terms of word accuracy (Percentage words
this set was distributed by DARPA in February of 1989 to evaluate performance of mixtures per state for each PLU HOS(: an sentenf:e accuracy as a function of the number
oct 89 A second set of 30 sentences from each of 10 additional talkers, none of whom was string with the text of the spok model. The alignment of the text of the recognized
- in the training set; this set was distributed by DARPA in October of 1989 alignment method as smciﬂi%ob;“Dil’ll&i was performed using a dynamic programming
e :::ts a&gigzzn;?nﬁgf a?f:nféqe;;oflkm’ none of whom was n the trainine 0 The recognition results on the training subset (train 109) are given in Figures 8.10 (for
feb 91 A set of 30 sentences from each of 10 new talkers, none of whom was in the training e WP syntax) and 8.11 (for the NG syntax). The upper curves show word accur.acy (in
percentage) versus number of mixtures per state (on a logarithmic scale) for two different

set (distributed by DARPA in February of 1991).
values of the word penalty, and the lower curves show sentence accuracy for the same
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Figure 8.11 Word and sentence accuracies versus number of mix-
tures per state for the training subset using the NG syntax.

parameters. A sharp and steady increase in accuracy is obtained as the number of mixtures
per state increases, going from about 43.6% word accuracy (10.6% sentence accuracy) for
1 mixture per state to 97.3% word accuracy (83% sentence accuracy) for 256 mixtures
per state for the WP syntax using a word penalty of 2.5. For the NG syntax (using a
word penalty of 6.0), the comparable results were 24% word accuracy (0.9% sentence
accuracy) for 1 mixture per state and 84.2% word accuracy (34.9% sentence accuracy) for
256 mixtures per state.

The recognition results on the independent test sets are given in Figures 8.12 (for
the WP syntax) and 8.13 (for the NG syntax). Although there are detailed differences in
performance among the different test sets (especially for small numbers of mixtures per
state), the performance trends are essentially the same for all the test sets. In particular we
see that for the WP syntax, the range of word accuracies for 1 mixture per state is 42.9%
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tures per state for the four test sets using the WP syntax,

(for feb 89) to 56.0% (for jun 90), whereas for 256 mixtures per state the range is 90.9%
(fc_)r feb 89) to 93.0% (for jun 90). For the NG syntax, the range of word accuracies for 1
mixture per state is 20.1% (for feb 91) to 28.5% (for jun 90) and for 256 mixtures per state
it is 68.5% (for oct 89) to 70.0% (for feb 91).

Perhaps the most significant aspect of the performance is the difference in accuracies
between the test sets and the training subset. Thus there is a gap of 4~7% in word
accuracy for the WP syntax at 256 mixtures per state, and a gap of 14.2-15.7% for the
NG syntax at 256 mixtures per state. Such gaps are indicative of the ability of the training
procedure to overtrain (learn details) on the training set, thereby achieving significantly
higher recognition accuracy on this set than on any other representative test set.

The results presented in this section show that a simple set of context-independent
PLUs can be trained for a continuous speech large vocabulary recognition task, using




458 Chap. 8  Large Vocabulary Continuous Speech Recognition

No Grammar Case

70
w 3
g
g
g e 18D8S-BWD
§ -+ fob91-8wp
g 6—-0 jun90-6wp
2 P— ]
(a)
16 32 64 128 256
20
A
/"“ /J
% o
g 15 /; T
——— SUNP—
g .
-1 - % -
g
L e 18089-6WD
§ A o———v 18091-8wp
£ " G-—-0 jUN90-8wp
(§ 5 ,"/;_44:-/ ’ 00 0Ct89-8wp
®)

4 8 16 32 64 128 256
Number of Mixtures Per State

Figure 8.13 Word and sentence accuracies versus number of mix-
tures per state for the four test sets using the NG syntax.

standard Viterbi training procedures, and be used to provide reaspnably good recogmtu?n
accuracy for a moderately complex task. The key issue now is wl.nat can 'be done, 1{;
meaningful ways to improve recognizer performance: .To answer this question, we wi

examine several possible extensions of the basic recognition system in the next few sections.

8.9 CONTEXT-DEPENDENT SUBWORD UNITS

There are several advantages to using a small basic set of context-independent subword
units for large vocabulary speech recognition. First of all we ha\{e shown Fhat the models
of these subword units are easily trained from fluent speech, with essentially no human
decisions as to segmentation and labeling of individual sections of speech. Second, the
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resulting units are generalizable to new contexts (word vocabularies, tasks with different
syntax and semantics) with no extra effort. Finally, the resulting models are relatively
insensitive to the details of the context from which the training tokens are extracted. By
this we mean that, in theory, we can derive the subword unit model parameters from two
arbitrary but sufficiently large training sets of fluent speech (hopefully of the same size and
general linguistic content but not necessarily the same vocabulary words and sentences) to
obtain essentially the same parameter estimates for each model. In practice, this is almost
the case.

However, there are situations in which the subword unit model parameters are ex-
tracted from a training set whose linguistic content matches the test set precisely—that
is, when the training set is a set of sentences drawn from the recognition task (with the
same vocabulary, syntax, and semantics). In such a case, the resulting subword units are
somewhat “word sensitive” (showing higher likelihood scores than in the general case)
and typically provide higher recognition performance than equivalent model sets derived
from arbitrary input speech. In particular, for the Resource Management task discussed
in the previous section, “word-sensitive” subword unit models, trained on task-specific
training sentences, give about 10% higher word recognition accuracy than the same set of
subword unit models trained on arbitrary sentences of comparable size. If the training set is
increased in size by a factor of about 3, the word accuracy of the text-independent models
approaches that of the word-sensitive models.

Obviously, this performance difference can be attributed to the fact that context-
independent subword unit models are not adequate in representing the spectral and temporal
properties of the speech unitin all contexts. (By context we mean the effects of the preceding
and following sounds as well as the sound stress and information, and even the word in
which the sound occurs.) The ultimate effect is a decrease in performance in word and
sentence accuracy on speech-recognition tasks.

The solution to this problem is basically a simple, straightforward one—namely, to
extend the set of subword units to include context-dependent units (either in addition to or
as a replacement for context-independent units) in the recognition system. In theory, the
only change necessary in either training or recognition is to modify the word lexicon to be
consistent with the final set of subword units. Consider the word “above.” Based on using
(1) context-independent units, (2) triphone (left and right context) units, (3) multiple-phone
models, and (4) word-dependent units, we could have the following lexical representations:

(1) above: ax b ah \ Context-Independent Units
(2)above: $-ax-b ax-b-ah b-ah-v  ah-v-$ Triphones (Context Dependent)
(3) above: ax2 b2 ahl vl Muitiple Phone Units

(4) above: ax (above) b (above) ah (above) v (above) Word-Dependent Units.

In representation (2), using triphone units, the number of units needed for all sounds in all
words is very large (on the order of 10-20,000). In practice, only a small percentage of
such triphone units are used, since most units are seen rarely, if at all, in a finite training set.
(We discuss this issue below in more detail.) In representation (3), using multiple models
of each subword unit, the idea is to cluster common contexts together so as to reduce the
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number of context-dependent models. This leads to problems in defining lexical entries for
words. (We discuss this issue further in a later section of this chapter.) Finally, the use of
word-dependent units is most effective for modeling short-function words (like a, the, in,
of, an, and, or) whose spectral variability is significantly greater than that of long-content
words like aboard and battleship. (We discuss the modeling of function words in a later
section of this chapter.) Finally, it is both reasonable and meaningful to combine all four
types of units in a common structure. In theory, as well as in practice, the training and
recognition architectures can handle subword unit sets of arbitrary size and complexity.
We now discuss each of these issues in more detail.

8.9.1 Creation of Context-Dependent Diphones and Triphones

Consider the basic set of context-independent PLUs in which we use the symbol p to denote
an arbitrary PLU. We can define a set of context-dependent (CD) diphones as

pL—p—$ leftcontext (LC) diphone
$ —p—pr right context (RC) diphone,

in which p is the PLU immediately preceding p (the left context sound), pg is the PLU
immediately following p (the right context sound), and $ denotes a don’t care (or don’t
know) condition.

Similarly we can define a set of context-dependent triphones as

pL—P—Pr left-right context (LRC) triphone.

In theory, the potential number of left (or right) context diphones is 46 x 45 (for a basic set
of 47 PLUs and excluding silence) or about 2070 left context diphone units. The potential
number of left-right context triphone units is 45 x 46 x 45 or 93,150 units. In practice, the
actual number of context-dependent PLUs actually seen in a finite training set of sentences
is significantly smatler than these upper bounds.

To better understand these concepts, consider the RM task (991 word vocabulary)
with a training set of 3990 sentences. To use diphone and triphone context-dependent units,
we first convert the lexicon to such units using the rule that the initial sound becomes a
right context diphone, the middle sounds become left-right context diphones, and the final
sound becomes a left context diphone. Hence the word “above” is converted to the set of
units $-ax—b, ax-b-ah, b-ah-v, ah—v-$. (We must use diphone units at the beginnings
and ends of words because we do not know the preceding or following words.) The above
rule is modified to eliminate triphone middies for words with only two PLUs (e.g., in, or)
and to revert to the context-independent PLU for words with only one PLU (e.g., a). Using
the above method of creating the lexicon, one can count the number of left-right context-
dependent (LRC) units (1778), the number of left-context (LC) units (279), the number of
right-context (RC) units (280), and the number of context-independent (CI) units (3) for a
total of 2340 PLUs in the training set. This number of units, although significantly smaller
than the maximum possible number of context-dependent units, is deceiving because many
of the units occur only a small number of times in the training set, and therefore it would
be difficult to reliably estimate mode! parameters for such models.
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TABLE 8.4. Number of intra-word CD units as a function of count threshold, T.

Count Number of Number Number Number Total
Threshold (T) LRC of LC of RC of CI Number
PLUs PLUs PLUs PLUs of PLUs

50 378 158 171 47 754

40 461 172 188 47 868

30 639 199 205 47 1090

20 952 212 234 46 1444

10 1302 243 258 4 1847

5 1608 265 270 32 2175

1 1778 279 280 3 2340

To combat the difficulties due to the small number of occurrences of some context-
dependent units, one can use one of three strategies. Perhaps the simplest approach is to
eliminate all models that don’t occur sufficiently often in the training set. More formally
we define c(-) as the occurrence count for a given unit. Then, given a threshold T on the
required number of occurrences of a unit (for reliable model estimation), a reasonable Unit
Reduction Rule is

Ifc(p — p — pr) < T, then

l. pp—p-pr—=$-p-pr ifc@G-p-pr)>T

2 po-p—-pr—=p.—p-$ ifcp-p-9H>T

3. po—-p—pr—$—-p—8 otherwise.
The tests above are made sequentially until one passes and the procedure terminates. To
illustrate the sensitivity of the CD PLU set to the threshold T, Table 8.4 shows the counts of
LRC PLUs, LC PLUs, RC PLUs, CI PLUs, and the total PLU count for the 3990 sentence
training set. For a threshold of 50, which is generally adequate for estimating model
parameters, there are only 378 LRC PLUs (almost a 5-to-1 reduction over the number with
a count threshold of 1) and a total of 754 PLUs. We will see later that although such
CD PLU sets do provide improvements in recognition performance over CI PLU sets, the

amount of context dependency achieved is small and alternative techniques are required to
create CD PLU sets.

8.9.2 Using Interword Training to Create CD Units

Although the lexical entry for each word uses right or left context diphone units for the
first and last sound of each word, both in training and in scoring, one can utilize the known
(or postulated) sequence of words to replace these diphone units with the triphone unit
appropriate to the words actually (or assumed) spoken. Hence the sentence “Show all
ships” would be represented as

$-sh-ow sh-ow-$ $-aw—f aw—l-$ $-sh~i sh-i—p ip-s p-s-$

using only intraword units, whereas the sentence would be represented as
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Figure 8.14 Plots of the number of intraword units, interword units,
and bined units as a function of the count threshoid.

$-sh-ow sh-ow—aw ow-aw—f aw-f-sh f-sh-i sh-i-p ip-s p-s-$

using both intraword and interword units. From this simple example we see that, whereas
there were only two triphones based on intraword units, there are six triphones based
on intraword and interword units—that is, a threefold increase in context-dependent tri-
phone units, (We are assuming no silence between words; it is straightforward to han-
dle the cases when silence actually occurs between words.) To illustrate this effect,
Figure 8.14 shows a plot of the number of intraword units, the number of interword units,
and the combined count, as a function of the count threshold, for the 1990 sentence DARPA
training set. More than 5000 interword triphone units occur one or more times versus less
than 2000 intraword units for the same count threshold.

Even when using interword units, the problems associated with estimating model
parameters from a small number of occurrences of the units is the major issue. In the next
sections we discuss various ways of smoothing and interpolating context dependent models,
created from small numbers of occurrences in the training set, with context-independent
models, created from large numbers of occurrences in the training set.

8.9.3 Smoothing and Interpolation of CD PLU Models

As shown above, we are faced with the following problem. For a training set of reasonable
size, there is sufficient data to reliably train context-independent unit modeis. However, as
the number of units becomes larger (by including more context dependencies) the amount
of data available for each unit decreases and the model estimates become less reliable.
Although there is no ideal solution to this problem (short of increasing the amount of
training data ad infinitum), a reasonable compromise is to exploit the reliability of the
estimates of the higher level (e.g., CI) unit models to smooth or interpolate the estimates
of the lower level (CD) unit models. There are many ways in which such smoothing or
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Figure 8,15 Deleted interpolation model for smoothing discrete
density models.

interpolation can be achieved.

The simplest way to smooth the parameter estimates for the CD models is to inter-
polate the spectral parameters with all higher (less context dependency) models that are
consistent with the model [12]. By this we mean that the model for the CD unit p; — p — pr
(call this ), _,_p,) should be interpolated with the models for the units $ —p—pg (As—p—p)»
PL—P—3% Ay —p—s)and $ — p — $ (As_,_s). Such an interpolation of model parameters
is meaningful only for discrete densities, within states of the HMM, based on a common
codebook. Thus if each model ) is of the form (A, B, ) where B is a discrete density over
a common codebook, then we can formulate the interpolation as:

By —p—pr = Op—p—peBp.—p—p + U ~p~$Bp.-p-s
+ as5—p—ppBs—p—pe + 5—p—sBs_p_s, (8.19)
where B,,,_ —p—py is the interpolated density. We constrain the as to add up to 1; hence
Opy—p—pa + Cp—p—$ + As—p—pp + C5—p-s = 1. (8.20)

The way in which the as are determined is according to the deleted interpolation algorithm
discussed in Section 6.13. We review the ideas, as they apply to these speech unit models,
here. Each of the discrete densities, By, —p—pg» Bp, —p—$» Bs—p--pe> and Bs_,_s, is estimated
from the training data where a small percentage (e.g., 20%) is withheld (deleted). Using the
withheld data, the as are estimated using a standard forward-backward approach based on
the HMM shown in Figure 8.15. The interpretation of the os is essentially the probability
weighted percentage of new data (unseen in training) that favors each of the distributions
over the others. Hence, for well-trained detailed models we get cp, ,—p, — 1, whereas for
poorly trained models we get o, _,—p, — 0 (i.., the LRC model is essentially obtained
from interpolating higher-level, lower context dependency models that are better trained
than the detailed CD model).

Other smoothing methods include empirical estimates of the as based on occurrence
counts, co-occurrence smoothing based on joint probabilities of pairs of codebook symbols
[14], and use of fuzzy VQs in which an input spectral vector is coded into two or more
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codebook symbols.

8.9.4 Smoothing and Interpolation of Continuous Densities

When one uses continuous density modeling of PLUs it is very difficult to devise a good
smoothing or interpolation algorithm because the acoustic space of different units is inher-
ently different. There are two reasonable ways to handle this problem. One is to exploit
the so called semicontinuous or tied mixture modeling approach discussed earlier in which
each PLU uses a fixed set (a codebook) of mixture means and variances, and the only
variables are the mixture gains for each model. In this case it is trivial to exploit the method
of deleted interpolation on the mixture gains in a manner virtually identical to the one
discussed in the previous section.

An alternative modeling approach, and one more in line with independent continuous
density modeling of different sounds, is to use a tied-mixture approach on the CI unit level;
that is, we design a separate (large) codebook of densities for each CI PLU and then constrain
each derived CD unit to use the same mixture means and variances but with independent
mixture gains. Again we can use the method of deleted interpolation to smooth mixture
gains in an optimal manner.

8.9.5 Implementation Issues Using CD Units

The FSN structure of Figure 8.9 is used to implement the continuous speech-recognition
algorithm based on a given vocabulary and task syntax ([15-19]). The structure is straight-
forward to implement when using strictly intraword units because there is no effect of
context at word boundaries. Hence the models (HMMs) for each word can be constructed
independently and concatenated at the appropriate point of the processing. This is illus-
trated below for the recognition of the string “what {is, are}” based on intraword units,
where the individual words are represented in the lexicon as

what — {$-w-aa, w—aa-t, aa—t-$}
is - {$-ih-z, ih-z-8}
are — {$-aar aa-r$}
$-w-aa w-aa-t aa—t-$§ $-ih-z th-2-$
O -—0

v\%Laao_r_s

(If we allow silence between words there is a trivial modification to include a silence node
after the word /what/.) When we include interword units in the recognition stage the FSN
becomes considerably more complicated because the first unit of each word (which we
call the head unit) is variable depending on the last unit of each possible preceding word;
similarly, the last unit of each word (which we call the tail unit) is variable depending on
the first unit of each possible following word. (We call the set of units between the head
unit and the tail unit, the body units.) Thus, in theory, a word like “what” consists of (up
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t0) 47 head units and (up to) 47 tail units, and would be represented as

Py~w-aa aa-t-p,

In practice many, if not most, of the head as well as tail units don’t exist; hence, the structure
is generally considerably less complex. Thus the FSN network of the strings “what {is,
are}” becomes

Py -w-aa

t-ih—~ th-2z~
ih-2z ih~2-p

that is, a considerably more complex network results. (Interestingly, the inclusion of silence
adds only a single extra path to each branch of the network.) The bookkeeping associated
with such networks can easily get out of hand and dominate the overall computation.
Fortunately, several network architectures have been devised for efficiently handling the
bookkeeping associated with such networks [15]. Interesting special cases occur when the
number of units within a word falls below three. When there are exactly two units in a
word, there are no body units so the variable head units merge with the variable tail units.
When there is only a single unit within a word, there are no body units nor is there a tail
unit. Effectively, the bookkeeping must look at both the preceding word set of tail units
and the following word set of head units to handle this case. The three cases described
above—namely, implementations of words with three or more units, words with two units,
and words with one unit—are illustrated in Figure 8.16.

8.9.5.1 Word Junction Effects

The assumption that is made when training interword units is that in continuous speech,
words are pronounced similar to the way they are pronounced in isolation. In most cases
this assumption is reasonable in that the coarticulation phenomena at word boundaries
only lead to small (soft) changes in the word pronunciation and therefore can readily be
modeled by interword units based on the concatenation of the tail unit from one word
with the appropriate head unit from the following word. However, in some cases, the
pronunciation changes are radical (hard) changes in which a boundary sound (tail or head)
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Figure 8.16 FSN representation of words with three or more units (a),
two units (b), and one unit (c).

i letely deleted or replaced with a totally different sound. Exampies of §ucl‘1‘ hard
::sh:grg?: inclﬁde the strings}?‘what time” and *did you,” among ott,ers. In the string .wh';\t
time,” the double stop consonant (t followed by t) between wprds 1sy ,replaced with a single
occurrence of t; hence one of the s is deleted. In the string “did you,” the standard phqngtlc
transcription would be /dihd y uw/; however, in continuous speech the actual n-anscnpno:;
would be /d ih j h uw/ (or even /d ih jh ax/) where the /d y/ boundary phones are change
ingle sound /jh/.
ot ls’lhogtllologicall/; predictable changes of the type §hown above (the so-called hard
sound changes) cannot easily be learned from the training procedure beca\{se they occt::lxr
infrequently and they lead to radically different sounds than would.be: pnec{ncted from dle
concatenation of boundary sounds of the relevant words as spoken in 1'solat10n. To hmme
these hard changes correctly, a set of phonological rules.has to be superimposed on both the
training and recognition networks (in a relatively straightforward (brute f.orce) manner.).
There are about 11 such rules that handle most of the known phonological changes in
English [16]. )
Some typical phonological rules include the following:

Rule1 Geminate deletion. If a word ends in a consonant and t.he following word
begins with the same consonant, the ending consonant is deleted; €.g., the
final /t/ is deleted in the pair “what time.” ' .

Rule2 Palatization. If a word ends in a /d/, and the following word t?egms with
a Jy/, then (optionally), the final sound can be converted to a /jh‘/‘, f'md thc:
initial sound of the following word is deleted. Thus the words “did you
can be spoken as either /d ih d y uw/ or /dih jhuw/.

Rule3  Plosive deletion. If a word ends in the nasal /n/ followed by a plosive s?unfi,
and the following word begins in a plosive sound, then the final plosive in
the initial word is deleted. Thus the words *“went down” can be spoken as
Jwehndawn/.
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The complete set of rules is available in Reference [15].

8.9.5.2 Variance Estimation Problems

Perhaps the most difficult problem, in training, when using continuous density HMMs, is
the estimation of mixture variances when the amount of training data is small (as is almost
always the case when using context-dependent units). The problem is that to maximize the
likelihood on the training data, the estimation procedure often tries to make the variance
very small (i.e., choosing data samples that are very close to each other in value). Although
this leads to good training likelihood scores, it often provides poor matches to independent
test data. Hence, some protection against variances getting too small in training is required.

Several proposals have been made as to how to realistically control the variance of
the estimates to prevent such effects from occurring. One simple one is to tie variances
across units, states, and even words, ultimately leading to a grand variance for each spectral
component that is independent of the unit, state, and word. This idea is reasonable and has
been shown to work well in practice [20]. An alternative is to set a floor on the variance
of each spectral component that is based on a statistical analysis of the range of values of
the variance component for different sounds, states, etc. Thus rather than using a grand
variance, the concept of setting a variance clipping threshold at an appropriate point of the
distribution (e.g., 2 sigma below the mean) preserves the (reasonable) range of variance
estimates while at the same time preventing the variance from getting unreasonably small.
(One could also argue that a high clipping threshold would prevent the variance from
getting unreasonably large; in practice, the process of maximizing likelihood prevents this
from happening. See Section 6.5 for a more complete discussion of these concepts.)

8.9.6 Recognition Results Using CD Units

A key issue in continuous speech recognition is the total number of subword units used
in the system. We have already discussed several different types of subword units, in-
cluding context-independent units, intraword context-dependent units, interword context-
dependent units, and various combinations of these. In later sections of this chapter we
will extend the unit classes to include position-dependent units, function word-dependent
units, and even function phase-dependent units.

On the one hand, it seems clear that as we add more units with greater context de-
pendency, the performance of the recognition should continue to improve. On the other
hand, for a fixed training set, the amount of training data available for estimating model
parameters of context-dependent units becomes smaller as the number of units increases.
Hence the reliability of the estimates of model parameters decreases and therefore recogni-
tion performance falls. (To combat this second effort, various smoothing and interpolation
procedures have been devised.) The overall result is that recognition performance is max-
imized for a finite size subword unit set whose size depends on the training data, the
recognition vocabulary, the task syntax, and the method for creating the context-dependent
units. In this section we present several results illustrating this trade-off between number
of subword units and overall word accuracy of the recognizer.
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TABLE 8.5. Word error rates as a function of occurrence threshold for the
feb 89 test set using intraword units with a 38 component/ivector

analysis.
Threshold oo 30¢ 25 204 152 - 10
Number of Units 47 1090 1215 1444 1694 1874
WP Word Error (%) 14.0 6.7 7.0 7.1 7.4 7.6

NG Word Error (%) 40.0 25.0 24.8 25.0 25.2 25.6

aSixteen mixtures per state were used for these model sets.

TABLE 8.6. Word error rates as a function of occurrence threshold for
the feb 89 test set using both intraword and interword units
(independently) with a 38 component/vector analysis.

Threshold - 30° 254 204 154 107
Number of Units 47 1769 2125 2534 2985 3863
‘WP Word Error (%) 9.1 4.6 4.7 4.6 4.7 53

NG Word Error (%) 327 20.8 19.8 19.4 20.6 20.9

agixteen mixtures per state were used for these model sets.

~ For evaluating speech-recognition performance, we use the feb 89 test set of 300
sentences spoken by 10 adult male and female talkers (30 sentences per talker). Using,
as a baseline system, the recognizer based on the 47 context-independent units with 256
mixtures per state, the unit reduction rule was used at several thresholds to generate unit
sets with up to 1874 intraword units (no interword units were used here), and the tests
were done using cepstral plus differential cepstral (delta and delta-delta) with differential
energy (first and second order) parameters (38/vector) with both the word pair (WP) and
no grammar (NG) syntaxes. The word recognition accuracies for these systems are given
in Table 8.5. A significant improvement in performance is achieved when adding context-
dependent intraword units (e.g., from 14% to 9.2% error rate for the WP case); however,
increasing the total number of units from 638 to 915 or 1759 or 2340 does not reduce word
error rate but instead increases it slightly. This is the tradeoff referred to above. For the
NG syntax a similar trend is observed, although the recognizer performance is relatively
flat for a large range of units.

The results when using both intraword and interword units (independently, see next
section) are shown in Table 8.6. For this test, we again used the feb 89 test set; however,
we used the full 38 component/vector analysis frame (including delta-delta cepstral values,
delta energy, and delta-delta energy). The effects of the enhanced analysis frame are seen
in the improved performance of the 47 PLU set where the error rate falls from 14% to
9.1% for the WP syntax, and from 40% to 32.7% for the NG syntax. Similarly the use
of interword units (along with the enhanced analysis) reduced the error rate to 4.6% for
the WP case (using 1769 units) and to 19.4% for the NG case (using 2534 units). Again
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Figure _8‘17 Word accuracy (%) as a function of the number of
generalized triphone models for several training set sizes (after
Lee [2]).

we clearly see the saturation in performance as the number of units increases due to the
prt?b!ems in reliably estimating parameters of the context-dependent models from a finite
training set.

To illustrate the effects of training set size on recognition performance even more
dramz-mcally, Figure 8.17 (due to K. F. Lee) shows a plot of word accuracy versus number
of units (called generalized triphone models in Lee’s notation) for different size training
sets (measured in terms of the number of speakers in the set). For the smallest training
set (30 sp‘?akers), the word accuracy peaks at around 300 units and then falls dramatically
beyond this point. For the 55-speaker training set the word accuracy peaks at around 625
units and then falls slightly. For the 80 and 105 speaker sets the performance peaks at
about 1000 and 2000 units. These results dramatically illustrate the difficulties in creating
subword unit sets with a large number of context-dependent units.

8.9.7 Position Dependent Units

When using both intraword and interword units, it is natural and reasonable to combine
occurrences of the same unit independent of whether they occurred within the word or
across .words. It has been observed that phones within words are significantly more stable
acoustically, than phones occurring at word boundaries. Thus it seems plausible that the:
spectral behavior of the same intraword and interword unit could be considerably different.
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To illustrate this point, two sets of context-dependent subword units were created using the
same unit reduction rule {21]. In one set common occurrences of intraword and interword
units were combined; in the other set they were modeled independently according to their
positions within the words or across words (thus the name position dependent). Using
a threshold of 30, there were 1282 combined units, including 1101 left-right context
units, 99 left-context units, 35 right-context units, and 47 CI units, and 1769 separate
position-dependent units including 913 intraword units and 856 interword units.

To show that the spectral properties of these two sets were different, the histograms
of unit separation distances for the two sets were computed as follows. For each unit, A,
in each set, we computed the minimum distance (likelihood separation) as

D(p) = min{L(¥,|\,) - L(Yp|Ap)}

where Y, represents the training data segments used to estimate \,. D(p) represents the
smallest likelihood score difference when using any other model than the one created
from Y,. (In practice, the computation is performed only for models, A;, which had the
same base unit as ), since all other models gave significantly larger difference scores.)
The histograms of unit separation distance for the 1282 PLU set of combined intraword
and interword units, and for the 1769 PLU set of position dependent units are shown in
Figure 8.18. For the 1769 PLU set almost ail of the unit separation distances are larger
than 2.0 (difference in log likelihoods), including the cases where the same unit occurred
in both intraword and interword contexts. The average unit separation distance for this set
is about 9.0. For the 1282 PLU set the histogram is skewed to the left, showing many small
unit separations, with an average distance on the order of 4-5. The results clearly show that
the spectral properties of context-dependent units are often significantly different within
words than when they occur at word boundaries.

8.9.8 Unit Splitting and Clustering

We have shown in previous sections that it is relatively simple to train models for a small
set of context-independent units from a training set of a reasonabie size. The problem
is that the recognizer performance is not good enough for large vocabulary continuous
speech-recognition tasks. We also discussed one simple way to train models for a large set
of context-dependent units from the same training set. Here the problem is the inadequacy
of training data, which leads to poor estimates of model parameters for all but a small
subset of the units observed in a typical training set. The result of the poor model estimates
is that recognition performance saturates for about 10002000 context-dependent units and
either remains constant or decreases as the number of units trained increases.

Thus a key issue in the design and implementation of large vocabulary continu-
ous speech recognizers is how to efficiently determine the number and character of the
context-dependent units that give best recognition performance for a given training set.
Unfortunately, there is no simple answer to this question. In this section we discuss
several proposed methods based on the concepts of either starting from a smail set of
context-independent units and iteratively splitting the units, or of starting from a large set
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Figur!e 8.18 Histograms of the unit separation distance for (a)
combined intraword and interword units (1282 PLUs) and (b)

separate intraword and interword units (1769 PLUs) (after Lee
etal. [19]).

of context-dependent units and merging similar units to reduce the number of units based
on some type of clustering procedure.

8.9.8.1 Splitting of Subword Units

The basic idea of subword unit splitting is illustrated in Figure 8.19. We assume that
for caf:h subword unit p; (with model );), representing a context-independent unit, there is
some inherent internal distribution of training tokens that naturally clusters into twc; or more
clusters. (Within the figure we show three clusters, namely p!, p?, and p3.) The clusters
represent classes of sounds that are all labeled as p;, but which have d'ifferent spectral
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P}

Figure 8.19  Splitting of subword unit p; into three clus-
ters (after Lee et al. {7]).
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Figure 8.20 Histograms of Iikelihood score for four context-
independent units (vowels) (after Lee et al. [7]).
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properties depending on the context in which they occur. Once the separation of p; into
clusters is achieved, we have effectively created muitiple models of the context-independent
subword unit, as shown at the bottom of Figure 8.19.

There are several ways to create the clusters for each unit, but a particularly simple
(and meaningful) one is based on the following argument. If we examine the histogram
of (log) likelihood scores for each training token which is labeled p; we get curves similar
to those shown in Figure 8.20. The likelihood score histograms show that for a large
percentage of the training tokens, good scores are obtained using the context-independent
unit. These training tokens are (relatively) well represented by \; and do not need to be
split off. Instead the low tail of the histogram (below the dashed lines) represents training
tokens whose likelihood scores are relatively low and these tokens need an alternative
representation (model) to be well represented.

Based on the above discussion, a simple procedure for splitting off training tokens
with low likelihood scores and creating a new model from these tokens is as follows:

1. For each subword unit, p;, which is to be split (not every unit need be split), all
training tokens whose likelihood scores fall below a threshold are split off and used
to estimate an additional model for that unit.

2. The segmental k-means training procedure is iterated on the split-off tokens until the
new model reaches convergence.

3. The above procedure (steps 1 and 2) is iterated until the desired number of models,
for each subword unit, is obtained.

The results (in terms of average likelihood score over the entire set of units) of applying
the above splitting procedure to the 47 PLU set of context-independent units is shown in
Figure 8.21. The results are shown, as a function of iteration number, for splitting each
of the 47 models into 2, 3, and 4 models. The procedure converges rapidly and provides
small but consistent increases in average likelihood scores.

The above model splitting procedure leads to one major difficulty, namely, How
do we modify the word pronunciation dictionary to account for the presence of multiple
versions of each subword unit? The inherent problem is illustrated in Figure 8.22, which
shows the networks for a complete set of word models assuming every version of each
sound in the word can follow every version of every other sound in the word (part a), or that
instead we determine one or two best representations of each word via some type of word
learning procedure (part b). The problem with the network of part a is that a word with N
sounds (e.g., “often” has three sounds, /ao, f, en/) has 2V representations when we use the
complete network (e.g., eight versions of “often”) with two models for each sound. This
means not only more computation, but even worse, more chances to cause word insertion
or substitution in the recognition phase because there are so many more ways in which the
words can occur. The network of part b, in which we explicitly enumerate the version of
each unit used for each word, is far more viable; however, the problem is how to estimate
the best sequence of units for each word in the lexicon. To do this properly we need
occurrences, within the training set, of each word in the vocabulary from which we use
the network of part a and backtrack to get the best sequences of the type shown in part b.
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Figure 8.21 Average likelihood scores for sets of PLU models obtained
from model splitting (after Lee et al. [7]).
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Figure 822 Word networks based on all combinations of units (a), or
selected combinations of units (b) (after Lee et al. [7]).
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For words that don’t occur in the training set, some canonic representation must be relied
on (e.g., use the primary model for each sound as a default). The necessity of having each
word occur in the training makes this type of splitting method less viable than alternative
procedures.

8.9.8.2 Clustering of Context Dependent Units

The alternative to model splitting (a top-down approach) is model clustering (a bottom-up
approach) in which we initially start with the complete set of context-dependent units (as
many as exist in the training set based on a count threshold of 1) and then sequentially
merge units (actually the training tokens associated with the units) so that the decrease
in likelihood score is minimized at each step. (In practice, we merge only units whose
contexts are comparable, e.g., unit p; — p; — px could be merged with units p; — p; — py,
£# k,orpg —pj — pr,or $ — p; — pr, or p; —p; — $, or $ — p; ~ $.) This procedure is
iterated either until a desired number of units is reached or until the resulting decrease in
likelihoods gets too large.

A key advantage to model clustering is that it is trivial to modify the word lexicon to
account for the decrease in units from merging. The procedure is basically to change each
occurrence of both p; — p; ~pi and ps —p; —p, to the merged unit, call it p; —p;— ps, whenever
they occur in the lexicon. Thus model clustering is inherently simpler to implement than
model splitting and therefore has been used more widely in practical systems.

Many variations on model clustering have been proposed, including knowledge-
based allophonic clustering [22], in which specific knowledge of the vowel and consonant
contexts is explicitly used to guide the clustering procedure, and CART-based phonetic
clusters in which a decision tree is used to choose the most reasonable clustering sequence
based on phonetic considerations.

8.9.9 Other Factors for Creating Additional Subword Units

In practice, the training methods for creating robust, complete sets of subword unit models
for representing continuous speech are up against hard physical limits, including amount of
training data and ability to reliably estimate model parameters from insufficient training. To
obtain improvements in recognition performance, subject to the above constraints, several
ideas have emerged for creating specialized units and models. For completeness, we briefly
outline several interesting proposals that have been advanced along these lines.

A key source of difficulty in continuous speech recognition are the so-called function
words, which include words like a, and, for, in, and is. These function words have the
following properties:

1. They are generally unstressed in speech.
2. They are poorly articulated in continuous speech.
3. They are highly variable in pronunciation depending on context.
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4, They account for a large percentage of the word recognition errors in continuous
speech (upward of 50-70% in some tests).

To combat these problems, one simple idea is to represent function words independently of
the rest of the training set, using either whole-word models, multiple pronunciations in the
lexicon (e.g., the, thee), or special subword units, called function word dependent units,
trained directly from occurrences of the function words within the training set. Experience
shows small but consistent improvements in recognition performance when function word
dependent units are added to the standard set of subword units.

The idea of representing function words can be extended to the representation of
function phrases such as “in the,” or “what is.” Thus, specialized units can be created for
these combinations in much the same way as for individual function words. Again there
are small performance gains that are achieved when using function phrase units.

Another interesting idea is to create separate sets of units for both male and female
talkers. The idea is that the spectral properties of the units are distinct for males and
femnales. The problem is that by separating male from female talkers, the amount of
training data for each separate gender set is reduced. Hence the reliability of the estimates
of both sets of models is reduced even further. Experience again shows small, consistent
gains in recognition performance using gender-specific models; hence this method is worth
considering for practical implementations.

Finally it has been proposed that a combination of word models and subword unit
models might give the best performance for specific tasks. The idea is that for words that
do occur often in the training set (e.g., function words), creation of whole-word models
provides the highest recognition performance. For all other words in the lexicon, some
type of subword units is required. Hence a combination of word and subword units would
probably lead to the best implementation for many applications. This idea has yet to be
evaluated in a practical application.

Acoustic Segment Units

In this chapter we have shown that large vocabulary continuous speech recognition systems
use a combination of ideas from phonetics and acoustics to define subword units and to
create a “consistent” framework for training the units and implementing the overall recog-
nition structure. The resulting system is neither phonetically nor acoustically consistent,
but is instead a hybrid of the two methodologies. This is why the resulting subword units
are called phonelike units (PLUs) rather than phones or allophones.

In an attempt to create a consistent acoustic framework (devoid, in theory, of the
phonetic basis), it is possible to define a set of acoustic segment units (ASUs) that can
be trained from continuous (unlabeled) speech, and which form a basis for representing
any spoken input. In concept, all one need do is to have a procedure that automatically
segments fluent speech into unlabeled sections [9, 23] (based on a maximum likelihood
procedure using some type of spectral similarity measure), and then cluster the resulting
segments to create a codebook of ASUs.
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. The prt?l?lem now becomes one of creating an acoustic lexicon that represents word

in t'he recognition vocabulary in terms of the appropriate sequence of ASUs. For syste i
wh¥ch every vocabulary word is seen in the training set, techniques for creat‘ing they acom e
lexicon exist and appear to work well (9, 24]. However, for large vocabulary system:St;llz

problem of automatically creating the acoustic lexi i j
_ Xicon remains a ma
practical use of ASUs. Jor ebstacle 1o the

8.10 CREATION OF VOCABULARY-INDEPENDENT UNITS

A major lm}ltation in the training procedures discussed in this chapter is that the resultin
subword unit models are not truly vocabulary independent. This is because the unit modelg
are gerferally trained from tokens that occur in only a small subset of the possible contextss
and tl.us sut?set is from the same words as used in the recognition tests. As such thc;
rc?sultmg units are word/vocabulary dependent and do not perform well fo; tasks i ’h' h
different vocabularies and task syntaxes are used. m e
To alleviate this problem of vocabulary dependence, the “ideal” training procedur
.would be to use a training set that is completely independent of the test mate[;ial botte;
: o\ézcl::::ll?ry ang1 alﬁ syntax. If a sufficiently large training set is available the’ units
even con i iti is vi
ndepondont of e ozabulzf;gaen :o tat:lz:t the resulting recognition performance is virtually
) To evaluate this idea, two experiments were run at CMU (25 i
independent training set of 15,000 sentences, subword unit n’£0d]elSUVs::li z:::e::zu}ragr;
subsets of.5000 (VI-5000), 10,000 (VI-10000), and 15,000 (VI-15000) sentences and
tested against two tasks, namely a 122-word office correspondence task, and the 911
RM task Tpe results of these two experiments are given in Tables 8.7 ’and 8.8. For
comparison, in Table 8.7, results based on training models from 1000 sentences f.ro‘m the
office correspondence task (VD-1000) are also given. For 5 times the size training set the
:vrir&r lrgt: from VI-5000 ‘models is more than twice that of the VD-1000 modclf. Even
b th;xnnefi :smrztf;}];_tr?norggi d:dt:i.the error rate is still somewhat larger for the VI-15000
An even worse performance is seen for the RM task in which a VI- ini
led to almost- twice the error rate of the RM-4200 (sentence) tra.ini::gvslet.l ?202:5 tr:sr:gv::st
run a.t CMU in which new test sentences were recorded at CMU under the same recordin,
;grtx;lhnons as those of the VI-15000 set, and the resulting recognition performance ogf
o the VI.—15000 set and the RM—42Q0 set were comparable. Thus, some of the large
ifferences in performance result from differences in recording conditions.)
. The resul.ts of these tests show that robust techniques for creating truly vocabulary-
independent ur}lts are yet to be devised. Until such methods are available, truly continua;zls
spee(?h re‘cogmtion for unlimited vocabularies and tasks will be out of ra:nge. The interim
solun(.)n is to use VI models and bootstrap them to VD models for specific applications
Experimental evidence exists that such procedures are viable for many applications. .
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TABLE 8.7. Recognition performance on 122-word, office correspondence task
with both VI and VD models (after Hon & Lee {25]).

Training Set Word Triphone Word
Coverage (%) Coverage (%) Error Rate (%)
VI-5000 4.3 63.7 239
VI-10000 63.9 95.3 15.2
VI-15000 70.5 99.2 13.3
VD-1000 100 100 114

TABLE 8.8. Recognition performance on 991-word, RM task, with both V1 and
VD models (after Hon & Lee [25)).

Training Set Word Triphone Word
ning Coverage (%) Coverage (%) Error Rate (%)

VI-15000 571.0 90 154

RM-4200 100 100 8.3

8.11 SEMANTIC POSTPROCESSOR FOR RECOGNITION

The final stage of processing in most speech recognizers is a semantic processor whose
job is to eliminate from consideration all semantically meaningless sentences. In a sense,
the semantic processor exploits the fact that the syntax used in recognition has a great
deal of overcoverage; that is, it allows meaningless sentences to be passed to the semantic
analyzer. The semantic processor can use the actual perplexity of the task (generally much
lower than the perplexity of the syntax) to convert the recognized output to a semantically
valid string.

In theory, the semantic processor should be able to communicate back to the recog-
nizer to request a new string whenever the resulting string is deemed invalid. In practice,
one of two simple strategies can be used; either the recognizer can generate a list of the
best N sentences (N = 500 — 1000) that the semantic processor can search until a valid one
is found, or it can assume that the best (recognized) string is semantically “close” to the
correct string and therefore process it appropriately to determine a valid approximation.

Rather than discussing the details of how such semantic processing is done in practice,
Figure 8.23 shows plots of improvements in word and sentence accuracy for different sets
of subword units due to the use of a simple semantic postprocessor for the RM task [26).
Improvements in word accuracy of up 10% and improvements in sentence accuracy of over
20% are achieved, even with simple processing.

8.12 SUMMARY

The framework of large vocabulary, continuous speech recognition is well established.

R i
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ﬂgm 8.23 Word and sentence accuracy improve-
ments in RM after semantic processing (after Pieraccini
and Lee [26]).

Techniq'u'es for training subword models have been developed and work well in practice.
R'ef:ogmnon systems have been developed and these, too, work well in practice. Recog-
mgon systems have been implemented with upward of 1000--20,000 word vocabularies
using upward of 1000-2000 subword units. Many unanswered questions remain. A key
one is how to efficiently choose and design context-dependent, vocabulary-independent
umt§ from training sets of reasonable (but finite) size. Other issues concern effectiveness
o_f dxfferer.lt spectral representations, including codebooks and tied-mixture densities, effi-
ciency of implementation of search strategies, and efficient implementations of task syntax.
Finally, the issues involved with task semantics are yet to be fully understood or resolved.
Large vocabulary recognition has come a long way, but a great deal remains to be done
before such systems will be used for practical applications.
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Chapter 9

9.1

TASK-ORIENTED
APPLICATIONS

OF AUTOMATIC SPEECH
RECOGNITION

INTRODUCTION

Throughout this book we have been concerned primarily with the basic principles behind
the design and implementation of systems for speech recognition by machine. Although
we have discussed several canonic recognition problems (e.g., isolated digit recognition,
connected digit recognition, fluent speech recognition on the Resource Management task),
we have avoided any discussion of two key aspects of speech recognition, namely, issues in
real-time hardware implementations of speech recognizers and task-specific applications
of speech recognition. For several reasons, we choose not to discuss the problem of how
to build real-time hardware for speech recognition. First, the field of digital hardware
is rapidly changing, and any specific implementation would be out-of-date and would
not be state-of-the-art over time. Second, there are often many ways of achieving real-
time implementations, and the choice of hardware architectures is often dominated by
considerations other than that needed for speech recognition. Finally, an understanding of
real-time implementations of speech-recognition systems contributes little to an improved
understanding of the basic speech-recognition technology. ‘

Thus, in this chapter, we will discuss the problem of how to integrate a speech-
recognition system into a task-specific application to perform a useful task. To better
understand this problem, consider the “Task Specific Voice Control and Dialog” system
of Figure 9.1. The overall system consists of a speech recognizer, a language analyzer,
an expert system, a physical system being controlled by the voice commands, and a text-
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Figure 9.1 Block diagram of a task-specific voice control and dialog system.

to-speech synthesizer. The broad function of the speech recognizer is to convert spoken
input into grammatically correct text as constrained by the recognizer vocabulary and
grammar model. In theory we would like the speech input, to the recognizer, to be totally
unconstrained—that is, natural language; in practice we have seen that we have to restrict the
input speech somewhat for it to be recognized correctly based on the techniques described
throughout this book. The output of the speech recognizer is the text string that is most likely
to have been spoken based on the recognizer’s vocabulary and grammar. (It should be noted
that, as shown throughout this book, the recognizer vocabulary and grammar can vary over
a wide range. For example, simple systems may use small vocabulary sizes (“yes”—*“no,”
or “off hook,” “dial,” “hangup™) without an explicit grammar, whereas more sophisticated
systems may be required to recognize tens of thousands of words with constrained word
grammars.) The text string is next sent to a language analyzer which, using a set of
semantic rules appropriate to the task being performed, extracts the meaning from the text.
The language analyzer can be implemented as a semantic concept spotter using statistical
methods, or as a rule-based system. The decoded meaning of the input speech is sent to
an expert system, which first selects a desired action, then issues appropriate commands to
the physical system under voice control to carry out the action, then receives data on the
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TABLE 9.1. Performance scores for several types of speech-recognition systems as measured under

laboratory conditions.

‘Word Error
Technology Task Syntax Mode Vocabulary Rate (%)
None SD 10 Digits 0
Isolated Words None 3 Albhdigits os
1109 Basic English 43
S1 10 Digits 0.1
39 Alphadigits 7.0
129 Airline Words 29
igi 0.1
Digit Strings Known Length SD 10 Digits
Connected Words * ’ String SI 11 Digits 0.2
Airline Finite-State Grammer  SD 129 Airline Words 0.1
Reservations (Perplexity = 4)
Fluent Speech Naval Resource  Finite-State Grammer ~ SI 991 Words 4.5

Management (Perplexity = 60)

command status (e.g., “command carried out successfully,” or ‘.‘command cannot be carr}ed
outdueto...”), and constructs a textual reply that is converteq intoa speech message (using
a text-to-speech synthesizer with appropriate word pronunf:latlon rules) and played back
to the user. The entire system of Figure 9.1 is a voice filalog control system based on
speech input and output that performs a specified task of interest. It sl30uld be clear fro;rll
Figure 9.1 that the speech-recognition module, although sxgmﬁca.pt ina cgmputanon
sense, is often only a small piece of an overall task-oriented apphcapon.. In this chapter we
will discuss several such systems as used in a broad range of apphcam'ms. Before going
into specifics of individual task applications, we first provide some generic comments about
speech recognition applications.

9.2 SPEECH-RECOGNIZER PERFORMANCE SCORES

To appreciate the range of tasks to which speech recognition has been applied successful.l).', it
is worthwhile to review the state-of-the-art in laboratory benchmarks of speech-ret;ognltlon
systems, as discussed in earlier chapters. Table 9.1 shows the perfo.n.nancet ofa .vnde range
of speech-recognition systems, as measured under laboratory conditions (.1.e.,. hlgh.-quallty
microphone, low noise environment). The performance of these systems is given in terms
of a word error rate score (in %) as measured for a specified tthnology, for a given task,
with a specified task syntax, in a specified mode, and for a spet?lﬁed wqrd vocabul.ary. I.'“or
tasks in which the technology of isolated word recognition is suitable, without specification
of either task or task syntax, word error rates of below 5% in speaker-dePendent (SD)
mode are obtained; for speaker-independent (SI) mode the word error rate is at or below
7% for a wide range of word vocabularies. These word error rates are .ra'ther 10\}',. and
when well-defined tasks with their appropriate syntax are specified (providing additional
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constraints on the recognized sequence of isolated words), performance often improves by
an order of magnitude or more. (We will see examples of this later in this chapter.)

For tasks based on connected word recognition, such as connected digit strings,
word error rates on the order of 0.1-0.2% are obtained in both speaker-dependent and
speaker-independent modes for known length (prescribed number of digits) strings. Such
high accuracy makes recognition of personal identification numbers (PIN) codes, telephone
numbers, credit card numbers, and catalog codes feasible, especially when the additional
syntax imposed by each of these applications is taken into account.

Finally, for fluent speech recognition of a 991-word vocabulary for the Naval Re-
source Management task, with a task perplexity (average word branching factor) of 60, a
word error rate on the order of 4% is state-of-the-art performance in a speaker-independent
mode. In this case, a word error rate of 4% is equivalent to sentence error rates on the order
of 20%; hence, this technology is not yet suitable for real-world task applications.

All the performance scores in Table 9.1 were obtained under laboratory testing
conditions. Typically, word error rates increase by a factor of 2 to 5 when tested in realistic
environments with a broad range of speaker accents, noise conditions, speaker errors
including hesitations, ahs and uhms, and other variables. Fortunately, task constraints
serve to reduce error rates by equivalent factors of from 2 to 10; hence the quoted word
error rates of Table 9.1 are often realistic for actual experimental evaluations in real-world
tests.

CHARACTERISTICS OF SPEECH-RECOGNITION APPLICATIONS

To decide whether a proposed task is suitable for speech-recognition deployment, several
requirements are essential. These include the following:

o The proposed recognition system must provide a real (and hopefully measurable)
benefit to the user in the form of increased productivity, ease of use, better human-
machine interface, or a more natural mode of communication, Many proposed
applications have tried, generally unsuccessfully, to exploit the novelty of voice
recognition to attract attention or to get increased sales. Without the true (and
lasting) benefit to the user, such applications do not succeed over time.

¢ The proposed recognition system must be “user friendly”; that is, it must make the
user feel comfortable with the voice dialogue, it must provide friendly and helpful
voice prompts, and it must provide an effective means of communications (i.e., a fall-
back mode) when the recognizer fails to understand properly the spoken commands.
The concept of a user-friendly system is essential to the maintenance of a voice
dialogue between the user and the machine.

* The proposed recognition system must be accurate; that is, it must achieve, at least,
a specified level of performance on the task associated with the recognition decision.
Interestingly, there appears to be a nonlinear perception of the effectiveness of a
recognizer in that the absolute level of performance is relatively unimportant so
long as the accuracy exceeds some specified level. For example, users have a
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great difficulty discerning differences between isolated word recognition systems
that provide 95% word accuracy, and those which provide 99% word accuracy. This
is because the 95% word accuracy system only makes an error, on average, once in
20 tries, whereas the 99% word accuracy system only makes an error, on average,
once in 100 tries. Both systems appear, to the user, to be highly accurate and rarely
make errors; hence when an occasional error is made, the user tends to attribute it
to an improper speaking mode on his (or her) part, rather than to an inadequacy in
the recognizer. Similarly when the performance of the recognizer falls below some
lower threshold (e.g., 90% word accuracy), the perception of the user is that the
system makes too many errors and is therefore unreliable. The actual word error is
again almost irrelevant; the user perceives the system to be unusable.

The proposed recognition system must respond in real time. Itis essential that the user
feel that the response to the query comes essentially immediately (within 250 msec
after the end of the spoken input) so that a voice dialog can be maintained between
the user and the system.

Every one of the above requirements is essential and mandatory for a proposed use

of speech recognition to a specified task to be successful.

9.3.1 Meth

ods of Handling Recognition Errors

Given the fact that a speech recognition system will make errors in recognition of the spoken
input, a key question is how do we handle such errors in a way in which communication
between the user and the machine doesn’t break down. There are at least four ways to
deal with recognition errors, any one or more of which can generally be applied in various

speci

fied tasks. These inciude

Fail soft methods; in this case, the “cost” of a recognition error, as measured in terms
of either user annoyance, or loss in revenue as a result of the misrecognition, is low.
Hence the error is essentially accpted with the assumption that it will be detected
and corrected at a later stage of interaction with the machine. Hence if a command
word is misrecognized and, as a result, the next piece of the dialogue is inappropriate
for the actually spoken command, the user enters a correction mode (by spelling a
correction command) to backtrack to the point where the error was made. Such a
transaction costs the user a small amount of time but has little other effect on the user.
Self-detection/correction of errors; in this case the recognition system utilizes known
task constraints to automatically detect and correct recognition errors. Thus, in
spelling a name from a finite list of names, it is generally easy to detect and correct
recognition errors in the spelled letters because the recognized name is constrained to
the set of names within the given list. For applications using digit strings (e.g., catalog
ordering, inventory control), the digit strings corresponding to individual items can
be chosen to take advantage of known error correcting codes (e.g., Reed-Solomon
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codes). Thus, within the error correction capability of such codes, digit recognition
errors can be detected and corrected.

Verification or multilevel decision before proceeding; in this case the recognition
system asks the user for help whenever there are two or more recognition candidates
whose likelihood scores are all high and it is difficult resolving small differences in
the strings. The recognizer asks the user to verify the first choice decision; if it is not
verified, the recognizer asks the user to verify the second choice etc. Alternatively,
the recognition system can list the confusing candidates and ask the user to choose
the correct string based on the string index number in the list. In this manner, the
confusing words are transformed into list numbers (i.e., digits) for which there is
considerably less ambiguity than for the originally spoken words.

Rejecfion/pass on to operator, in this case the recognition system defers making
a decision on inputs where either two or more recognition candidates have high
likelihood scores, or whenever the highest likelihood score is too low for a reliable
recognition decision. By recording all spoken inputs in digital format, the system
can reduce the error rate by rejecting a small but finite percentage of the spoken
strings, and passing on such strings to a human operator (attendant) who makes the
final recognition decision based on listening to the spoken input.

By utilizing any (or all) of the above techniques, the effective accuracy of the speech

recognizer approaches 100%; hence the proposed applications can be successfully carried

out.

9.4 BROAD CLASSES OF SPEECH-RECOGNITION APPLICATIONS

There are five broad classes of applications to which speech recognition has been applied,
namely:

1

Office or business systems. Typical applications include data entry onto forms,
database management and control, keyboard enhancement, and others,

- Manufacturing. Typically speech recognition is used to provide “eyes-free, hands-

free” monitoring of manufacturing processes (e.g.. parts inspection) for quality
control.

. Telephone or telecommunications. A wide range of applications are feasible over

dialed-up telephones, including automation of operator assisted services, inbound
and outbound telemarketing, call distribution by voice, expanded utility of a rotary
phone, repertory dialing, and catalog ordering.

. Medical. The primary application is voice creation and editing of specialized medical

reports.

. Other. Including voice controlled and operated games and toys, voice recognition

aid§ for the handicapped, and voice control of nonstrategic functions in a moving
vehicle (e.g., climate control, the audio system).
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Figure 9.2 Market sales for speech-recognition hardware over time, in each of five market

segments. (Data estimated for 19901992 sales.)

To get an idea of the size of the speech-recognition hardware markets in each of these
areas, Figure 9.2 shows a plot of dollar volume over time from 1987 to 1992. (The plot was
created in 1990 with estimates of sales in the last three years.) Although the manufacturing
segment was, by far, the largest piece of the market in 1987, in 1992 the telephone sggment
was projected to pass the manufacturing segment by a substantial margin. What is even
more impressive than this exponential growth in sales in the telephone segment is the
projected revenue (not shown) for the telephone services associated with the h.ardwm"e
sales. Many of the proposed recognition applications have service revenue (e.1tl.1er via
usage or via reduction in costs from automation) of upward of several hundred millions of
dollars.

In the remainder of this chapter we will discuss typical speech-recognition appli-
cations with the goal of illustrating the range of ways in which speech recognition has
been successfully applied. For most cases our discussion will be brief, serving merely to
illustrate the range of vocabulary and task syntax used in real-world systems.

9.5 COMMAND-AND-CONTROL APPLICATIONS

The canonic term “command and control” applications has been applied to any type of
speech recognition system where the user speaks a single command (eitk}er an isolated word
or phrase, or possibly a connected sequence of words) and the machme: upon correctly
recognizing the command, acts appropriately. In this manner the user exercises control over
the machine using simple commands. We begin this section with one simple command-
and-control application, namely, a voice repertory dialer.
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Figure 9.3 Average LPC distance scores for first- and second-recognition
candidates for each of the six test speakers (after Rabiner et al. [1]).

9.5.1 Voice Repertory Dialer

A voice repertory dialer is a telephone adjunct that allows a caller to place calls by speaking
the name of someone in the repertory, rather than dialing the digit codes associated with the
repertory name. Although voice repertory dialers could be of value in a home or business
environment, the potentially most valuable place for such a system is in the wireless network
(i.e., a cellular phone within a car, or a portable wireless terminal), where the advantages
of hands-free, eyes-free, dialing of telephone numbers are clear.

In terms of the recognition system requirements, a typical repertory dialer would need
a speaker-trained set of vocabulary patterns corresponding to repertory names (and their
associated telephone numbers), as well as a speaker-independent set of vocabulary patterns
corresponding to the digits (for all digit voice dialing) and a set of command words for
controlling normal telephone features (e.g., off-hook, dial, error, repeat, hangup). Typically
about 10 to 20 repertory names, 10 digits, and about 5 to 10 command words are sufficient
for most users. To provide the voice dialogue to guide the user and to provide feedback as
to the transaction status, a voice-response system with a vocabulary of about 100 to 200
words is sufficient for this simple transaction.

A formal evaluation of such a voice repertory dialer was made [1] using a template-
based system with a 37 word-recognition vocabulary and a simple control grammar. With
six test talkers, each one training the system, a word error rate of 0% was obtained.
Figure 9.3 shows a plot of the average LPC distance score, for each speaker in the test, for
both the first recognition candidate (the correct word) and the second recognition candidate
(the nearest incorrect word). The spacing of these curves is indicative of the robustness of
this simple system.
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9.5.2 Automated Call-Type Recognition

An interesting and novel telephone application of speech recognition is the automation
of operator-assisted toll calls, i.e., calls made from a pay phone that normall)( require
operator assistance, including collect calls, person-to-person calls, third-party-billing C?lls,
operator-assisted calls, and credit (or calling) card calls. Since there are only five possﬂ)le
options for this type of service, a simple five word vocabulary, consisting of the following
words is adequate:

“collect” to make collect calls

“person” to make person-to-person calls

“third number” to make third-party-billing calls
“operator” to make operator-assisted calls
“calling card” to make calling card calls.

The system is inherently speaker independent and, of course, is intended to work over the
standard dialed-up telephone network.

A simple voice-response system is adequate to provide the voice prompt necessary
to elicit the spoken command, as well as to provide feedback to the user in the case of
difficulties. A real-world trial [2] of this system was run (within an AT&T switching office
in Haywood California) and had the following results:

o When customers obeyed the voice prompt and spoke one of the command words, the
word accuracy exceeded 99% consistently.
e About 20% of the time, customers didn’t obey the prompts and embedded the
command word (or phrase) in some type of carrier sentence, e.g.,
= collect call please
~ um? Gee, ok I'd like to place a calling card call
- collect from Tom

For such cases it was necessary to use some type of keyword spotting technique to find
the command words embedded within the sentence. A very powerful keyword spotter
was devised [3] based on the concept of training an “extraneous speech” pattern from the

" spoken input with extraneous speech, and on recognizing the input using connected word
recognition techniques (as discussed in Chapter 7) based on a sentence grammar of the
form:

(silence) (extraneous speech) (command) (extraneous speech) (silence)

Sec. 9.5 Command-and-Control Applications 491

i.e., an isolated command uses the appropriate set of null arcs, whereas an embedded
command uses the extraneous speech pattern as part of the sequence to match the input
speech. Using the keyword spotter, the overall command word accuracy remained at about
99% on this task.

9.5.3 Call Distribution by Voice Commands

Another interesting telephony-based task to which voice recognition has been successfully
applied is the area of call distribution by voice commands. For this application a call is
placed that is normally answered by an attendant or operator, who then distributes the call
to the appropriate location (or person) based on user responses to the questions asked by
the attendant. In this application, the attendant function is automated via voice processing
in that a voice-response system poses a series of menu-based questions, and based on the
user responses, routes the call appropriately.
By way of example consider calling AMTRAK, and receiving the response:

Welcome to AMTRAK. If you want information about train departures say the digit
1; if you want information about train arrivals say the digit 2; if you want to make a
reservation, say the digit 3; if you want information on the Metroliner, say the digit 4.

In this manner, the call can be routed to an appropriate location, via voice control, without the
need for an attendant. (Of course, the recognition system could use a command vocabulary
consisting of the words “departures,” “arrivals,” “reservations,” and “Metroliner” rather
than the digits. This would make remembering the menu selections a considerably easier
task for the user.)

There are numerous applications of such a call-distribution system, including hotels,
department stores, and large corporations.

9.5.4 Directory Listing Retrieval

An interesting and useful application of speech recognition is to provide access to directory
information from spoken spelled names. A block diagram of such a system is shown in
Figure 9.4. To access directory information for a name in the directory, the user spells
the name (either as a sequence of isolated letters, with a distinct pause between individual
letters, or as a connected sequence of letters) using the word “stop” between the last name
and the initials, as well as after the initials, as in

“RABINER—stop—LR—stop.”

The speech recognizer determines the name in the given directory which best matches the
spoken input and then speaks the directory information for that name to the user.

Perhaps the most interesting feature of this system, from a speech-recognition point
of view, is that although the recognition of spoken speliled letters is highly error prone
(because of acoustic confusabilities among similar sounding letters), the telephone directory
provides a powerful form of task syntax that automatically detects and corrects improperly
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SPELLED
NAME SPEECH |
—  RECOGNIZER

TELEPHONE
DIRECTORY
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RESPONSE
DIRECTORY UNIT
INFORMATION
COMPUTER

Figure 9.4 Block diagram of a directory listing retrieval system based on spelled spoken names (after
Rabiner et al. [1]).

recognized letters. In response to the spelled input given above, a string that is very likely
to be recognized is

“RJ VY M Z R—stop—LR—stop.”

Without the list syntax imposed by the telephone directory, this string would be perfectly
acceptable; however, since the recognized string must both match the acoustic properties
of the spelled letters and be a valid string in the directory, the system generally has no
probiem decoding the spelled input into the correct string.

Using isolated letters for spelling the name, with an 18,000-name directory, in a
speaker-independent system operating over a dialed-up telephone line, a name accuracy of
over 98% was obtained [4]. Not only did the system work well with correctly spelled input,
it could also handle common misspellings of names with a single insertion or deletion of
a letter, or a single-letter substitution or a single letter inversion with another letter in the
string.

Credit Card Sales Validation

Another interesting application in the area of telecommunications is the problem of au-
tomated validation of credit card sales. The application is again of the class in which a
service provided by an attendant is automated by voice-recognition processing. For this
application, whenever a credit card sales transaction occurs where the merchant needs
validation and does not have use of an automatic card reader/modem dialer, the merchant
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must call an 800 number and provide an attendant with a 10-digit merchant identification
number, a 15-digit credit card number, and the dollar amount of the transaction. In this case,
the speech-recognition system uses a connected digit recognizer to recognize the merchant
identification number and the credit card number, and a connected word recognizer for the
transactions amount.

This application is an interesting one, from the point of view of speech recognition,
for several reasons. First of all, there is a very interesting syntax associated with merchant
IDs and credit card numbers—namely, there is a check digit (a nonlinear combination
of all preceding digits) associated with each of these codes that enables the recognition
system to detect single-digit errors (by far the most likely failure mode), and there are
several simple and straightforward methods to correct such errors automatically. Using
this built-in syntax, the string recognition error is reduced by almost an order of magnitude
(to below 1%) under real-world operating conditions.

A second interesting aspect of this task is the “natural number” mode of speaking the
dollar amount of the credit card transactions, i.e.,

e one thirty seven dollars

e one hundred and three seven dollars
e one three seven dollars

o one hundred three seven dollars.

in which the same string can be spoken in a variety of ways. Because of this mode of
speaking, the vocabulary size for recognition is considerably larger than that needed for
the credit card, i.e., about 40 words versus 11 words for digit strings. The words are also
much more similar (e.g., “six,” “sixteen,” “sixty”), and hence the recognition task is quite
a bit more difficult. In spite of these problems, fairly high string recognition scores have
been obtained using many of the discriminative techniques discussed in Chapter 5.

9.6 PROJECTIONS FOR SPEECH RECOGNITION

It is almost impossible to predict accurately the rate of progress in any scientific field.
However, based on the rate of progress over the past decade, it seems reasonable to make
some broad projections as to where speech recognition is headed in the next decade.
Such a set of projections is shown in Table 9.2. We see that in the current time frame
(1990-1995) there is demonstrated recognition capability in connected word recognition,
for small vocabularies, for tasks such as voice dialing, credit card entry, catalog ordering,
and inventory inquiry. Such systems can usually be implemented using a handful (2-4)
of DSP chips, each capable of delivering about 25 Mips.In the same time frame, we have
a demonstrated capability in medium vocabulary (100-1000 words), continuous speech
recognition of fluent speech for highly constrained tasks such as transaction processing,
robotic control, and elementary database management such as the Resource Management
problem discussed in Chapter 8. Such tasks require 4 to 10 DSPs, each capable of providing
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TABLE 9.2. Projections for speech recognition.

1995-2000

Continuous Speech; Subword  Continuous Speech; Natural-

1900-95

Year
Recognition
Capability

Continuous Speech; Whole

Connected Words

Language Grammar, Syntax,

Word Models, Finite-State  Recognition Elements, Lan-

Grammars, Constrained Tasks

Neural Adapta-

Semantics;
tion, Learning

guage Models Representative

of Natural English;
Specific Semantics

5,000-20,000

Unrestricted

Task--

100-1,000

10-30

Vocabulary
Size

20-60 DSPs (1,000

Mips/Chip)

4-10 DSPs (50 Mips/Chip) 5-50 DSPs (200 Mips/Chip)

2-4 DSPs (25 Mips/Chip)

Processor

Requirements

Natural Language Interaction,
Translating Telephony

Dictation Machines,

Voice Dialing, Credit-Card Transaction Processing,

Applications

Computer-Based Secretarial

Resource

Control,

Robot

Entry, Catalog Ordering, In-

ventory Inquiry

Assistants, Data-Base Access

Management
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50 Mips.

In the 1995-2000 time frame, we foresee growth in the area of large vocabulary (5000-
20,000 words) continuous speech recognition for tasks as complicated as voice dictation
of first-draft quality, computer-based secretarial assistants, and full database access and
management. Computational requirements will be increased to from 5 to 50 DSPs, each
capable of delivering 200 Mips.

Finally, in the 2000+ time frame, we foresee natural language interaction with ma-
chines with totally unrestricted vocabulary, syntax, and semantics, including the capability
of translating telephony, i.e., speaking in one language and having the sentence meaning
converted to another language. The computation for such capability is large, requiring on
the order of 20 to 60 DSP chips, each one providing 1000 Mips, or higher.

For the predictions of Table 9.2 to come about, we need continued research in virtually
every aspect of speech recognition and natural language interaction with machine, as well
as a steady stream of new ideas leading to more and more powerful algorithms. We look
forward to seeing the promise of speech recognition become a reality.
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fail soft method, 486

Expected number of transitions, 343

Expert system, 4, 44, 482

Exponential state duration density,
358

External canal, 132

Extraneous speech, 490-1

Fail soft methods, 486
Fall-back mode, 485
Fault tolerance, 62
Feature detection, 45, 53
Feature measurement, 45, 51
Feed forward connectionist network,
54
Ferguson, 322, 358
Filter bank, 4, 45, 51, 77-81
analyzer, 51
critical band, 94
implementations, 801
methods, 45
model, 69
nonuniform, 78, 89, 91
octave spaced, 91, 94
tree structure, 91
types, 77-9
uniform, 77, 87, 88
Final word candidate rule, 258-9
Finite alphabet, 350
Finite precision effect, 112
Finite-state:
automata (FSA), 414
network (FSN), 357, 358, 414,
435, 442,452
vector quantizer, 254
First-order:
Markov chain, 255, 323
differential log spectrum, 196
Fischer’s linear discriminant, 297,
298,299
Fixed relaxation points, 59
Flanagan, 153
Forgie, 6
Formal:
grammar, 448
parser, 435
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Formant, 20, 23, 26, 84
frequencies, 20, 27, 29,45
synthesizer, 192

Forward:
procedure, 335-7
variabie, 335, 346, 359, 361, 366

Forward-backward:
algorithm, 344, 372, 373, 376,

441, 443, 463
procedure, 441

Frame rate, 282

Frame-synchronous, 400
fevel building (FSLB), 416, 423,
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French, 186

Frequency:
resolution, 81, 85, 94
response composite, 90, 93
smoothing, 96

Frequency scale:

Bark, 186

critical band, 184

mel, 183, 184
Frequency warping, 188

Bark scale, 276
Frication, 45
Fricative:

unvoiced, 21, 31

voiced, 21, 32
Front cavity, 31
Front-end processor, 72
Fry, 6
Full search, 128
Full-wave rectifier, 73
Fully connected HMM, 348
Function:

words, 475-6

models, 460
Fundamental frequency, 81, 158
Furui, 196
Fuzzy vector quantizers, 463

Gain independent probability
density function, 353
Gamma family, 362
Gaussian:
mixture, 374
noise, 311
Gender-specific model, 476
Generalized:
Lloyd algorithm, 125-8, 245, 274,
287,377
Rayleigh quotient, 301
triphone, 469
Geometric mean spectrum, 251
Germinate deletion, 466
Ghitza, 316
Glides, 21
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Global:
codebook, 263
dissimilarity measure, 293
match, 394
pattern dissimilarity measure, 201,
202
range reduction, 411
time alignment procedure, 51
Global path constraints, 213-5
absolute time deviation, 215
maximum expansion, 213
minimum expansion, 213
paralielograms, 214
range-limiting, 215
Glottal:
air flow, 14
excitation, 30
stop, 20
waveform, 14
Glottis, 14, 32
Gradient:
descent method, 303
microphones, 312
techniques, 342, 347
Grammar:
context dependent, 448
context free, 448
formal, 448
networks, 2, 414-6, 420, 423, 424,
435
nodes, 424
word pair, 435
Grand variance, 467
Greedy growing algorithm, 377
Group delay spectrum, 168, 314

Hair cell transduction, 134
Half-wave rectifier, 73
Hammer, 133
Hamming window, 81, 114
Hard limiter, 57
Hard sound change, 466
Head units, 464
Henry, 312
Hidden Markov models, 131, 321-87
Bayesian adaptation, 373-5
autoregressive models, 352-4
choice of model, 371
continuous observation densities,
3504
corrective training, 376-7
dynamic programming methods,
33940
elements, 329-30
ergodic, 348, 379
evaluation problem, 333
explicit state duration density,
35864

generator of observations, 330-1
initial parameter estimates, 370
initial state distribution, 330
insufficient training, 370-1
left-right, 348, 379, 439

model clustering, 377-8

model distance, 3645

model parameters, 379-81
model splitting, 377-8

multiple, 377

Itiple observation sequence:
369-70
observation symbol probability
distribution, 330

observation symbols, 330
optimal state sequence, 337-40
parameter estimation, 342-8
parameter set of model, 330
probability evaluation, 334-5
Q function, 344
scaling, 365-8
semicontinuous, 441, 464
state duration, 384-5
state-transition probability
distribution, 330
states, 329
stochastic constraints, 347
types, 348-50
Hidden:
control neural network (HCNN),
64-5
layers, 58
Hierarchical spectral clustering,
288-91
Higher leve! processes, 53
Holmes, 313
Hopfield network, 58-9
Human ear, 1324
inner car, 1324
middle ear, 132-3
outer ear, 132-3
Hypertangent function, 302
Hypothesis-and-test paradigm, 53

Imai, 314
Impulse response, 80, 90
finite, 80
infinite, 80
Incremental paths, 210
Incus, 133
Indicator function, 303
Information:
rate of speech, 12
source, 244
Informative prior, 374
Initial:
state distribution, 330
state probabilities, 324
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Inner hair cells (IHC), 133
Insufficient data, 357, 370
Intercluster distance, 267
Interconnection weights, 61
Interword:
context dependent unit, 461
training, 461-2
units, 461
Intracluster distance, 267, 271-2
I d context dependent unit,
462
Inventory inquiry, 493
Inverse filtering, 155, 281
ISODATA, 267
Isolated digit recognition, 6, 482
Isolated word recognition, 284, 390,
484
HMM, 378
multispeaker, 284
speaker independent, 278
speaker trained, 257
Itakura, 7, 171, 212, 314
Itakura distortion measure, 174, 247
Itakura-Saito distortion, 171, 247,
276, 280, 311

Jaw, 12, 14

Jelinek, 322, 372, 448

Juang, 315

Junqua, 309

Just-noticeable difference (JND),
150-1

K-means clustering, 125-8, 377
K-means iteration, 427
K-nearest neighbor rule, 243, 296
K-tuple quantizers, 130
Kaiser window, 93
Katagiri, 376
Keyword spotting, 490-1
Klatt, 192, 312
Knowledge:
acoustic, 52
automatic acquisition, 54
automatic adaptation, 54
based allophonic clustering, 475
lexical, 52
phonemic, 52
pragmatic, 52
semantic, 52
sources, 52
syntactic, 52
Knowledge-based allophonic
clustering, 475
Kullback-Leibler information, 171

L{p) norm, 158
Labeling of speech, 43, 46, 49
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Lagrange:
multipliers, 347
optimization, 347
Language:
analyzer, 482
code, 12
Language model, 53, 435, 447
bi , 448
N;a:n, 447, 448-50
no-grammar, 448, 452
trigram, 448
unigram, 448
woz‘:aj; grammar, 447, 452, 468
Large vocabulary recognition,
434-79
language models, 447-50
Larynx, 14
Lattice structure, 337 -
Laurent expansion, 163
Least-squares estimator, 311
Lee, 8,378, 469
Left context diphone, 460
Left-right:
context triphone, 460
model, 348, 379
Level building algorithm, 5, 400-16
beginning range reduction, 41011
computation, 407-9
global range reduction, 411
implementation, 410-16
multiple levels, 405-7
reference pattern uncertainty
region, 411
test pattern ending range, 411
Level building flaw, 421
Level crossing:
detector, 134
rate, 69
Level synchronous, 403
Lexical:
access, 43, 46
constraint, 46
decoding, 53
knowledge, 44, 52
Lexicon, 435,473
Lifter bandpass, 116
Liftering, 169, 199
Likelihood:
distance measure, 125
distortions, 171-83
ratio distortion, 174, 247
ratio test, 171
Line spectral frequencies (LSF), 191
Linear discriminant analysis, 293,
297
Linear phase, 93
Linear predictive coding, 45 (See
also LPC)

analysis, 4, 7, 51
model, 69, 97~112
Linear time:
alignment, 202
normalization, 201
Linguistic:
similarity, 436
unit, 357
Lippmann, 310
Lips, 12, 14
Liquids, 21
Lloyd algorithm, 254, 274
Local continuity constraints, 209
Itakura type, 212
Type I, 210
Type II, 210
Type 11, 210
Local:

distance, 51, 222
likelihood, 424
warping distance, 401
Log area ratio, 115
Log spectral distance, 158-62, 173
mean absolute, 158
peak, 158
rms, 158, 166
Logarithmic:
encoding, 76
frequency scale, 78
Log-concave density, 350
Lombard effect, 309
Loudness, 12
Lower path constraint, 406
LPC model, 70, 100-122
analysis, 121
analysis equations, 101-7
analysis order, 72, 122, 282
analysis parameters, 121-2
analysis window, 282
cepstral coefficients, 115
cepstrum, 163
excitation term, 100
frame rate, 282
front end, 97, 112
gain of the excitation, 100
line spectral frequencies, 191
log area ratio coefficients, 115, 191
LPC coefficients, 115
mean-squared prediction error, 102
normalized excitation, 100
normalized prediction error, 112
parameters, 72, 115
PARCOR coefficients, 115
partial correlation coefficients, 190
prediction error, 101
prediction order, 112
predictor coefficients, 102
quasiperiodic pulse train, 100
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random noise source, 100
reflection coefficients, 115
reflection coefficients, 190
RMS prediction error, 112
whitening characteristics, 109
LPC processor, 112-7
autocorrelation analysis, 114-5
frame blocking, 113
LPC analysis, 115
LPC parameter conversion, 115-6
parameter weighting, 116
preemphasis, 112-3
temnporal cepstral derivative,
116-7
windowing, 114
Lungs, 14

Mahalanobis distance, 247
Malleus, 133
Mansour, 314, 315
MAP decoding rule, 435
Markov:
chain, 322
source, 322
Martin, 7
Masking:
audiogram, 185
effect, 188
Match:
sentence level, 451
word level, 451
Matched filter, 64
Matrix quantization, 130-1, 254
Matsumoto, 314
Maximum a posteriori (MAP):
decoding, 434-5
estimate, 371, 374
Maximum:
entropy principle, 181
expansion, 405
likelihood estimate, 342, 344, 355,
374
mutual information (MMI)
criterion, 362-4, 376
McCullough, 57
Mean duration, 429
Mean-squared prediction emror, 102
Median vector, 247
Mel:
frequency, 184
scale, 78, 183
Mel-frequency cepstrum, 189
distance, 190, 276
Memory:
associative, 60
constraint block, 254
constraint trellis, 256
content addressable, 60
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Memoryless vector quantizer, 245
Mercer, 372
Mermelstein, 276
Message, 12
Merric, 150
Microphone:
carbon, 125
dynamic, 311
electret, 125
gradient, 312
noise cancelling, 311
pressure gradient noise cancelling,
312
transducer, 307
Mid-sagittal plane, 14
Minimax center, 268, 271, 273
Minimum:
Bayes risk, 374, 376
classification error rate, 376
cross-entropy, 364
discrimination information (MDI),
3624
distortion labeling, 246
expansion, 4056
expected distortion, 244
mean-squared error, 102, 103
phase, 134
recognition error, 243
residual energy, 281
Misclassification measure, 302
Misrecognition measure, 302
Mixture density, 350, 351, 427, 440
MKM algorithm, 279
Model:
initialization, 382
mismatch, 362
Modified k-means:
algorithm (MKM), 271, 279
clustering, 2714
Monosyllabic word, 6
Monotonicity conditions, 209
Mouth, 14
cavity, 14
Mu-law encoding, 76
Multi-style training, 309
Multilayer perceptrons, 58
Multilevel decision strategy, 487
Multiple:
candidate string, 420
codebooks, 129
observation sequence, 369
phone models, 459
pronunciation, 476
Multiple time alignment, 232
parallel algorithm, 233, 234
serial algorithm, 235
tree-treilis search, 236

Multispeaker:

mode, 284

model, 431
Muitistyle training, 309
Muscles, 14
Mutual information, 363
Myers, 8

N-gram language model, 435, 47,
448

Nagata, 7
Nakata, 7
Narrowband spectrogram, 19
Nasal:
cavity, 14
consonants, 21, 30-1
tract, 14, 30
Nasalized vowels, 30
Natural:
language, 9, 449, 495
number mode, 493
Naval resource management task,
451
Near-miss cases, 376
Nearest-neighbor:
principle, 288
rule, 243, 288, 377
search, 124, 125, 127
Nervous system, 57
Neural:
firing, 134
impulses, 133
transduction process, 12
tuning curves, 134
Neural networks, 44, 54-65
basics, 567
nonlinearity, 61
offset, 61
structures, 63-5
topologies, 57-61
Neuromuscular commands, 12
Neuron firing, 57
Neurons, 57
Next state function, 254
No-grammar model, 448
Nocerino, 275, 281, 283
Noise, 303, 306
adaptive bandwidth expansion,
314
coherence, 310
compensation, 312
criterion (NC), 306
elimination, 95
masking, 312
source, 100
Noise-cancelling microphone, 311
Noise-compensation schemes, 312
Noncontinuant sounds, 33
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Noninformative prior, 374
Nonlinear:

amplification, 57

dynamic system, 62
Nonparametric mapping, 286
Nonrecursive filter, 92
Nonuniform acoustic tube, 190
Nonuniform filter bank, 78

FFT-based implementations, 91

implementations, 89-92

tree structures, 91-2
Normalized:

autocorrelation, 354

frequency, 70

prediction error, 112
Null:

arc, 442

transitions, 356-7, 373
Numeric floor, 371

Observable Markov model, 323
Observation probability, 330
Octave band spacing, 78
Olson, 6
Onec-pass (one-state) aigorithm,
416-20

One-step prediction error, 156, 248
One-third octave band spacing, 78
Operator services, 9
Optimal:

path problem, 204

policy, 205
Oral cavity, 14, 30
Orthogonal polynomial, 117
Oval window, 133
Overtraining, 457

Palatization, 466
Parallel computation, 62
Parallel distributed processing model
(PDP), 56
Parameter:
estimation, 357
scaling, 365, 368
thresholding, 371
tying, 357
weighting, 116
Parameter tying, 358
Parametric representation, 69
Parseval’s theorem, 163
Parsing, 2
Partial:
correlation (PARCOR), 190
correlation coefficient (PARCOR),
115
observation sequence, 335, 337
word decision, 401
Partitioned cell, 126
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backtracking. 394
contraction factor, 396
expansion, 396. 417
K-best, 232
locally optimal, 231
maximum likelihood, 378, 424
N-best, 420
Pattern:
classification, 44, 51
clustering, 267-74
comparison techniques, 141-240
comparison, 43, 70
dissimilarity measure, 221
matching, 263
measurement, 70
recognition approach, 4, 42, 51-2
recognition modet, 70
training, 51
Pattern-to-class distance, 296
Perceived loudness, 158
Perceptrons, 58
convergence procedure, 61-2
multilayer, 58, 61
single layer, 58
Perceptual:
consistency, 153
masking, 162
Performance analysis, 274
Periodicity, 81
Perplexity, 449-50, 452, 478
Personal identification number
(PIN), 425, 485
Peterson, 26
Pharynx, 14, 30
Phonelike units (PLU), 436
Phoneme, 20, 435
deletion, 48, 294
distance, 294
distance matrix, 297
insertion, 48, 294
lattice, 43, 46
recognizer, 6
sequences, 12
substitution, 48
Phonetic:
context, 436
decoding, 53
difference, 53
distance, 192
knowledge, 52
relevance, 150
transcription, 37
Phonological rules, 439, 466
geminate deletion, 466
palatization, 466
plosive deletion, 466
Phonology, 2

Physiological mechanism for speech,
14

Pinna, 132
Pisoni, 309
Pitch, 20

accent, 12

harmonics, 112

period, 103, 109

period estimation, 112
Pitts, 57
Plosive deletion, 466
Policy, 204
Porter, 311
Position dependent units, 469-70
Power spectral density, 155
Pragmatic knowledge, 2, 44, 52
Prati, 312
Prediction:

error, 101102

error rms, 112

residual, 118, 171

residual minimum, 120
Predictor coefficient, 101, 103
Preemphasis network, 95, 112
Pressure gradient noise-cancelling

microphone, 312

Principal components analysis, 95-6
Principle of optimality, 205-6, 221
Prior distribution, 374

conjugate, 374-5

informative, 374

noninformative, 374-5
Probabilistic:

density function, 135

functions of Markov chain, 322

lexical access, 46
Projection operation, 315
Projections for speech recogniti
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half-wave, 73,93
Recurrent network, 58, 59
Recursive filter, 80, 92
Reddy, 7
Reduced-range level threshold, 411
Reestimation, 342, 369, 371
formulas, 343-8, 354, 360, 361,
382
transformation, 346
Reference adaptation, 243
Reference pattern, 51, 142, 264
uncertainly region, 411
Reflection coefficient, 115, 190
Rejection of input, 487
Relative:
entropy, 171
frequency approach, 448
Relaxation oscillator, 14
Repellers, 60
Reproduction vectors, 244
Residual:
energy, 353
minimization, 155
Resonance frequencies, 23
Reverberation, 4, 307
Right context diphone, 460
Robust:
distortion measure, 314
recognition decision, 420
training, 2667
Robustness, 44
Roe, 313
Root power sums, 167

Saito, 171
Sakai, 7
Sakoe, 7, 8, 209, 214, 216
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Pronunciation, 439, 442, 443, 445
Prosody, 12
markers, 12
Pruning methods, 255
Pscudoaverage center, 273

Quadrature mirror filter, 91
Quantization error, 123
Quasiperiodic speech, 18, 75

Rabiner, 8, 274, 279
Radix-2 fast Fourier transform, 85
Raised sine function, 169
Range-limited algorithm, 396
Rate of convergence, 376
Real-time:

implementation, 482

response, 486
Rectifier:

full-wave, 73,93

Sample mean, 375
Sampling:
frequency, 76
rate reduction, 76
Scalar quantization, 129
Scatter matrix, 298
Second differential spectral distance,
198
Sedgwick, 313
Segmental:
k-means algorithm, 382-3, 393,
427,441, 443, 445,473
k-means segmentation, 3824
Segmentation, 46, 49, 444
manual, 370
maximum likelihood, 370, 380,
437
uniform, 441
Segmentation of speech, 43
Self-correction of errors, 486
Self-detection of errors, 486
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Self-organizing feature map, 58, 60
Self transition, 358
Semantic:
constraints, 52, 435
knowledge, 44, 52
postprocessor, 478
rule, 483
Semi-Markov models, 358
Semivowels, 21, 29
Sensory information, 54
Sentence-level match, 451
Separation measure, 298, 301
Sequential adaptation, 285
Sequentiat:
decision, 204
training, 266
Short-term:
autocorrelation, 86, 155
covariance, 102
energy, 69
Fourier transform, 80—4
acoustic features, 201
modified coherence (SMC), 315
spectral envelope, 69
spectral magnitude, 84
spectral representation, 70
Sidelobe ripple, 94
Sigmoid function, 57, 302
Signal:
dynamic range, 76
enhancement, 2, 95
enhancement preprocessing,
310-11
Signal degradation:
cross-talk, 146
intermodulation distortion, 146
tonal interference, 146
preemphasis, 95
Signal processing:
auditory based, 70, 138
front end, 69
Signal-to-noise ratio (SNR), 305
Silence, 18, 442
Similarity:
measure, 51
score, 51
Single layer perceptrons, 58
Slope weighting, 215-9
Type a, 216
Type b, 216
Type c, 216
Type d, 216
global weighting, 216
Smooth error count, 303
Smoothed group delay:
spectrum, 314
weighting function, 314
Sondhi, 314

Sonorants, 47
Soong, 274, 314
Sound:
classes of American English, 21
classifier, 47-8, 50
coarticulation, 43, 392
field, 312
lexicon, 39
pressure, 14
pressure level (SPL), 306
spectrogram, 19
Source-coding techniques, 4, 24464
Source entropy, 449
Source-tract separation, 98
Speaker:
adaptation, 285, 288, 374
conversion, 285
transformation, 285
Speaker-dependent mode, 284
Speaker-independent mode, 284, 431
Speaker-trained mode, 284, 431
Speaking:
environment, 52
rate variation, 51, 201
Spectral:
analysis auditory based, 132
analysis methods, 2, 45, 69
analysis models, 70-2
density, 154
density energy, 155
density power, 155
dissimilarity, 142
distortion, 123
distortion measures, 154-94
dynamic features, 194-200
envelope, 19, 84
harmonics, 20
representation, 19
resonances, 6
similarity, 123
slope, 167
tlt, 151, 309
transformation, 286-8
transitions, 196
Spectrogram, 4, 20
narrowband, 19
wideband, 19
Spectrum:
analyzer, 6
group delay, 167
Speech:
analysis system, 45
articulation, 78
detection, 115
enhancement, 310
features, 20-37
generation, 11
perception, 2, 11-37
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production, 2, 11-37
recognition history, 6-9
sounds, 20-37
understanding system, 54
Speech signal:
discrete symbol rate, 12
information rate, 12
Spell mode, 291
Sphinx system, 9
Standing wave, 133
Stapes, 133
State duration:
density, 358, 429
density parametric, 361
probability, 384
State sequence:
most likely, 331
optimal, 337
State-transition:
matrix, 327, 349
probabilities, 323, 330
Static pattern, 63
Statistical:
consistency, 267
language model, 447, 448-50
model, 5, 393
pattern recognition approach, 51-2
word bigram, 453
Steinberg, 186
Stevens, 184
Stirrup, 133
Stochastic:
constraint, 345
convergence constraints, 303
gradient technique, 61
Stop:
voiced, 33
unvoiced, 33
Stress compensation, 313
String error rate, 431
known length, 431
unknown length, 431
String-length, 419
Subjective:
judgement, 150
pitch, 183, 185
spectrum, 185, 188
Subword speech units, 435-9
Subword units, 52
clustering, 470, 475
continuous density codebook, 440
models, 43941
semicontinuous modeling method,
41
splitting, 470
tied mixture approach, 441
training, 441-7
Sufficient statistic, 322
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Super-reference pattern, 393, 400
Suzuki, 7
Syllabic sounds, 20
Syllables, 6
Syllable-like units, 436
Synaptic connections, 133, 134
Synchronous sequential decision,
206, 232
Syntactic:
constraints, 52, 435
knowledge, 44, 52
Syntax, 2
analyzer, 435
System grammar, 6
Tail units, 464
Talker:
normalization, 28
population, 125
Talking style, 309
Tangora system, 8
Task, 52
perplexity, 485
semantics, 6, 52, 454
syntax, 52, 454

Time delay neural network (TDNN),
63
Time differential log spectrum, 196
Time-frequency derivative, 200
Time normalization, 20038
linear, 202
Time normalization constraint,
208-221
endpoint, 208, 230
global path, 208, 213
Itakura condition, 222
local continuity, 208, 209, 216
monotonicity, 208, 209
slope weighting, 208, 215, 222
Time scale:
contraction, 224
expansion, 224
Time spreading function, 64
Time synchronous, 403
level building, 5
Time waveform, 17
ime-sampled cepstral seq 196
Toeplitz:
matrix, 106
form, 187
Tonal units, 185

Task-oriented speech recognition
system, 6
Task-specific applications, 482
Taylor series expansion, 163
Teeth, 33
Telephone:
channel, 125, 308
network, 9, 308
petwork loop survey, 308
quality signals, 70
Template, 51, 142, 243, 264, 383
Template adaptation, 285-91
background noise, 285
channel characteristics, 285
speaking environment, 285
talkers and accents, 285
transducers, 285
Template matching, 321
Template training, 26474
casual, 265
clustering, 267
robust, 266
Temporal smoothing, 96
Temporal variability, 215
Test pattern, 51, 142, 393
ending range, 411
Throat cavity, 14
Tied mixture, 441, 464
Tied states, 356-7, 372
Time alignment, 51, 20038, 390
optimal, 232
Time assignment speech
interpolation (TASI), 143

Tongue, 12, 14
hump position, 21
Top-down processor, 53
Total constriction, 30
Trachea, 14
Training:
corpus, 448
discriminative, 243
problem, 243
procedure, 43
sequential, 266
Transducer, 307, 311
Transfer function, 20
zeros, 30
Transient sounds, 15, 33
Transition:
function, 254
pruning, 255
Translating telephony, 495
Transmission characteristics, 52
Trellis:
codes, 131
constraints, 256
structure, 206, 337
vector quantizers, 254
Trigram:
model, 448
phone models, 373
word probabilities, 373
Triphone units, 459
Truncated cepstral distance, 164
Turbulence, 31
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Turbulent sounds, 15

Two-input noise cancelling, 310

Two-level dynamic programming

algorithm, 395-8

combinatorics, 399
computation, 399-400
distance computation, 399

Two-sensor iriput, 312

Tympanic membrane, 133

Umezaki, 314
Uniform filter bank, 77
FFT implementation, 87-9
Uniform:
frequency spacing, 87
segmentation, 441
Unit:
acoustic, 437

, 464
demisyllable-like, 436
dyad, 436
head, 464-5
phonelike, 436
phonetic, 435
reduction rule, 461, 468, 470
jon distance, 470
subword, 390, 435, 437, 439, 443,
445
syllable-like, 436
tail, 464-5
Universal codebook, 288
Unsupervised clustering, 268-74
without averaging (UWA), 268,
279

Unvoiced:

fricatives, 21, 31-2

sounds, 15, 18

stop consonants, 21, 33-6
Unweighted slope metric, 276
Upper path constraint, 406
Urn-and-ball models, 328-9
User friendly, 485
Utterance boundaries, 392
UWA algorithm, 279

Valid candidate rule, 259
Variance estimation, 467
Vector norm shrinkage, 315
Vector quantization, 4, 69-70,
122-32, 244,427
distance measure, 125
efficient pattern matching, 263-4
extensions, 129-31
implementation, 1234
memoryless, 245
preprocessor, 257

recognition preprocessor, 25764

segmental, 256
similarity measure, 125
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Vector quantization (cont.)
training set, 124-5
vector classification procedure,

128-9

with memory, 254
word based, 257

Vector quantization codebooks:
block memory constraints, 254
centroid computation, 2467
centroid model spectrum, 248
cepstral distance, 250-1
COSH distortion, 250
likelihood distortions, 24750
minimum distortion labeling, 246
segmental, 256-7
using memory, 2546

Velichko, 7

Velum, 12, 14, 30, 33

Verification of response, 487

Vintsyuk, 7

Viswanathan, 312

Viterbi algorithm, 33940, 368, 378,

382,385

alternative implementation, 340
Viterbi:

decoding, 444

training, 458
Vocabulary independent units, 477
Vocal cords, 12, 14, 15, 18, 23

constriction, 15

relaxed, 15

tensed, 14

tensed, 18
Vocal tract, 12, 14, 15, 20, 33,98

closure, 15

constriction, 31

cross sectional area, 14

length, 14

models, 190

natural frequencies, 20

resonances, 20

spectral envelope, 98

total constriction, 33

Voice:

bar, 33
command, 482
control, 483

dialogue, 485

dictation, 495

prompt, 490

repertory dialer, 4889

response system, 490-1
Voiced:

fricatives, 21, 32-3

speech sounds, 15, 18

stop consonants, 21, 334
Volkmann, 184
Volume velocity, 14
Vowel, 20, 21-8

acute, 46

articulatory configuration, 24

back, 21,24

combinations, 20

compact, 46

diffuse, 46

ellipses, 127

flat, 46

front, 21, 24

grave, 46

lax, 46

mid, 21, 24

nucleus, 436

plain, 46

tongue humnp height, 24
tongue hump position, 24
triangle, 28

waveforms, 246

Warped:
cepstral distance, 186
frequency scale, 183-90
‘Warping function, 202
‘Waveform amplitude plot, 19
Weighted:
COSH distortion, 180
Euclidean distance, 247
cepstral distance, 171, 314
differential cepstral distance, 199
likelihood distortions, 179
likelihood ratio measure, 276, 277
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slope measure, 192, 277
spectral distortion, 314
Whisper, 21
Whitening, 109
Whole word model, 435, 436
Wide-sense stationary process, 155
‘Wideband spectrogram, 19
Wilpon, 279
Window design method, 90
Windpipe, 14
Wireless network, 489
Within-class scatter, 298
Word:
arcs, 424, 441
boundary, 392
coarticulation, 412
deletion rate, 454
dependent unit, 459
dictionary, 288, 473
equivalence classes, 2947
error probability, 53
error rate, 485
hypothesis, 53
initial, 38
insertion penalty, 454
insertion rate, 454
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Chapter 1

1.1

FUNDAMENTALS OF
SPEECH RECOGNITION

INTRODUCTION

Automatic recognition of speech by machine has been a goal of research for more than four
decades and has inspired such science fiction wonders as the computer HAL in Stanley
Kubrick’s famous movie 2001—A Space Odyssey and the robot R2D2 in the George Lucas
classic Star Wars series of movies. However, in spite of the glamour of designing an
intelligent machine that can recognize the spoken word and comprehend its meaning, and
in spite of the enormous research efforts spent in trying to create such a machine, we are
far from achieving the desired goal of a machine that can understand spoken discourse on
any subject by all speakers in all environments. Thus, an important question in this book
is, What do we mean by “speech recognition by machine.” Another important question is,
How can we build a series of bridges that will enable us to advance both our knowledge
as well as the capabilities of modern speech-recognition systems so that the “holy grail” of
conversational speech recognition and understanding by machine is attained?

Because we do not know how to solve the ultimate challenge of speech recognition,
our goal in this book is to give a series of presentations on the fundamental principles of
most modern, successful speech-recognition systems so as to provide a framework from
which researchers can expand the frontier. We will attempt to avoid making absolute
judgments on the relative merits of various approaches to particular speech-recognition
problems. Instead we will provide the theoretical background and justification for each
topic discussed so that the reader is able to understand why the techniques have proved
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valuable and how they can be used to advantage in practical situations.

One of the most difficult aspects of performing research in speech recognition by
machine is its interdisciplinary nature, and the tendency of most researchers to apply
a monolithic approach to individual problems. Consider the disciplines that have been
applied to one or more speech-recognition problems:

1. signal processing—the process of extracting relevant information from the speech
signal in an efficient, robust manner. Included in signal processing is the form of
spectral analysis used to characterize the time-varying properties of the speech signal
as well as various types of signal preprocessing (and postprocessing) to make the
speech signal robust to the recording environment (signal enhancement).

2. physics (acoustics)—the science of understanding the relationship between the phys-
ical speech signal and the physiological mechanisms (the human vocal tract mecha-
nism) that produced the speech and with which the speech is perceived (the human
hearing mechanism).

3. pattern recognition—the set of algorithms used to cluster data to create one or more
prototypical patterns of a data ensemble, and to match (compare) a pair of patterns
on the basis of feature measurements of the patterns.

4. communication and information theory—the procedures for estimating parameters
of statistical models; the methods for detecting the presence of particular speech
patterns, the set of modemn coding and decoding algorithms (including dynamic
programming, stack algorithms, and Viterbi decoding) used to search a large but
finite grid for a best path corresponding to a “best” recognized sequence of words.

5. linguistics—the relationships between sounds (phonology), words in a language

. (syntax), meaning of spoken words (semantics), and sense derived from meaning

‘"(pragmatigs). Included within this discipline are the methodology of grammar and
language parsing.

6. physiology—understanding of the higher-order mechanisms within the human cen-
tral nervous system that account for speech production and perception in human
beings. Many modern techniques try to embed this type of knowledge within the
framework of artificial neural networks (which depend heavily on several of the
above disciplines).

7. computer science—the study of efficient algorithms for implementing, in software
or hardware, the various methods used in a practical speech-recognition system.

8. psychology—the science of understanding the factors that enable a technology to be
used by human beings in practical tasks.

Successful speech-recognition systems require knowledge and expertise from a wide range
of disciplines, a range far larger than any single person can possess. Therefore, it is
especially important for a researcher to have a good understanding of the fundamentals of
speech recognition (so that a range of techniques can be applied to a variety of problems),
without necessarily having to be an expert in each aspect of the problem. It is the purpose
of this book to provide this expertise by giving in-depth discussions of a number of
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Figure 1.1 General block diagram of a task-oriented speech-recognition system,

fundamental topics in speech-recognition research.

1.2 THE PARADIGM FOR SPEECH RECOGNITION

A general model for speech recognition, shown in Figure 1.1, is used throughout this book.
The model begins with a user creating a speech signal (speaking) to accomplish a given
task. The spoken output is first recognized in that the speech signal is decoded into a series
of words that are meaningful according to the syntax, semantics, and pragmatics of the
recognition task. The meaning of the recognized words is obtained by a higher-level pro-
cessor that uses a dynamic knowledge representation to modify the syntax, semantics, and
pragmatics according to the context of what it has previously recognized. In this manner,
things such as non sequitors are omitted from consideration at the risk of misunderstanding,
but at the gain of minimizing errors for sequentially meaningful inputs. The feedback from
the higher-level processing box reduces the complexity of the recognition model by limiting
the search for valid (acceptable) input sentences (speech) from the user. The recognition
system responds to the user in the form of a voice output, or equivalently, in the form of
the requested action being performed, with the user being prompted for more input,

1.3 OUTLINE

The material in this book is organized into nine chapters. Chapters 2 through 9 each
deals with a basic concept or a fundamental technique used in various speech-recognition
systems. The material discussed in these chapters is as follows.

Chapter 2—The Speech Signal: Production, Perception, and Acoustic-Phonetic
Characterization. In this chapter we review the speech production/perception process
in human beings. We show how different speech sounds can be characterized by a set of
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spectral and temporal properties that depend on the acoustic-phonetic features of the sound
and are manifest in the waveform, the sound spectrogram, or both. Included in the chapter
is an overview of the three most common approaches to speech recognition, namely the
acoustic-phonetic approach (which tries to directly exploit individual sound properties), the
pattern recognition approach (which relies only on gross spectral and temporal properties
of speech sounds and uses conventional as well as neural network pattern recognition
technology to classify sounds), and the artificial intelligence (AI) approach in which an
expert system or a self-organizing (learning) system, as implemented by neural networks,
is used to classify sounds. We discuss the strengths and weaknesses of each approach and
explain why the pattern-recognition approach is the one most heavily relied on in practical
systems. We conclude the chapter with a discussion of the fundamental issues in speech
recognition (i.e., those factors that most influence overall system performance), and with a
brief overview of current applications.

Chapter 3—Signal Processing and Analysis Methods for Speech Recognition.
In this chapter we present the two fundamental signal-processing approaches to speech
spectral analysis: filter bank and linear predictive methods. We specialize the presentation
of these two fundamental techniques to aspects related to speech analysis and compare and
contrast the two methods in terms of robustness to speech sounds and required computation.
For completeness we also discuss the popular source-coding technique referred to as
vector quantization (VQ). Here, a codebook is created to represent the anticipated range
of spectral vectors. This enables us to code an arbitrary continuous speech spectral vector
into one of a fixed number of discrete codebook symbols at the cost of increased error
in signal representation but with the benefit of significantly reduced computation in the
recognition process. We conclude this chapter with a discussion of a spectral analysis
model that attempts to mimic the processing in the human auditory system—the so-called
ear model. Although our knowledge of the higher-order processing in the central nervous
system is rudimentary, the importance of ear models is related to their robustness to noise,
reverberation, and other environmental factors that often seriously degrade performance of
current speech recognizers.

e

Chapter 4—Pattern-Comparison Techniques. In this chapter we discuss three
fundamental aspects of comparing a pair of speech patterns. These are the basic concept of
detecting speech (i.e., finding the speech signal in a background of noise or other acoustic
interference), the idea of computing a measure of the local distance (or similarity) of a pair
of spectral representations of a short-time piece of speech signal (a distance or distortion
measure), and the concept of temporally aligning and globally comparing a pair of speech
patterns corresponding to different speech utterances that may or may not be the same
sequence of sounds or words (dynamic time warping algorithms). We show in this chapter
how the basic pattern-comparison techniques can be combined in a uniform framework for
speech-recognition applications.

Chapter 5—Speech-Recognition System Design and Implementation Issues. In
this chapter we discuss the remaining pieces (after signal processing and pattern compari-
son) that enable us to build and study performance of a practical speech-recognition system.
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In particular we discuss how speech recognizers are trained and how we can enhance the
basic recognition procedure by adding features, by exploiting a preprocessor, by the use of
methods of adaptation or by postprocessing the recognizer outputs using a set of pattern
discriminators (as opposed to the pattern classifiers used in a conventional implementa-
tion). We conclude the chapter with a discussion of various ways of recognizing speech
in adverse environments (e.g., noise, stress conditions, or mismatch between training and
testing).

Chapter 6—Theory and Implementation of Hidden Markov Models. In this
chapter we discuss aspects of the theory and implementation of the set of statistical modeling
techniques collectively referred to as hidden Markov modeling. Included within these
techniques are the algorithms for scoring a statistical (Markovian) model against a speech
pattern, the techniques for aligning the model with the speech pattern so as to recover
an estimate of the alignment path between different speech sounds and different model
states, and the techniques for estimating parameters of the statistical models from a training
set of utterances of the sounds being modeled. Also included is a discussion of the
practical aspects of building hidden Markov models, including the issues of scaling of
data, handling of multiple observation sequences, providing initial estimates of model
parameters, and combating the problems of insufficient training data. We conclude the
chapter with a practical example illustrating how a simple, isolated word recognizer would
be implemented using hidden Markov models.

Chapter 7—Speech Recognition Based on Connected Word Models. In this
chapter we show how the basic set of techniques developed for recognizing an isolated
word or phrase can be readily extended to recognizing a sequence of words (e.g., a string
of digits of a credit card number) spoken in a fluent or connected manner. We make the
simplifying assumption that the connected word string is recognized by finding the optimal
sequence of word models that best matches the spoken string. Hence we assume that the
word is the basic recognition unit for these systems, and therefore the training problem is
one of estimating the optimal parameters of word models on the basis of training data, which
need not contain isolated versions of the words. We describe three “optimal™ approaches
to solving the recognition part of connected word-recognition problems: (1) the two-level
dynamic programming method, (2) the level building method, and (3) the time synchronous
level building (or the one-pass) method and discuss the properties, and the relative strengths
and weaknesses of each method. We then show how we can optimally train connected
word systems, even if isolated versions of the vocabulary words are not available. We
conclude the chapter with a discussion of a connected digit recognizer implemented using
the methods described in the chapter.

Chapter 8—Large Vocabulary Continuous Speech Recognition. In this chapter
we discuss the issues in applying speech-recognition technology to the problem of recog-
nizing fluently spoken speech with vocabulary sizes of 1000 or more words (with unlimited
vocabularies as the ultimate goal). It is shown that a number of fundamental problems
must be solved to implement such a system, including the choice of a basic subword
speech unit (from which words, phrases, and sentences can be built up), an effective way
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of modeling the basic speech unit, a way of deriving models of the unit, a way of designing
and implementing a word lexicon (which provides a mapping between words and subword
units), a way of implementing task syntax (the system grammar), a way of implementing
the overall recognition part of the system (via some type of network search), and a way of
imposing task semantics onto the solution. We concentrate primarily on the issues involved
in building large vocabulary recognition systems. For illustrative purposes we describe
one reasonable way of building such a system and discuss the resulting performance on a
standard database management task.

Chapter 9—Task Oriented Applications of Automatic Speech Recognition. The
final chapter of the book provides a brief overview of how one might apply the ideas
discussed in the book to building a real, task-oriented, speech recognition system. It
includes discussions of how one would evaluate recognizer performance and how one
might decide whether a proposed task is viable for speech recognition. We also discuss a
set of broad classes of applications, which appear to be the most promising ones at this time,
along with typical examples of how recognizers have been successfully employed within
these broad classes. The chapter concludes with some broad performance projections
through the year 2000.

1.4 A BRIEF HISTORY OF SPEECH-RECOGNITION RESEARCH

Research in automatic speech recognition by machine has been done for almost four
decades. To gain an appreciation for the amount of progress achieved over this period, it is
worthwhile to briefly review some research highlights. The reader is cautioned that such
a review is cursory, at best, and must therefore suffer from errors of judgment as well as
omission.

The earliest attempts to devise systems for automatic speech recognition by machine
were made in the 1950s, when various researchers tried to exploit the fundamental ideas
of acoustic-phonetics. In 1952, at Bell Laboratories, Davis, Biddulph, and Balashek built
a system for isolated digit recognition for a single speaker [1]. The system relied heavily
on measuring spectral resonances during the vowel region of each digit. In an independent
effort at RCA Laboratories in 1956, Olson and Belar tried to recognize 10 distinct syllables
of a single talker, as embodied in 10 monosyllabic words [2]. The system again relied
on spectral measurements (as provided by an analog filter bank) primarily during vowel
regions. In 1959, at University College in England, Fry and Denes tried to build a phoneme
recognizer to recognize four vowels and nine consonants [3]. They used a spectrum analyzer
and a pattern matcher to make the recognition decision. A novel aspect of this research
was the use of statistical information about allowable sequences of phonemes in English
(a rudimentary form of language syntax) to improve overall phoneme accuracy for words
consisting of two or more phonemes. Another effort of note in this period was the vowel
recognizer of Forgie and Forgie, constructed at MIT Lincoln Laboratories in 1959, in which
10 vowels embedded in a /b/-vowel-/t/ format were recognized in a speaker-independent
manner [4]. Again a filter bank analyzer was used to provide spectral information, and a
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time varying estimate of the vocal tract resonances was made to decide which vowel was
spoken.

In the 1960s several fundamental ideas in speech recognition surfaced and were
published. However, the decade started with several Japanese laboratories entering the
recognition arena and building special-purpose hardware as part of their systems. One
early Japanese system, described by Suzuki and Nakata of the Radio Research Lab in
Tokyo [5], was a hardware vowel recognizer. An elaborate filter bank spectrum analyzer
was used along with logic that connected the outputs of each channel of the spectrum
analyzer (in a weighted manner) to a vowel-decision circuit, and a majority decision logic
scheme was used to choose the spoken vowel. Another hardware effort in Japan was the
work of Sakai and Doshita of Kyoto University in 1962, who built a hardware phoneme
recognizer [6]. A hardware speech segmenter was used along with a zero-crossing analysis
of different regions of the spoken input to provide the recognition output. A third Japanese
effort was the digit recognizer hardware of Nagata and coworkers at NEC Laboratories in
1963 [7]. This effort was perhaps most notable as the initial attempt at speech recognition
at NEC and led to a long and highly productive research program.

In the 1960s three key research projects were initiated that have had major implica-
tions on the research and development of speech recognition for the past 20 years. The
first of these projects was the efforts of Martin and his colleagues at RCA Laboratories,
beginning in the late 1960s, to develop realistic solutions to the problems associated with
nonuniformity of time scales in speech events. Martin developed a set cf elementary
time-normalization methods, based on the ability to reliably detect speech starts and ends,
that significantly reduced the variability of the recognition scores [8]. Martin ultimately
developed the method and founded one of the first companies, Threshold Technology,
which built, marketed, and sold speech-recognition products. At about the same time, in
the Soviet Union, Vintsyuk proposed the use of dynamic programming methods for time
aligning a pair of speech utterances [9]. Although the essence of the concepts of dynamic
time warping, as well as rudimentary versions of the algorithms for connected word recog-
nition, were embodied in Vintsyuk’s work, it was largely unknown in the West and did
not come to light until the early 1980s; this was long after the more formal methods were
proposed and implemented by others.

A final achievement of note in the 1960s was the pioneering research of Reddy in
the field of continuous speech recognition by dynamic tracking of phonemes [10]. Reddy’s
research eventually spawned a long and highly successful speech-recognition research
program at Carnegie Mellon University (to which Reddy moved in the late 1960s) which,
to this day, remains a world leader in continuous-speech-recognition systems.

In the 1970s speech-recognition research achieved a number of significant milestones.
First the area of isolated word or discrete utterance recognition became a viable and usable
technology based on fundamental studies by Velichko and Zagoruyko in Russia [11],
Sakoe and Chiba in Japan [12], and Itakura in the United States [13]. The Russian studies
helped advance the use of pattern-recognition ideas in speech recognition; the Japanese
research showed how dynamic programming methods could be successfully applied; and
Itakura’s research showed how the ideas of linear predictive coding (LPC), which had
already been successfully used in low-bit-rate speech coding, could be extended to speech-
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recognition systems through the use of an appropriate distance measure based on LPC
spectral parameters.

Another milestone of the 1970s was the beginning of a longstanding, highly successful
group effort in large vocabulary speech recognition at IBM in which researchers studied
three distinct tasks over a period of almost two decades, namely the New Raleigh language
[14] for simple database queries, the laser patent text language [15] for transcribing laser
patents, and the office correspondence task, called Tangora [16], for dictation of simple
memos.

Finally, at AT&T Bell Labs, researchers began a series of experiments aimed at
making speech-recognition systems that were truly speaker independent [17]. To achieve
this goal a wide range of sophisticated clustering algorithms were used to determine the
number of distinct patterns required to represent all variations of different words across a
wide user population. This research has been refined over a decade so that the techniques
for creating speaker-independent patterns are now well understood and widely used.

Just as isolated word recognition was akey focus of research in the 1970s, the problem
of connected word recognition was a focus of research in the 1980s. Here the goal was
to create a robust system capable of recognizing a fluently spoken string of words (e.g.,
digits) based on matching a concatenated pattern of individual words. A wide variety of
connected word-recognition algorithms were formulated and implemented, including the
two-level dynamic programming approach of Sakoe at Nippon Electric Corporation (NEC)
[18], the one-pass method of Bridle and Brown at Joint Speech Research Unit (JSRU) in
England [19], the level building approach of Myers and Rabiner at Bell Labs [20], and the
frame synchronous level building approach of Lee and Rabiner at Bell Labs [21]. Each
of these “optimal” matching procedures had its own implementational advantages, which
were exploited for a wide range of tasks.

"Speech research in the 1980s was characterized by a shift in technology from
template-based approaches to statistical modeling methods—especially the hidden Markov
model approach [22, 23]. Although the methodology of hidden Markov modeling (HMM)
was well known and understood in a few laboratories (primarily IBM, Institute for Defense
Analyses (IDA), and Dragon Systems), it was not until widespread publication of the meth-
ods and theory of HMMs, in the mid-1980s, that the technique became widely applied in
virtually every speech-recognition research laboratory in the world.

Another “new” technology that was reintroduced in the late 1980s was the idea of
applying neural networks to problems in speech recognition. Neural networks were first
introduced in the 1950s, but they did not prove useful initially because they had many
practical problems. In the 1980s, however, a deeper understanding of the strengths and
limitations of the technology was obtained, as well as the relationships of the technology to
classical signal classification methods. Several new ways of implementing systems were
also proposed [24, 25].

Finally, the 1980s was a decade in which a major impetus was given to large vocab-
ulary, continuous-speech-recognition systems by the Defense Advanced Research Projects
Agency (DARPA) community, which sponsored a large research program aimed at achiev-
ing high word accuracy for a 1000-word, continuous-speech-recognition, database man-
agement task. Major research contributions resuited from efforts at CMU (notabiy the well-
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known SPHINX system) {26], BBN with the BYBLOS system [27], Lincoln Labs [28],
SRI [29], MIT [30], and AT&T Bell Labs {31]. The DARPA program has continued into
the 1990s, with emphasis shifting to natural language front ends to the recognizer, and the
task shifting to retrieval of air travel information. At the same time, speech-recognition
technology has been increasingly used within telephone networks to automate as well as
enhance operator services.
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Chapter 2

THE SPEECH SIGNAL:
PRODUCTION, PERCEPTION,
AND ACOUSTIC-PHONETIC
CHARACTERIZATION

2.1 INTRODUCTION

In this chapter we discuss the mechanics of producing and perceiving speech in human
beings, and we show how an understanding of these processes leads naturally to several
different approaches to speech recognition by machine. We begin by showing how the
different classes of speech sounds, or phonetics, can each be characterized in terms of
broad acoustic features whose properties are relatively invariant across words and speakers.
The ideas of acoustic-phonetic characterization of sounds lead naturally to straightforward
implementation of a speech-recognition algorithm based on sequential detection of sounds
and sound classes. The strengths and weaknesses of such an approach are discussed. An
alternative approach to speech recognition is to use standard pattern-recognition techniques
in a framework in which all speech knowledge is “learned” via a training phase. We show
that such a “blind” approach has some natural advantages for a wide range of speech-
recognition systems. Finally we show how aspects of both the acoustic-phonetic approach
and the pattern-recognition approach can be integrated into a hybrid method that includes
techniques from artificial intelligence as well as neural network methods.

2.1.1 The Process of Speech Production and Perception in Human Beings

Figure 2.1 shows a schematic diagram of the speech-production/speech-perception process
in human beings. The production (speech-generation) process begins when the talker
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